
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

10-1991

Distributed Memory Compiler Methods for Irregular Problems -- Distributed Memory Compiler Methods for Irregular Problems --

Data Copy Reuse and Runtime Partitioning Data Copy Reuse and Runtime Partitioning

Raja Das
Syracuse University

Ravi Ponnusamy
NASA Langley Research Center, ICASE

Joel Saltz
Syracuse University

Dimitri Mavriplis
NASA Langley Research Center, ICASE

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Das, Raja; Ponnusamy, Ravi; Saltz, Joel; and Mavriplis, Dimitri, "Distributed Memory Compiler Methods for
Irregular Problems -- Data Copy Reuse and Runtime Partitioning" (1991). Electrical Engineering and
Computer Science - Technical Reports. 138.
https://surface.syr.edu/eecs_techreports/138

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/138?utm_source=surface.syr.edu%2Feecs_techreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-36

Distributed Memory Compiler Methods
for Irregular Problems ··Data Copy Reuse

and Runtime Partitioning

R.Das, R.Ponnusamy, J.Saltz, and D.Mavriplis

October 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

DISTRIBUTED MEMORY COMPILER METHODS FOR IR­
REGULAR PROBLEMS -
DATA COPY REUSE AND RUNTIME PARTITIONING1

Raja Dasa, Ravi Ponnusamy6, Joel Saltza and Dimitri Mavriplisa

aiCASE, MS 132C, NASA Langley Research Center, Hampton, VA-23666, USA

bDepartment of Computer Science, Syracuse University, Syracuse, NY 13244-4100

Abstract
This paper outlines two methods which we believe will play an important role in any

distributed memory compiler able to handle sparse and unstructured problems. We de­

scribe how to link runtime partitioners to distributed memory compilers. In our scheme,

programmers can implicitly specify how data and loop iterations are to be distributed

between processors. This insulates users from having to deal explicitly with potentially

complex algorithms that carry out work and data partitioning.

vVe also describe a viable mechanism for tracking and reusing copies of off-processor

data. In many programs, several loops access the same off-processor memory locations.

As long as it can be verified that the values assigned to off-processor memory locations

remain unmodified, we show that we can effectively reuse stored off-processor data. We

present experimental data from a 3-D unstructured Euler solver run on an iPSC/860 to

demonstrate the usefulness of our methods.

1This work is supported by NASA contract NAS1-18605 while the authors were in residence

at !CASE, .NASA Langley Research Center. In addition, support for author Saltz was provided

by NSF from NSF grant ASC-8819374. The authors assume all responsibility for the content:;

of the paper.

To appear in book- "Languages, Compilers and Runtime Environments for Distributed Memory Machines,"
Editors: J.Saltz and P.Mehrotra, Elsevier Press.

1 Introduction

Over the past few years, we have developed methods needed to generate efficient dis­

tributed memory code for a large class of sparse and unstructured problems. In sparse

and unstructured problems, the dependency structure is determined by variable values

known only at runtime. In these cases, effective use of distributed memory architectures

is made possible by a runtime preprocessing phase. This preprocessing is used to par­

tition work, to map data structures and to schedule the movement of data between the

memories of processors. The code needed to carry out runtime preprocessing can be

generated by a distributed memory compiler in a process we call runtime compilation

[39].
This paper presents two new runtime compilation methods. In this paper, we describe:

how to link runtime partitioners to distributed memory compilers, and

how to reduce interprocessor communication requirements by eliminating redun­

dant off-processor data accesses.

A compiler-linked runtime partitioner uses dynamic data dependency information to

decompose data structures and to partition loop iterations. The compiler produces code

that at runtime generates a standardized representation of the dependency graph that

arises from one or more loop nests. This dependency graph representation is then passed

to a compiler embedded data structure partitioner. The compiler also generates code that

at runtime produces a graph that is used in a compiler embedded loop iteration parti­

tioner. Programmers use Fortran extensions to specify which loops and which distributed

arrays should be used to derive data structure partitions. Consequently, programmers

implicitly specify how data and loop iterations are to be distributed between processors.

The idea of developing a set of widely applicable partitioners has been pursued by G.

Fox for many years (see for instance [15] and [16]), and a general scheme for linking

such partitioners to compilers was outlined in [33]. In this paper we describe some of the

runtime support and the language extensions that are allowing us to develop the software

required to realize some of these ideas. In the interest of casting our vote for standardiza­

tion in the development of languages and extensions for distributed memory MIMD and

SIMD machines, we present our work in the context of a pre-existing language, Fortran

D [17].

Once data structure and loop iteration partitioning have been determined, we carry

out further preprocessing to generate communication calls needed to efficiently transport

data between processors. In sparse and unstructured computations, distributed arrays are

typically accessed using indirection. Runtime preprocessing is used to generate a small

1

number of communications calls to carry out the required data transport. In many cases,

several loops access the same off-processor memory locations. As long as it is known that

the values assigned to off-processor memory locations remain unmodified, it is possible

to reuse stored off-processor data. A mixture of compile-time and run-time analysis

can be used to recognize these situations. Compiler analysis determines when it is safe

to assume that the off-processor data copy remains valid. Software primitives generate

communications calls which selectively fetch only those off-processor data, which are not

available locally. We will call a communications pattern that eliminates redundant off­

processor data accesses an incremental schedule. The preprocessing described here builds

on the work described in [6], [22] and [46].

We will set the context of the work in Section 2. In Section 3.1, we will describe

primitives that produce incremental schedules. In Section 3.2 we will describe the

primitives used to couple data and loop iteration partitioners to compilers. In Section 4

we will present an overview of our compiler effort. We describe the transformations which

generate incremental inspectors and executors, and describe the language extensions we

use to control compiler-linked runtime partitioning. Finally, in Section 5 we will present

performance data to characterize the performance of our methods.

2 Overview

2.1 Overview of Fortran D

We will present our runtime-compilation methods in the context of Fortran D. Fortran D

is a version of Fortran 77 enhanced with a rich set of data decomposition specifications, a

definition of the language extensions may be found in [17]. Fortran D as currently spec­

ified requires that users explicitly define how data is to be distributed. Many researchers

have explored the problem of specifying data decompositions, and FortranD has drawn

extensively on this work (e.g. [46], [25], [36] and [11], [34}, [7, 27, 26, 28]) While our

work will be presented in the context of Fortran D, the same optimizations and analogous

language extensions could be used for a wide range of languages and compilers.

Fortran D can be used to explicitly specify an irregular inter-processor partition of

distributed array elements. In Figure 1, we present an example of such a Fortran D dec­

laration. In Fortran D, one declares a template called a distribution used to characterize

the significant attributes of a distributed array. The distribution fixes the size, dimension

and way in which the array is to be partitioned between processors. A distribution is

produced using two declarations. The first declaration is decomposition. Decomposition

fixes the name, dimensionality and size of the distributed array template. The second

2

S1 REAL*8 x(N),y(N)

S2 INTEGER map(N)

S3 DECOMPOSITION reg(N),irreg(N)

S4 DISTRIBUTE reg(block)

S5 ALIGN map with reg

S6 .. . set values of map array using some mapping method ..

S7 DISTRffiUTE irreg(map)

S8 ALIGN x,y with irreg

Figure 1: Fortran D Irregular Distribution

declaration is distribute. Distribute is an executable statement and specifies how a tem­

plate is to be mapped onto processors. Fortran D provides the user with a choice of

several regular distributions, in addition, a user can explicitly specify how a distribution

is to be mapped onto processors. A specific array is associated with a distribution using

the Fortran D statement align. In statement S3, Figure 1, two size N, one dimensional

decompositions are defined. In statement S4, decomposition reg is partitioned into equal

sized blocks with a block assigned to each processor. In statement S5, array map is aligned

with distribution reg. Array map will be used to specify (in statement S8) how distribu­

tion irreg is to be partitioned between processors. An irregular distribution is specified

using an integer array; when map(i) is set equal to p, element i of the distribution irreg

is assigned to processor p.

we shall illustrate in the following sections, our new language extensions and compiler

techniques make it possible for programmers to implicitly specify how data and loop

iterations are to be distributed between processors.

3

2.2 Overview of PARTI

In this section, we will give an overview of the functionality of the PARTI primitives

described in previous publications ([46], [6], [39]). In many algorithms, data produced

or input during a program's initialization plays a large role in determining the nature

of the subsequent computation. In the PARTI approach, when the data structures that

define a computation have been initialized, a preprocessing phase follows. Vital elements

of the strategy used by the rest of the algorithm are determined by this preprocessing

phase.
In distributed memory MIMD architectures, there is typically a non-trivial commu­

nications latency or startup cost. For efficiency reasons, information to be transmitted

should be collected into relatively large messages. The cost of fetching array elements

can be reduced by precomputing what data each processor needs to send and receive.

In irregular problems, such as solving PDEs on unstructured meshes and sparse matrix

algorithms, the communication pattern depends on the input data. This typically arises

due to some level of indirection in the code. In this case, it is not possible to predict at

compile time what data must be prefetched. To deal with this lack of information the

original sequential loop is transformed into two constructs namely, the inspector and the

executor.

During program execution, the inspector loop examines the data references made by a

processor, and calculates what off-processor data needs to be fetched and where that data

will be stored once it is received. The executor loop then uses the information from the

inspector to implement the actual computation. We have developed a suite of primitives

that can be used directly by programmers to generate inspector/executor pairs.

These primitives are named PARTI (Parallel Automated Runtime Toolkit at ICASE)

[12], [6]; they carry out the distribution and retrieval of globally indexed but irregu­

larly distributed data-sets over the numerous local processor memories. Each inspector

produces a set of schedules, which specify the communication calls needed to either:

i obtain copies of data from specified off-processor memory locations (i.e. gather) or,

ii modify the contents of specified off-processor memory locations (i.e. scatter), or

iii accumulate (e.g. add or multiply) values to specified off-processor memory loca­

tions, (i.e. accumulate).

Schedulers use hash tables to generate communication calls thai, for each loop nest,

transmit only a single copy of each off-processor datum [22], (46]. The schedules are

used in the executor by PARTI primitives to gather, scatter and accumulate data to/from

off-processor memory locations. In this paper, the idea of eliminating duplicates has been

4

taken a step further. If several loops require different but overlapping data references we

can now avoid communicating redundant data (See Section 3.1 and Section 4.1.3).

In distributed memory machines, large data arrays need to be partitioned between

local memories of processors. These partitioned data arrays are called distributed arrays.

Long term storage of distributed array data is assigned to specific memory locations in the

distributed machine. It is frequently advantageous to partition distributed arrays in an

irregular manner. For instance, the way in which the nodes of an irregular computational

mesh are numbered frequently does not have a useful correspondence to the connectivity

pattern of the mesh. When we partition the data structures in such a problem in a way

that minimizes interprocessor communication, we may need to be able to assign arbitrary

array elements to each processor.

Each element in a distributed array is assigned to a particular processor, and in order

for another processor to be able to access a given element of the array we must know the

processor in which it resides, and its local address in this processor's memory. We thus

build a translation table which, for each array element, lists the host processor address.

For a one-dimensional array of N elements, the translation table also contains N

elements, and therefore must be itself be distributed over the local memories of the

processors. This is accomplished by putting the first N/P elements on the first processor,

the second N/P elements on the second processor, etc ... , where P is the number of

processors. If we are required to access the m th element of the array, we look up its address

in the distributed translation table, which we know can be found in the (m/N) * P + lth

processor. One of the PART! primitives handles initialization of distributed translation

tables, and other primitives are used to access the distributed translation tables.

3 The P ARTI Primitives

This section describes the primitives which schedule and then carry out movement of data

between processors, along with the primitives that couple partitioners to compilers. The

primitives that couple partitioners to compilers are entirely new. The data movement and

scheduling primitives are related to the PART! primitives described earlier ([6] and [46])

but incorporate a number of new insights we have had about sparse and unstructured

computations. These primitives differ in a number of ways from those described earlier

in that the new primitives:

eliminate redundant off-processor references and

make it simple to produce parallelized loops that are virtually identical in form to

the original sequential loops.

5

real*8 x(N),y(N)

C Loop over edges involving x, y

Ll do i=l,n_edge

nl = edgeJist(i)

n2 = edgeJist(n..edge+i)

Sl y(nl) = y(nl) + ... x(nl) ... x(n2)

82 y(n2) = y(n2) + ... x(nl) ... x(n2)

end do

C Loop over Boundary faces involving x, y

L2 do i=l,nJ'ace

ml = faceJist(i)

m2 = faceJist(nJ'ace+i)

m3 = faceJist(2*nJ'ace + i)

83 y(ml) = y(ml) + ... x(ml) ... x(m2) ... x(m3)

84 y(m2) = y(m2) + ... x(ml) ... x(m2) ... x(m3)

end do

Figure 2: Sequential Code

6

To explain how the primitives work, we will use an example which is similar to loops

found in unstructured computational fluid dynamics (CFD) codes. In most unstructured

CFD codes, a mesh is constructed which describes an object and the physical region

in which a fluid interacts with the object. Loops in fluid flow solvers sweep over this

mesh structure. The two loops shown in Figure 2 represent a sweep over the edges of

an unstructured mesh followed by a sweep over faces that define the boundary of the

object. Since the mesh is unstructured, an indirection array has to be used to access

the vertices during a loop over the edges or the boundary faces. In loop Ll, a sweep is

carried out over the edges of the mesh and the reference pattern is specified by integer

array edge_list. Loop L2 represents a sweep over boundary faces, and the reference

pattern is specified by face_list. The array x only appears in the right hand side of

expressions in Figure 2, (statements Sl through S4), so the values of x are not modified

by these loops. In Figure 2, array y is both read and written to. These references all

involve accumulations in which computed quantities are added to specified elements of

y (statements Sl, S2, S3 and S4).

3.1 Primitives for Communications Scheduling

In this section we use a running example derived from Figure 2 in order to present the

runtime support we need to eliminate redundant off-processor references. As was the case

with our earlier suite of primitives described in [6], this runtime support can be used

either by a complier or can be embedded into distributed memory codes manually by

programmers. Our new primitives carry out preprocessing that make it straightforward

to produce parallelized loops that are virtually identical in form to the original sequential

loops. The importance of this is that it will be possible to generate the same quality

object code on the nodes of the distributed memory machine as could be produced by

the sequential program running on a single node.

Our primitives make use of hash tables [22] to allow us to recognize and exploit a

number of situations in which a single off-processor distributed array reference is used

several times. In such situations, the primitives only fetch a single copy of each unique

off-processor distributed array reference.

3.1.1 PART! Executor

Figure 3 depicts the executor code with embedded fortran callable PARTI procedures

dfmgather, dfscatter_add and dfscatter_addnc. Before this code is run, we have to carry

out a preprocessing phase, to be described in Section 3.1.2. This executor code changes

significantly when non-incremental schedules are employed. An example of the executor

7

code when the preprocessing is done without using incremental schedules is given in [41].

The arrays x and y are partitioned between processors, each processor is responsible

for the long term storage of specified elements of each of these arrays. The way in which

x and y are to be partitioned between processors is determined by the inspector. In this

example, elements of x and y are partitioned between processors in exactly the same way.

Each processor is responsible for n_on_proc elements of x and y.

It should be noted that except for the procedure calls, the structure of the loops in

Figure 3 is identical to that of the loops in Figure 2. In Figure 3, we again use arrays

named x and y; in Figure 3, x and y now represent arrays defined on a single processor of

a distributed memory multiprocessor. On each processor P, arrays x and y are declared

to be larger than would be needed to store the number of array elements for which P

is responsible. We will store copies of off-processor array elements beginning with local

array elements x(n_on_proc+1) and y(n_on_proc+1).

The PARTI subroutine calls depicted in Figure 3 move data between processors using

a precomputed communication pattern. The communication pattern is specified by either

a single schedule or by an array of schedules. dfmgather uses communication schedules

to fetch off-processor data that will be needed either by loop L1 or by loop L2. The

schedules specify the locations in distributed memory from which data is to be obtained.

In Figure 3, off-processor data is obtained from array x defined on each processor. Copies

of the off-processor data are placed in a buffer area beginning with x(n_on_proc+1).

The PARTI procedures dfscatter_add and dfscatter_addnc, in statement S2 and S3

Figure 3, accumulate data to off-processor memory locations. Both dfscatter_add and

dfscatter_addnc obtain data to be accumulated to off processor locations from a buffer

area that begins with y(n_on_proc+1). Off-processor data is accumulated to locations

of y between indices 1 and n_on_proc. The distinctions between dfscatter_add and dfs­

catter_addnc will be described in Section 3.1.3.

In Figure 3, several data may be accumulated to a given off-processor location in loop

Ll or in loop L2.

3.1.2 PARTI Inspector

In this section, we will outline how we carry out the preprocessing needed to generate the

arguments needed by the code in Figure 3. This preprocessing is depicted in Figure 4.

The way in which the nodes of an irregular mesh are numbered frequently do not

have a useful correspondence to the connectivity pattern of the mesh. When we parti­

tion such a mesh in a way that minimizes interprocessor communication, we may need

to be able to assign arbitrary mesh points to each processor. The PARTI procedure

ifbuild_translation_table (Sl in Figure 4) allows us to map a globally indexed distributed

8

real*8 x(n_on_proc+n_ofLproc)

real*8 y(n_on_proc+n_ofLproc)

81 dfmgather(sched....array,2,x(n_on_proc+ 1) ,x)

C Loop over edges involving x, y

L1 do i=1,locaLILedge

n1 = locaLedgeJist(i)

n2 = locaLedgeJist(locaLILedge+i)

81 y(n1) = y(n1) + ... x(n1) ... x(n2)

82 y(n2) = y(n2) + ... x(n1) ... x(n2)

end do

82 dfscatter ...add(edge..sched,y(n_on_proc+ 1) ,y)

C Loop over Boundary faces involving x, y

L2 do i=1,locaLn_face

m1 = local_faceJist(i)

m2 = local_faceJist(locaL.n_face+i)

m3 = local_faceJist(2*locaLn_face + i)

83 y(m1) = y(m1) + ... x(m1) ... x(m2) ... x(m3)

84 y(m2) = y(m2) + ... x(m1) ... x(m2) ... x(m3)

end do

83 dfscat teraddnc(face..sched,y(n..on_proc+ 1),

buffer ..mapping,y)

Figure 3: Parallelized Code for Each Processor

9

Sl translation_table = ifbuild_translation_table(l,myvals,n...on_proc)

S2 call flocalize(translation_table,edge....sched,parLedgeJist, locaLedgeJist ,2*n_edge,n_ofLproc)

S3 sched_array(l) = edge....sched

S4 call fmlocalize(translation_table,face....sched,

incremental_face....sched, part_faceJist,local_faceJist,

4 *n_face, n_ofLproc_face,

n__new _ofLproc_face, buffer _mapping, 1 ,sched...a.rray)

S5 sched...a.rray(2) = incremental_face....sched

Figure 4: Inspector Code for Each Processor

array onto processors in an arbitrary fashion. Each processor passes the procedure if­

build_translation_table a list of the array elements for which it will be responsible (my­

vals in Sl, Figure 4). If a given processor needs to obtain a datum that corresponds to

a particular global index i for a specific distributed array, the processor can consult the

distributed translation table to find the location of that datum in distributed memory.

The PARTI procedures ftocalize and fmlocalize carry out the bulk of the preprocessing

needed to produce the executor code depicted in Figure 3. We will first describe ftocalize,

(S2 in Figure 4). On each processor P, flocalize is passed:

1. a pointer to a distributed translation table (translation_table in 82),

2. a list of globally indexed distributed array references for which processor P will be

responsible, (edge_list in 82), and

3. number of globally indexed distributed array references (2*n_edge in S2).

Flocalize returns:

1. a schedule that can be used in PART I gather and scatter procedures (edge....sched

in 82),

2. an integer array that can be used to specify the pattern of indirection in the executor

code (locaLedge_list in 82), and

3. number of distinct off-processor references found in edgeJist (n_off_proc in 82).

10

fHlrt_edge_list local_ edge _list

off

flrocessor

references

Flocalize

gather into bottom of data array

local data

buffer ___
ofT processor data

Figure .S: Flocalize Mechanism

11

butTer

references

A sketch of how the procedure ftorolize works is shown in Figure 5. The array

edge_list shown in Figure 2 is partitioned between processors. The part_edge_list

passed to ./localize on each processor in Figure 4 is a subset of edge_list depicted in Fig­

ure 2. We cannot use part_edge_list to index an array on a processor as part_edge_list

refers to globally indexed elements of arrays x andy. Flocalize changes this part_edge_list

so that valid references are generated when the edge loop is executed. The buffer for each

data array is placed immediately following the on-processor data for that array. For ex­

ample, the buffer for data array x starts at x(n_on_proc+ 1}. Hence, when ftocalize

changes the parLedge_list to locaLedge_list, the off-processor references are changed

to point to the buffer addresses. When the off processor data is collected into the buffer

using the schedule returned by ftocalize, the data is stored in a way such that execution

of the edge loop using the locaLedge_list accesses the correct data.

There are a variety of situations in which the same data need to be accessed by

multiple loops (Figure 2). In Figure 2, no assignments to x are carried out. In the

beginning of Figure 3, each processor can gather a single copy of every distinct off­

processor value of x referenced by loops Ll or L2. The PARTI procedure fmlocalize

(84 in Figure 4) makes it simple to remove these duplicate references. fmlocalize makes

it possible to obtain only those off-processor data not requested by a given set of pre­

existing schedules. The procedure dfmgather in the executor in Figure 3 obtains off­

processor data using two schedules; edge_sched produced by ./localize (82 Figure 4) and

incrementaLface_sched produced by fmlocalize (84 Figure 4).

The pictorial representation of the incremental schedule is given in Figure 6. The

schedule to bring in the off-processor data for the edgeJoop is given by the edge schedule

and is formed first. During the formation of the schedule to bring in the off-processor

data for the faceJoop we remove the duplicates shown by the shaded region in Figure 6.

Removal of duplicates is achieved by using a hash table. The off-processor data to be

accessed by the edge schedule is first hashed using a simple hash function. Next all the

data to be accessed during the faceJoop is hashed. At this point the information that

exists in the hash table allows us to remove all the duplicates and form the incremental

schedule. In Section 5 we will present results showing the usefulness of incremental

schedule.

To review the work carried out by fmlocalize, we will summarize the significance of

all but one of the arguments of this P ARTI procedure. On each processor, fmlocalize is

passed:

1. a pointer to a distributed translation table (translation_table in 84),

2. a list of globally indexed distributed array references. (faceJist in 84),

12

OFF PROCESSOR fETCIIES
IN SWEEP OVER EDGES

I
EDGE SCI IEDUU!

OFF PROCESSOR FETCJ IES
IN SWEEP OVER FACES

~
DlJPLJCA TES

INCREMENTAL
SCIIEDULE

Figure 6: Incremental Schedule

3. number of globally indexed distributed array references (4*n_face in S4),

4. number of pre-existing schedules that need to be taken into account when removing

duplicates (1 in S4), and

5. an array of pointers to pre-existing schedules (sched_array in S4).

Fmlocalize returns:

1. a schedule that can be used in PARTI gather and scatter procedures. This schedule

does not take any pre-existing schedules into account (face_sched in S4),

2. an incremental schedule that includes only off-processor data accesses not included

in the pre-existing schedules (incremental.face....sched in S4),

3. a list of integers that can be used to specify the pattern of indirection in the executor

code (local_faceJist in S4),

4. number of distinct off-processor references in faceJist (n_ofLproc_face in S4).

5. number of distinct off-processor references not encountered in any other schedule

(n_new_off_proc_face in S4).

6. buffer_ma.pping - to be discussed in Section 3.1.3.

13

3.1.3 A Return to the Executor

We have already discussed dfmgatherin Section 3.1.1 but we have not said anything so far

about the distinction between dfscatter_add and dfscatter_addnc. When we make use of

incremental schedules, we assign a single buffer location to each off-processor distributed

array element. In our example, we carry out separate off-processor accumulations after

loops L1 and L2. As we will describe below, in this situation, our off-processor accumu­

lation procedures may no longer reference consecutive elements of a buffer.

We assign copies of distinct off-processor elements of y to buffer locations, to handle

off-processor accesses in loop L1, Figure 3. We can then use a schedule (edge__sched) to

specify where in distributed memory each consecutive value in the buffer is to be accu­

mulated. PART I procedure dfscatter _add can be employed; this procedure uses schedule

edge_sched to accumulate to off-processor locations consecutive buffer locations beginning

with y(n_on_proc + 1). When we assign off-processor elements of y to buffer locations

in L2, some of the off-processor copies may already be associated with buffer locations.

Consequently in S3, Figure 3, our schedule (face...sched) must access buffer locations in an

irregular manner. The pattern of buffer locations accessed is specified by integer array

buffer_mapping passed to dfscatter_addnc in S3, Figure 3. (dfscatter_addnc stands for

dfscatter ..add non-contiguous)

3.2 Mapper Coupler

In irregular problems, it is frequently desirable to allocate computational work to proces­

sors by assigning all computations that involve a given loop iteration to a single processor

[6]. We consequently partition both distributed arrays and loop iterations. Our approach

is to first partition distributed arrays and then, based on distributed array partitionings,

partition loop iterations. This appears to be a practical approach as in many cases, the

same set of distributed arrays are used by many loops.

When we partition distributed arrays, we have not yet assigned loop iterations to

processors. We do assume that we will partition loop iterations so as to attempt to

minimize non-local distributed array references. Our approach to data partitioning makes

an implicit assumption that most (although not necessarily all) computation will be

carried out in the processor associated with the variable appearing on the left hand side

of each statement.

There are many partitioning methods available, [42], [15], [5] [9] but currently

partitioners must be coupled to user programs in a manual fashion. This manual coupling

is particularly troublesome when we wish to make use of parallelized partitioners. Here,

we introduce a new notion of linking partitioners with programs by producing a generic

14

data structure at run time, which is independent of the problems. For this purpose,

we have developed primitives which can generate a standardized input format for the

partitioners. In our approach the standardized data structure is generated from the

loops in the problem specified by users using certain language extensions to be discussed

in Section 4.1.

We now outline what needs to be done to link a data partitioner with a program

in which a specific loop has been specified using the language extensions described in

Section 4.1. We first consider loops in which all distributed arrays appearing in a loop

conform in size and are to be distributed in an identical manner. We also restrict ourselves

to loops without loop carried dependencies (this restriction will be relaxed slightly later

in this section). We define a statement bipartite runtime dependency graph (statement

BRDG) to represent the dependencies between the index of a distributed array element

defined on the left hand side of a loop statement S and the indices of all distributed

array elements on the right hand side of S. As the name implies, statement BRDG is a

bipartite directed graph. We merge the statement BRDG associated with each statement

Sin a loop to form a loop BRDG. When we merge /links we associate a weight l with

the merged vertex. Most data partitioners make use of undirected connectivity graphs.

When all distributed arrays appearing in a statement conform, we can collapse the loop

BRDG into a undirected graph, the loop runtime dependence graph or the loop RDG.
The weight associates with each edge of the loop RDG is the sum of the weights of the

two collapsed BRDG edges.

A loop RDG is constructed by adding edge < i,j > between nodes i and j either

when

a reference to array index i appears on the left side of an expression and a reference

to j appears on the right side, or

a reference to array index j appears on the left side of an expression and a reference

to i appears on the right side.

Each time edge< i,j >is encountered, we increment a counter associated with< i,j >.

Accumulation type output dependency edges of type < i, i > are ignored in the graph

generation process as the presence of such dependencies do not induce inter-processor

communication. The loop RDG is currently represented by a distributed data structure

(31], this data structure is closely related to Saad's Compressed Sparse Row (CSR) format

(see [38]).

Data partitioning is carried out as follows. We assume P processors.

1. At compile time a dependency coupling code is generated. This code produces a

loop RDG at runtime,

15

2. The loop RDG is passed to a data partitioning procedure that partitions the loop

RDG into P subgraphs. The RDG vertices assigned to each subgraph correspond

to a distributed array distribution.

3. The output of the partitioning procedure is a distributed translation table. This

translation table is associated with each of the identically distributed arrays refer­

enced in the loop.

Once we have partitioned data, we must partition computational work. One conven­

tion is to compute a program statementS in the processor associated with S's left hand

side distributed array element. (If the left hand side of S references a replicated variable

then the work is carried out in all processors). Were we to assign work in this manner,

we would want to partition the RDG for statementS in a way that would correspond

to reducing the combined cost of load imbalance and the cost of interprocessor commu­

nication. Each RDG edge to cross a boundary between partitions would correspond to

either a unidirectional or bidirectional data communication. Instead of assigning work to

the processor associated with S's left hand distributed array element, we partition dis­

tributed arrays and loop iterations separately. Our motivation for using the loop RDG
as an input to a data partitioner comes from our decision to attempt to partition loop

iterations so as to minimize off-processor distributed array references.

To partition loop iterations, we use a graph called the runtime iteration graph or

RIG. The RIG associates with each loop iteration i, all indices of each distributed array

accessed during iteration i. The RIG is generated for every loop that references at least

one irregularly distributed array. The runtime iteration processor assignment graph or

RIP A lists, for each loop iteration, the number of distinct data references associated

with each processor.

We partition loop iterations in the following manner:

1. The RIG is generated for each loop in which distributed arrays are referenced.

2. The processor assignment is found for for each distributed array reference appearing

in a RIG. If the distributed array is irregularly distributed, this information is

obtained using the array's distributed translation table (Section 2.2). The processor

assignments are used to generate the RIP A graph.

3. Loop iterations are partitioned using an iteration partitioning procedure which

makes use of the RIP A graph.

Just as there are many possible strategies that can be used to partition data, there

are also many strategies that could be used to partition loop iterations. We currently

16

employ strategies that assign loop iterations to the processor associated with the largest

number of distributed array references in the RIG.

3.3 Compiler-linked Mapping: Runtime Support

In this section we outline the primitives employed to carry out compiler-linked data and

loop iteration partitioning.

We begin each compiler-linked mapping with an initial distribution of loop iterations

and of integer indirection arrays needed to determine distributed array references. The

object of this initial preprocessing is to extract information needed for mapping. In

many cases, the initial distribution of loop iterations Iinit, will be a simple default dis­

tribution. In some situations (e.g. adaptive codes), preprocessing to support irregular

array mappings may have already been carried out. Thus integer indirection arrays may

have already been irregularly distributed when we begin our derivation of a compiler­

linked mapping. Our runtime support will handle either regular or irregular initial loop

iteration distributions Iinit· The local loop RDG is defined as the restriction of the

loop RDG to a single processor. The local loop RDG includes only distributed array

elements associated with Iinit·

Procedure eliminate_dup_edges uses a hash table to store unique directed dependency

edges, along with a count of the number of times each edge has been encountered. Once

all edges in a loop have been recorded, edges_to_RDG generates the local loop RDG

and then merges all local loop RDG graphs to form the loop RDG. The data structures

that describe the loop RDG graph are passed to a data partitioner RDG_parlitioner.

RDG_partitioner. returns a pointer to a distributed translation table that describes the

new mapping. Note that RDG_partitioner. can use any heuristic to partition the data,

the only constraint is that the partitioners have the correct calling sequence.

We consider the sequential code depicted in Figure 2 to illustrate how the primitives

can be used to link partitioners with programs. We assume that the user has specified

using the language extensions that arrays x and y are to be partitioned based the loop 11

in a conforming manner. At compile time, a sequence of calls to a set of mapper coupler

primitives are embedded as shown in Figure 7.

The partitioning of loop iterations is supported by two primitives, deref_rig and par­

tition_rig. The RIG is generated by code transformed by a compiler. The primitive

deref_rig inputs the RIG. This primitive accesses distributed translation tables to find

the processor assignments associated with each distributed array reference. deref_rig re­

turns the RIPA. The RIPA is partitioned using the iteration partitioning procedure,

iter_partition.

17

partition loop iterations between processors in blocks

partition integer indirection array edge.list so that if iteration i is assigned to

processor P, edge.list(i) and edge.list(n_edge+i) are on P (methods needed to

carry out this preprocessing are described in [46]).

do i=1,n..edge

pass dependency edges (n1,n2), (n2,n1) to procedure eliminate_dup_edges

end do

obtain loop RDG data structure from hash table using procedure edges_to_RDG

loop RDG is passed to RDG_partitioner. A pointer is returned to a distributed

translation table which describes the new mapping.

Figure 7: Runtime Support for Deriving Irregular Data Distributions

4 P ARTI Compiler

In this section we first describe language extensions which allow a programmer to implic­

itly specify how data and loop iterations are to be partitioned between processors. We

then outline compiler transformations used to carry out this implicitly defined work and

data mapping. The compiler transformations generate code which embeds the mapper

coupler primitives described in Section 3.2. In addition we outline compiler transfor­

mations needed to take advantage of the incremental scheduling primitives described in

Section 3.1.

4.1 Compiler-Linked Problem Mapping

4.1.1 Overview

The current Fortran D syntax outlined in Section 2.1 requires programmers to explicitly

define irregular data decompositions.

In Figure 1, we align real arrays x and y with the decomposition irreg (statement

S5). The array map is used to specify the distribution of irreg. Integer array map is

aligned with decomposition reg (statement S4) and then reg is distributed by amoung

the processors blocks (statement S6). The meaning of the statement S7 is that the

distribution of decomposition irreg is determined by values assigned to map. For example,

if the value map(lOO) is 10, this indicates that both x(100) and y(lOO) are assigned to

processor 10.

18

The difficulty with the declarations depicted in Figure 1 is that it is not obvious

how one would partition the irregularly distribute array. The map array which gives the

distribution pattern of irreg has to be generated separately by running a partitioner.

The Fortran-D constructs are not rich enough for the user to couple the generation of the

map array to the program compilation process. While there are a wealth of partitioning

heuristics available (see for instance [42], [15], [5]), coding such partitioners from scratch

can represent a significant effort. There is no standard interface between the partitioners

and the different problems. The partitioners described in the literature typically operate

on data structures whose physical interpretation is known to the programmer (e.g. meshes

in finite difference equations, sparse matrices in sparse linear systems solvers, etc).

Our approach is to identify a nest of loops L that involves each irregularly distributed

array we will need to partition. From the loop L, we produce at compile time a mapper

coupler (see Section 3.2)

Figure 8 is derived from the sequential code in Figure 2. The code in Figure 8 contains

loops L1 and L2 from the code in Figure 2. To simplify presentation, only Ll is depicted

explicitly in Figure 8.

We use statement S4 to designate loop L1 as the loop that will be used to generate

a mapper coupler. implicitmap(x,y) indicates that an RDG graph is to be generated

based on the dependency relations between distributed arrays x and y in loop L1. We

assume that all arrays listed in an implicitmap statement are to be identically distributed

and that the loop in question parallelizes, except for possible accumulation type output

dependencies (If the compiler cannot determine that these assumptions are valid, an error

is reported).

In many codes used to solve mesh based problems, we can specify a nest of loops

so that the RDG will represent the original mesh. For instance, in Figure 8, loop L1

represents a sweep over the edges of a mesh. The RDG obtained from statement S4

recaptures the original mesh topology.

It is easy to generalize the language extensions described here so that we specify

an implicit mapping using more than one loop. In this case, a multiple loop RDG is

generated based on merged dependency patterns arising from the loops.

4.1.2 Embedding Mapper Coupler Primitives

We use the example in Figure 8 to show how the compiler primitives are embedded in the

code. When the statement distribute •.• implicit using is encountered in the code,

the compiler locates the loop L specified by the user. The indirection pattern in this loop

will be used to generate the RDG. In order for the executable statement distribute •..

implicit using to make sense, we must be able to anticipate how the distributed arrays

19

real*8 x(N),y(N)

decomposition coupling(N)

81 if(remap.eq.yes) then

82 distribute coupling(implicit using edges)

endif

83 align x,y with coupling

84 implicitmap(x,y) edges

C Loop over edges involving x, y

11 do i=l,n...edge

nl = edgeJist(i)

n2 = edgeJist(n...edge+i)

81 y(nl) = y(nl) + ... x(nl) ... x(n2)

82 y(n2) = y(n2) + ... x(nl) ... x(n2)

end do

12 Loop over faces involving x, y

Figure 8: Example of Implicit Mapping

20

in L will be indexed. when L is next encountered. We need to be able to determine

that all relevant reference patterns in L can be predicted when distribute ••• implicit

using executes. In our simple example (Figure 8), the implicit distribution statement is

located in the same procedure as the user specified loop. The compiler must identify all

variables V that determine the subscript functions of distributed arrays in L and must

determine whether there is any chance that any members of V could be killed between

distribute ... implicit using and loop L. In this case, standard data flow analysis can

determine whether any assignment has been made to a member of V. In many cases, the

implicit distribution statement might not be placed in the same procedure as L. In this

case, we will require the results of interprocedural analysis.

When L is identified and indexing information pertaining to L is obtained, a trans­

formed loop L' is generated. L' contains the calls to eliminate_dup_edges that will be

needed to generate the local loop RDG (see Section 3.2). Recall from Section 3.2 that

eliminate_dup_edges produces a hash table. A pointer to this hash table is passed to pro­

cedure edges_to_RDG. This procedure produces a loop RDG which is passed to a data

partitioner, RDG_partitioner.

Loop iterations are partitioned at runtime whenever a loop accesses at least one

irregularly distributed array. Corresponding to each such loop L is generated a loop L"

which generates the RIG. As described in Section 3.2, the RIG is passed to derej_1•ig

to produce the RIPA. The RIPA in turn is partitioned using the iteration partitioning

procedure, iter _partition.

4.1.3 Inspector /Executor Generation for Incremental Scheduling

Inspectors and executors must be generated for loops in which distributed arrays are

accessed via indirection. Inspectors and executors are also needed in most loops that

access irregularly distributed arrays. In this section we outline what must be done to

generate distributed memory programs which make effective use of incremental and non­

incremental schedules. Most of what we describe is as yet unimplemented, although

we have constructed and benchmarked a simple compiler capable of carrying out local

transformations to embed non-incremental schedules. This work is described in (46].

We first outline what must be done to generate an inspector and an executor for a

program loop L. We assume that dependency analysis has determined that L either has no

loop carried dependencies, or has only the simple accumulation type output dependencies

of the sort exemplified in Figure 2. It should be noted that the calling sequences of the

compiler-embeddable PARTI primitives differ somewhat from the primitives described

in Section 3. The functionality described in primitives flocalize and fmlocalize are each

implemented as a larger set of simpler primitives.

21

We scan through the loop and find the set of distributed arrays A that are irregularly

distributed or are indexed using indirection. Information needed to generate a schedule

for a given distributed array reference, can be produced from the subscript function

of the reference along with knowledge of an array's distribution. We must check to

make sure that the the subscript functions of all members of A are loop invariant as

the methods described in this paper do not address cases in which indexing patterns

are modified by computations carried out within the loop. As long as a distributed

array's indexing pattern is not modified by computations carried out within a loop, a

compiler can generate preprocessing code that can be hoisted out of L. This preprocessing

code produces a representation of the distributed array's indexing pattern. For instance,

consider the following loop:

do i=l,n

nl = nde(2*i)

n2 = nde(2*i-1)

.. = x(nl) ... y(n2)

.. = ... z(n2)

end do

The subscript function of y and z (using notation from the Fortran 90 array exten­

sions) is nde(2:2*n:2), and the subscript function of x is nde(1:2*n-1:2). Recall from

Section 2.2, that schedules specify communication patterns and are not bound to a spe­

cific distributed array. We can avoid having to compute redundant schedules when we

know that the same communication pattern will reoccur in more than one place in a

loop. For instance, if y and z in the above loop are partitioned in a conforming manner,

we need only to compute a single schedule to bring in off-processor elements of y and z.
Optimizations that reduce the number of schedules reduce the preprocessing time

required by the inspector. Obviously, the elimination of redundant schedules also has a

favorable impact on storage requirements. Minor modifications of common subexpression

elimination should be reasonably effective in identifying redundant schedules. In [46] we

describe a compiler that carries out this optimization in a rudimentary manner.

The use of incremental schedules, (Section 3.1), make it possible to avoid retrans­

mission of unchanged distributed array. As we will show in Section 5, proper use of

incremental schedules can have a marked effect on the time spent on communication.

In order to make use of previously stored copies of distributed array elements, we must

22

ensure that the off-processor copies are still valid. Recall that we assumed that loop L

had no loop carried dependencies. Thus our decision to assign each loop iteration to a

single processor ensures that off-processor data obtained immediately before entering L

will continue to be valid in L. The generation of incremental schedules can be carried

out in two passes. A compiler first generates an inspector and executor for L with full

schedules. During the second pass, some full schedules will be replaced with incremental

schedules. In order to replace a full schedule with an incremental schedule, we need to

know which schedules will have already caused the storage of off-processor data within

L.
Generation of efficient inspectors and executors for loop L requires us to obtain infor­

mation about a program as a whole. When L is called multiple times we attempt to reuse

previously computed schedules. Each time Lis called, we need to determine whether it is

possible that the subscript functions or loop distributions in the set of distributed arrays

A have been modified since the last call to L.

Analysis must also be carried out if we are to use incremental schedules to eliminate

duplicate data communications between loops. We need rather comprehensive informa­

tion about the program behavior. Consider a right hand side reference to distributed

array x in program statementS for which we would like to use an incremental schedule.

We will need to know

when off-processor data copies of values of x become invalidated by new assign­

ments, and

which communications schedules will have already been invoked by the time we

reach x,

Methods exist which appear likely to allow us to be able to do a reasonable job of

achieving both of these objectives for many irregular scientific codes. A program depen­

dence graph (e.g. [13], [10]) is a directed graph whose vertices represent the assignment

statements and control predicates that occur in a program. The edges represent de­

pendences among program components. An edge represents either a control dependence

or a data dependence. Each time a schedule is used, new copies of off-processor array

elements become available. In order to generate an incremental schedule for x at S, we

need to know which schedules have already caused the storage of potentially reusable

off-processor data. We can view this off-processor data reuse as a type of dependence

and represent this dependence as a specific type of edge in a program dependence graph.

We will call this kind of dependence edge a reuse edge. Using slicing methods, [44], [23)

we can find all statements and predicates of a program that might affect the values of the

distributed array reference to x in statement S. In ongoing joint work with Kennedy's

23

group at Rice, we are currently developing a variant of slicing methods which will al­

low us to automate the use of incremental schedules. The results of this work will be

implemented as part of the Fortran D compiler being developed at Rice (21].

5 Experimental Results

5.1 Timing Results from the Euler Equation Solver

The PART! procedures described in Section 3 were used to port a 3-D unstructured

mesh Euler solver [32]. The Euler code iterates until it has computed a steady state

solution on a given mesh. Two versions of the Euler solver were tested, one version used

the primitive]localize and fmlocalize to generate incremental schedules (Section 3.1),

the other used only the primitive]localize and generated only non-incremental schedules

(Section 3.1.2). The 3-D unstructured mesh Euler solver was tested using a sequence of

structurally similar meshes of varying sizes. The smallest mesh used had 3.6K vertices,

the largest mesh had 210K vertices and 1.2 million edges. Figure 9 depicts a surface

view of the 210K vertex mesh. The unstructured meshes were partitioned by the method

described in (42].

Table 1 shows the timings obtained using non-incremental communication schedul­

ing and Table 2 were obtained using incremental schedules. The single node code for

these meshes run at approximately 4 Megaflops. We conjecture that the single node

performance is relatively poor because the data access patterns in unstructured mesh

computations are highly irregular and the number of memory references per floating

point operation is very high. Both of these characteristics make it difficult for the Intel

80860 architecture to keep the processor supplied with data.

The use of incremental scheduling had a significant impact on communications costs.

For instance, on the 26K mesh, the communications cost per iteration on 16 processors

was 2.0 seconds when we did not employ incremental schedules. The communications

cost dropped to 1.1 seconds when we used incremental schedules. On the 210K mesh

on 64 processors the communications cost per iteration dropped from 3. 7 seconds to 2.3

seconds when we employed incremental schedules.

Since the form of the sequential code and the parallelized code is virtually identical,

we did not expect the parallelization process to introduce any new inefficiencies beyond

those exacted by the preprocessing and by the calls to the primitives. We compared

the parallel code running on a single node with the sequential code and found only

a 2 % performance degradation. In the parallelized Euler codes, the total cost of all

preprocessing was insignificant compared to the execution times required to solve the

24

Size Number of Processors

Mesh 1 2 8 16 64

Mfiops 4.1 6.0 12.0 14.4 -
3.6K Time/iter(s) 4.6 3.1 1.5 1.3 -

comm/iter(s) - 0.5 0.9 0.9 -
Mfiops - - 19.2 29.9

26K Time/iter(s) - - 7.1 4.5

comm/iter(s) - - 2.3 2.0

Mfiops - - - - 118.6

210K Time/iter(s) - - - - 8.4

comm/iter(s) - - - - 3.7

Table 1: Timings from Intel iPSC/860 Unstructured Mesh Using Non-Incremental

Schedule

problems. The program typically requires at least 100 iterations to converge, and the

preprocessing times were less than 3 % of the parallel execution times.

5.2 Timing Results using the Mapper Coupler

In this section, we present data that indicates that the costs incurred by the mapper

coupler primitives were roughly on the order of the cost of a single iteration of our

unstructured mesh code. We also show that the mapper coupler costs are quite small

compared to the cost of partitioning the data. In Table 3, graph generation depicts the

time required by the mapper interface to generate the runtime dependence graph (RDG)

data structure (Section 3.2. These timings involve a loop over edges that is functionally

equivalent to loop L1 in Figure 2. The graph generation time includes the time required

to call eliminate_dup_edges and the time required to call edges_to_RDG (Section 3.3)

In Table 3, mapper depicts the time needed to partition the RDG using using a

parallelized version of Simon's eigenvalue partitioner [42]. We partitioned the RDG into

a number of subgraphs equal to the number of processors employed. The cost of the

partitioner is relatively high both because of the partitioner's high operation count and

because only a modest effort was made to produce an efficient parallel implementation. It

should be noted that any parallelized graph partitioner could be used as a. mapper. The

iter partitioner time shown in Table 3 gives the time needed to partition loop iterations

among processors. The table also includes the time needed for a single iteration of the

Euler code for different problem sizes.

25

Size Number of Processors

Mesh 1 2 8 16 64

Mflops 4.1 7.1 16.9 17.4 -

3.6K Time/iter(s) 4.6 2.6 1.1 1.1 -

comm/iter(s) - 0.3 0.5 0.7 -

Mflops - - 23.8 38.8

26K Time/iter(s) - - 5.6 3.4

comm/iter(s) - - 1.1 1.1

Mflops - - - - 144.3

210K Time/iter(s) - - - - 7.1

comm/iter(s) - - - - 2.3

Table 2: Timings from Intel iPSC/860: Unstructured Mesh Using Incremental Schedule

Table 3: Mapper Coupler Timings from Intel iPSC/860
Number Number of Processors

of Vertices 2 4 8 16 32 64

graph generation (sees.) 0.34 0.24 0.21 0.20 - -

3.6K mapper (sees) 15.92 11.50 12.11 14.92 - -
iter partitioner (sees) 0.94 0.57 0.42 0.34 - -

comp/iter (sees) 2.4 1.31 0.6 0.34 - -
graph generation (sees.) - 0.86 0.69 0.53 0.35 -

9.4K mapper (sees) - 70.96 62.3 65.2 89.7 -

iter partitioner (sees) - 1.19 0.82 0.60 0.43 -

comp/iter(secs) - 4.83 2.35 1.1 0.67 -
graph generation (sees.) - - - - 1.50 0.94

54K mapper (sees) - - - - 544.81 673.14
iter partitioner (sees) - - - - 3.30 3.03

comp/iter(secs) - - - - 6.06 3.81

26

Figure 9: Surface View of Unstructured Mesh Employed for Computing Flow over ON­

ERA M6 \Ving, Number of nodes= 210K

6 Conclusions

Programs designed to carry out a range of irregular computations including sparse direct

and iterative methods require many of the optimizations described in this paper. Some

examples of such programs are described in [2], [29], [4], [45] and [18].

Several researchers have developed programming environments that are targeted to­

wards particular classes of irregular or adaptive problems. Williams [45] describes a

programming environment (DIME) for calculations with unstructured triangular meshes

using distributed memory machines. Baden [3] has developed a programming environ­

ment targeted towards particle computations. This programming environment provides

facilities that support dynamic load balancing. DecTool [9] is an interactive environment

designed to provide facilities for either automatic or manual decompositions of 2-D or

3-D discrete domains.

There are a variety of compiler projects targeted at distributed memory multipro-

cessors [47], [8], [37], [35], [1], [43], [14], [19], [20], [24], [7, 27, 26, 28] [25],

[21], [46]. Runtime compilation methods are employed in four of these projects; the

Fortran D project [21], the Kali project [25], Marina Chen's work a.t Yale [30] and

our PARTI project [33], [40], [46], and [39]. The Kali compiler which was the first

compiler to implement inspector/executor type runtime preprocessing [25] and the ARF

compiler which was the first compiler to support irregularly distributed arrays [46]. In

related work, Lu and Chen have reported some encouraging results on the potential for

effective runtime parallelization of loops in distributed memory architectures [30].

27

This paper has presented two new runtime compilation methods, and described in

detail the required runtime support. We described how to design distributed mem­

ory compilers capable of carrying out dynamic workload and data partitions. We also

described how to reduce interprocessor communication requirements by eliminating re­

dundant off-processor data accesses. This runtime support required for this methods has

been implemented in the form of PARTI primitives. We first described the design of

the PARTI primitives, and then outlined the compiler transformations that embed these

primitives.

We implemented a full unstructured mesh computational fluid dynamics code by

embedding our runtime support by hand and have presented our performance results.

These performance results demonstrated that our method for eliminating redundant off­

processor communication had a significant impact on communications costs. Our perfor­

mance results also demonstrated that the costs incurred by the mapper coupler primitives

were roughly on the order of the cost of a single iteration of our unstructured mesh code

and were quite small compared to the cost of the partitioner itself. We did not compare

the time required by the PARTI primitives to Intel send and receive calls in this paper. In

[6] we presented such a comparison and found that overheads incurred by using PARTI

appear to be quite modest {no more than 20 %).
We have joined forces with the Fortran D group in compiler development and are

implementing the methods described in this paper in the context of Fortran D in coop­

eration with Kennedy's group at Rice.

The non-incremental PARTI primitives described in Section 3.1 are available for

public distribution and can be obtained from netlib or from the anonymous ftp cite

ra.cs.yale.edu. The incremental PARTI primitives and the Mapper coupler primitives

described in Section 3.2 will be released soon and will be available through the same

sources ..

Acknowledgements

The authors would like to thank Geoffrey Fox for many enlightening discussions about

universally applicable partitioners; we would also like to thank Ken Kennedy, Chuck Koel­

bel and Seema Hiranandani for many useful discussions about integrating into Fortran-D

runtime support for irregular problems.

The authors would also like to thank: Dennis Gannon for the use of his Faust system

and his help in getting us started with Faust, Horst Simon for the use of his unstructured

mesh partitioning software; and Venkatakrishnan for useful suggestions for low level

communications scheduling.

28

References

[1] F. Andre, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data

distribution. In International Conference on Supercomputing, pages 380-388, June

1990.

[2] C. Ashcraft, S. C. Eisenstat, and J. W. H. Liu. A fan-in algorithm for distributed

sparse numerical factorization. SISSC, 11(3):593-599, 1990.

[3] S. Baden. Programming abstractions for dynamically partitioning and coordinating

localized scientific calculations running on multiprocessors. To appear, SIAM J. Sci.

and Stat. Computation., 1991.

[4] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental

study of methods for parallel preconditioned krylov methods. In Proceedings of the

1988 Hypercube Multiprocessor Conference, Pasadena CA, pages 1698,1711, January

1988.

[5] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on

multiprocessors. IEEE Trans. on Computers, C-36(5):570-580, May 1987.

[6] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive scien­

tific algorithms on distributed memory architectures. Concurrency: Practice and

Experience, 3(3):159-178, June 1991.

[7] M. C. Chen. A parallel language and its compilation to mulitprocessor archietctures

or vlsi. In 2nd ACM Symposium on Principles Programming Languages, January

1986.

[8] A. Cheung and A. P. Reeves. The paragon multicomputer environment: A first

implementation. Technical Report EE-CEG-89-9, Cornell University Computer En­

gineering Group, Cornell University School of Electrical Engineering, july 1989.

[9] N.P. Chrisochoides, C. E. Houstis, E.N. Houstis, P.N. Papachiou, S.K. Kortesis, and

J .R. Rice. Domain decomposer: A software tool for mapping pde computations to

parallel architectures. Report CSD-TR-1025, Purdue University, Computer Science
Department, September 1990.

[10] K. Cooper and K. Kennedy. lnterprocedural side-effect analysis in linear time. In

Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design

and Implementation, ACM SIGPLAN Not. 23, 7, pages 57-66, July 1988.

29

[11] Thinking Machines Corporation. CM Fortran reference manual. Technical Report

version 1.0, Thinking Machines Corporation, Feb 1991.

[12] R. Das, J. Saltz, and H. Berryman. A manual for parti runtime primitives - revision

1 (document and parti software available through netlib). Interim Report 91-17,

ICASE, 1991.

[13] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its

use in optimization. ACM TOPLAS, 1987.

[14] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice­

Hall, Englewood Cliffs, NJ, 1990.

[15] G. Fox. A graphical approach to load balancing and sparse matrix vector multipli­

cation on the hypercube. In The IMA Volumes in Mathematics and its Applications.

Volume 13: Numerical Algorithms for Modern Parallel Computer Architectures Mar­

tin Schultz Editor. Springer-Verlag, 1988.

[16] G. Fox and W. Furmanski. Load balancing loosely synchronous problems with a neu­

ral network. In Third Conf. on Hypercube Concurrent Computers and Applications,

pages 241-27278, 1988.

[17] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.

Fortran D language specification. Department of Computer Science Rice COMP

TR90-141, Rice University, December 1990.

[18] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving

Problems on Concurrent Computers. Prentice-Hall, Englewood Cliffs, New Jersey,

1988.

[19] H. M. Gerndt. Automatic parallelization for distributed memory multiprocessing

systems. Report ACPC/ TR 90-1, Austrian Center for Parallel Computation, 1990.

[20] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production

quality C* compiler for hypercube machines. In 3rd ACM SIGPLAN Symposium on

Principles Practice of Parallel Programming, pages 73-82, April 1991.

[21] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine­

independent parallel programming in Fortran D. In Compilers and Runtime Soft­

ware for Scalable Multiprocessors, J. Saltz and P. Mehrotra Editors, Amsterdam,

The Netherlands, To appear 1991. Elsevier.

30

[22] S. Hiranandani, J. Saltz, P. Mehrotra, and H. Berryman. Performance of hashed

cache data migration schemes on multicomputers. Journal of Parallel and Dis­

tributed Computing, to appear, 12, August 1991.

[23] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence

graphs. ACM TOPLAS, 12(1):26-60, January 1990.

[24] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic par­

allelization system for distributed memory parallel computers. In DMCC5, pages

1105-1114, Charleston, SC, April1990.

[25] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures

on distributed memory architectures. In 2nd ACM SIGPLAN Symposium on Prin­

ciples Practice of Parallel Programming, pages 177-186. ACM SIGPLAN, March

1990.

[26] J. Li and M. Chen. Generating explicit communication from shared-memory program
references. In Proceedings Supercomputing '90, November 1990.

[27) J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-reference

between distributed arrays. In Proceedings of the 9rd Symposium on the Frontiers

of Massively Computation, October 1990.

[28] J. Li and M. Chen. Automating the coordination of interprocessor communication.

In Programming Languages and Compiler for Parallel Computing, Cambridge Mass,

1991. The MIT Press.

[29] J. W. Liu. Computational models and task scheduling for parallel sparse cholesky

factorization. Parallel Computing, 3:327-342, 1986.

(30] L. C. Lu and M.C. Chen. Parallelizing loops with indirect array references or point­
ers. In Proceedings of the Fourth Workshop on Languages and Compilers for Parallel

Computing, to appear, Santa Clara, CA, August 1991.

[31) Parti runtime primitives for compilers, in progress. Interim report, ICASE, 1991.

[32] D. J. Mavriplis. Three dimensional unstructured multigrid for the euler equations,

paper 91-1549cp. In AIAA 1Oth Computational Fluid Dynamics Conference, June

1991.

(33] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Prin­

ciples of runtime support for parallel processors. In Proceedings of the 1988 ACM

31

International Conference on Supercomputing, St. Malo France, pages 140-152, July

1988.

[34] M. J. Quinn and P. J. Hatcher. Data-parallel programming on multicomputers.

IEEE Software, pages 69-76, September 1990.

[35] A. Rogers and K. Pingali. Process decomposition through locality of reference.

In Conference on Programming Language Design and Implementation. ACM SIG­

PLAN, June 1989.

[36] M. Rosing and R. Schnabel. An overview of Dino - a new language for numerical

computation on distributed memory multiprocessors. Technical Report CU-CS-385-

88, University of Colorado, Boulder, 1988.

[37] M. Rosing, R. W. Schnabel, and R.P. Weaver. Expressing complex parallel algorithms

in Dino. In Proceedings of the 4th Conference on Hypercubes, Conurrent Computers

and Applications, pages 553-560, 1989.

[38] Y. Saad. Sparsekit: a basic tool kit for sparse matrix computations. Report 90-20,

RIACS, 1990.

[39] J. Saltz, H. Berryman, and J. Wu. Runtime compilation for multiprocessors, to

appear: Concurrency, Practice and Experience, 1991. Report 90-59, ICASE, 1990.

[40] J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time schedul­

ing and execution of loops on message passing machines. Journal of Parallel and

Distributed Computing, 8:303-312, 1990.

[41] J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H Berryman, and J. Wu. Parti pro­

cedures for realistic loops. In Proceedings of the 6th Distributed Memory Computing

Conference, Portland, Oregon, April-May 1991.

[42] H. Simon. Partitioning of unstructured mesh problems for parallel processing. In

Proceedings of the Conference on Pralle! Methods on Large Scale Structural Analysis

and Physics Applications. Permagon Press, 1991.

[43] P. S. Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 1989.

(44] M. Weiser. Program slicing. IEEE Trans. on Software Eng., SE-10(4):352-357, July

1984.

32

(45] R. D. Williams and R. Glowinski. Distributed irregular finite elements. Technical

Report C3P 715, Caltech Concurrent Computation Program, February 1989.

(46] J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation methods

for multicomputers. In Proceedings of the 1991 International Conference on Parallel

Processing, pages 11-26,11-30, 1991.

(4 7] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD /SIMD

parallelization. Parallel Computing, 6:1-18, 1988.

33

	Distributed Memory Compiler Methods for Irregular Problems -- Data Copy Reuse and Runtime Partitioning
	Recommended Citation

	SU-CIS-91-36_001c
	SU-CIS-91-36_002c
	SU-CIS-91-36_003c
	SU-CIS-91-36_004c
	SU-CIS-91-36_005c
	SU-CIS-91-36_006c
	SU-CIS-91-36_007c
	SU-CIS-91-36_008c
	SU-CIS-91-36_009c
	SU-CIS-91-36_010c
	SU-CIS-91-36_011c
	SU-CIS-91-36_012c
	SU-CIS-91-36_013c
	SU-CIS-91-36_014c
	SU-CIS-91-36_015c
	SU-CIS-91-36_016c
	SU-CIS-91-36_017c
	SU-CIS-91-36_018c
	SU-CIS-91-36_019c
	SU-CIS-91-36_020c
	SU-CIS-91-36_021c
	SU-CIS-91-36_022c
	SU-CIS-91-36_023c
	SU-CIS-91-36_024c
	SU-CIS-91-36_025c
	SU-CIS-91-36_026c
	SU-CIS-91-36_027c
	SU-CIS-91-36_028c
	SU-CIS-91-36_029c
	SU-CIS-91-36_030c
	SU-CIS-91-36_031c
	SU-CIS-91-36_032c
	SU-CIS-91-36_033c
	SU-CIS-91-36_034c
	SU-CIS-91-36_035c

