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Mesoscale objects with unusual structural features may serve as the analogues of 

atoms in the design of larger-scale materials with novel optical, electronic or mechanical 

behaviour. In this paper we investigate the structural features and the equilibrium dy-

namics of micron-scale spherical crystals formed by polystyrene particles adsorbed on 

the surface of a spherical water droplet. The ground state of sufficiently large crystals 

possesses finite-length grain boundaries (scars). We determine the elastic response of the 

crystal by measuring single-particle diffusion and quantify the fluctuations of individual 

dislocations about their equilibrium positions within a scar determining the dislocation 

spring constants. We observe rapid dislocation glide with fluctuations over the barriers 

separating one local Peierls minimum from the next and rather weak binding of disloca-

tions to their associated scars. The long-distance (renormalised) dislocation diffusion 

glide constant is extracted directly from the experimental data and is found to be mod-

erately faster than single particle diffusion. We are also able to determine the parame-

ters of the Peierls potential induced by the underlying crystalline lattice.  

 

There is considerable need for the rational design of new functional materials. One 

promising strategy is to build such materials from the bottom up by assembling mesoscale 

units which can then be linked into larger structures. The characteristics of such materials on 

the fundamental scale of the building blocks must be understood before they can be intelli-

gently assembled into novel materials. In many cases the units in question possess surfaces 

with ordered arrays of particles; liposomes, colloidosomes, fullerenes and nanotubes provide 

prominent examples of such materials1-3. As in traditional 3D materials, the static structure 

and dynamic behaviour of defects, such as dislocations, is crucial in determining the response 

to mechanical, electrical and thermal stimuli4. In the ground state of planar 2D systems (flat 

space) all such defects are tightly bound. The role of thermally excited or mechanically in-

duced defects has been thoroughly studied from both the theoretical and experimental side5,6. 



Much less is known, however, about defect dynamics since it is difficult to directly observe 

the time evolution of defects in most experimental systems. In the technologically relevant 

case of curved surfaces it is known that new defect structures arise even at zero temperature. 

Dislocations form in the ground state of sufficiently large curved crystals because they lower 

the total elastic energy7. In the specific case of spherical crystals these dislocations may be 

viewed as screening the elastic strain of the isolated disclination defects required by the topol-

ogy of the sphere. They are present, above a critical particle number of order 300, in the form 

of novel freely terminating high-angle grain boundaries dubbed scars8. 

While the structural features of spherical crystals are very rich, we concentrate here on 

the dynamics of particles crystallizing on a spherical surface as well as the dynamics of the re-

sultant dislocation arrays. We visualise and track the diffusion of both single particles and dis-

locations as they fluctuate about their equilibrium positions and determine the dislocation 

spring constant. The presence of dislocations in the ground state enables us to determine the 

long distance dislocation diffusion constant analyzing the observed Peierls potential. 

Spherical crystals can be characterised by their dimensionless system size R/a, where 

R is the radius of the sphere and a is the lattice constant determined by the mean particle spac-

ing. For R/a bigger than about five, the minimal energy configurations contain 12 extended ar-

rays of disclination defects, each with net defect charge +1, rather than 12 isolated charge +1 

disclinations. Provided R/a is not too large, the structure of each defect array is typically a lin-

ear chain of alternating 5 and 7-fold coordinated particles with one excess 5. A tightly bound 

5-7 pair is itself a point-like topological defect in two dimensions known as a dislocation. Dis-

location lines in three dimensions are important in determining the properties of bulk materi-

als and play a crucial role in plastic deformations4. In flat two-dimensional systems their for-

mation at finite temperature drives the melting of crystals to hexatics5,6. A line of dislocations 

is a grain boundary, characterised by the change in the orientation of crystallographic axes as 

one crosses the grain boundary. Since dislocations have vanishing total disclination charge 

there can be an arbitrary number of them in any spherical lattice configuration without violat-

ing the topological constraint on the total disclination charge discussed above. The presence 

of excess dislocations beyond the disclinations demanded by the topology of the sphere may 

be viewed as an elastic analogue of Debye screening. Dislocations screen the elastic strain en-

ergy of isolated disclination defects, which otherwise grows quadratically with system size.  

The grain boundaries found in spherical crystals are unlike any found in flat space as 

they terminate freely inside the crystal at both ends. In flat space, grain boundary free ends are 



highly suppressed energetically because of the resultant clash of crystallographic orientations, 

whereas the constant positive Gaussian curvature of the sphere allows a finite number of ex-

cess dislocations to lower the elastic strain energy of an isolated 5 disclination for sufficiently 

large radius R/a. The diffusive behaviour of mono or divacancies in flat space has been ob-

served by explicitly creating vacancies in a 2D colloidal crystal using optical tweezers. These 

fundamentally different defect structures are dislocation multipoles with zero net Burgers vec-

tor and were observed to diffuse in an attractive potential modulated by a Peierls potential9,10. 

These authors did not, however, determine the renormalised diffusion constant.  

Much less is known about the dynamics of particle ordering on curved surfaces or the 

dynamics of dislocations. The experimental model system we study is formed by solid spheri-

cal colloidal beads adsorbed at a liquid-liquid interface. These so-called Pickering emulsions 

are of technological importance as well as powerful model systems for understanding ordering 

and dynamics in two dimensions11,12. The specific system we explore consists of water drop-

lets dispersed in toluene; the colloidal particles are divinylbenzene cross-linked polystyrene 

microspheres with a diameter of about 1 µm. The microspheres have the appropriate interfa-

cial surface tensions to adsorb at the oil-water interface. They crystallise once their areal den-

sity is sufficiently high. The carboxylate-modified surface of the microspheres has a negative 

surface charge at neutral to high pH, resulting in a screened Coulomb repulsion which pre-

vents aggregation. We typically observe water droplets with a diameter of 20 to 100 µm. Mi-

crosphere-coated droplet images were obtained with optical bright field microscopy using an 

inverted microscope (Axiovert 200, Zeiss). The images were captured by a CCD-camera 

(Orca ER, Hamamatsu) with frame rates of 20 to 100 Hz and written directly to hard disk with 

digital image processing software13. We determined the particle positions using a standard 

tracking routine which fits a 2D Gaussian to the intensity profile of each particle. The spheri-

cal curvature of the droplets limited the imaged surface area to between 10 and 25 % of the 

crystal. To correct for drift motion, the centre of mass of all tracked particles was calculated 

for each frame and subtracted from the single particle coordinates before further analysis of 

the data. For each frame the lattice was triangulated automatically with a Delaunay algorithm 

appropriate to the sphere14. Disclinations were highlighted and their positions were tracked.  

We found that small droplets have only isolated 5-fold (+1) disclinations. Droplets 

with R/a above 5, however, exhibit scars. Although scars are expected to follow geodesics on 

the sphere at zero temperature, thermal fluctuations at room temperature bend them signifi-

cantly. A single scar with a kink is shown in Fig. 1. The fixed angular length of scars implies 



that the number of excess dislocations per scar should grow linearly with R/a. The predicted 

slope, of order 0.41, is independent of the microscopic potential and compares favorably with 

experimental observations8.  

 

 
Fig. 1: A light microscope image of an 85 µm diameter water droplet coated with 1 µm diameter 
polystyrene microspheres. The mean spacing is 1.9 µm (R/a ≈  22). About 11 % of the crystalline lat-
tice is triangulated (835 particles). 5-fold coordinated particles (+1 disclinations) are coloured red and 
7-fold coordinated particles (-1 disclinations) are coloured yellow. A single bent grain boundary (scar) 
is clearly evident. The blue box encloses the three dislocations whose motion is displayed in Figs. 4 
and 5. The left-most of these three dislocations is only one dislocation away from the centre of the 
scar.  

 

What is the elastic response of our spherical colloidal crystals? Although macroscopic 

methods, such as AFM indentors, can be used to determine elastic constants, their force reso-

lution is not good enough to study very soft materials15. Single-particle diffusion measure-

ments, on the other hand, are ideally suited for soft materials such as colloidal crystals5. Since 

dislocations move by particle rearrangement, a quantitative understanding of single particle 

dynamics is also an essential prerequisite to understanding the dynamics of dislocations.  

A three parameter model adequately describes the mean squared displacement of sin-

gle particles in a colloidal crystal16. On short time scales the colloids diffuse freely, as charac-

terised by the diffusion constant D. The restoring potential provided by the (harmonic) inter-

action with neighbors soon limits this linear growth, which eventually saturates. Additional 

diffusive motion is also expected due to plastic deformation of the lattice caused by the diffu-



sion of thermally excited free defects. These three contributions to particle motion are evident 

in the mean-square displacement:  
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where ∆x is the displacement of the particle from its equilibrium position along one di-

rection x in the crystal, k is the effective spring stiffness of the harmonic lattice potential, and 

Dd is the diffusion constant associated with defect-mediated diffusion.  

In Fig. 2 we show the measured mean squared displacement of single colloidal parti-

cles. To improve statistics the mean squared displacement was averaged over particles in 

patches varying in size from 90 to 200 particles. A standard regression fit yields D ≈ 0.02 a²/s, 

k ≈ 145 kBT/a² and 0 < Dd < 2·10-4 a²/s. Since the typical mean particle spacing is a = 2 µm, 

this translates to a value D ≈ 0.08 µm²/s. This is lower than for diffusion in bulk water 

(D ≈ 0.4 µm²/s), probably due to interfacial hydrodynamic effects17.  

For an isotropic 2D crystal with nearest-neighbour interactions the Young modulus Y 

is given by −= ⋅ ≈ ≈ ×
2 7 167 / ²  1.7 10  N / m
3

Y k k T aB  . The compressibility modulus 

K = (3/4)·Y ≈ 125 kBT/a²;  this is of the same order of magnitude as those measured in three-

dimensional colloidal crystals16. 
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Fig. 2: Mean squared displacement of single colloidal particles. The averaging over many time steps 
as well as over 159 particles yields statistical error bars smaller than the symbol size. Fits to Eq. (1) 
give kx = 136 kBT/a², Dx = 0.02 a²/s and Ddx ~ 0 along the x-axis; ky = 157 kBT/a², Dy = 0.02 a²/s and 
Ddy ~ 2 10-4 a²/s along the y-axis.  

 

The motion of dislocations in materials involves oscillations in the local minima of the 

periodic (Peierls) potential due to the underlying crystalline lattice as well as thermal fluctua-

tions over the barriers separating local minima. Dislocation motion can be separated into glide 



and climb. Glide is motion parallel to the dislocation’s Burgers vector or perpendicular to the 

axis of the dislocation, and requires only a local rearrangement of the lattice. Climb is motion 

perpendicular to the Burgers vector or parallel to the axis of the dislocation and requires the 

presence of vacancies or interstitials. The diffusion constants for glide are therefore expected 

to be much higher than for climb. 
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Fig. 3: Visualisation and evaluation of the motion of dislocations bound to a grain boundary scar. (a) 
Plot of each dislocation’s motion in the x-y plane. (b) Glide motion of a single dislocation. (c) Motion 
of three dislocations gliding about their equilibrium positions within a grain boundary scar. The high-
lighted lattice points on the margin of the patch are boundary artefacts. (d) Comparison of the mean 
squared glide displacements for the three distinct dislocations boxed in Fig. 1. The central dislocation 
is more strongly bound than those near the end of the scar, as confirmed by fits to Eq. (2): 
k1 = 1.7 kBT/a², k2 = 1.3 kBT/a² and k3 = 1.1 kBT/a². The diffusion constants are similar for all three dis-
locations: D ≈ 1 a²/s. Error bars show the standard deviation of the calculated mean-square displace-
ments.  

A plot of the motion in the x-y plane for three distinct dislocations in a single grain 

boundary scar is shown in Fig. 3a. Glide in the y-direction is clearly visible while climb is 

minimal. A plot of the glide motion along the y-axis, as a function of time, for a single dislo-



cation fluctuating about its equilibrium position in a scar is shown in Fig. 3b. The plateaus 

correspond to oscillations about a fixed local minimum of the Peierls potential and the dis-

crete jumps by a lattice spacing correspond to thermal fluctuations over a Peierls barrier to a 

new local minimum. Finally we display in Fig. 3c four snapshots of the instantaneous loca-

tions of three dislocations within a single scar at time intervals of 1.06 seconds. A movie ver-

sion of Fig. 3c is available in the supplementary material. 

The mean squared displacements of all three dislocations are plotted in Fig. 3d. At 

short times (t < 0.5 s), the dislocations exhibit Brownian diffusion within a local well while at 

longer times the mean squared displacement saturates due to the potential binding each dislo-

cations to the scar as a whole. For small deflections y of the dislocation in the glide direction 

the binding potential can be shown to be harmonic with a spring constant kD. Modeling glide 

by a Langevin equation in the glide coordinate y, we obtain the mean squared displacement of 

a dislocation in a defect scar:  
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where µ is the mobility of the dislocations. We note here that the long-time asymptote 

of Eq. (2) differs from that in Eq. (1) because we are not averaging over random initial loca-

tions of a dislocation. A simple fit to the data gives D0
glide = µ kBT ≈ 1 a²/s. This is roughly 

two orders of magnitude larger than the diffusion coefficient of single particles. The rapid 

Brownian diffusion of defects (vacancies and di-vacancies) has also been observed in flat 

space colloidal experiments9. The dislocation diffusion constants we obtain are a factor 3 

smaller than those obtained for the diffusion of vacancies in flat space in Ref. 16. A vacancy, 

however, does not have a very well-defined identity. It is realised as a complex array of dislo-

cations and diffuses quite differently from individual dislocations with a net Burgers vector.  

The true displacement of a dislocation is determined not by its free diffusion constant, 

D0
glide, which describes only small diffusive fluctuations, but by a much more physical renor-

malised diffusion constant Dren that includes the effects of large displacements by fluctuations 

over barriers. The renormalised diffusion constant is that which determines the time needed 

for the formation of equilibrium structures such as scars since this involves large scale mo-

tions of dislocations as they rearrange to screen the elastic strain energy of isolated disclina-

tions. We are able to extract this more physical diffusion constant directly from our experi-

mental data. It has been established in the theory literature that the two diffusion constants are 

related as follows:   
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 and UP(y) is the Peierls potential18,19. By constructing the 

probability distribution of a diffusing dislocation as a function of glide coordinate it is possi-

ble to extract Dren unambiguously.  Since the glide histogram gives us ( ( ) / )( ) e−∝ tot BU y k TN y , 

with 21( ) ( )
2

= +tot PU y ky U y , we only need to subtract off the best fit Gaussian and numeri-

cally integrate to obtain I± (Fig. 4). We take for UP(y) a simple cosine potential 

0( ) cos(2 / )= −PU y U y aπ , for which I+ = I–. We thus find Dren ≈ D0
glide / 8 ≈ 0.1 a²/s. Free dis-

locations are thus able to migrate over a distance R in a time t ≈ R² / 4Dren ≈ 20 min, providing 

ample equilibration time over the time scales of observation. Fitting the histogram yields 

U0 ≈ 2.3 kBT and k ≈ 2.5 kBT/a². The full harmonic plus Peierls potential extracted directly 

from the data is shown in the inset of Fig. 4. The symmetry of the potential underlines the 

fundamentally different nature of the dynamic behaviour of screening dislocations on curved 

surfaces compared to the dynamics of vacancies in flat space.  

It is a general feature of the elastic Hamiltonian governing dislocations that they are 

bound to grain boundaries. This is well known in flat space20 where the binding potential is 

harmonic for small displacements with an effective spring constant 

Yπ³/432 ~ 0.07 Y ~ 14 kBT/a². On the sphere we have the additional feature that the grain 

boundary scars themselves have a net disclination charge. Near the end of a scar the disclina-

tion charge of the scar itself is screened completely by the Gaussian curvature of the sphere 

and by the dislocations within a scar. An estimate of the effective spring constant kD can be 

made using the defect potential derived in the continuum theory7. The strength of the potential 

decreases with distance from the centre of a scar with maximum values for the spring con-

stants similar to those in flat space. From our dislocation diffusion data we find values for the 

dislocation spring constants kD between 0.3 and 1.7 kBT/a2. Thus dislocations are much more 

weakly bound than theory indicates. In qualitative agreement with predictions we observe the 

strongest spring constant for the innermost dislocation.  
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Fig. 4: Plot of the probability distribution of a diffusing defect as a function of position (dotted line). 
The red line indicates the fit to a harmonic potential modulated by the Peierls potential, as shown in 
the inset.  

 

 

The observed weak binding may be due to effective softening of the spring constant by 

thermal fluctuations which is expected to be significant in our room temperature experiment. 

It may also be necessary to take account of the thermal bending of scars as a whole – in gen-

eral we note that scars undergo significant shape fluctuations during the time scale of disloca-

tion glide and this surely leads to an underestimate of the spring constant. Further studies 

should investigate potential dynamic collective phenomena in dislocation dynamics and their 

influence on material properties. 

The direct optical observation of particle dynamics on curved crystalline surfaces al-

lowed us to determine the material elastic response. We also quantified the parameters gov-

erning dislocation motion, including the renormalised diffusion constant governing the large 

distance motion of dislocations across the sphere, the harmonic potential binding dislocations 

to grain boundary scars and the periodic Peierls potential due to the underlying crystalline lat-

tice. The dislocations assemble into scars; they are highly mobile perpendicular to the scars 

and bound more weakly than expected. The observed defect scars may be harnessed as func-

tional sites in inorganic or biological systems but may also be regions of weakness and 

sources of plastic flow. The dynamic nature of dislocations in grain boundary scars will have 

to be accounted for in the design of novel nano and mesoscale materials.  
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