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Sensor Fusion for Video Surveillance
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Abstract – In this paper, a multisensor data fusion system for
object tracking is presented. It is able to track in real-time multi-
ple targets in outdoor environments. The system can take advan-
tage of the redundant information coming from different sensors
monitoring the same scene. The measurements (positions of the
targets) obtained from the available sources are fused together to
obtain a more accurate estimate. Data fusion is performed con-
sidering sensor reliability at every time instant. A confidence mea-
sure has been employed to weight sensor data in the fusion pro-
cess. Compared to single camera systems, the adopted approach
has produced more accurate and continuous trajectories, reduc-
ing calibration and segmentation errors.

Keywords: Surveillance systems, multisensor data fusion, object
detection.

1 Introduction

The recent events of September 11, 2001, have demon-
strated that there is a need for improving surveillance ca-
pabilities of public areas (e.g., airports, metro or railway
stations, parking lots, tunnels or bridges, etc.) in order to
prevent terrorist acts. Advanced multisensor surveillance
systems represent a possible answer to prevent terrorist at-
tacks by enhancing monitoring and control capabilities of
remote human operators on large environments. Such sys-
tems can perform real-time intrusion detection and/or suspi-
cious event detection in complex environments. New gener-
ation surveillance systems [1, 2, 3, 4], that have to manage
large amounts of visual data (optical, infrared, etc.), and
the recent development of sensor technology and computer
networks have contributed to an increasing interest in dis-
tributed systems for real-time information fusion [5, 6, 7].

In this paper, a system that integrates optical and infrared
(IR) sensors to support 24 hours per day real-time visual-
based surveillance of outdoor environments, is proposed.
IR and optical sensors are at the first level of the proposed
architecture. Video signals of each physical sensor are first
processed to extract moving image regions, called blobs [8],
and features are computed for target tracking, classification,
and data fusion procedures. This integration allows to im-
prove the accuracy of object localization at higher levels,
which is based on the ground plane hypothesis [8] and ob-
ject recognition [9]. At the first level, specialized Process-
ing Nodes (PN) track each detected blob on the image plane
and transform 2D blob positions (in the sensor coordinates

system) into 3D object positions (in the coordinates of the
monitored environment’s map). Each first level PN is com-
mitted to the surveillance of a sub-area of the monitored
environment.

In surveillance systems, target tracking is of paramount
importance. The user is generally interested in estimating
the position and velocity of the objects in the scene, as well
as their trajectory. The estimates are affected by two kinds
of noise: process noise and measurement noise. The for-
mer is due to the uncertainty of the model that describes
the motion of the objects in the scene. Target trajectories
are in fact not completely predictable and sometimes tar-
gets are deliberately non-cooperative and maneuvering in
an unpredictable manner (military and surveillance applica-
tions). However, filtering techniques require the definition
of some model in order to predict the next target’s state: for
this reason the actual measurements can differ substantially
from predictions.

Measurement noise is primarily caused by the acquisi-
tion process and by coordinates transformation algorithms
(if present). This noise can severely affect the observation
of the current state of a target, therefore also affecting the
following prediction phase.

While process noise can be reduced by adopting multi-
model filtering techniques like the IMM-estimator [10],
measurement noise is commonly tackled by adopting more
accurate sensors. However, recent advancements in cam-
eras and processing technology have made the multi-sensor
solution more desirable.

Greater system robustness and performance is in fact
achievable with a suite of sensors and through data fu-
sion techniques [11]. A well-known practice in radar ap-
plications [12], data fusion is now being considered for
video-based systems [13]. Recent works have addressed
the tracking of humans and vehicles with multiple sensors
[14, 15, 16, 17]. The main hurdle of the additional computa-
tional requirements has been removed by the great process-
ing power of today’s CPUs. Moreover, intelligent sensors,
able to perform on their own a great deal of the required
computation, are also available.

Even though data fusion cannot squeeze increased per-
formance out of a set of unreliable cameras [18], very in-
teresting results can be attained adopting several standard
ones.



A multi-sensor tracking system is here presented. It em-
ploys multiple video-cameras monitoring the same area.
The general architecture is discussed in the following sec-
tion. The system explicitly takes into account sensors’ ac-
curacy in the fusion process: a reliability factor is defined
and described in Section 2.4. Preliminary experimental re-
sults are presented for two configurations: the first one in-
volves homogeneous sensors (two color cameras), while in
the second two heterogeneous sensors are employed (opti-
cal and infrared cameras) for monitoring an outdoor area.

2 Architecture and processing

The adopted architecture follows the guidelines of recent
video-surveillance systems [1, 2]. It is composed of several
static sensors and processing nodes (PNs) for each area of
interest, as shown in Figure 1.

Sensor level IR Optica

l
IR

Optical

First level nodes

Higher nodes

Map

area i

area j

Optical

object's trajectory

Fig. 1: Distributed architecture of the system

The sensors monitoring the same area are connected to
the same PN which is responsible for the tracking of the
objects in that area.

A PN is also in charge of all the image processing steps,
if intelligent sensors are not available. In particular, they
are responsible for running the algorithms needed to iden-
tify moving objects (through change detection) from each
video source: a)image differencing; b) filtering; c) blob ex-
traction. These are well-known in computer vision applica-
tions; a detailed description can be found in [19, 20, 21].

Blob extraction is the last low level processing step,
which yields blobs of the moving objects in the scene. At
this point, features (dimensions, area, centroid coordinates,
etc.) can be extracted from each blob. These attributes
are fundamental in the following processing phase: object
tracking.

2.1 Blob extraction

This processing step occurs at sensor level and pinpoints
moving regions in the image through change detection al-
gorithms [1, 2, 19, 20, 22]. Motion detection and blob ex-
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Fig. 2: Processing steps.

traction is exploited following a layered background sub-
traction approach [23]. Change detection is performed us-
ing an algorithm for automatic threshold computation based
on Euler numbers [24]. The background is updated using a
Kalman filter [21]. Frame by frame subtraction is also ap-
plied in conjunction to improve detection results [23]. Mor-
phological filters are also applied to improve the quality
of the extracted blobs by removing spurious pixels due to
noise, and by enhancing the regions’ connectivity [23].

Following the scheme in Figure 2, at timet, images
VI(t) andIR(t) are produced respectively by the optical
and infrared sensor. Each sensor applies the blob extraction
procedure thus obtaining the arraysB

VI(t) and B
IR(t)

containing the blobs extracted on the current frame at time
t respectively by the optical and the infrared sensor.

In Figure 9, two cameras (color and infrared) are moni-
toring from the same location the same area in the presence
of fog and low illumination. The color camera obviously
performs poorly in this situation, as can be seen in the first
row of pictures of Fig. 9. This influences the blob extrac-
tion procedure as can be seen in the second row of images.
The silhouette of the walking person is not extracted cor-
rectly. The IR camera instead gives a more useful video
signal (third row of images) as the person is clearly visible
in the scene. In the processed frames, the blob is correctly
extracted (last row of Figure 9).

2.2 Target tracking

In a video surveillance system, usually multiple objects ex-
ist in the scene. For example, in a parking lot during day-
time, there could be many objects, such as people and vehi-
cles, that move around.

The system needs to maintain tracks for all objects si-
multaneously. Hence, this is a typical multi-sensor multi-
target tracking problem: measurements should be correctly
assigned to their associated target tracks and a target’s asso-
ciated measurements from different sensors should be fused



to obtain better estimation of the target state.
A first tracking procedure occurs locally to each image

plane, detected moving regions (blobs) have to be matched
with the objects present in the previous frame (at the pre-
vious time instant). For each sensor, image processing is
performed to extract blobs as indicated in Section 2.1. The
system then executes an association algorithm to match the
current detected blobs with those extracted in the previ-
ous frame. A number of techniques are available, spanning
from template matching, to features matching [23], to more
sophisticated approaches [25]. The approach used in our
system was twofold, exploiting the Meanshift predictions
[25] and matching blob features (Hu moments, base/height
ratio, etc.).

To perform data fusion, a common reference frame is
needed, and the sensors have to be registrated on it. Gen-
erally, a 2D top view map of the monitored environment
is taken as a common coordinates system [8, 9], but even
the GPS may be employed to globally pinpoint the targets
[23]. The former approach is obviously more straightfor-
ward to implement, as a well-known result from projective
geometry states that the correspondence between an image
pixel and a planar surface is given by a planar homogra-
phy [26, 27]. The pixel usually chosen to represent a blob
and be transformed into map coordinates is the projection
of the blob’s centroid on the lower side of the bounding box
[8, 9, 23].

Measurement gating and assignment is then performed.
Each local procedure considers only the objects in the field
of view of the corresponding sensor. For each object known
at the previous time instant, only the measurements (ob-
jects’ positions) falling within a gating distance (Fig. 3)are
considered.

Validation region
Object's trajectory

 Measurements considered

 at instant t

Position at instant  t-1

Fig. 3: Gating.

The Mahalanobis distance can be used to determine the
validation region as in [28]. This step reduces the proba-
bility of erroneous associations due to noise. The measure-
ments coming from each sensor, for a given object, falling
within the gating region are fused together as described in
Section 2.3.

To deal with the multi-target data assignment problem,
especially in the presence of persistent interference, there
are many matching algorithms available in the literature:
Nearest Neighbor (NN), Joint Probabilistic Data Associa-
tion (JPDA), Multiple Hypothesis Tracking (MHT), and S-
D assignment. The choice depends on the particular appli-
cation; detailed descriptions and examples can be found in
[10, 29, 30].

The trajectory on the top-view map of every object is
modeled through a linear Kalman filter, where the state vec-

tor x̂ = (x, vx, y, vy) is constituted by the position and ve-
locity of the object on the map. At every frame (the system
processes 25 frames per second) a new measurement of the
position is received.

In this paper, position estimates from different sensors
are fused in a centralized fashion. Data fusion is performed
considering sensor reliability at every time instant. A confi-
dence measure has been employed to weight local estimates
in the fusion process, as will be discussed later in Section
2.4.

2.3 The fusion process
Fusion is performed using a Kalman filter approach for the
purpose of obtaining better position estimates of the ob-
served objects. Two fusion schemes, shown in Figure 2.3,
were considered during the experiments: measurement fu-
sion and track-to-track fusion [31, 32, 33].

Sensor Data Sensor Data

Data Fusion

Fused estimate

Filter Filter

Data Fusion

Sensor Data Sensor Data

Estimate Estimate

Optimal Estimate
feedback

Fig. 4: Measurement and track-to-track fusion schemes.

The former scheme involves the fusion of the positions of
the target (according to the different sensors) obtained right
out of the coordinate conversion function, as can be seen in
Figure 2.3(left). The latter performs the fusion of the local
estimates, as shown in Figure 2.3(right). The measurement
fusion algorithm is theoretically optimal, while the track-
to-track fusion scheme has less computational requirements
but is sub-optimal in nature [32].

However, when dealing with extremely noisy sensors
(i.e. video sensors performing poorly due to low illumi-
nation conditions), the track-to-track scheme is generally
preferred. Running a Kalman filter for each track to ob-
tain a filtered estimate of the target’s position allows the
smoothing of high variations due to segmentation errors.
The actual scheme employed was a track-to-track without
feedback, the rationale given by computational constraints.
In fact, during the experiments, the high frequency of the
measurements and real-time requirements did not allow to
take into account the feedback information.

The process, for each target, involves the following steps:
(1) collection of measurements available from the local sen-
sors; (2) grouping and assignment of the measurements to
each target known at the previous time instant; (3) updating
each target’s state by feeding the associated filtered esti-
mates to the fusion algorithm.

The fusion procedure maintains its own list of targets.
Note that the second step is performed with the constraint



that only a single measurement from a given sensor is to be
associated with a single target in the list maintained by the
fusion procedure.

To regulate the fusion process automatically according
to the performance of the sensors, a confidence measure
is presented in the following Section to weight local esti-
mates.

2.4 Appearance and Appearance Ratio (AR)

Tracking accuracy can be improved through data fusion ex-
ploiting the redundancy given by the multiple-camera ar-
chitecture. Fusing data collected from different sensors re-
quires the determination of measurements’ accuracy so that
they can be fused in a weighted manner.

Making no distinction between measurements could lead
to filter instability and erroneous estimates, especially in
the presence of malfunctioning sensors. Hardware failures
or unfavorable illumination conditions (e.g., optical cam-
era used during night time) could yield very poor perfor-
mance and generate segmentation errors (blobs partially ex-
tracted, noise, etc.). Therefore, considering every measure-
ment with equal weight could fail to accomplish one of the
data fusion’s objectives: to not obtain a result worse than
the one achievable with a single sensor [18].

The idea is to obtain from the Kalman filter a fused esti-
mate more biased by accurate measurements and almost un-
affected by inaccurate ones. Filter’s responsiveness to mea-
surements can be adjusted through the measurement error
covariance matrixR. If the eigenvalues of a particular ma-
trix R are smaller than those of the other, the corresponding
measurement will have a larger weight.

The following measure, called Appearence Ratio (AR),
gives a value to the degree of confidence associated with
thej − th blob extracted at timet from the sensors:

AR(Bs
j,t) =

∑
x,y∈Bs

j,t

D(x, y)

|Bs
j,t|c

(1)

whereD(x, y) is the difference map obtained as absolute
difference between the current image and the reference one,
andc is a normalization constant depending on the number
of color tones used in the image. The AR is thus a real
number ranging from 0 to 1 that gives an estimate of the
level of performance of each sensor for each extracted blob.
As can be seen in Figure 9, the AR values (reported below
the bounding boxes) of the blobs extracted from the infrared
sensor are considerably higher than those extracted from the
optical one.

AR values are then used to regulate the measurement er-
ror covariance matrix to weight position data in the fusion
process. The following function for the position measure-
ment error has been developed:

r(Bs
j,t) = GD2(1 − AR(Bs

j,t)) (2)

whereGD is the gating distance. The function is therefore
used to adjust the measurement position error so that the
map positions calculated for blobs with high AR values are
trusted more (i.e. the measurement error of the position is

close to zero), while blobs poorly detected (low AR value)
are trusted less (i.e. the measurement error equals the gating
distance).

3 Results

Experiments with real video sequences have been carried
out in order to test the performance of the proposed ap-
proach. Images taken from the first experiment are reported
in Figure 5. Two color cameras have been employed to fol-
low the movements of three persons walking in a courtyard.
This daylight outdoor scene is simple for a vision tracking
problem, but the purpose was to evaluate the accuracy of the
trajectories, not the tracking itself. So the trajectoriescal-
culated by the single sensors were compared to the ground
truth (markers were present on the ground) and the fusion
approach.

The first row of Figure 5 shows images taken from the
first sensor which was superior to quality than the second
camera and proved to be more effective in detecting the
walking persons. Even though the first sensor was mon-
itoring the area with a configuration of the optics more
wide-angled than the second sensor (thus detecting smaller
blobs), it still performed slightly better. This is reflected
by the AR values of the blobs in the second row which are
generally greater than those in the fourth row. In this exper-
iment the two sensors both performed reasonably well.

Figure 6 shows the trajectory of one of the persons in Fig-
ure 5 (indicated with an arrow) according to the first sensor,
while Figure 7 reports the trajectory obtained by the second
camera. The two sensors are reporting a track similar to
the ground truth (black lines). Nonetheless, a better result
is obtained through data fusion (Figure 8). The advantages
are the following:

• the trajectory exploits the estimates of just one sensor
when the other one is not giving readings (i.e. the tar-
get is out of the field of view, i.e. in Figure 5, first col-
umn, the person on the left in rows 1-2 is not present
in the field of view of the second sensor, rows 3-4);

• the presence of two points of view can help disam-
biguate situations of partial or total occlusions (second
column of Figure 5), therefore maintaining a correct
and continuous tracking of the targets. Notice that the
AR value was not computed for the blob detected by
the first sensor since it was recognized as a compound
object generated by an occlusion and therefore will not
be associated to any of the three objects present at the
previous time instant;

• there is an explicit weighting of the estimates in the
fusion process through the AR to account for segmen-
tation errors. Segmentation errors translate into trajec-
tory errors. In the third column of Figure 5 the person
in the center of the scene is half concealed by a small
tree: the second sensor is not giving a proper detection
and gets a low AR score for that blob.

• Data fusion reduces camera calibration errors (due to
the homographic transformation from image pixels to
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Fig. 5: Images and blobs from the courtyard sequence. AR values are indicated below each blob.

map points, Section 2.2). The first sensor gives better
segmentation results, but, due to the wide-angle setup
of the optics, camera calibration errors are more prob-
able. So the fused data is more weighted on the first
sensor due better video performance, but takes also
into account the second sensor which suffers less from
calibration errors.

Fig. 6: Trajectory according to the first color sensor.

The performances of the two sensors and of data fusion
are summarized in Table 2 where are reported the mean and
standard deviation of the distance (in pixels, 1 pixel≈ 10
cm) between measured and ground truth positions on the
map of the walking person indicated by an arrow in Figure

Fig. 7: Trajectory according to the second color sensor.

Fig. 8: Trajectory obtained through data fusion.
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Fig. 9: Images and blobs from the fog sequence. AR values are indicated below each blob.

5. As can be seen, the two color sensors are performing
similarly, but fusing their estimates allows for an overall
reduction of calibration error and a trajectory more similar
to the ground truth.

Mean σ

First color sensor 3,46 1,12
Second color sensor 2,92 1,38

Data fusion 2,12 1,02

Table 1: Mean and standard deviation (in pixels) of the dis-
tance between estimated and ground truth positions for the
courtyard sequence.

Images taken from a second experiment are shown in
Figure 9. The video sequences were taken at night and
dense banks of fog were present. The scene was irradiated
with IR rays and monitored by a color camera and a B/W
camera with near infrared response.

It can be seen how the IR sensor outperforms the color
camera: the AR values of the blob corresponding to the
IR sensor are consistently higher. This is directly reflected
by the correct segmentation of the silhouette of the person.
Figure 10 shows a plot of the AR values scored by the two
sensors for the blob. It can also be noted how the color
camera is not able to discriminate the person as he moves
away and into a fog bank (the AR values in Figure 10 are
not indicated in the graph of since the blob is not detected).

This experiment shows how AR values can be used to
to automatically and dynamically select the best sensors
available. A threshold is set, if a given sensor extracts a
blob with AR value above threshold, then its estimate is
considered in the fusion process, otherwise it is considered
unreliable and it is discarded. In this case, the AR values
given by the color camera were always below threshold and
therefore has not contributed to generate the final trajectory



Fig. 10: AR values for the fog sequence

which was then entirely formed by IR estimates.
In Figure 11, the trajectory computed by the system is

plotted with dots while the trajectory plotted in black de-
notes the ground truth path covered by the walking person.
The two images represent the trajectory computed using op-
tical and IR data respectively.

Fig. 11: Trajectory of the person according to the (left)
color and (right) IR camera.

As can be seen comparing the images, the results ob-
tained with the color camera only are poor as the trajectory
is discontinuous and affected by segmentation errors. Fig-
ure 11(right) shows the trajectory computed using the IR
video signal only. As expected, the trajectory is more con-
tinuous and close to the ground truth. However, the target
is still temporarily lost (top right) as it traverses a densefog
bank.

Table 2 reports the mean and standard deviation of the
distance (in pixels, 1 pixel≈ 10 cm) from measured ground
truth positions on th map of the walking person in Fig-
ure 10 for the two sensors. Notice how the IR camera

Mean σ

IR sensor 8,66 4,42
Color sensor 17,22 9,28

Table 2: Mean and standard deviation (in pixels) of the dis-
tance between estimated and ground truth positions for the
fog sequence.

is clearly performing better. This rather extreme experi-
ment was shown to demonstrate how the AR values can be
used to dynamically evaluate the performance of the sen-
sors. This can be extremely important for a surveillance
system for outdoors where weather and illumination con-
ditions vary continuously and the sensors respond differ-
ently to these variations. Exploiting AR values to evaluate
the performance of the sensors allows to choose those per-
forming better at every time instant. This ultimately leads

to obtaining accurate target detection and trajectory estima-
tion.

Achieving better trajectory accuracy and continuity is of
paramount importance for the successive steps of behavior
understanding performed by a surveillance system. In par-
ticular, the trajectories of the objects in the scene have tobe
analyzed to detect suspicious events [1, 2]. The system can
in fact be trained to discriminate between the patterns gen-
erated by the normal activities of the moving objects in the
monitored space, and anomalous or suspicious movements.

4 Conclusions

In this paper, sensor reliability is explicitly consideredin a
multi-camera system for video surveillance of outdoor en-
vironments. A confidence measure has been defined to au-
tomatically weight redundant measurements of the targets’
location coming from the different sensors in the data fu-
sion process. In this way localization errors due to incorrect
segmentation of the blobs have been reduced as well as the
calibration errors due to perspective transformations. Pre-
liminary experimental results show the effectiveness of the
chosen confidence measure for automatic sensor weighting
and the greater accuracy achievable by the proposed data
fusion approach in comparison with single camera systems.
In particular, the fusion procedure has produced trajectories
that are more continuous and therefore useful for a surveil-
lance system.
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