
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1993

Fast Mapping And Remapping Algorithms For Irregular And Fast Mapping And Remapping Algorithms For Irregular And

Adaptive Problems Adaptive Problems

Chao Wei Ou
Syracuse University

Sanjay Ranka
Syracuse University

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ou, Chao Wei; Ranka, Sanjay; and Fox, Geoffrey C., "Fast Mapping And Remapping Algorithms For Irregular
And Adaptive Problems" (1993). College of Engineering and Computer Science - Former Departments,
Centers, Institutes and Projects. 8.
https://surface.syr.edu/lcsmith_other/8

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former Departments,
Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215693328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/8?utm_source=surface.syr.edu%2Flcsmith_other%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Fast Mapping And Remapping Algorithms For Irregular AndAdaptive Problems�Chao-Wei Ou, Sanjay Ranka and Geo�rey FoxSchool of Computer and Information ScienceSyracuse UniversitySyracuse, NY 13244AbstractThis paper describes the performance of locality-based mapping and remapping partitioners for un-structured grids. We show that the algorithm producesgood mappings at a relatively low cost and can be eas-ily parallelized. Further, the algorithm can provideremapping for incremental problems at a fraction ofthe total cost.1 IntroductionLoad-balancing and reduction of communicationare two important issues for achieving good perfor-mance distributed-memory parallel computers. It isimportant to map the program such that the total ex-ecution time is minimized; the mapping can typicallybe performed statically or dynamically.For a large class of scienti�c problems that are ir-regular in nature, achieving a good mapping is di�-cult [1]. The nature of the irregularities is unknownat the time of compilation and can be derived onlyat runtime. The handling of such irregular problemsrequires runtime information in order to partition thecomputation in such a fashion that each processor re-ceives an approximately equal amount of computationand to minimized communication.Partitioning for dynamic problems requires opti-mization methods that quickly and reliably producereasonable, but not exact results. Partitioning suchapplications can be posed as a graph-partitioningproblem necessarily based on the computational graphfor each phase. The partitioning problem is in theclass of NP-complete problems; hence exact solutionsare computationally intractable for large problems.�This work was supported in part by NSF under CCR-9110812 and in part by DARPA under contract #DABT63-91-C-0028. The contents do not necessarily re
ect the positionor the policy of the United States government and no o�cialendorsement should be inferred.

P0 P2
P6

P4

P1 P3 P5 P7Figure 1: The partitioning of irregular meshHowever, we emphasize that good suboptimal solu-tions are su�cient for e�ective parallelization of alarge class of irregular problems.There are a large number of partitioning algorithmsavailable in the literature [2], [6], [9]. Depending onthe requirement application, one may be more usefulthan the other. The following are some important fea-tures of a partitioning algorithm.1. Cost of partitioning vs. quality: For a given ap-plication, a cheaper algorithm generating a solution ofreasonable quality may be preferable to an expensiveone that yields a solution of very good quality.2. Direct vs. iterative: In iterative methods (e.g., ge-netic algorithms) the quality of partitioning improveswith the number of iterations, and thus the user canoptimize between the cost vs quality of the mapping.3. Parallelizability: Some methods, such as geneticalgorithm-based partitioners, are inherently parallel.On the other hand, methods based on recursive spec-tral bisection are di�cult to parallelize.4. Incremental updates: For many applications, thecomputational structure changes from one phase toanother in an incremental fashion. Thus, partitioning

of the previous phase can be used to partition the nextphase at a fraction of the cost.5. Use of information about physical domain: Co-ordinate information can be used if the computationalgraph represents a physical domain.In this paper we present the quality of mappingproduced by an index-based mapping scheme for parti-tioning two and three-dimensional irregular and adap-tive grids on parallel machines. We show these meth-ods to be extremely fast, easy to parallelize, thatthey produce good mappings, and are incremental innature. Thus, we believe they should be useful fora large variety of irregular and adaptive problems.Index-based mapping has been used for sorting on atwo-dimensional mesh [7], parallelizing quadtrees andsparse images [4] [5], and for n-body simulations onparallel machines [8].The quality of the mappings produced by our algo-rithms is comparable to co-ordinate recursive bisection[6]. Although the algorithm does not perform as wellas spectral bisection methods, it is easily paralleliz-able and should be useful for parallelizing problemsthat are adaptive in nature.2 The Mapping ProblemWe are given a graph G = (V;E), where V rep-resents a set of vertices, and E represents a set ofedges. The number of vertices is given by n =j V j,and the number of edges is given by m =j E j. Fora graph representing the computational structure ofphysical domain, each vertex vi 2 V , 1 � i � m cor-responds to a physical coordinate in a d-dimensionalspace (xi1 ; xi2 ; : : : ; xid). Each edge is an ordered pair(vi1 ; vi2). In graphs corresponding to computationalstructure of physical domain, edges connect physicallyproximate vertices.The graph-partitioning problem can be de�ned asan assignment scheme M : V �! P that maps ver-tices to partitions. We denote by B(q) the set of ver-tices assigned to a partition q. Thus B(q) = fv 2 V :M (v) = qg. The weight wi corresponds to the compu-tation cost (or weight) of the vertex vi. The cost of anedge we(v1; v2) is given by the amount of interactionbetween vertices v1 and v2, thus the weight of everypartition can be de�ned asW (q) =Pvi2B(q) wi.The cost of all the outgoing edges from a partition rep-resents the total amount of communication cost andis given byC(q) =Pvi2B(q); vj 62B(q) we(vi; vj).We would like to make an assignment such that thetime spent by every node is minimized, i.e.,

0 1 2 3 4 5 6 7 0 1 4 5 16 17 20 218 9 10 11 12 13 14 15 2 3 6 7 18 19 22 2316 17 18 19 20 21 22 23 8 9 12 13 24 25 28 2924 25 26 27 28 29 30 31 10 11 14 15 26 27 30 3132 33 34 35 36 37 38 39 32 33 36 37 48 49 52 5340 41 42 43 44 45 46 47 34 35 38 39 50 51 54 5548 49 50 51 52 53 54 55 40 41 44 45 56 57 60 6156 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63(a) (b)Figure 2: (a) Row-Major and (b) Shu�ed Row-MajorIndexing for an 8� 8 imagemaxq (W (q) + �C(q)),where � represents the cost of unit computation/costof unit communication on a machine. It is more con-venient to minimize Pq C(q)because: 1) The computational load is typically bal-anced by most algorithms and thus the �rst term isclose to PqW (q) / P for each partition and can befactored out; 2) the max function is not di�erentiable;most optimizationmethods are gradient descent meth-ods and hence require minimization of a di�erentiablefunction.2.1 Incremental problemsAn adaptive irregular computation consists of aloosely synchronous computation executed repeatedlyin which the data access pattern changes between it-erations [1]. The changes may be gradual, re
ectingadiabatic changes in the physical domain (e.g., molec-ular dynamics), or large-scale re
ecting additions to adata structure (e.g., adaptive PDE solvers). The phys-ical and numerical properties of these algorithms typ-ically guarantee that large-scale restructuring of datais needed infrequently. Thus, from the perspective ofthe incremental mapping problem, the following sce-narios may arise:1) All the coordinates may perturb.2) New points may be added and/or old points deleted.This paper is limited to the latter case.3 The Mapping SchemeMapping is based on converting an n-dimensionalco-ordinate into a one-dimensional index such thatproximity in the multi-dimensional space is usually

Indexing(hash,d,n)1 for j � 1 to d do2 unitj � ((maxni=1 xij)� (minni=1 xij))=2lj3 for i � 1 to n do4 for j � 1 to d do5 indexj � xij=unitj6 hashi � Interleave(index,d,l)Figure 3: Indexing algorithmmaintained [8]. Consider a graph in which the setof vertices are arranged an 8� 8 grid. Row-major in-dexing and shu�ed row-major indexing are two of theseveral ways to index pixels in a two-dimensional grid.These two indexing schemes are shown in Figure 2.Intuitively, one would expect that shu�ed row-majormapping maintains the two-dimensional proximity ofindices better than row-major indexing does. With noloss of generality, we assume the vertices in the phys-ical space are all mapped onto a logical grid of size2l1 � 2l2 � 2l3 such that l1 � l2 � l3. The indexingalgorithm is given in Figure 3.A simple example of interleaving indices is as follows.Supposeindex1 = 101 index2 = 01 index3 = 0.The interleaved index would be 100110; this is done bychoosing bits (right to left) of each of the dimensionsone by one, starting from dimension 3 (the dimensionwith the smallest number of bits). When the bits ofa particular dimension are no longer available, thatdimension is not considered.The main purpose of a mapping algorithm is to de-termine the partitions by dividing the sorted index list.The algorithm assumes the input is a d-dimensionalarray. Once the index of every point is obtained, asimple sorting algorithm can be employed to providethe required mapping. We have used a sample-basedsorting algorithm for our implementation (it is omit-ted in this paper due to space limitations).For the incremental problem, all index values of in-cremental points are inserted into the sorted list. Asimple merging algorithm can be used for repartition-ing data when new nodes are added or deleted. Thisproblem can be described as merging m numbers (noordering between them) with a sorted list of n numbersto give another sorted list. The sequential complexityof this algorithm is O(m logm + n).The parallel merging algorithm applies the index-ing algorithm to the new vertices and moves them toprocessors, based on the previous boundaries. A se-quential merge algorithm in each processor forms asorted list of size np + mi where mi is the number of

/* Sorted array A is distributed using block distribution *//* Unsorted array B is distributed using block distribution *//* Bound[i] is the largest key of A stored in processor i */For each processor i do in parallelStep 1 : VAL := Global concatenate(Bound[i])Step 2 : For k � 1 to p doSEND LIST [k] := nilStep 3 : For k � 1 to mi doproc := Binary search(mi; V AL)Add B[k] to SEND LIST [proc]Step 4 : All-to-Many communication using SEND LISTStep 5 : Sort all the points received in Step 4 and call it CStep 6 : Merge list A and CStep 7 : For k � 1 to p doRefined Bound[k] := k(n+m)pStep 8 : Perform a locality-maintaining Load Balanceaccording to Refined Bound[k]Figure 4: Parallel Merging Algorithmvertices to be inserted in the processor i. One can usea parallel pre�x algorithm to �nd the new (re�ned)boundaries. This is followed by a locality-maintainingLoad Balance algorithm [3] that balances the load.It can be shown that the worst case complexity of themerging algorithm is O(m logm + np).4 Experimental ResultsThe results presented in Table 1 were obtained byapplying the index-based mapping algorithm to a largenumber of meshes. We can make the following obser-vations about the index-based mapping: 1) The qual-ity of partitioning for a small number of partitionsis not very good. 2) The quality of partitioning de-grades if the mesh is highly irregular. 3) For largemeshes the quality of mapping is comparable/betterthan co-ordinate recursive bisection. 4) The time re-quired for partitioning is independent of the numberof partitions. 5) For large mesh sizes with a reason-able number of partitions, the algorithm gives betterperformance than CRB at less then half the cost. 6)The quality of partitioning is always worse than SRB.However, the time required is two to three magnitudesbetter.We thus see that this algorithm is compara-ble/better than CRB for large meshes and a reason-able number of partitions. Clearly, the performance isalways inferior to that of SRB, but at a much lowercost.To study the time for parallelization for di�erentvalues of N , the co-ordinate data was generated ran-domly. The algorithm was implemented on a CM-5.Figure 5 shows the timing on 4, 8, 16, and 32 nodes.For 128,000 vertices, the time taken is of the order of0:69 seconds on a 32-node CM-5. The time taken for

j V j= 2800; j E j= 17377Partition Partitioner Time CutsetSORT .399960 478516 CRB .329967 4501SRB 43.696 3421SORT .399960 817264 CRB .479952 8563SRB 56.154 6385SORT .389961 12226256 CRB .669933 13078SRB 64.194 10566j V j= 2851; jE j= 15093Partition Partitioner Time CutsetSORT .379962 284016 CRB .309969 2176SRB 72.213 1455SORT .389961 591864 CRB .439965 4806SRB 82.272 3395SORT .379962 10108256 CRB .659934 8452SRB 91.081 7238j V j= 9428; jE j= 59863Partition Partitioner Time CutsetSORT 1.32987 1093616 CRB 1.14988 9731SRB 203.820 7236SORT 1.29987 1916564 CRB 1.71983 20147SRB 247.695 14310SORT 1.33987 30799256 CRB 2.27977 37272SRB 280.712 25073j V j= 53961; jE j= 353476Partition Partitioner Time CutsetSORT 7.76922 3612816 CRB 7.22928 31753SRB 1719.768 49374SORT 7.74923 6595864 CRB 10.9389 77313SRB 2234.786 66596SORT 7.84921 108692256 CRB 14.4486 151359SRB 2523.358 95612Table 1: Comparison of SORT, CRB, SRB algorithms(time is in seconds)

00.511.522.533.544.55 32000 64000 96000 128000Time(sec) Number of vertices4 nodes 33 33 3 3 3 38 nodes ++ ++ + + + +16 nodes 22 22 2 2 2 232 nodes �� �� � � � �Figure 5: Parallelization of mapping algorithm on 4,8, 16, and 32 nodes
00.20.40.60.811.2 32000 64000 96000 128000Time(sec) Number of vertices4 nodes- I 333333 3 3 34 nodes-II ++++++ + + +32 nodes- I 222222 2 2 232 nodes-II ������ � � �

Figure 6: 10% incremental problem on 4, 8, 16, 32processors (I and II represent cases 1 and 2, respec-tively)the algorithm on 4 nodes was 4:75 seconds. Thus, thealgorithm scales well.For the incremental case, we generated two sets ofdata for performing our experiments.1. Each node generated an approximately equal num-ber of random points such that the index values werewithin the boundaries of each processor.2. One node generated all the points (m) such that thepoints were within the boundaries of a processor. Thiscase was followed by a load- balancing step in whichthe data was distributed to all processors equally (mp).The results(Figure 6) show that for case 1 the al-gorithm parallelizes very well. The cost on 32 nodesin the incremental case of 10% new vertices is approx-imately 0.03 second for 128,000 vertices. This shows

00.10.20.30.40.50.60.7 0 2 4 6 8 10 12 14 16Time(sec) Number of vertices (%)inc. mapping 33 3 3 3 3 3 3 3 3 3 3mapping ++ + + + + + + + + + +
Figure 7: Comparison between incremental mappingand mapping algorithms on case 2 (j V j= 64; 000 andp = 32)that the incremental mapping algorithm can be usedto reduce the time for repartitioning (the correspond-ing time for mapping 128,000 vertices on 32 nodes is0.69). For case 2 result(Figure 6), the algorithm doesnot scale very well with the number of processors un-less the fraction is small and the number of verticesare large (greater than 10,000). This is because a largenumber of messages (p) are received by one processor.Further, all the data is sorted in one processor in Step5. Figure 7 shows the comparison of incremental map-ping (using the merging algorithm) with the mappingalgorithm (sorting algorithm) for 64,000 vertices forthe worst case data. This result shows that it is betterto perform incremental mapping rather than mappingwhen the fraction is less than 9%.5 ConclusionsIn this paper we have described a simplex index-based algorithm for graph partitioning. It is shownthat an index-based algorithm should be useful forpartitioning unstructured and adaptive problems forthe following reasons:1. They provide good solutions with a relatively lowcost, which is a necessary requirement due to the adap-tive nature of problems.2. They can be parallelized.3. They can be used for problems that are incrementalin nature.The performance of our parallel incremental map-ping depends on the type of data generated. There isa big gap between the performance of the best case

and the worst case of our algorithm. We are currentlyconducting further research in this area to improve theworst case performance of the incremental algorithm.References[1] Alok Choudhary, Geo�rey C. Fox, Seema Hi-ranandani, Ken Kennedy, Charles Koelbel, SanjayRanka, and Joel Saltz. Software support for irreg-ular and loosely synchronous problems. In Pro-ceedings of the Conference on High PerformanceComputing for Flight Vehicles, 1992. to appear.[2] Nashat Mansour. Parallel Genetic Algorithms withApplication to Load Balancing for Parallel Com-puting. PhD thesis, Syracuse University, Syracuse,NY 13244, 1992.[3] Kishan Mehrotra, Sanjay Ranka, and Jhy-ChunWang. A probabilistic analysis of a locality main-taining load balancing algorithm. In 7th Inter-national Parallel Processing Symposium, NewportBeach, CA, April 1993.[4] R. Shankar and S. Ranka. Hypercube algorithmsfor quadtree operations. Journal of Pattern Recog-nition, September 1992.[5] R. Shankar and S. Ranka. Computer vision al-gorithms for sparse images. Journal of PatternRecognition, October 1993.[6] H. Simon. Partitioning of unstructured mesh prob-lems for parallel processing. In Proceedings of theConference on Parallel Methods on Large ScaleStructural Analysis and Physics Applications. Per-magon Press, 1991.[7] C.D. Thompson and H.T. Kung. Sorting on amesh-connected parallel computer. comm. ACM,20:263{271, 1977.[8] Michael S. Warren and John K. Salmon. Astro-physical n-body simulations using hierarchical treedata structure. In Proceedings Supercomputing '92,Minneapolis, November 1992.[9] R.D. Williams. Performance of dynamic load-balancing algorithm for unstructured mesh calcu-lations. Concurrency, 3:457{481, 1991.

	Fast Mapping And Remapping Algorithms For Irregular And Adaptive Problems
	Recommended Citation

	tmp.1286816405.pdf.QHHuT

