
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1999

Formal Development of Secure Email Formal Development of Secure Email

Dan Zhou
Syracuse University

Joncheng C. Kuo
Syracuse University

Susan Older
Syracuse University, sbolder@syr.edu

Shiu-Kai Chin
Syracuse University, skchin@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhou, Dan; Kuo, Joncheng C.; Older, Susan; and Chin, Shiu-Kai, "Formal Development of Secure Email"
(1999). Electrical Engineering and Computer Science. 59.
https://surface.syr.edu/eecs/59

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215693308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/59?utm_source=surface.syr.edu%2Feecs%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Formal Development of Secure Email�

Dan Zhou Joncheng C. Kuo Susan Older Shiu-Kai Chin
Department of Electrical Engineering and Computer Science

Syracuse University
fdanzhou,ckuo,sueo,ching@cat.syr.edu

Abstract

Developing systems that are assured to be secure requires
precise and accurate descriptions of specifications, designs,
implementations, and security properties. Formal specifi-
cation and verification have long been recognized as giv-
ing the highest degree of assurance. In this paper, we de-
scribe a software development process that integrates for-
mal verification and synthesis. We demonstrate this process
by developing assured sender and receiver C++ code for
a secure electronic mail system, Privacy Enhanced Mail.
We use higher-order logic for system-requirements speci-
fication, design specifications and design verification. We
use a combination of higher-order logic and category the-
ory and tools supporting these formalisms to refine specifi-
cations and synthesize code. Much of our work is applica-
ble to other secure email protocols, as our development is
parameterized, component-based, and reusable.

1. Introduction

Systems with security requirements typically must oper-
ate with a high degree of confidence; we must be able
to demonstrate that these systems satisfy security require-
ments in addition to functional requirements. Formal meth-
ods are useful in high assurance design and implementa-
tion of secure software systems [7, 4], because they increase
the clarity of requirements, identify hidden assumptions that
the system must operate on, and certify the consistency of
requirements and the correctness of designs, among other
benefits [13]. The challenge is to combine formal analy-
sis and code synthesis in a practical process acceptable to
software engineers.

In this paper we address the problem of building a secure
email system where the high-level security requirements are
accounted for in even the lowest level of implementation.
The particular secure email system we focus on is Privacy

�This research was sponsored in part by Air Force Research Contracts
F30602-97-C-0310and F30602-98-1-0063and by the New York State
Center for Advanced Technology in Computer Applications and Software
Engineering.

Enhanced Mail (PEM) [12]. It is representative of other
email systems such as PGP [15] and NSA’s MISSI system
[3], and the methods we describe are applicable to those sys-
tems as well. We chose PEM because it has gone through
rigorous review as an Internet standard, it is publicly avail-
able, and it is similar to MISSI.

We apply formal methods to all key phases of the
software-development life cycle by integrating existing
tools: the higher-order logic theorem prover HOL [8] and
the synthesis tool SPECWARE which is based on higher-
order logic and category theory [14]. We formally specify
the system requirements, specify and verify the system de-
sign, perform stepwise refinement on the design specifica-
tions, and then compose these refinements to generate code
that is correct by construction.

In this work, higher-order logic is used for specification,
verification, and synthesis. Top-level security properties
and protocols are defined in HOL. The protocols are ver-
ified to satisfy the required security properties. The pro-
tocols are instantiated by adding specific data structures
and operations; these instantiations are verified to be cor-
rect within HOL. The verified design specifications are then
translated into SPECWAREspecifications. These specifica-
tions are refined to C++ code through stepwise refinements
and through the composition of these refinements.

The rest of this paper is organized as follows. Section 2
describes our formal development process. Section 3 gives
an overview of PEM and the security services that it pro-
vides. Section 4 shows an example of how a security prop-
erty is defined and verified in HOL. Section 5 illustrates
how the highly assured design of the previous example is
refined into implementations. We conclude in Section 6.

2. High Assurance Development Pro-
cess

Highly assured systems can be built using a formal develop-
ment process. In any type of software development process,
there are at least four key stages: requirement analysis, de-
sign, implementation and verification. To produce highly

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

1

assured software, we utilize formal support for each key
stage. We outline the proposed formal development process
next.

2.1. Formal development process

The ultimate goal of high-assurance system development is
producing code that satisfies desired properties. Accom-
plishing this goal requires two items: (1) correct system
specifications that satisfy the desired properties, and (2)
the valid refinement of specifications into code. To this
end, we employ a combination of higher-order logic and
category theory. Higher-order logic is used for verifica-
tion. Category theory provides the mechanism for refining
specifications into assured code and (more generally) for
component-based design and synthesis.

Analysis

Design

Formal definition of

performance, and

Correct by construction

Implementation

through higher order
logic theorem prover
and model checker

Formal verification

Stepwise refinement,

Formal definition of
data structures,

operations

component-based
synthesis

required functionalities,

system properties

Figure 1. Software development process

Figure1 illustrates the development process. We add for-
mal support using higher-order logic for requirement anal-
ysis, design, implementation, and verification. The use of
higher-order logic allows us to relate the products of each
stage rigorously.

During the synthesis phase, we use stepwise refinements
from the verified design specifications to yield lower-level
specifications. These lower-level specifications are in turn
refined until we arrive at a specification that maps directly
to code.

Figure2 shows the steps involved in synthesis phase.
A design specification is typically composed from

smaller specifications. We refine each of the component
specifications using stepwise refinement and then compose
the individual refinements to arrive at an implementation
for the composite design specification. The decomposition

stepwise
refinement

Specifications
Design

Specifications

realization
ImplementationLow-Level

Figure 2. Synthesis phase

of a problem into smaller pieces is done by software engi-
neers; our process does not replace this part of the human
input. Because system specifications and refinements are
composed through basic specifications and refinements re-
spectively, this paradigm supports component based design
and synthesis.

2.2. Tools

The process is instantiated into a concrete process by using
specific tools.

We use the higher-order logic theorem prover HOL [8]
for system-requirements specification, system-design spec-
ification, and design verification. Higher-order logic pro-
vides a version of predicate calculus that allows variables
to range over functions and predicates. We choose HOL
because of its expressiveness, extensive libraries, open con-
struction, and strong typed implementation that lends itself
to being trustworthy.

We use Kestrel’s synthesis tool SPECWARE[14] for code
generation. SPECWARE is a tool that supports the de-
sign, development and automated synthesis of correct-by-
construction software. It is based on category theory, the
theory of algebraic specifications, refinements, and compo-
sition of refinements. We choose SPECWAREbecause of its
use of higher-order logic and categorical composition and
its code-generation capabilities.

Our formal development process does not limit our
choice to either HOL or SPECWARE. Any higher-order
logic theorem prover could be used in place of HOL. Like-
wise, a different synthesis tool based on category the-
ory and algebraic specifications could be substituted for
SPECWARE.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

2

-----BEGIN PRIVACY-ENHANCED MESSAGE-----

Proc-Type: 4,ENCRYPTED

Content-Domain: RFC822

DEK-Info: DES-CBC,BFF968AA74691AC1

Originator-Certificate:

MIIBlTCCAScCAWUwDQYJKoZIhvcNAQECBQAwUTELMAkGA1UEBhMCVVMxIDAeBgNV

......

Issuer-Certificate:

MIIB3DCCAUgCAQowDQYJKoZIhvcNAQECBQAwTzELMAkGA1UEBhMCVVMxIDAeBgNV

......

MIC-Info: RSA-MD5,RSA,

UdFJR8u/TIGhfH65ieewe2lOW4tooa3vZCvVNGBZirf/7nrgzWDABz8w9NsXSexv

......

Recipient-ID-Asymmetric:

MFExCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5j

......

Key-Info: RSA,

O6BS1ww9CTyHPtS3bMLD+L0hejdvX6Qv1HK2ds2sQPEaXhX8EhvVphHYTjwekdWv

......

qeWlj/YJ2Uf5ng9yznPbtD0mYloSwIuV9FRYx+gzY+8iXd/NQrXHfi6/MhPfPF3d

jIqCJAxvld2xgqQimUzoS1a4r7kQQ5c/Iua4LqKeq3ciFzEv/MbZhA==

-----END PRIVACY-ENHANCED MESSAGE-----

Figure 3. A sample PEM message

3. Overview of PEM

In this paper, we describe the application of our develop-
ment process to the development of a Privacy Enhanced
Mail (PEM) system. This system is representative of other
secure email systems such as PGP [15] and NSA’s Multi-
level Information Systems Security Initiative (MISSI) [3].

PEM adds privacy, source authentication, message in-
tegrity, and non-repudiation to plaintext email. It provides
end-to-end security, assuming the underlying communica-
tion network is insecure. It is documented in fourRe-
quest for Comments(RFC) documents: RFC 1421 [12]
describes message encryption, authentication procedures,
and formats; RFC 1422 [11] describes certificate-based key
management; RFC 1423 [1] describes algorithms; and RFC
1424 [10] describes key certification.

PEM supports several common security properties [2]:
privacy, the assurance to the sender and recipient that no
one but the intended recipient can read the message;au-
thentication, the assurance to the recipient of the sender’s
identity; integrity , the assurance to the recipient that the
message has not been altered since being transmitted by the
sender; andnon-repudiation, the assurance to the recipient
that she can prove to a third party that the sender was indeed

the originator of the message (i.e., the sender cannot deny
sending the message). We have previously defined all these
properties in higher-order logic [5, 6].

Figure 3 shows an example of a PEM message; each
message is encapsulated in a plaintext email message.
There are five types of PEM messages: (1)ENCRYPTED,
(2) MIC-CLEAR, (3) MIC-ONLY, (4) CRL, and (5)CRL-
RETRIEVAL-REQUEST. The type of a PEM message deter-
mines the structure of the message as well as the protocol
for processing the message. The format for each of these
messages varies slightly depending on whether public- or
secret-key cryptography is being used.

Each PEM message contains a header in addition to the
text message itself. The header contains several fields that
identify the message type and provide information about
the message and the cryptographic functions applied to the
message.

Among the header fields of interest is MIC-Info, the
message integrity field. MIC-Info provides information
necessary for checking the integrity of a message. This field
has three subfields: in order, they contain (1) the (name of
the) hash algorithm used to generate the message digest; (2)
the (name of the) algorithm used to sign or encrypt the di-
gest, depending on whether the protocol is using public-key

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

3

or secret-key cryptography; and (3) the message integrity
code (MIC). The MIC functions like a secure checksum on
the message text.

For the remainder of this paper, we shall focus only on
the public-key variant of MIC-CLEAR messages, where the
message text is sent in the clear (i.e., unencrypted and un-
encoded) with its associated message integrity code.

The processes that senders use to create MIC-CLEAR
messages and that receivers use to check the integrity of
MIC-CLEAR messages are given by a security protocol.
Figure 4 shows the sequence of operations used to cre-
ate messages to send and to check the received messages.
For example, to create a MIC-CLEAR message, the sender
combines the plaintext message with the MIC, where the
MIC is the signed message digest of the mail-message con-
tent. To check the integrity of a MIC-CLEAR message, the
recipient must determine the appropriate hash and signature
verification algorithms to use, apply them to the message
text, and verify the result against the MIC. This security
protocol is concerned only with the sequence of operations,
not with the actual structure of messages.

message digesthash
algorithmplaintext

hash
algorithm False

True or

MIC

signer’s public key

message digest signature

algorithm
verification

signer’s private key

MIC

plaintext

algorithm
signing

Se
nd

er
 P

ro
ce

ss
R

ec
ei

ve
r

P
ro

ce
ss

Figure 4. Protocol for message-integrity checking

In the next two sections, we describe how to design and
synthesize assured code for implementing the MIC-CLEAR
message structures and protocols.

4. Specification and Verification of
Message Integrity

In previous work, we formally specified the security prop-
erties desired by PEM using HOL theories [5]. We formally
specified mail message structures and operations for PEM
ENCRYPTED and MIC-CLEAR messages. We also for-
mally verified that PEM provides privacy, integrity, source

authentication and source non-repudiation. Because that
work provides a necessary input to the synthesis phase, we
reiterate the basis approach to specification and verification
in this section. We focus on the property of message in-
tegrity for MIC-CLEAR messages.

We use standard predicate calculus notation. The sym-
bols^;_;� denoteand, or, and implication, respectively,
while 8 and9 denote theuniversalandexistential quanti-
fiers. The notationcond! t1jt2 denotes the conditionalif
cond then t1 else t2, and` t indicates that the formulat is
a theorem. Definitional extensions to HOL are denoted by
`de f.

4.1. Specification of MIC-CLEAR messages

A MIC-CLEAR message is specified simply as a tuple
hPkey;MIC-Info;Messagei comprising the sender’s pub-
lic key (Pkey), additional MIC information (MIC-Info),
and the message itself. In turn,MIC-Info is a tuple
hHash-ID;Sign-ID;MICi containing a hash-algorithm id, a
signing-algorithm id, and the MIC. This simplification re-
tains the essential information needed to retrieve a message
with security protection and is still complex enough to ex-
emplify component-based design and synthesis concepts.

The specification also defines accessor functions that
retrieve the values of the individual fields of a MIC-
CLEAR message, as well as selector functions that select
the hash function, the signature-generation function, and
the signature-verification function to be used. A portion
of the specification for MIC-CLEAR messages appears in
Figure5.

4.2. Generic integrity checking

Functionally, the integrity checking of mail messages is a
procedure that takes the message digest of a received mes-
sage and uses the sender’s public key to verify the received
MIC against the message digest. At this level of description,
the integrity check is independent of the message struc-
ture and thus can be specified by the following definition
in HOL:

`def 8verify hash message mic ekey.
is Intact verify hash message mic ekey=

verify (hash message) mic ekey

Intuitively, the predicateis Intactshould evaluate totrue
if and only if the transmitted and received messages are
deemed to be the same, according to the hash function. This
property holds under the following assumptions:

� The MIC field of the transmitted message is the en-
crypted message digest.

� The received MIC is the same as the transmitted MIC.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

4

Definitions:
get MIC hash`def 8x. getMIC hash x= FST(REPMIC info x)
get MIC sign`def 8x. getMIC sign x= FST(SND(REPMIC info x))
get MIC mic`def 8x. getMIC mic x= SND(SND(REPMIC info x))

MIC hashselect
`def 8x.

MIC hashselect x=
((get MIC hash x= RSAMD2)! fRSAMD2 j fRSAMD5)

MIC sign select
`def 8x.

MIC sign select x=
((get MIC sign x= DESEDE)
! sDESEDE
j ((get MIC sign x= DESECB)! sDESECBj sRSA))

(* retrieves MIC�Info field from a MIC�CLEAR message *)
get MIC Info
`def 8x. getMIC Info x= FST(SND x)
(* retrieves sender0s public key from a MIC�CLEAR message *)
get public key
`def 8x. getpublic key x= FST x
(* retrieves plaintext message from a MIC�CLEAR mesasge *)
get message
`def 8x. getmessage x= SND(SND x)

Theorems:
get MIC hashidCASES
` 8x. (get MIC hash x= RSAMD2) _ (get MIC hash x= RSAMD5)
get MIC signid CASES
` 8x.

(get MIC sign x= DESEDE)_
(get MIC sign x= DESECB)_
(get MIC sign x= RSA)

Figure 5. HOL specification for MIC-CLEAR messages

� The signature of a specific message can be verified
through the signer’s public keyekey.

The following correctness theorem shows that the in-
tegrity check satisfies the proceeding property. Note that
the assumptions appear as antecedents in the implication,
anddkeyrepresents the sender’s private key.

is Intact Correct=
` 8verify sign hash txmessage rxmessage

txmic rxmic ekey dkey.
(txmic= sign(hash txmessage) dkey)�
(rxmic= txmic)�
(8m1 m2. verify m1(sign m2 dkey) ekey

= (m1= m2))�
((hash rxmessage= hash txmessage)
= is Intact verify hash rxmessage rxmic ekey)

This theorem is easily proved using the definition of
is Intactand the antecedents of the implication.

4.3. Integrity checking of MIC-CLEAR mes-
sages

To define message integrity checking for a particular mes-
sage structure, we instantiate the parameters in the preced-

ing generic integrity check with information contained in
the header of a particular message. We define accessor func-
tions to retrieve particular fields of a message and selector
functions to select cryptographic functions given algorithm
IDs. For example, the integrity checking function for MIC-
CLEAR messages is as follows:

`def MIC CLEARis Intact micclear msg=
let micInfo= get MIC Info mic clear msg

and ekey= get public key micclear msg
in
is Intact(MIC sign select micInfo)
(MIC hashselect micInfo)
(get message micclear msg)
(get MIC mic micInfo)
ekey

The integrity check for MIC-CLEAR message
(MIC CLEARis Intact) is verified to satisfy a simi-
lar correctness theorem as the generic integrity check
is Intact:

MIC CLEARis Intact Correct=
` 8mic clear msg txmessage txmic dkey.

let micInfo= get MIC Info mic clear msg
and ekey= get public key micclear msg

in
let hash= MIC hashselect micInfo

and verify= MIC verify select micInfo
and sign= MIC sign select micInfo
and rxmessage= get message micclear msg
and rxmic= get MIC mic micInfo

in
(txmic= sign(hash txmessage) dkey)�
(rxmic= txmic)�
(8m1 m2. verify m1(sign m2 dkey) ekey

= (m1= m2))�
((hash rxmessage= hash txmessage)
= MIC CLEARis Intact micclear msg)

This theorem(MIC CLEARis Intact Correct) is iden-
tical to the general correctness theoremis Intact Correct,
except that (1) the received mail’s plaintext message con-
tent, the MIC, and the sender’s public key are retrieved from
the received MIC-CLEAR mail message(mic clear msg),
and (2) the hash function, and the signature generation and
verification functions are selected bases on the information
provided inmic clear msg.

This theorem is proved using the definition
MIC CLEARis Intactand the theoremis Intact Correct.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

5

HOL Specification SPECWARESpecification

Type constants:
algid 0
asymsignmic 0
MIC info 0

Term constants:
is MIC info (Prefix) :algid # algid # asymsignmic�> bool
REPMIC info (Prefix)

:MIC info �> algid # algid # asymsignmic
MIC Info (Prefix)

:algid # algid # asymsignmic�> MIC info
get MIC hash(Prefix) :MIC info �> algid

Definitions:
is MIC info
` 8x.

is MIC info x =
((FST x= RSA MD2) _ (FST x= RSA MD5)) ^
((FST(SND x)= DES EDE)_
(FST(SND x)= DES ECB)_
(FST(SND x)= RSA))

MIC info TY DEF
` 9rep. TYPEDEFINITION is MIC info rep

MIC info ISO DEF
` (8a. MIC Info (REPMIC info a)= a)^
(8r. is MIC info r = REPMIC info (MIC Info r) = r)

get MIC hash
` 8x. get MIC algid x= FST(REPMIC info x)

spec MIC_INFO is

sorts Algid, Asymsignmic, Temp_MIC, MIC_info

sort-axiom Temp_MIC = (Algid, Algid, Asymsignmic)

sort-axiom MIC_info = Temp_MIC | is_MIC_info?

% define is_MIC_info check

op is_MIC_info? : Temp_MIC -> Boolean

definition of is_MIC_info? is

axiom (iff (is_MIC_info? x)

(and (or (equal ((project 1) x) RSA_MD2)

(equal ((project 1) x) RSA_MD5))

(or (equal ((project 2) x) DES_EDE)

(or (equal ((project 2) x) DES_ECB)

(equal ((project 2) x) RSA)))))

end-definition

% define get_MIC_hash

op get_MIC_hash : MIC_info -> algid

definition of get_MIC_hash is

axiom (equal (get_MIC_hash x)

((project 1) ((relax is_MIC_info?) x)))

end-definition

...

end-spec

Figure 6. Comparison of HOL and SPECWARE specifications for MIC-Info

5. Synthesis of PEM MIC-CLEAR
Messages

Having verified that the specifications for (the design of) the
data structures and operations satisfy the required integrity
property, we turn to the synthesis phase of system develop-
ment. The previous analysis is legitimate for the final sys-
tem only if the synthesized code can be related formally to
the specifications. To this end, we specify the PEM system
in SPECWARE and then refine it to code. The HOL speci-
fication serves as a road map for the SPECWAREspecifica-
tion, as the two specifications are very similar. Figure6 il-
lustrates the syntactic similarity of the HOL and SPECWARE

specifications for the MIC-Info structure.

5.1. Theoretical basis of SPECWARE

The implementation phase relies on SPECWARE’s support
for both the composition of specifications and the refine-
ment of specifications into C++ code. These composi-
tion and refinement processes are based on categorical con-
structions involving categories of algebraic specifications.

Roughly speaking, aspecificationcomprises a signature
(i.e., a collection of sorts (or types) and a collection of oper-
ators over those sorts) and a collection of axioms over those
sorts [9]. Aspecification morphismbetween two specifica-
tions is a mapping between their signatures that preserves
theorems. Intuitively, a specification morphism fromA to
B indicates howA can be extended toB (equivalently, how
every model ofB can be viewed as a model ofA).

Whenever a specificationA can be extended to two dif-
ferent specificationsB andC, there is a canonical composite
specification that exhibits all the properties of bothB andC.
This specification can be obtained as a quotient of the dis-
joint union of the two specifications, where individual sorts
and operators ofB andC are unified exactly when they are
the extensions of the same sort or operator inA. This con-
struction is based on categorical pushouts (or, more gener-
ally, finite colimits).

Pushouts and other finite colimits form the basis for in-
stantiation of parameterized specifications. For example,
we can compose a specificationHASH for hash functions
with a specificationSIGN for signature-generation func-
tions to yield a specification for generating MICs on the
messages, as shown in Figure7. In this diagram, dotted

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

6

lines represent element mappings, while solid lines repre-
sent specification morphisms. Thus the single sortE in
ONE SORT is mapped to bothmd in HASH andplaintext in
SIGN. As a result,mdandplaintextare identified as the sin-
gle sortmd1 in the resulting specificationSIGN HASH, as
evidenced by the types of the operatorshMD2andsRSA.

sorts:
 message
 md

operator:
 hMD2: message -> md

HASH

sorts: message, md, signature, private_key

operators:
 hMD2: message -> md
 sRSA: private_key -> md -> signature

SIGN_HASH

sorts:
 plaintext
 signature
 private_key

 sRSA:private_key -> plaintext -> signature

SIGN

operator:

sort:
 E

ONE_SORT

Figure 7. Composition of specifications for hash and for
digital signature

Refinement of specifications—the mechanism by which
code is synthesized— also occurs via colimits, in a category
of specifications andinterpretations. An interpretation from
A to B can be viewed as a specification morphism fromA
to a definitional extension ofB, which is a specification that
expandsB’s collection of sorts, operators, and axioms with-
out altering its collection of models.

These interpretations serve as refinements. For exam-
ple, suppose we have a source specification fortraffic light
that has one sortcolor, and three operators (or constants)
green, red andyellow. We can implementtraffic light us-
ing a pair of booleans through a mediating specification
color-as-bool-pair. In color-as-bool-pair we in-
troduce a new sortmed-colorwhose elements are defined in
terms of a subset of (the constructed) sortbool�bool. We
then map the sortcolor to med-colorand the operators of
sortcolor to operators of sortmed-color. The interpretation
color-to-bool-pairis illustrated in Figure8; in this diagram,
dotted lines represent element mappings, and solid line rep-
resents isomorphic mapping for introducing new type.

Refinements can themselves be composed, in what are
termedsequential compositionsandparallel compositions.
Sequential composition can be viewed as transitivity of re-
finements: a refinement fromA to B can be composed with

1The selection of the (overloaded) namemd for the unified sort is a
design decision.

sort: color
operators:
 green
 red
 yellow

bool-pair

 sort: bool x bool
 operators:
 (T, T)
 (T, F)
 (F, T)
 (F, F)

sort: med-color
operators:
 med-green
 med-red
 med-yellow

traffic light

color-as-bool-pair

Figure 8. Interpretation color-to-bool-pair: implementa-
tion of color with a boolean pair

a refinement ofB to C to yield a refinement fromA to C.
Parallel composition is based on colimits of interpretations.
In particular, the refinement of a system obtained by com-
posing several components can be obtained by a parallel
composition of the individual components’ refinements. As
a result, a library of relatively small specifications can be
used to generate code for a large system: the small spec-
ifications can be composed to create a large specification
whose refinement into code is obtained by the composition
of the refinements of the small specifications.

5.2. Specification for PEM MIC-CLEAR
messages

During the specification process, we build specifications via
the composition of basic specifications.

We create a specificationSECURE MAIL to specify a mail
system with integrity protection (see Figure9). This spec-

spec SECURE_MAIL is

sorts Message, Md, Hash, MIC, Pkey, Verify

sort-axiom Hash = Message -> Md

sort-axiom Verify = (Pkey, Md, MIC)

-> boolean

op is_Intact : (Verify, Hash, Message,

MIC, Pkey) -> boolean

definition of is_Intact is

axiom (equal (is_Intact v h msg mic ekey)

(v ekey (h msg) mic))

end-definition

end-spec

Figure 9. SPECWARE specificationSECURE MAIL

ification does not impose any particular message structure

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

7

MIC_CLEAR_w_SECURITY

 E
 F
 G
 ...

sorts:

SEVEN_SORTS

PEM_MIC_CLEAR

*

NOTE:

 E
 F
 G

THREE_SORTS
 Pkey
 Md
 Hash = Message -> Md
 Message
 MIC
 Verify = (Pkey, MD, MIC) -> boolean

 is_Intact

 Message
 MIC_clear = (Pkey, MIC-Info, Message)

MIC_CLEAR

 Pkey

 Asymsignmic
 Algid

 Temp_MIC = (Algid, Algid, Asymsignmic)

 MIC-Info = Temp_MIC | is_MIC_info?

 is_MIC_info?
 get__MIC_hash
 get_MIC_verify
 get_MIC_mic
 ... (other accessor functions)

operator:

sorts:

sorts:

sorts:

operators:

*: unification of each sort in CRYPTO_SELECTION with the sort of

Solid line with arrow: specification morphism
Dashed line with arrow: sort mapping between specifications

 the same name in MIC_CLEAR_w_SECURITY

*

SECURE_MAIL
 Pkey
 Md
 Hash = Message -> Md
 Message
 MIC
 Verify = (Pkey, MD, MIC) -> boolean
 Algid

 hash_select: Algid -> Hash
 verify_select: Algid -> Verify

operators:

sorts:

CRYPTO_SELECTION

 hRSA_MD2: Hash
 hRSA_MD5: Hash

 vDES_EDE: Verify
 vDES_ECB: Verify

 vRSA: Verify:

Figure 10. Specification for PEM MIC-CLEAR messages

on the mail; the integrity checkis Intact is independent of
message structures and protocols. We can reuse this spec-
ification for different mail systems with different message
structures.

We build a specification for PEM MIC-CLEAR mes-
sages by composingSECURE MAIL with following specifi-
cations:

� MIC CLEAR defines a PEM MIC-CLEAR message
structure, together with accessor functions that retrieve
the fields from mail messages.

� CRYPTO SELECTION defines types for hash functions,
signature-verification functions, and algorithm IDs,
and also defines selector functions that map algorithm
IDs to cryptographic functions.

The composition is shown in Figure10. In this figure, the
boxes represent individual specifications, while the solid ar-
rows represent specification morphisms. The dotted arrows
from THREE SORTS to MIC CLEAR and toSECURE MAIL in-
dicate the individual sort mappings of two specification

morphisms and illustrate how the sorts ofMIC CLEAR and
SECURE MAIL are unified.

The ultimate result of composing these specifications is
a specificationPEM MIC CLEAR for a PEM MIC-CLEAR
mail system with an integrity check. Replacing the spec-
ification MIC CLEAR in this composition with a specifi-
cation for a PEM ENCRYPTED message would yield a
specification for a PEM ENCRYPTED system with an
integrity check. Likewise, replacingMIC CLEAR with a
specification for a MISSI message structure and replacing
CRYPTO SELECTION with a MISSI specification for crypto-
graphic algorithms would yield a specification for a MISSI
implementation with an integrity check.

5.3. Refinement of specifications

To refine the composite specificationPEM MIC CLEAR, we
refine its components and then compose the resulting re-
finements. When the refinements become sufficiently low
level, SPECWARE supports the translation of the lowest-
level specifications into C++ code through the use of built-

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

8

MIC_CLEAR_
w_SECURITY

SORTS
SEVEN_ CRYPTO_

SELECTION

SORTS
SEVEN_

C
R

Y
PT

O
_

SE
L

E
C

T
IO

N

SLANG-
BASE

s_MCS s_PEM_MC

M
C

S

pa
ra

lle
l c

om
po

si
tio

n

vi
a_

SU
B

SO
R

T
SE

V
E

N
_S

O
R

T
_

s_CRYPTO_
SEL1

PEM_MIC_CLEAR
. .

 .

. .
 .

. .
 .

. .
 .

SLANG-
BASE

c_PEM_MIC_CLEAR

C
+

+ CRYPTO_
FUN C

+
+

pa
ra

lle
l c

om
po

si
tio

n

C
+

+

C
+

+

Figure 11. Refinement of composite specification
PEM MIC CLEAR

in theories. Figure11 sketches the refinement process; the
refinements (i.e., interpretations) appear as the vertical dou-
ble arrows.

A portion of the resulting code appears in Figure12.

6. Conclusions

The purpose of this work was to demonstrate an integrated
verification and synthesis process on an engineering appli-
cation. Higher-order logic bridges the two systems used for
verification and for synthesis; it is a useful intermediate lan-
guage for relating formal tools.

The automatically generated code was not as concise as
custom designed code. Nevertheless, it was assured code
that worked.

In constructing this system, we developed an algebraic

specification for each component of PEM. The use of ab-
stract data type helps partition the system into modules,
which should increase system maintainability. We have
benefited from the emphasis on modularity and composi-
tion: we were able to rebuild the system easily when com-
ponents were changed.

The formal specification and verification, together with
the use of component-based design, helped us identify a se-
cure core protocol that is common to many secure email
systems. Once the details of the mail-message structures
of different mail systems have been abstracted away, the
underlying core protocol appears the same. We are in the
process of formally specifying and implementing this core
protocol. We will (re)use the core protocol to specify and
synthesize both PEM and PGP formally and to relate these
two secure email systems.

References
[1] D. Balenson. Privacy Enhancement for Internet Electronic

Mail: Part III: Algorithms, Modes, and Identifiers. RFC
1423, TIS, February 1993. ftp: ds.internic.net.

[2] Charlie Kaufman, Radia Perlman, and Mike Speciner.Net-
work Security Private Communication in a Public World.
Prentice Hall, New Jersey, 1995.

[3] John P. Van Tassel D. Randolf Johnson, Fay F. Saydjari.
MISSI Security Policy: A Formal Approach. Technical Re-
port R2SPO-TR001-95, INFOSEC Research and Technol-
ogy Group, National Security Agency, July 1995.

[4] Dan Craigen, Susan Gerhart, and Ted Ralston. An interna-
tional survey of industrial applications of formal methods;
volume 1: Purpose, approach, analysis and conclusions; vol-
ume 2: Case studies. Technical Report NIST GCR 93/626,
National Institute of Standards and Technology, 1993.

[5] Dan Zhou and Shiu-Kai Chin. Formal Verification of Secu-
rity Properties of Privacy Enhanced Mail. Technical report,
Rome Lab, 1998.

[6] Dan Zhou and Shiu-Kai Chin. Verifying Privacy Enhanced
Mail Functions with Higher Order Logic.Network Threats,
DIMACS Series in Discrete Mathematics, 38:11–20, 1998.

[7] Edmund Clarke and Jeannette Wing. Formal methods: State
of the art and future directions.Report of the ACM Work-
shop on Strategic Directions in Computing Research, Formal
Methods Subgroup, August 1996. Available as CMU Com-
puter Science Technical Report CMU-CS-96-178.

[8] M.J.C. Gordon. A proof generating system for higher-order
logic. In G. Birtwistle and P. A. Subramanyam, editors,VLSI
specification, verification and synthesis. Kluwer, 1987.

[9] J. A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial
algebra approach to the specification, correctness and imple-
mentation of abstract data types. In R.T.Yeh, editor,Current
Trends in Programming Methodology, Volume IV, pages 80–
149. Prentice Hall, 1978.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

9

boolean is_intact (verify_1 v, hash_1 h, string msg, string mic, string ekey)

{

return v (ekey, h (msg), mic);

}

boolean mic_clear_is_intact (mic_clear_2 x)

{

string _x_1 = project(1,x);

e _x_2 = project(2,x);

string _x_3 = project(3,x);

return

is_intact

(verify_select (get_mc_verify (product(_x_1, _x_2, _x_3))),

hash_select (get_mc_hash (product(_x_1, _x_2, _x_3))),

get_mc_message (product (_x_1, _x_2, _x_3)),

get_mc_mic (product (_x_1, _x_2, _x_3)),

get_mc_pkey (product (_x_1, _x_2, _x_3)));

}

Figure 12. SPECWARE-generated C++ code for MIC-CLEAR integrity checking

[10] B. Kaliski. Privacy Enhancement for Internet Electronic
Mail: Part IV: Key Certification and Related Services. RFC
1424, RSA Laboratories, February 1993. ftp: ds.internic.net.

[11] S. Kent. Privacy Enhancement for Internet Electronic Mail:
Part II: Certificate-Based Key Management. RFC 1422,
BBN, February 1993. ftp: ds.internic.net.

[12] J. Linn. Privacy Enhancement for Internet Electronic Mail:
Part I: Message Encryption and Authentication Procedures.
RFC 1421, DEC, February 1993. ftp: ds.internic.net.

[13] John Rushby. Formal methods and the certification of critical
systems. Technical Report SRI-CSL-93-7, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, De-
cember 1993. Also issued under the titleFormal Meth-

ods and Digital Systems Validation for Airborne Systemsas
NASA Contractor Report 4551, December 1993. A book
based on this material will be published by Cambridge Uni-
versity Press in 1999.

[14] Yellamraju V. Srinivas and Richard Jullig. Specware: Formal
Support for Composing Software. InConference on Math-
ematics of Program Construction, Kloster Irsee, Germany,
July 1995.

[15] P.R. Zimmermann.The Official PGP User’s Guide. MIT
Press, Cambridge, Massachusetts, 1995.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

10

	Formal Development of Secure Email
	Recommended Citation

	Formal Development of Secure Email

