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PARTIAL SHAPE MATCHING USING GENETICALGORITHMSEnder Ozcan and Chilukuri K. Mohaneozcan/mohan@top.cis.syr.edu2-120 Center for Science and Technology,Department of Electrical Engineering and Computer Science,Syracuse University, Syracuse, NY 13244-4100, U.S.A.315-443-2322/(fax) 1122AbstractShape recognition is a challenging task when images contain overlapping, noisy, occluded, partial shapes.This paper addresses the task of matching input shapes with model shapes described in terms of featuressuch as line segments and angles. The quality of matching is gauged using a measure derived from attributedshape grammars. We apply genetic algorithms to the partial shape-matching task. Preliminary results, usingmodel shapes with 6 to 70 features each, are extremely encouraging.Key words : Partial Shape Matching, Genetic Algorithms, Attributed Strings, Pattern Recognition.



PARTIAL SHAPE MATCHING USING GENETICALGORITHMS1 IntroductionShape recognition techniques attempt to identify which of a �xed set of model shapes are present in theinput shape. For example, most robotics applications for part inspection and VLSI design involve locatingand identifying objects, requiring good shape recognition algorithms. Existing shape recognition techniques[Turney et al. (1985), Ansari and Delp (1990), Nasrabadi and Li (1991)] do not perform well for shapes ofobjects that are occluded, or touch or overlap with other objects. Such problems necessitate a exible shaperecognition algorithm that makes use of incomplete matching information.This paper proposes a new approach for partial shape matching, applying a Genetic Algorithm (GA) to anattributed string representation [Tsai and Yu (1985)] that provides rotation and size independence. DiIanniet al. (1996) have also applied GAs and simulated annealing for matching shapes but the results reportedwere not encouraging, possibly because of using raw pixel arrays rather than shape features. In contrastto our work, the shape analysis method of Bala and Wechsler (1991) does not use GAs directly for shapematching; instead, GAs are used in their work to develop morphological operators that can discriminateamong classes containing di�erent shapes.The new approach is introduced in Section 2. Section 3 contains experimental results, and conclusionsare presented in Section 4.2 Genetic Algorithm for Shape MatchingGenetic Algorithms (GAs), introduced by Holland (1975), conduct search using a �xed size population ofindividuals (candidate solutions). New solutions are generated using operators, and a selection mechanismis used to obtain new generations containing better individuals.Given an input shape with n features and S model shapes with a total number of M features, partialshape matching involves associating input features with model features. The search space is immense, of sizeranging up to Mn, since the input image may contain multiple partial instances of the same model shape.2.1 RepresentationAttributed strings [Tsai and Yu (1985)] are used for the representation of polygonal shapes, consisting of line1



segments. A string of features (x1; x2; :::; xi; :::; xn) is used to represent each shape. Each feature xi = (li; �i)is formed of two attributes: the length li of the corresponding line segment, and the relative angle �i it formswith the preceding line segment xi�1. We assume the use of existing feature extraction algorithms. Weperform normalization using the immediately preceding feature's length: l0i = li=li�1; an example is shownFigure 1. These features are invariant under translation, scale and rotation transformations. The shaperecognition problem now reduces to multiple substring matching. We use the following notation:� Input shape I = (I1; I2; :::; In) with jIj = n features, where Ip is the pth feature, consisting of attributes(l(Ip); �(Ip)), where l and � yield normalized lengths and angles.� The model shapes are M1;M2; :::;MS, where Mj = (Mj;1;Mj;2; :::;Mj;mj); and where Mj;r is the rthfeature of the jth model shape, consisting of attributes (l(Mj;r); �(Mj;r)).� Each individual P = (P1; P2; :::; Pk; :::; Pn) corresponds to a mapping �P from input shape features tomodel shape features such that Pk = �P (Ik) = Mj;i, where 1 � k � n, 1 � j � S, and 1 � i � mj .Example: With P = [(2; 3); (2; 4); (2;5); (3; 4) : : :]; for instance, the �rst feature I1 of the input shape ismapped by this individual to P1 = �P (I1) = (2; 3), the third feature of the second model shape.2.2 FitnessFitness(P ) = �(jjfIkj �P (Ik) = Mi;j , �P (Ik�1) =Ml;m , i 6= l or m 6= j � 1gjj + jjfIkj d(Ik; �P (Ik)) > �gjj)The �rst term in the above expression penalizes the number of model shape fragments assigned to featuresequences by P . The second term represents the number of features in the input image that are not matchedby P . The matching threshold � is a nonlinear function of t = max(l(Ik); l(�P (Ik))), allowing less error forhigh values, e.g., 0.2 for t > 0:5, and higher error for lower values, e.g., 0.9 for t < 0:005.d(Ik; �P (Ik)) measures the dissimilarity between input shape feature Ik and model feature �P (Ik):d(Ik; �P (Ik)) = 8>>>>>>><>>>>>>>: d�(Ik; �P (Ik)) + dl(Ik; �P (Ik)) if �P (Ik�2) = Mi;j�2, �P (Ik�1) = Mi;j�1 and�P (Ik) = Mi;j for some i; j; kd�(Ik; �P (Ik)) if �P (Ik�1) = Mi;j�1 and �P (Ik) = Mi;j for some i; j; k1 otherwise:where d�(Ik; �P (Ik)) = c� j�(Ik)��(�P (Ik))j, and dl(Ik; �P (Ik)) = j(l(Ik)�l(�P (Ik))j=max(l(Ik); l(�P (Ik))).The constant c� is chosen in our experiments so that di�erences of �=18 are considered negligible.2



2.3 Selection MechanismA linear ranking strategy is used during reproduction, with the best individual being allocated roughly �vetimes more o�spring than the worst individual. An elitist survival selection mechanism is also used: the besttwo thirds (66%) of all individuals in a generation are allowed to survive into the next generation.2.4 OperatorsCrossover and mutation generate new individuals, and hill climbing is then used to improve the solutionsobtained.� Traditional one-point crossover (1PTX) is applied to the individuals, producing two children. Thisoperator randomly chooses two individuals P i and P j as parents from the population. P i and P j arethen cleaved at a randomly chosen crossover point, c, where 1 � c < n, and the sub-sequences fromdi�erent parents are recombined to generate two o�spring.� Individuals are mutated with 30% mutation rate. Mutation randomly chooses points on an individualand replaces the existing model features (to which input shape features are mapped) by the featuresof a randomly chosen model shape.� Each hill climbing step attempts to improve the �tness of an individual by shifting the \intersectionpoint" (between feature sequences mapped to di�erent model shapes) in one direction, then in theopposite direction, replacing the relevant component by the most appropriate feature from the modelto which neighboring shape features are mapped. For instance, if �P (Ik) = Mj;i and �P (Ik+1) = Mj0;i0,hill climbing �rst attempts to change �P (Ik) to Mj0;i0�1. If this attempt does not improve the �tness,hill climbing attempts to change �P (Ik+1) to Mj;i+1.3 Experimental ResultsIn previous experiments, reported in Ozcan (1996), best results were obtained using 1PTX, mutation rateof 0.3, and hill climbing. A large library of 40 polygonal model shapes with a total of 1505 features wasused for the experiments. Some of these shapes are shown in Figure 3. Input shapes contain overlappedmodel shapes, possibly scaled di�erently (Figure 2). Pre�xes \i" and \m" refer to input and model shapes,respectively, e.g., \i2" is the second input shape. We used a population size twice the number of features ofeach input shape. Each test was repeated 100 times for all input shapes. A Sun workstation was used forall experiments. 3



Table 1 shows the results obtained by applying the GA to noisy versions of i4. Locations of 5%-25% ofthe input image vertices were randomly perturbed. All runs resulted with a �tness which approximatelyequals the best possible �tness. In some experiments, the random perturbations assist the GA in movingout of local optima.Experimental results, summarized in Table 2, are very promising. The GA found the best possible correctmatch in all runs. For i0, in which m22 is overlapped twice, the GA gets stuck at a local optimum in 15%of runs, where the input shape is partially matched to m25 instead of m22. The GA reached correct resultsin at most 254 generations, on average.4 ConclusionsA new approach for shape recognition is developed, which utilizes genetic algorithms and attributed stringrepresentation. Outline features of shapes are represented using attributed strings. Each feature is a linesegment with two attributes: relative length and angle, providing rotation and size invariance. Experimentalresults demonstrate that this approach is computationally e�cient and memory requirements are smallerthan neural network models [Yang et al. (1993)]. The use of many-individual populations and evolutionaryoperators overcomes the primary problem faced by greedy algorithms that get stuck in locally optimal solu-tions. For shapes with curvilinear segments, a di�erent representation would be more appropriate [Brucksteinet al. (1992)], but we expect that a GA can still be used for matching.References[1] M. DiIanni, R. Diekmann, R. Luling, J. Schulze and S. Tschoeke (1996), Simulated Annealing andGenetic Algorithms for Shape Detection, Control and Cybernetics, vol. 25, No. 1, pp. 159-175.[2] E. Ozcan and C. K. Mohan (1996), Shape Recognition Using Genetic Algorithms, Proc. IEEE Int.Conf. on Evol. Computation, Nagoya (Japan), pp. 414-420.[3] M. C. Yang, K. Mehrotra, C. K. Mohan, S. Ranka (1993), A New Algorithm for Shape Matching, Proc.Arti�cial Neural Networks in Eng. Conf., St. Louis (MO), pp.523-528.[4] A. M. Bruckstein, N. Katzir, M. Lindenbaum and M. Porat (1992), Similarity-Invariant Signatures forPartially Occluded Planar Shapes, Int. J. of Computer Vision, 7:3, pp. 271-285.4



[5] J. Bala and H.Wechsler (1991), Shape Analysis Using Morphological Processing and Genetic Algorithms,Proc. Int. Conf. on Tools for AI, pp.130-137.[6] N. M. Nasrabadi and W. Li (1991), Object recognition by a Hop�eld Neural Network, IEEE Trans.on Sys., Man, and Cybernetics, vol. 21, no.6, pp.1523-1535.[7] N. Ansari and E. J. Delp (1990), Partial shape recognition: A landmark-based approach, IEEE Trans.on Pattern Anal. Machine Intell., vol 12., no.5, pp. 489-497.[8] W. -H. Tsai and S.-S. Yu (1985), Attributed string matching with merging for shape recognition, IEEETran. on Pattern Anal. Machine Intell., vol. 7, pp 453-462.[9] J. L. Turney, T. N. Mudge and R. A. Voltz (1985), Recognizing partially occluded parts, IEEE Trans.on Pattern Anal. Machine Intell., vol. PAMI-7, pp. 410-421.[10] J. H. Holland (1975), Adaptation in Natural and Arti�cial Systems, Univ. Mich. Press, Ann Arbor(MI).
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 4.2Figure 1: Polygon represented as((1:33; �2 ); (1:05; �4 ); (1:67; 3�4 ); (0:43; �2 )). Noise Levels 0.05 0.10 0.15 0.20 0.25Success Rate 0.96 0.90 0.74 0.94 0.55Table 1: Test results for input image i4: Success rates,based on over 100 experiments, for di�erent noise levelswhich indicates the fraction of features perturbed.
Figure 2: Input shapes used for the experiments.5



Figure 3: Model shapes used to construct the input shapes in the experiments.Shape No. of Overlapping Frequency of No. of generations Time (sec.)label features models correct matching � � � �i0 32 m20;m21 1.00 82 65 3.95 3.04i1 20 m22;m22 1.00 31 26 0.73 0.57i2 37 m21;m22;m22 0.85 253 242 15.03 13.87i3 41 m20;m21;m22 1.00 154 117 11.19 8.22i4 24 m26;m27 1.00 138 169 4.27 5.11i5 29 m28;m29 1.00 173 160 7.11 6.59i6 113 m35;m37 1.00 148 135 57.64 48.57i7 71 m31;m36 1.00 141 95 23.75 15.08i8 86 m31;m34;m36 1.00 86 74 21.86 18.33i9 67 m9,m19 1.00 53 42 9.07 7.07i10 91 m4,m11 1.00 158 102 46.16 29.49Table 2: Test results for 100 trials of GA (1000 generations), for shapes given in Figure 2: Averages (�), andstandard deviations (�) are based on experiments in which the correct solution is found.6
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