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I(ab)(cd) = @2A@�ab@Qcd = �(ab)(cd)M(ab)(cd) = @2A@�ab@�cd = h�a�biF h�c�diF � h�a�b�c�diF : (55)The mean value h:::iF in the last equations is taken over the action (39). M is the usualHessian which determines the stability of the SK model.Now it is easy to see that for each eigenvalue of the sub-block matrices G and M , (forinstance g and � respectively) the stability condition is determined byg� � 1 � 0 ; (56)the marginal condition being the equality. We have now to compute all the eigenvalues ofthe matrices G and M and to search for the ones which maximize the product g�. Forthe p-spin model (and also the SK model) this condition is relatively easy to determinebecause there is a unique eigenvalue g for G (in that case the matrix G is g times theidentity matrix) and the maximum eigenvalue of M is found in the replicon sector whenall replicas belong to the same block (once replica symmetry is broken).In the present case even though the maximum value of M is the usual one [22] G hasmore than one eigenvalue. We have searched for all of them in case of one step of replicasymmetry breaking. We have evaluated the derivatives for the matrices Q and � brokenaccording to the scheme of (43). The general expression for the eigenvalues at one step ofreplica symmetry breaking has been given in [23]. There are two longitudinal eigenvalues,four anomalous eigenvalues and four replicons which �nally reduce to only �ve di�erenteigenvalues (this is because we set Q(ab) = 0 if the indices (a; b) do not belong to the samesub-block of size m). These are given byg1 = 16�2m (G00(4�(1� q)) + (m� 1)G00(4�(mq + 1� q)))g2 = 16�2G00(4�(1� q +mq)) (57)g3 = 32�2m G00(4�(1� q)) + 4�(m� 2)qm2 (G0(4�(1� q +mq))�G0(4�(1 � q))) (58)g4 = 4�qm(G0(4�(1� q +mq))�G0(4�(1� q))) (59)g5 = 16�2G00(4�(1� q)) : (60)g5 is the replicon, where all the replica indices belong to the same sub-block. Taking for thematrixM the replicon eigenvalue corresponding to the four replica indices all belonging tothe same sub-block we �nd � = hcosh�4(p2�x)i ; (61)33



AppendixIn this appendix we present some technical details about how we applied the marginalitycondition in our computation at one step of replica symmetry breaking. Our starting pointis the expression for the free energyA[Q;�] = �12 TrG(2�Q) + Tr(�Q)� F (�) ; (50)with G(Q) given byG(2�Q) = Xk�1 (2�)2k2k  2k TrTrQ2k = Xk�1 c2k TrQ2k ; (51)where the  2k are the Taylor coe�cients of the series expansion of the function  (z): (z) = 1 +Xk�1 2k z2k : (52)In the most general case the stability condition implies that the Hessian matrix of thesecond derivatives of A[Q;�] in the space of matrices fQ;�g around the equilibrium so-lution is negative de�nite (the integration path in � space runs on is the imaginary axis,and the stability condition has the opposite sign than in the usual case). To constructthe Hessian we compute the second derivatives of (50). This gives a four blocks matrixwith the derivatives @QQA , @��A , @Q�A and the identical symmetric block @�QA. Thesub-block G � @QQA is given byG(ab)(cd) = @2A@Qab@Qcd = Xk�1 4kc2k @(Q2k�1)ab@Qcd : (53)The matrix G has three di�erent types of elements, depending on if the replica indices (ab)and (cd) do coincide, have one element in common or are completely di�erent. For thesethree di�erent cases we have@(Q2k�1)ab@Qcd = 2k�2Xp=0 �(Qp)ac(Q2k�2�p)db + (Qp)ad(Q2k�2�p)cb�@(Q2k�1)ab@Qac = 2k�2Xp=0 �(Qp)aa(Q2k�2�p)cb + (Qp)ac(Q2k�2�p)ab� (54)@(Q2k�1)ab@Qab = 2k�2Xp=0 �(Qp)aa(Q2k�2�p)bb + (Qp)ab(Q2k�2�p)ab� :The other sub-blocks I and M are 32



prime values of (2N +1) the deterministic model admits a ground state based on Legendresequences which we cannot �nd in the random approach) we have found that in all themetastable phase th two class of models coincide. We have also found, remarkably, that forgeneric values of N even the ground states of the models seem to coincide (as from �gure(9)).We have shown that for the values of N which satisfy the cardinality condition thedeterministic model undergoes a crystallization transition. This transition is of the �rstorder from the thermodynamical point if view, since the energy and the entropy jumpdiscontinuously. Even if we cannot be sure of this fact, our exact solutions of small systemsgive a precise hint favoring the absence of a zero energy ground state for generic N values.We have shown that the structure of metastable states of the two classes of models hasmuch in common (at this e�ect the cardinality of N is irrelevant). For the model withquenched disorder we have performed Monte Carlo runs at zero temperature searching forlocally stable states. In the deterministic case we have solved the naive TAP equations.The similarity of the shapes of the distribution of metastable states suggests that thedynamical behavior of the two models must be very similar. The two �gures (11), (12) arequite decisive in this respect. The two models behave very similarly, they both display asingularity at a temperature TG where the system freezes and thermodynamic uctuations(related for example to the speci�c heat and to the magnetic susceptibility) vanish. Wehave also shown that for reasons that are quite unclear to us the marginality conditiongives a good estimate of the low T behavior.These results strengthen the idea that the o�-equilibrium dynamics for the deterministicmodel should be very similar to the one of the model with quenched disorder. We wouldexpect, for example, that the deterministic model could display aging e�ects like thosewhich a�ect the random model and many models based on quenched disorder [21]. Wehave measured the usual time-time correlation function between the spin con�guration atthe waiting time tw and the spin con�guration at a later time tw + t. We have observedthat below TG the shape of the correlation function depends on the previous history, i.e.on tw. These results are much similar to those found also in related deterministic modelslike the low autocorrelation binary sequences [4]. It seems that also deterministic modelsdisplay non-equilibrium e�ects very similar to those of spin glasses with randomness.We hope that the results of this paper can be relevant to a large variety of di�erentproblems in condensed matter physics, where it is natural to study systems with a complexfree energy landscape in which quenched disorder is not present as a given, preassignedcondition.AcknowledgementsWe thank Andrea Crisanti, Leticia Cugliandolo and Jorge Kurchan for discussions. G. P.thanks Bernard Derrida for stressing to him the interest of computing the average minimaldistance of an Ising spin con�guration from a random hyperplane.31



0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

Figure 13: The number of solutions of the T = 0 mean �eld equations of a given energy asfunction of the energy for N = 56, where (2N + 1) is prime (dashed line) and for N = 57,where (2N + 1) is not prime (continuous line).30



9 Mean Field Equations for the DeterministicModelThe naive mean �eld equations for the sine model can be de�ned through the iterativerelation mx = tanh(�Xy 6=x Sx(my)) ; (48)where the function Sx has been de�ned in (2). Obviously we could have de�ned theanalogous equations by using the C function de�ned in eq. (4).We are interested in the low temperature limit of the model. We can thus avoid toconsider the complete TAP equations, where the reaction �eld is included, which are farmore di�cult to deal with. In the low temperature limit we can solve the even simplerequations mx = sign(hx) ; (49)where hx is the local �eld acting on the spin x.We �nd the T = 0 solution of these equation by cooling the solution found at T > 0.In �gure (13) we show the number of solutions of a given energy as function of the energyrespectively for a typical prime (dashed line) and non prime value (continuous line)ofp = (2N + 1).Analogously to (A) we stop our ground state search after �nding 5 times the states withthe lowest energies. That makes us con�dent we have sampled the low energy states withgood accuracy. We have studied systems with N up to 64. For prime values of (2N + 1),where we know the exact ground state, this method has always found the correct groundstate energy (i.e. zero).10 ConclusionsBuilding upon the idea introduced in our former paper (A) we have introduced here a classof deterministic spin models which do not contain disorder, but whose low T behavior isdictated by self-induced frustration. They are potentially relevant to the description of theglass state. Using number theory we have been able to exhibit a zero energy ground statefor given values of the volume N (such that (2N + 1) is prime).We have proceeded by writing a model with quenched random disorder, based on or-thogonal interaction matrices, which reproduces the high temperature expansion of thedeterministic models. By using replica theory and well known results of integration onLie groups we have been able to solve the model with quenched disorder. The model withquenched disorder has a replica symmetry breaking transition at a quite low temperature.The phase transition is discontinuous like in the random energy model.We have also studied the low T phase. Even if the random model does not coincidewith the deterministic model for all values of N down to T = 0 (since we know that for29
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that the parameter for a low temperature expansion of the free energy is of the order ofexpf� 6T g. This means that the low temperature expansion is well convergent and has afree energy which di�ers from zero by a rather small amount in the whole region T < TC.The high temperature free energy (given by (42)) and the low temperature free energy(which is equal to zero) intersect with an angle which is in agreement with the �rst ordernature of the crystallization transition.Dynamically our system is able to undergo a crystallization transition only for smallvalues of N which satisfy the cardinality condition. If (2N+1) is prime and N is very largea local Monte Carlo annealing dynamics is unable to bring the system in its true groundstate. The system remains in a metastable phase exactly like it does in the model withquenched disorder (where the zero energy ground state does not exist). In this regime thecardinality condition is irrelevant. This is illustrated by �gures (11) and (12). We plotthe energy and the speci�c heat versus T for the cosine model and for the model withquenched disorder (from numerical simulations), for the one step broken solution and forthe marginality condition solution.The model with quenched disorder has been conceived in order to reproduce the highT expansion of the deterministic model. Below the glass temperature TG there are no apriori reasons why the two models should behave in a similar way. The fact that the twomodels coincide also in the metastable phase is clear from the results we show in �gures(11), (12), and comes as a very nice surprise. One of the reasons for such a behavior is thefact that the metastable states in the two models have a very similar distribution, as wewill show better in next section.Also in case of the deterministic model, the metastable phase can be described usingthe marginality condition eq.(46) of the section 6.Figure (11) shows that the solution where the marginality condition has been imposeddescribes very well the numerical results down to T � 0:1. Below that temperature theenergy of the analytic solution departs from the numerical results reaching the static value� 0:063 at T = 0. This behavior is related to the fact that the breakpoint parameter m (asdetermined by imposing the marginality condition) is not proportional to T for low valuesof T . This fact will be discuss in better detail in the appendix and con�rms the fact thatthe static replica equations are useful to predict the existence of the glassy transition atTG but possibly not the full low T region.The next section is devoted to describe the structure of the metastable states for thedeterministic model at zero temperature by analyzing the numerical solution of the naiveTAP equations. But for the existence of a crystalline state in case of prime (2N +1) primethe shape of the distribution of the metastable states will be shown to be similar to theone found in case of the random model. 26
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8 Numerical Simulations of the DeterministicModelWe have studied the cosine model by using numerical simulations. We will start by pre-senting results which describe the nature of the ground state and illustrate the existenceof a crystallization transition for values of N such that (2N + 1) is prime. Then we willdiscuss the behavior of the internal energy and of the speci�c heat during an annealingprocess.As we have discussed in section (2) the Hamiltonian (12) admits a zero energy groundstate for values of N such that (2N+1) is prime. We have found the ground state by exactenumeration for small N values (see (A) for a detailed discussion of the technique). Forhigher values of N we have found the ground state by looking for solutions of the naivemean �eld equations, as we describe in the next section. For �nding the ground state thismethod is slightly more e�cient of the zero temperature Monte Carlo introduced in theprevious section. In �g. (9) we plot the ground state energy divided by N versus N�1 fordi�erent values of N (at N = 1 we plot the one step replica broken analytic result wehave obtained for the ground state of the model with quenched disorder). For N such that(2N +1) is prime we also plot with a di�erent symbol, the energy divided by N of the �rstexcited state. The energy per spin is of order 0:1. The data of �g. (9) appear to be goodevidence that for generic values of N the ground state energy tends to the value computedby the replica approach (we suggest to the curious reader to compare these results withthe ones of (A), since the di�erence is easy to appreciate), and that the energy densitydoes not vanish in the thermodynamic limit. The excited states for (2N + 1) prime area bit lower than the ground state for generic N values, but they do not seem to have anatypical behavior. In other words it would seem clear that the pathology of the primevalues (2N +1) is con�ned to the ground state. The spectrum of the higher energy states,including the �rst excited state, does not depend on the cardinality of (2N + 1).For prime values of (2N+1) we �nd a crystallization �rst order transition for TC � 0:7.Knowing the exact form of the ground state for such N values has been a remarkable plus.That allows us to study the system both starting from high T and cooling down to low T(in this case the system does never �nd the true ground states, but gets trapped at theenergy of the metastable phase) and starting from the ground state con�guration, slowlyincreasing the temperature T . We are able in this way to observe a thermal cycle we wouldnot be able to detect in any other way. We show the results (for N = 44 and N = 806,both such that (2N +1) is prime) in �g. (10). The solid line is for decreasing T (and is thesame for the two lattice sizes), while long dashes are for increasing T , N = 44, and dotsfor increasing T , N = 806.We notice that the area included between ascending and descending curves increaseswith increasing N . The crystallization transition is of the �rst order, since the energyand the entropy are discontinuous at TC. The discontinuities �E and �S are such that�E = TC�S. The free energy vanishes approximately at TC (see �gure 1) and remainsvery close to zero below TC in the crystalline phase. In fact at low temperatures the energyneeded for a spin ip starting from the ordered ground state is in the range 6 � 10 so23
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With limited computer time (on a reasonable workstation time allocation) we have beenable to obtain reliable results for samples with a volume up to a few hundred spins.In �gure (5) we show our estimate for the internal energy on one disorder sample, forN = 186. In �gure (6) we show the speci�c heat. We have started the run from high Tand we have been decreasing the temperature at steps of :1.We have tested that sample to sample uctuations and �nite-size corrections in theinternal energy and heat capacity are negligible.Our numerical results �t well the theoretical predictions for temperatures larger thanTG � 0:5. At TG the system freezes. The energy does not decrease further than a valueclose to 0:12 and the speci�c heat decreases to a very small value. This is the dynamicaltransition we have discussed in the previous section. TG is well above the temperatureTRSB and coincides with the transition point derived for the marginality condition.The transition at TG is of a dynamical nature. The system does not reach the lowestlying states (which have an energy close to 0:063). One could doubt if the freezing atTG � 0:5 is a �nite time e�ect. We show in �g. (7) the internal energy of the system as afunction of T (here N = 100. We have used a value of N not too small in order to to makethe metastability visible). We plot three di�erent curves for di�erent run length. In therun with t = 1000, for example, we sweep the lattice 1000 times at each T point duringour annealing procedure (i.e. while systematically decreasing T ).When the annealing time is too short for T < TG we get an energy that is too high.But as soon as the scheduling becomes slow enough we see that the energy thermalizes.The dynamical freezing appears to be a genuine behavior which survives in the limit ofin�nite times for large volumes. Let us note that for sizes less than N � 50 the system isable to �nd the ground state in a reasonable time on our simulation time scale, and we seeit leaving the glassy phase. The limits N !1 and t!1 seem not to commute.Finally we show in �gure (8) the distribution probability for the energy of the metastablestates at zero temperature for quite small system size (where we are able to reach the trueground state of the system).For each lattice volume we have ran several millions of Monte Carlo runs at zero temper-ature (we sweep sequentially the lattice and we ip the local spin if so doing the internalenergy decreases) starting from di�erent initial conditions and searching for metastablestates. We stop the search after we have found the lowest energy state 100 times. We takethat as good evidence for having collected a fair sample of the low lying states. In �g. (8)we have also drawn an arrow locating the ground state energy given by eq.(44) (which isclose to 0:063). The agreement with our zero temperature results is good. We also seethat the distribution shape of the metastable states is reminiscent of that found in caseof the SK model [20]. We will also see in the following that the energy distribution forthe deterministic model is similar to the one of the model with quenched disorder (exceptfor the existence of the very low lying ground state we have written explicitly for certainvalues of N). 18
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16�2G00(4�(1� q))hcosh(p2�x)�4i = 1 ; (46)where the expected value is de�ned byhA(x)i = R dx e�x2p2� coshm(p2�x)A(x)R dx e�x2p2� coshm(p2�x) : (47)We can �nd the dynamical transition point by maximizing the free energy under themarginality condition.Maximizing the free energy (44) as a function of q for m �xed, under condition (45),we �nd that there are values of m � 1 such that eq. (46) is satis�ed as soon as T �TMC ' 0:535 � 0:005. This transition temperature is two times larger than TRSB. Wealso get m and q as a function of the temperature. At TMC q jumps discontinuously to avalue' 0:962. This value is smaller than the value we have found for the static solution. Apriori we cannot expect the free energy derived using the marginality condition principleto a reasonable quantity, i.e. to satisfy the main inequalities of the thermodynamics. Thisis because we are in the wrong branch of the solutions of the replica equations, and wehave not chosen m following a variational principle. For example the relation u = @(�f)@�is not satis�ed for the marginality condition free energy. Also the value of the breakpointparameter m (which we plot in �g. (4) together with the value from the static result) isnot proportional to T at low temperatures.It is not possible to describe the behavior of the system in the glassy phase withoutsolving the full o�-equilibrium equations, except for the value of the glassy temperature.As we have already discussed a complete analysis should not be con�ned to the case ofone step replica symmetry breaking step. It would be very interesting to analyze the fulllow T behavior for a larger number of breaking steps, and eventually for a continuousbreaking pattern. In the following sections we will present a numerical study of the modelwith quenched disorder and of the deterministic model. We will see that in both cases thesystem undergoes a dynamical transition at TG, and that TG is very close to the value TMCwe have computed here.7 Numerical Simulations of the Disordered ModelThe model with quenched disorder is based on symmetric orthogonal interaction matri-ces. In order to produce the interaction matrices needed in our simulations we startedby generating a symmetric matrix with random elements with a Gaussian distribution.Starting from such a matrix we have obtained a symmetric orthogonal matrix by using theGraham-Schmidt orthogonalization procedure.Such a model has an in�nite range interaction, and Monte Carlo simulations are quitetime consuming (but much less time consuming than for example p-spin models with p > 2).16



for lower values of T a continuous symmetry breaking is needed to describe the system.This is what happens for the p-spin model [17]. As we will discuss in the next sectionsthis second transition would probably have no relevance from the physical point of view,since the system is not able to explore the lowest free energy con�gurations. We will seethat in an usual annealing process (i.e., a slow temperature cooling starting from a hightemperature) the system has a transition at a temperature TG well above the temperatureTRSB where replica symmetry breaks down. We will name the transition at TG the glasstransition. This transition is dynamical in nature and corresponds to the presence of avery large number of metastable states. At TG the system remains trapped in a metastablestate, and thermal uctuations are very small.6 The Marginality ConditionIn the framework of mean-�eld theory it has been suggested that the solution to theSompolinsky-Zippelius dynamical equations [18] undergoes a phase transition at a tem-perature TG. Below that temperature the time-homogeneity hypothesis and the standarductuation-dissipation theorem are not valid. In the SK model the temperature TG coin-cides with the transition point derived from the static approach, where the replica symmet-ric solution becomes unstable. It has also been suggested that this temperature coincideswith the temperature TMC where a one step replica broken solution to the mean �eld equa-tions exist such that the size of the replica matrix sub-block m is �xed by the conditionthat the replicon eigenvalue vanishes. This has been called the marginality condition [19].More recently several authors have investigated the p-spin spherical spin glass model[14]. In this case it is possible to write closed expressions for the correlation and responsefunctions in the o�-equilibrium regime. It has been noted [15] that the dynamical equationsundergo a glass transition at a temperature TG where the relaxational dynamics slows downand aging e�ects start to appear. The temperature TG is larger than the transition pointwhere replica symmetry breaks down, as predicted by the static approach. This is aconsequence of the stability of the replica symmetric solution and corresponds to the factthat at the transition point the spin-glass order parameter q(x) is discontinuous. In thismodel TG coincides with TMC.The models we are describing in this work (the model with quenched random disorderas well as the deterministic one) are good candidates for a test of the marginality conditionprinciple. The main reason is that at the transition point the order parameter q jumpsdiscontinuously to a value extremely close to 1. The system essentially freezes and thedi�erence between the static transition temperature TRSB and the dynamical transitiontemperature value TG is large. In the following sections we will use numerical simulationsto show that, for reasons not completely clear to us, the principle seems to work well.Now we want to derive the value of TMC in our particular case. We start from eq.(38)and we compute the Hessian matrix in the �; Q space. The interested reader can �nd thetechnical details in the appendix. The marginality condition gives15
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We plot the replica symmetric free energy found in eq. (42) in �g. (1) (together withthe one step replica broken result we will compute in the following).In �g. (2) we plot the internal energy and in �g. (3) the entropy of the system.In the high-temperature region the quenched and the annealed solutions coincide asusual for long range models.The replica symmetric solution is stable at all temperatures. But since for T � 0:26 itgives a negative entropy (see �g. (3) it cannot be correct down to T = 0. We expect replicasymmetry to break above (but very close) to T = 0:26. Here the system enters a glassyphase very similar to that of the random energy model [13] and of the p-spin systems (seefor example [14, 15]).We can compute the one step replica broken solution. We parameterize the matrices Qand � in the usual way. In presence of an uniform magnetic �eld the matrix elements Qabtake the value q if a and b belong to the same sub-block of sizem, while they take the valueq0 if they do belong to di�erent sub-blocks. We parameterize the matrix �ab with blocksof the same size m, and we set its elements equal to � or �0 with the same procedure weused for Q. We consider here the simpler case of zero magnetic �eld, where the parametersq0 and �0 are zero and we setQa;b = q (a 6= b); �a;b = � (a 6= b) (43)inside the blocks of size m (Qaa = 1;�aa = 0). After some algebra we obtain�f = 2� � 12m [(m� 1)G(4�(1 � q)) +G(4�(mq + 1 � q))]+�q(m� 1) � log(2) + � � 1m log Z 1�1 dxp2�e�x22 chm(p2� x) : (44)The stationary equation for q tells us that� = 2�m [G0(4�(mq+ 1 � q))�G0(4�(1� q))] : (45)We can use this relation to eliminate � from (44). We are left with a a function of q andm, and we have to �nd a stationary point. This expression cannot be solved in close form.We have plotted the numerical solution with dashed lines in �gures (1), (2), (3).At TRSB � 0:26 there is a phase transition to a phase with broken replica symmetry.At the transition point TRSB the value of the entropy is �nite but very small (� 0:0004),the value of q jumps discontinuously to a value very close to 1 (� 0:9998), and � is largebut �nite (� 10) (in the Random Energy Model at the transition point q = 1 and � =1[16]). Below TRSB the parameter m is very approximately proportional to T , m = 1 atTRSB. This is the typical scenario for a large class of models where the order parameterjumps discontinuously at the transition.We have not studied in detail the stability properties of the replica broken solution. Itis possible that the one step solution is stable down to a very low temperature, and that11



nYa;b=1 �( Xj=1;N �aj �bj �NQa;b) ' Z nYa;b=1 d�a;b expfiXa;b �a;b( Xj=1;N �aj�bj �NQa;b)g : (36)After a little more algebra (very similar to the one developed in (A)) we �nd thatZn = Z dQd� exp(�NA[Q;�]) : (37)In the large N limit the free energy is obtained by �nding the saddle point value of A[Q;�],which has the form A[Q;�] = �12TrG(2�Q) + Tr(�Q)� F (�) ; (38)where G has been already de�ned, andF (�) � lnX�a expfXa;b �a;b�a�bg : (39)We will need to study eq. (38) to discuss the solutions of the model.5 Saddle Point Equations and Replica SymmetryBreakingIn the previous section we have found the saddle point equations which allow to solve themodel with quenched disorder de�ned in (13). Let us recall that the free energy (multipliedtimes n�) in terms of the matrices Q and � is�fO = limn!0 A[QSP ;�SP ]n ; (40)where A is de�ned in (38), and QSP and �SP are evaluated at the saddle point of A.The free energy (14) of the model with quenched random disorder (which has the samehigh-temperature expansion than the deterministic one (1,3)) is given by�f = 2� � 2�fO(2�) : (41)Let us start by considering the annealed case, n = 1. Here the matrix � is set equal to 1.The action does not depend on �, and we �nd for the free energy density and the internalenergy f = 2 � 12�G(4�)� 1� log(2) ;e = 2(1 �G0(4�)) = 2 � p1 + 64�2 � 14� : (42)10



D� can be interpreted as the distance of the con�guration � from the subspace F . Therelation P 2� +D2� = 1 holds. The Hamiltonian (14) can be written now as 4D2� . The groundstate energy is given by the minimum distance Dm of one of the 2N con�guration from therandom subspace. This problem is well studied in the case �N = 1, i.e. in the limit � ! 0,mainly for its applications to perceptrons [11], but it has not been discussed in the mostgeneral case.For � = 1=2 by inverting the second relation after some algebra we �nd (we omit thesu�x � = 12 for G and  ) G(z) = Z 10 dtp1 + 4z2t2 � 12z ; (30)which gives G0(z) =  (z)� 1z : (31)After integrating the last relation with the condition G(0) = 0 we �ndG(z) = 12 log(p1 + 4z2 � 1)� 12 log(2z2) + 12p1 + 4z2 � 12 ; (32)where the constant term has be chosen such that G(0) = 0.We have already said that we have obtained this G for V unitary. It is easy to arguethat when we integrate over orthogonal matrices the only di�erence is that G(�z) getssubstituted from 12G(2�z). That can be seen for example by noticing that the function Ghas to be the same in the two cases (since the same diagrams contribute) and at �rst orderin � orthogonal and unitary matrices have to give the same results. So the only allowedrenormalization will be of the kind G(z)! �G( z�). The counting of the eigenvalues leadsto the conclusion � = 12.Using the fact that for integer positive kTr��
N �k = Tr����k ; (33)where the matrix � is de�ned as �a;b � NXk=1 �ak�bk ; (34)it follows immediately that TrG(�
N ) = TrG(��) : (35)To continue our computation we insert a �-function, and introduce the Lagrange multipliers� with the representation 9



The value of G is given in [12] (when, as we already said, the integral is over the unitarymatrices). Following [12] let us de�ne the generating function for the traces of D as�D(j) � 1N 1Xk=0 jkTrDk ; (22)in the case where d � TrD = 0. If d 6= 0 we de�ne the generating functional as�D(j) � 1N 1Xk=0 jkTr(D � d)k ; (23)that allows a straightforward generalization of the computation, by only adding an addi-tional contribution to the free energy. We de�ne the function zD aszD(j) � j�D(j) ; (24)and �nally we de�ne the function  D(z) by D(z) � �(jD(z)) ; (25)where jD(z) is obtained by inverting (24). All said, [12] tells us that G is given byGD(z) = Z 10 dt  D(zt)� 1t : (26)In the orthogonal symmetric case O2 = 1 and the eigenvalues of D can take the values�1. As far as our problem is concerned we are interested in the case where half of theeigenvalues take the value +1 and half the value �1. We will discuss here a more generalcase, where a fraction � of the eigenvalues is +1 and a fraction 1 � � is �1.It is interesting to notice that the ground state of the model has a simple geometricalsigni�cance. Let us consider our series of N spins �, and look at it as one of the verticesof the unit hypercube in N dimensions. Let us imagine such an hypercube as embeddedin <N . Now we extract a random linear subspace F of dimension �N , which includes theorigin. For example if we have N = 2 spins the con�guration will seat on one of the fourcorners of a 2 dimensional square, and for � = 12 we would pick a random line passingthrough the origin. If P is the projector of F the matrix O is given byO = 2P � 1 : (27)We de�ne the norm of the projection of a spin con�guration f�g over the subspace F byP� = jP�j ; (28)and the norm of the projection over the complementary subspace F?D� = j(1 � P )�j : (29)8



4 The Replica ApproachBy using replica theory techniques [7, 8] we will solve now the model with quenched disorderde�ned by the Hamiltonian (13). As usual we de�ne the free energy of n replicas asf (n)(�) � limN!1�� 1�N ZO(�)n � 1n � ; (15)where with the bar we denote the average over the quenched disorder andZnO � Xf�ag expf�� nXa=1HaOg : (16)We have to average over the quenched disorder. To this end we have to computeZnO = Z dO expf NXk;j=1 � 
k;jOk;jg ; (17)where the integral runs over orthogonal symmetric matrices, and
k;j � nXa=1�ak�aj : (18)We will show now that we can solve a more general problem considering a symmetriccoupling matrix with some quite general preassigned eigenvalue distribution. We willderive such more general form. We will eventually obtain the relevant result specializingthis general form to orthogonal symmetric matrices.A generic real symmetric matrix O can be decomposed as2O = V DV � ; (19)where D is a diagonal matrix which controls the spectrum of O, and V is the orthogonalmatrix which diagonalizes O. By using this decomposition we have to computeZnO = Z dV expfTr(�V
k;jV �D)g ; (20)where D is a diagonal matrix, dV is the Haar invariant measure over the orthogonal group,and the matrix 
 is de�ned in (18). We can use the results derived in [12] for unitarymatrices and adapt them to the orthogonal case. So, let us assume for a while that we areintegrating over unitary matrices V . Using the fact that 
 has �nite rank we �nd thatZ dV expfTr(�V 
k;jV �D)g = expfNTrGD(�
N )g : (21)2We like to stress with � the operation of hermitian conjugation, which for real matrices coincide withtransposition. 7



3 The Disordered ModelIt is natural to introduce at this point a model which contains quenched disorder. Thecompanion paper (A) justi�es in detail this approach. By studying a suitable disorderedmodel we try to understand how general is a very speci�c 2-spin interaction like for examplethe sine one (1). We will �nd they have indeed much in common, and that the randommodel allows to reconstruct exactly the most part of the phase diagram. As before wede�ne the Hamiltonian (here O stands for orthogonal)HO � NXx;y=1Ox;y�x�x ; (13)where now Ox;y is a generic orthogonal symmetric matrix. The same behavior of thedeterministic model will be obtained by using a rescaled Hamiltonian~HO � 2N � 2HO : (14)The form we have just written is important since also in the case of the original sine andcosine models the Hamiltonians de�ned after eq.(12) can be written in the form 2N �2Pi;kMi;k�i�k, by neglecting terms which are irrelevant in the N ! 1 thermodynamiclimit.The �rst element for the comparison of the two class of models, the sine and cosineversus the random one, can be obtained from noticing general features of the high temper-ature expansions of the models. For both class of models the couplings1 are of order N� 12 .The diagrams which contribute to the in�nite volume limit have the same topology for thetwo classes of models, and they only depend on quantities like the trace of the couplingsto positive powers, which have been built to be equal in the two classes of models.The reasoning of the former paragraph proves that sine and cosine models de�nedfrom (1) and (3) and the model with quenched disorder de�ned from (14) have the samehigh temperature expansion. On the other side we have exhibited a ground state of thedeterministic system which exists for prime values of (2N+1). Such construction obviouslydoes not apply to the disordered models. This implies that the static properties of thetwo class of models (for prime values of (2N + 1)) cannot coincide all the way down toT = 0. There is a crystallization transition only in the deterministic models, thanks tovery peculiar cardinality properties of N .We will give evidence that the random and the deterministic model do coincide at alltemperatures in the metastable phase. This is the case for generic values of N , since as wealready stressed the cardinality of 2N +1 is irrelevant for the behavior of the deterministicmodel in the metastable phase. A similar pattern could hold for the low autocorrelationmodel, but in the present case of the 2-spin interaction the analysis is far simpler, and weare able to carry it through all the way.1This is not true for all soluble spin glass models. In the dilute models the average coordination numberz remains �nite and the couplings may be quantity of order 1, with a probability of order zN .6



in (A) to show that replica theory can be a reasonable tool to investigate deterministicmodels.It is remarkable that for prime values of p, such that p = 4n+3, it is possible to exhibitin an explicit way one ground state of the system. Let us construct such ground statecon�guration. Following Legendre [10] we set �p = 0 and�j = j 12 (p�1) mod p : (10)In this way �j is +1 or �1, if j < p. Indeed a theorem by Fermat [10] tells us that if j isnot multiple of p, j(p�1) = 1, mod (p) and therefore j 12 (p�1) = �1.We will evaluate the energy of this sequence and only at the end we will impose that�p = �1 on the last site p. It is well known that for this sequence all the correlations Ckare equal to �1 [10]. It is also remarkable (and the crux of this paper) that on such asequence the Fourier transform is given byB(k) = G(p)�k ; (11)where, according to Gauss [10], G(p) = 1 for p = 4n + 1 and G(p) = �i, for p = 4n + 3.This Gauss theorem makes easy to verify that the con�gurations we have exhibited haveenergy 1 (the lowest possible energy for odd values of p). Now we change the last spin to�1. It is easy to verify that after doing that the energy of con�gurations with p of theform 4n + 3 stays unchanged to 1, while for p = 4n + 1 the energy grows to 5. It is clearnow that for p prime of the form 4n + 3 we have exhibited a true ground state of the lowautocorrelation model.By using Gauss theorem about Fourier transforms of Legendre sequences we are ablenow to de�ne a simple model with 2-spin interaction which has the same ground state ofthe 4-spin interaction low autocorrelation model. We are ignoring here the presence of thespin with value zero. The new Hamiltonian has the formH =Xx jG(p)�x �B(x)j2 : (12)We can further simplify the model by noticing that the sequence of the � in the groundstate we have written is symmetric or antisymmetric around the point p�12 , dependingon the value of G(p). That allows us to de�ne two new models with half the number ofdegrees of freedom which continue to admit (for selected p values) the ground state wehave written. Such two models are exactly the sine and the cosine model we have de�nein our introduction.Hopefully we have given clarifying hints about the nature of our two models. Now wecan proceed to study them. 5



discuss the mean �eld equations for the deterministic models. In section (10) we drawour conclusions. In the �nal appendix we present the technical details of a computationconcerning the marginal stability.2 The Genesis of Our ModelsIn order to introduce the models we have de�ned in the previous section, and which we willstudy in the following, let us recall some basic de�nitions from (A), and repeat briey thereasoning which leads to exhibit the exact ground state of the model for some particularvalues of the number of spins. The reader in need of further details should consult (A) and[10].The low autocorrelation model is based on sequences of length p of spin variables�x = �1, with x = 1; p, and on the HamiltonianH = 1p � 1 p�1Xk=1C2k ; (5)where the Ck are the correlations at distance k, de�ned asCk � pXj=1 �j�j+k ; (6)where we are taking periodic boundary conditions (this is, in the terminology of (A), theperiodic model), i.e. the indices are always summed modulo p. In this way the indiceswhich address the � variables always belong, as they should, to the interval [1; p]. It isuseful to rewrite the Hamiltonian asH = 1p� 1 pXk=1�jB(k)j4 � 1�+ 1 ; (7)where the Fourier transform is de�ned asB(k) � 1pp pXx=1 ei 2�kp x�j ; (8)and i is the imaginary unit. The thermodynamics of the model can be reconstructed thanksto the partition function at inverse temperature � � 1T in the volume pZp(�) �Xf�g e��Hf�g : (9)An interesting way to look at the Hamiltonian (5) is to consider it as a particular formof a fully frustrated 4-spin interaction. Here only the 4 spin terms which are contained ina square of two points correlation functions appear. This point of view has been useful4



Cx(�y) � 1pN cos(2�xyN ) �y : (4)Let us anticipate a discussion of the phase diagram of the model. We will see that a veryimportant role is played by the case where (2N + 1) is prime (and N is odd for the sinemodel and it is even for the cosine model). In this case the thermodynamical limit ofthe partition function is anomalous. We will show indeed that from the thermodynamicalpoint of view for prime values of (2N + 1) our models undergo a �rst order transition attemperature TC. We �nd such crystallization transition only in the case of prime (2N +1).At TC the system goes from a disordered state to an highly ordered one. The speci�c heatin the low temperature crystalline state is extremely small.The system however has a metastable phase whose internal energy is regular at TC.When we start from high T with a local Monte Carlo dynamics, and we decrease T withsome kind of annealing procedure, we pass through TC without any noticeable change inthe thermodynamical quantities.At a lower temperature TG, within the metastable phase, there is a transition to aglassy phase (a second order phase transition). This transition exists for generic valuesof N . In the glassy phase the system may exist in many di�erent equilibrium metastablestates. Here there are many states which survive with �nite probability in the in�nitevolume limit (in other words replica symmetry is broken). In this phase the system freezesand thermodynamic uctuations (for instance of the energy and of the magnetization) arevery small. The behavior of the system at the glass transition can be understood in theframework of replica theory. It is remarkable that the glass transition temperature TG isthe temperature where the entropy in the metastable phase becomes nearly equal to theentropy in the glassy phase (i.e. very close to zero).We stress again that the crystalline phase exists only for (2N +1) prime, N odd for thesine model and even for the cosine model. On the other hand the behavior of the system inthe high temperature phase and in the metastable phase is generic, and does not dependon the cardinality of (2N + 1).In section (2) we will briey describe the genesis of this model, after our paper (A).We will also discuss the low T phase of the low autocorrelation model, mainly by usingnumber theory. We will again be quite sketchy, inviting the interested reader to consult (A)for a more detailed discussion. In section (3) we will de�ne a model containing quencheddisorder, which we will eventually dissect by replica theory, and show to give a fair descrip-tion of many features of our deterministic models. We will eventually show that basicallythe random model and the deterministic one do coincide, a part for minor details like thenon-generic existence of the crystalline phase in the deterministic models.In section (4) we describe our replica computation. In section (5) we analyze thesaddle point equations. We describe the replica symmetric and the one step replica brokensolution. In section (6) we discuss the so-called marginality condition. In section (7) weillustrate our numerical simulations of the models with quenched random disorder, andin section (8) the numerical simulations of the deterministic models. In section (9) we3



1 IntroductionIn a recent companion paper [1] (which in the following we will quote as (A)) we havestarted (at the same time than Jean Philippe Bouchaud and Marc Mezard in [2]) a studyof the role of replica �eld theory when applied to the study of systems which do not containquenched disorder (for further connected work which helps clarifying this issue see [3, 4]).The immediate starting point which prompted our investigation (A) was a model of bi-nary sequences with low autocorrelation, as originally discussed from Golay and Bernasconi[5, 6]. The model was for us a prototype of a system which does not contain quenchedrandom disorder, but has an interesting spin-glass like low T structure (for general discus-sions about disordered systems, see [7, 8, 9]). We have shown that replica theory allows togather information about the full phase diagram of the theory, excluding only the very lowT behavior, which is determined by various factors, including the cardinality of the numberof spins of the system, N . We have indeed shown in (A) that replica theory can allow astudy of the full deterministic model, and does not have to be limited to an approximatedform.Apart from such a direct application, we have discussed in (A) a more general valenceof such an approach. The ability of investigating deterministic systems with a complexlandscape is an important bonus. We also stress that we are still lacking a comprehensivedescription of the glass state, and that such an approach seems a good candidate to thistask.In the following we will discuss a new class of models without quenched disorder. Theyderive quite directly from the ones studied in (A), by noticing the peculiar role the Fouriertransform is playing (we will discuss this point in some detail in section 2). We will �ndthat these models behave in a way that appears to be relevant to the description of theglass state.We will de�ne the �rst model (the sine model) by the HamiltonianHS � NXx=1f NXy=1[Sx(�y)]� �xg2 ; (1)where Sx(�y) � 1pN sin(2�xyN ) �y ; (2)and the spin variables �x take the values �1. We de�ne the analogous cosine model by theHamiltonian HC HC � NXx=1f NXy=1[Cx(�y)]� �xg2 ; (3)where 2
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