
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

6-15-1993

Putting Humpty-Dumpty together again: Reconstructing functions Putting Humpty-Dumpty together again: Reconstructing functions

from their projections. from their projections.

Anil Ravindran Menon
Syracuse University

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Menon, Anil Ravindran; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "Putting Humpty-Dumpty
together again: Reconstructing functions from their projections." (1993). Electrical Engineering and
Computer Science - Technical Reports. 159.
https://surface.syr.edu/eecs_techreports/159

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/159?utm_source=surface.syr.edu%2Feecs_techreports%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-93-28

Putting Humpty-Dumpty together again:
Reconstructing functions from their

projections

Anil Menon, Kishan Mehrotra,
Chilukuri Mohan, and Sanjay Ranka

June 15, 1993

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Putting Humpty-Dumpty together again :
Reconstructing functions from their projections.

Anil Menon
armenon@top.cis.syr.edu

Chilukuri Mohan
mohan@top.cis.syr.edu

Kishan Mehrotra
kishan@top.cis.syr.edu

Sanjay Ranka
ranka@top.cis.syr.edu

Syracuse University
Neural Network Group

School of Computer & Information Science, 4-116 CST
Syracuse, NY 13244-4100

ABSTRACT:
We present a problem decomposition approach to reduce neural net training
times. The basic idea is to train neural nets in parallel on marginal distri
butions obtained from the original distribution (via projection), and then
reconstruct the original table from the marginals (via a procedure similar
to the join operator in database theory). A function is said to be recon
structible, if it may be recovered without error from its projections. Most
distributions are non-reconstructible. The main result of this paper is the
Reconstruction theorem, which enables non-reconstructible functions to be
expressed in terms of reconstructible ones, and thus facilitates the applica
tion of decomposition methods.

Main Category: Algorithms & Architectures,
Sub-Category: Constructive & Pruning Algorithms.

Putting Humpty-Dumpty together again:
Reconstructing functions from their projections.

Arul Menon
armenon@top.cis.syr .edu

Chilukuri Mohan
mohan@top.cis.syr .edu

Kishan Mehrotra
kishan@top.cis.syr .edu

Sanjay Ra.nka
ranka@top.cis.syr.edu

Syracuse University
Neural Network Group

School of Computer & Information Science, 4-116 CST
Syracuse, NY 13244-4100

1 Introduction

Suppose a neural network is to be taught a complicated, real valued mul
tivariable function f : ~n ___.. ~' represented as a table. Real-time calcu
lation of f is assumed to be infeasible or undesirable. The decomposition
reconstruction problem is the problem of reconstructing a function from its
projections. Metaphorically, it is the problem of putting Humpty-Dumpty
together again, without having to call in all the King's horses or men. We
present a solution to the decomposition-reconstruction problem, using tools
and techniques from database theory.

The main idea underlying our solution is quite simple. We start with a
multi variable distribution and obtain a set of marginals. Obviously, it is not
always possible to reconstruct the original distribution from the marginals.
One may construct a "best" reconstruction in many different ways. A par
ticularly appealing criterion is to obtain a reconstruction that has the max
imum Shannon entropy. In probabilistic database theory such a maximum
entropy reconstruction is referred to as the join distribution. It is possible
then, to compute an error distribution; basically nothing more than the
difference between the original and the join distributions. It may be shown

1

(the Reconstruction theorem) that after some minor processing, the error
distribution is reconstructible. In other words, the error distribution after
some modification, is also a maximum entropy reconstruction of a set of
marginals. The original distribution may then be expressed as a linear com
bination of the join distribution and the error distribution. The marginals
of each of these two distributions are taught to a disjoint set of neural nets
in parallel. For other approaches to the problem of reducing the training
time, of neural networks, (for example, by reducing the size ofthe network),
see [5, 15, 17].

The decomposition-reconstruction problem has of course, already been
studied in great depth from various points of view, including Reconstruct abil
ity theory, Database theory, Statistics and Information theory. Many of the
fundamental issues involved were first worked out by Ross Ashby in the early
60's, in a Systems theoretic context [1]. The joint work of George Klir and
Roger Cavallo laid the foundations for the notion of system reconstructabil
ity [6, 7], much of it destined to be rediscovered in the then emerging field of
relational database theory. In recent years there has been an increasing in
terest in a generalization of relational databases, the theory of probabilistic
databases [2, 8].

We believe probabilistic database theory offers a fresh, simple, powerful
and elegant approach to the problem of training neural networks on tables
of data. It is possible to develop a much more systematic and logical ap
proach to this problem, free of the rampant ad hockery present in current
approaches.

Section 2 defines the basic tools underlying this approach, drawn from
the theory of probabilistic databases[8]. In Section 3 we present the Recon
struction theorem, the central theorem of this paper. Section 4 is concerned
with how ideas from probabilistic database theory may be used to advan
tage in neural network theory. Finally, in Section 5, we illustrate these ideas
by applying them to a control problem. There are many kinds of neural
networks. For concreteness, the semilinear feedforward network may be as
sumed to be the basic underlying neural architecture for this paper (though
the results are architecture independent).

2 Probabilistic Systems

Definition 2.1 A probabilistic system (PS) is a 2-tuple D = (V, p) where,
V = { v1, .•• , vn}, referred to as the scheme of the PS, is a non-empty set

2

of variables, each v; taking values from a finite set S;, and,

p: 'T(V) -+ [0, 1]

L: p(t) = 1;
tET(V)

where, the finite product space 'T(V) = TI; S;, is the set of tuples of the
system D. A model of a scheme V is a set X = {Vll ... , Vn} such that
U~ltj ~ V and Vi g; ltj,'rfi,j E {1, ... ,n}. A model X, of a scheme V, is
non-trivial iff X =I- {0} and X =I- {V}. A collection of probabilistic systems
Db ... , D~c is a probabilistic database (PD). A collection of probabilistic
systems D; =(Vi, pi) together define a probabilistic database (PD). I

Notation:
The tuples of a PS will be referred to by small greek letters o:, {3, etc. The
kth component of a tuple o:, will be denoted by a~c. Given two schemes V
and V' with V' ~ V, and tuple a E 'T(V) then o:[V'] is the restriction of a
to variables in V'. I

Probabilistic systems closely resemble contingency tables. However, view
ing them as generalizations of relational databases leads to important con
ceptual and computational advantages. It is fortunate that the development
of probabilistic database theory was largely motivated by problems peculiar
to database theory. A wealth of new ideas (at least, most of them are only a
decade old) lie waiting to be interpreted in contexts and applications, other
than database theory. We will consider this issue in greater detail in Sec
tion 4. The next two definitions formalize the notions of decomposition and
reconstruction.

Definition 2.2 (Projections): Let D = (V, p) be a probabilistic system.
Let V = { vb ... vn}, where variables v; take values from finite sets S;, Let
V' = { V;l' •.. V;k} ~ v, k ~ n and 'T(V') = n: = 1 S;j. The projection of
p onto V' yields a new distribution, p' = 7rv•(P) such that,

p' : 'T(V')-+ [0, 1]

p'(f3) = L: p(o:)
a E T(V), a[V)=.B

The projection of a distribution p onto a model, X
7rx(P) = {7rv1(p), ... ,7rv.(p)}. I

3

Definition 2.3 (Extensions): Let Pv denote the set of all probability
distributions over the finite product space T(V). Then if V' is a scheme
with distribution p, V' ~ V, the extension of p' to the scheme V, is the set
Ev (p') of all preimages of p' under the mapping 1rv'· Formally, Ev (p') =
{p E Pv 11rv•(P) = p'}. Similarly, the extension of a set of distributions
P = {Pt. ... , Pr }, is defined to be the intersection of the extensions of its
constituent distributions. Formally, Ev(P) = n Ev(p). In particular, if

pEP

X is a model for a scheme V, the extension of V relative to X, Ev (1rx(P)),
is seen to be the set Ev(1rx(P)) = {p' E Pv l1rx(p') = 1rx(p)} I

Example 2.1 Consider the PS D = (V = { v17 v2, va}, p):

Vt v2 Vs p(.)
0 0 0 0.12 =Po
0 0 1 0.04 = Pt
0 1 0 0.32 = P2
0 1 1 0.11 = Ps
1 0 0 0.01 = P4
1 0 1 0.00 = Ps
1 1 0 0.29 = P6
1 1 1 0.11 = P1

Choose a model X of V to be { { Vt, v2}, { v2, va}, { V17 va} }. Then P =
1rx(P) = { 11'"{v1,v2)l11'"{v2,v3}, 1r{v1,v3}} is:

Vt v2 1r 111,112} v2 va 1l'"{v:~,v3 Vt Va 11'"{v,,va

0 0 0.16 0 0 0.13 0 0 0.44
0 1 0.43 0 1 0.04 0 1 0.15
1 0 0.01 1 0 0.61 1 0 0.30
1 1 0.40 1 1 1.22 1 1 0.11

It is clear that there are many such p's that would have produced precisely
the same sub-tables. In fact any solution to the set of equations below:

Po+ Pt = 0.16

P2 +Ps = 0.43

P4 + Ps = 0.01

P6 + P1 = 0.40

Po+ P4 = 0.13

P1 +Ps = 0.04

P2 + P6 = 0.61

Ps + P1 = 0.22

4

Po+ P2 = 0.44

P1 + Pa = 0.15

P4 + P6 = 0.30

Ps + P1 = 0.11

will be a member of Ev(P) = Ev(1rx(p)). The above twelve equations
in eight unknowns characterize Ev completely. Note that the system of
equations is overdetermined; it is by no means guaranteed that solutions
will always exist. When solutions do exist, the set of projections are said to
be consistent. Equivalently, Ev(P) = Ev(1rx(p)) # 0. I

A model X of V, partitions Pv into classes Ev (1r x (p)) equivalent with
respect to projections onto X. The polyhedral structure of Ev, can be
used to show that there exists a unique representative for each class, the
maximum entropy distribution, or the join distribution [13]. Formally:

Definition 2.4 (Join): Let { Di = (V;, Pi)} be a set of probabilistic
systems. Let V = Ui V; and X = {Vh ... , Vn} be a model for V. Let
P = {Pb ... , Pn}· H Ev(P) # 0 (the distributions are consistent), then
define the join of the systems {Di}, DH = (V, PH), such that,

H(pH) =max {H(p') I p' E E(1rx(P))}

where H() is the Shannon entropy function. In particular, PH will be referred
to as the probabilistic join of the distributions {p1 , ••• , Pn} and is denoted
bypH =M({p1 , .•• ,pn}).Ifp =M(7rx(P))thenD = (V,p)issaidtobe
reconstructible relative to X. I

Remark 2.1 To reconstruct via the join operator, is to reconstruct adopt
ing a maximum entropy philosophy. The pros and cons of this approach have
been argued extensively in the literature [13, 14, 18, 19]. The M operator
may be thought of as a binary operator acting on a pair of probabilistic sys
tems, and defined in a manner analogous to the classical relational database
join operator. It is a remarkable fact that the generalization of the database
join operator to probabilistic systems is equivalent to maximum entropy
reconstruction.

3 Function Reconstruction

A relational database is a set RD = { Dh D 2 , ••• , Dn} of relational systems
D; = (V;, r;), where the range of each r; is the set {0, 1}. These functions
are relatively trivial to reconstruct owing to the fact that, at the cost of
introducing one additional variable, for any relational system, a non-trivial
model exists such that, the system is reconstructible relative to that model,
with respect to relational join. Formally,

5

Theorem 3.1 Let D = (V, r) be a relational system and X = {V11 V2}
be a model for the scheme V. Let v9 be a variable such that v9 (j. V, and
let v9 take values from a finite set S9. For the scheme V' = V U { vb}, let
X' = {V1 U {vb}, V2 U {vb}} be a model. Then, there exists a relational
system D' = (V', r') such that,

I

r1' = 1l"{V.J(r') = 1l"{vt}(r) = r1

r 2' = 1l"{v,}(r') = 1l"{v,}(r) = r 2

r' = tx1 (r1', r2')

A proof for the above theorem is given in Appendix A. We adopt the
position that 0- 1 functions are intrinsically easy to learn and are interested
primarily in the general case of real valued functions. It is assumed that
efficient methods exist for the computation of a given 0- 1 function. It may
even be the case that a methodology other than that of neural networks
be more appropriate for computing functions that take only either of two
values.

The situation for probabilistic systems is embodied in the Reconstruc
tion theorem. This theorem asserts that the error distribution, obtained as
a difference between the original distribution and the maximum entropy re
construction of a set of marginals, is always reconstructible. This is done by
separating the magnitude of the error distribution (Pc) from its sign (p.,).
The former is reconstructible with respect to a non-trivial model, and the
latter is converted to a simple 0 - 1 function and is trivially learnable. The
practical implications are that we may always parallelize the training process
by projecting the original function onto some appropriate model. The sum
of the pre-calculated error and the join enables us to retrieve the original
distribution. The following definition aids the statement of the theorem. A
proof of Theorem 3.2 is given in Appendix B.

Definition 3.1 Let D = (V, p) be a PS, lVI ~ 2, X be a model for V,
T be the set of tuples of D, and let p 114 = txl (1rx(P)). err : T -+ lR
is the error function of D, where err(a) = p(a) - p 114 (a). Further, if
K = L-reT I P(l) - P"(l) I = L-reT I err(I) I, define p, : T-+ [0, 1],
and p., : T-+ {0, 1} such that, p,(a) = I err(a) I/ K, and p.,(a) = 0 if
err(a) :$; 0, otherwise p.,(a) = 1. I

6

Theorem 3.2 (Reconstruction theorem) Let D = (V, p) be a PS,
lVI ~ 2, X be a model for V, Poe =M (7rx(p)), and let Po Pa, and K be
as defined above. Then, pf = M (7rx(Pf)) (i.e. pf is reconstructible). Hence
pf is reconstructible and p(a) = p 04 (a) + K (2pa(a) - 1) X pf(a) Va E
T. I

When is a function reconstructible? An answer to this query is provided
by the concept of functional and multivalued dependency. If one variable y,
functionally dependent on another x, then given x, there is no uncertainity
regarding the y. On the other hand if x multidetermines y, knowledge of
x may not remove all our uncertainity regarding y, but it is definitely the
case that knowledge of any other variable, say z, will not remove any further
uncertainity regarding y. Formally,

Definition 3.2 For a probabilistic system D = (V, p), with X, Y ~ V,
and with the distributions over X and Y obtained by projection of p, we say
that X is functionally dependent on Y, denoted X --+ Y iff. H(Y I X) = 0.
Additionally, we say that X multidetermines Y, denoted X --+--+ Y, iff.
H(YIX) = H(YIV- (Y u X)). Let Z = V- (Xu Y). The de
grees offunctional and multivalued dependencies ofY on X, FD(D; X, Y),
MV D(D; X, Y) respectively, are given by:

I

{
1 if H(Y) = 0

FD(D; X, Y) = H(Y) - H(Y I X) .
H(Y) otherwise

{
1 if H(Y I X) = 0

MV D(D; X, Y) = H(Y I {X u Z}) otherwise
H(YIX)

Clearly, if X --+ Y then, X --+--+ Y. In general however, the converse is not
true. The answer to our query about the reconstructability of a function
with respect to a model, lies in Theorem 3.3, first proved for relational
databases by Fagin [9], for probabilistic databases by Cavallo and Pittarelli
[8]. and may be generalized for models other than binary ones.

Theorem 3.3 Let D = (V, p) be a PS, X, Y ~ V and X --+--+ Y. Then
pis reconstructible with respect to the binary model {X, Y}. Formally,

p = M (7rx(p), 1ry(p)) I

7

4 Choosing a Model

It is clear that given a PS D = (V, p), a model X for V has to be chosen
judiciously, so that effective use can be made of parallelization. We illustrate
how basic concepts from database theory suggest guidelines for such a choice.

A model X may be viewed as a reduced hypergraph, basically a collection
of some of the incomparable subsets of a set (4]. an important class of re
duced hypergraphs is that of the acyclic hypergraphs. Hypergraph acyclicity
is a non trivial generalization of the familiar concept of a tree (in a graph),
and has deep connections many other fields (16]. In hypergraphs, there are
three degrees of acyclicity, o:,(3 and 'Y [11]. The main guideline for choos
ing a model, is to select one that is also acyclic (o:, (3 or 'Y) (3]. The main
reason for choosing an acyclic model is that its presence guarantees many
nice properties for the join operator such as monotonicity and consistency,
(10, 11] and convergence [7, 18].

Faced with two or more acyclic models, a choice may be made on the ba
sis of their entropies relative to a standard distribution, such as the uniform
distribution. Given two distributions p 1 and p 2 , define H(p1 II p 2) to be the
directed divergence (cross-entropy, relative entropy) of p 1 with respect to p 2

(12]. Then, if we have two acyclic models, X; and Xj, and p; = ~ (7rx, (p)),
Pi = M (7rx;(P)), select X; over xj iff, H(p; II u) ~ H(pjllu), where u is the
uniform distribution. Choosing the smaller value ensures that information
loss is minimized in the decomposition process.

For a multivariable function, it may be the case that some variables
group together naturally into interdependent blocks. Models that give de
compositions along these "natural fissures" are better than those that ignore
such interdependencies. These qualitative statements may be made precise
by using the dependency measures defined in the last section.

1. If X, Y ~ V, and if X -- Y, then decompose the system D
(V, p) onto the model {X, Y}.

2. If such a multi valued dependency does not exist for a scheme V,
then choose a decomposition of V into subsets X and Y, such that
MVD(D; X,Y) is maximum.

8

5 Example

The methods outlined earlier are particularly suited for control problems.
For example, consider the well known Gantry Crane system control problem.
A gantry crane is used to move large parts and assemblies from one loca
tion to another on a factory floor; the control system is responsible for the
horizontal motion of crane and load. Four key variables may be identified,
(see Figure 5), x 17 x 2 , the positions of the load and crane, with respect to

Crane

X

Figure 1: Gantry Crane System

the origin, and v1 and v2 , the velocities of the load and crane respectively.
The problem is to compute the value of the force, for a given set of values of
x17 x2 , v1 and v2 • It is assumed that it is infeasible to compute Fin real-time
using the above two equations. Essentially two data sets (one for testing and
the other for training, were generated, using the system control equations.
All values were normalized to lie in closed-open interval [0, 1). The domains
of the input variables were quantized into ten states, by using the following
rule for classification:

z/10 <= y < (x + 1)/10, x E {0, ... ,9}

9

i.e. y was said to belong to "class x", if it satisfied the above equation for
the given x. Thus if x1 = 0.56 then x1 would belong to class 0 etc. Note
that quantization was done for the input variables alone and not for F. In
what follows, the training table will be referred to as the master table or
Table 0. A typical set of entries in the master table is shown below.

1
1

6
6

3 1 1
3 1 1

3 6 5
4 6 5

F
0.0068925912
0.0073849196

0.0046771155
0.0085336845

The training procedure is schematically outlined in Figure 5. Table 0 was
decomposed into Tables 1,2,5,7 and 8. A separate 1-2-1layer backpropaga
tion network was trained to learn the relation in each of these tables. The
testing procedure involved the following,

• For each input (x1,-vhx2,v2), in testing sample do:

1. Present (xh vh x2) to the Table 1 and Table 7 networks1; present
(x 2 , v2 , vt) to the Table 2 and Table 8 networks; and similarly
present (xh vh x2, v2) to the Table 0 and Table 5 networks.

2. Compute Pr = p" + K(2p17 - 1) X ~ (p~,p~), the recon
structed output, where K is a normalization factor obtained while
training. This gives the output obtained after decomposition.

3. For each network, the deviation with the actual output value is
noted.

The results are shown below. The last row lists the net mean square error
of the reconstructed output compares very favorably with that for the Table
0 network.

1 By "Table 1 " network, we mean the "the network originally trained on Table 1" etc.

10

Projecting
onto vl

0- 1 table,
Derived error
table

After Quantization

Master Table 1---------,

Table 0

Join Table
Table 3

Table 5

Projecting onto
V1

Table 4 Error table =
Table 0 - Table 3 J...-------1

Table 6
Obtained
by stripping

A----------1 signs from
Table 4

Figure 2: Tables Generated during Training Phase

11

Tables Training Testing
Trained/Tested Samples M.S.E Samples M.S.E
Table 0 == (V, p) 120 0.000005 481 0.0000759

Table 1 = (V', p') 120 0.000043 110 0.0001470
Table 2 == (V", p") 322 0.000003 376 0.0000043
Table 7 == (V', p~) 120 0.000013 94 0.0003080
Table 8 == (V", p~) 222 0.000008 312 0.0000082

Reconstructed table = (V, Pr) 846 0.0000101

6 Conclusion

The Divide-and-Conquer paradigm has long been recognized as a useful tool
for conquering complexity. Our work address the question of when problem
decomposition is possible. The Reconstruction theorem (Section 3), asserts
that any non reconstructible function may be expressed as a linear com
bination of reconstructible functions. This suggests a natural input space
decomposition method for training neural networks on functions expressed
as large tables, drawing on ideas from probabilistic database theory. This
approach will be most useful in solving problems characterized by a large
number of inputs.

Acknowledgements : This work was supported in part by NSF under
CCR-9110812.

12

Appendix A

Theorem 4.1 Let D = (V, r) be a relational system and X = {V17 V2}

be a model for the scheme V. Let v9 be a variable such that v9 ¢ V, and
let v9 take values from a finite set S9 • For the scheme V' = V U {v11}, let
X' = {V1 u {v11}, V2 u {v11}} be a model. Then, there exists a relational
system D' = (V', r') such that,

I

Proof:

r1' = 1r{V1}(r') = 1r{V1}(r) = r1

r2' = 1r{v2}(r') = 1r{v2}(r) = r2

r' = 1><1 (r1',r2')

The basic idea is to extend the set of variables V, by one, and construct
a reconstructible relational system D' = (V', r'), which yields the same
projections as D, including D itself (i.e. 1r{v}(r') = r).

Let D1 = (Vh1rv1 (r)) and D2 = (V17 1rv1 (r)) be the projections of D
onto the schemes V1 and V2 respectively, and let D" be their relational
join. Also, let T, 1i., 12, and~ be the set of tuples in D, D 17 D2 and D"
respectively. If D = (V, r) is reconstructible with respect to X = {V17 V2},
then there is nothing to prove and we are done. So we may assume that D is
not reconstructible with respect to X, relative to relational join. From the
definition of relational join, it then follows that 7i ~ 7;. Let !:iT denote
the set of such tuples found in T", but not in T.

Every tuple t in !:iT is formed by the join of a pair, consisting of one
tuple, say t 1 E 'li, from D17 and one from D2, say t 2 E 7;. Tuples t 1 and
t 2 agree on the set of attributes belonging to the set V1 n l/2. If they didn't
so agree, then the tuple t would not have been created while taking the join
of D1 and D2 • This suggests a simple method to prevent the creation of
unwanted tuples in D".

Construct the systems D~ = (V1 U {v9}, ~)and D~ = (V2 U {v9}, ra)
and let D' = (V U {v9 }, r') be the join of the systems D~ and D~. Let
t ¢ !:iT, i.e. t E ~ n T. Now t = t1 1><1 t2 for some t1 E 'li, and
t 2 E 7;. Now, for every such t 1 and t 2 , there exists t~ E T;, t~ E T.l with
~[V1] = t 17 t;[V2] = t2 , and ta{v9 }] = t;[{v9 }] (see Section 2 for notation).
In other words, the tuples t~ and t~ agree on the value of v9 , and t~ agrees
with t1 on all other variables. Similarly, t~ agrees with t 2 on all variables

13

other than v9 • By choosing a different value for v9 for each other pair t 1 and
t2, we can ensure that, 1l"{v1}(rD = r11 1l"{v2 }(r~) = r2 and 1l"{v}(r') = r I.

Example A.l This example illustrates the procedure described in the
proof. Consider the relational database D = (V, r) given by the table
below.

X y z r

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Upon projecting the above system onto the model X = {V1 V2}, where
vl = {x,y} and v2 = {y,z} we get,

X y rl y z r2
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 1
1 1 1 1 1 0

The relational join of D 1 = ({x,y}, r1), and D 2 = ({y,z}, r2) yields,

X y z r"
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1+-
1 1 1 1

The tuple marked with an arrow is not present in the original system D.
Hence Dis not reconstructible. We note that the problem stems from the
fact that the tuple t 1 = 11 in D 1 joins with tuple t 2 = 10 in D 2 • All the
following combinations however are required viz. ,

14

X y y z
0 0 X 0 0
0 1 X 1 0
0 1 X 1 1
1 1 X 1 1

Introduce a new variable w, such that,

X y w w y z
0 0 0 0 0 0
0 1 1 1 1 0
0 1 2 2 1 1
1 1 3 3 1 1

Or, defining two new systems D~ = ({ x, y, w}, r~) and D~ = < {y, z, w }, ra),

X y w r~ w y z r' 2

0 0 0 1 0 0 0 1
0 1 1 1 1 1 0 1
0 1 2 1 2 1 1 1
1 1 3 1 3 1 1 1

We have shown only the nonzero tuples in both D~ and D~. The join of D~
and D~, D~ = ({x,y,w,z}, r'"), yields,

X

0
0
0
1

y
0
1
1
1

w

0
1
2
3

z
0
0
1
1

1
1
1
1

Again all other tuples a, have r'(a) = 0. It is easy to see that D' = D~ N

D~ yields D when projected onto {V} and also yields D 1 and D 2 when
projected onto V1 and v;. By construction D' is reconstructible and may be
used in place of D. Note that w here takes values from a set {0, 1, 2, 3}. It
is not too difficult to see that in this case, we could have done with w taking
values from the smaller set {0, 1, 2}. It is fairly straightforward to extend
the procedure. I.

15

Appendix B

Theorem 5.1 (Reconstruction theorem) Let D = (V, p) be a PS,
lVI ~ 2, X be a model for V, PH =1><1 (7rx(p)), and let Po pC7, and K be the
derived error functions, and the normalization factor of D respectively (see
Definition 3.1). Then,

i.e. p£ is reconstructible with relative to X. In particular,

Vo: E T

I

Proof:
From Theorem 3.1, we know that pC7, being a simple 0-1 relational function
is reconstructible, although an additonal variable may have to be introduced
to effect this. The issue at hand is whether pf is also reconstructible. This
is quite easy to demonstrate. Suppose it is the case that,

(6.1)

Since p~ is the join of the probabilistic database 7rx(Pf), it must satisfy the
consistency requirement that,

(6.2)

This in turn implies that there exists at least one distribution p' -:/: PH,
such that,

(6.3)

where k1 = Lae T IP'(o:) - p(o:)l. Since 1><1 (7rx(p~)) = p~, we have (from
Eqns. 6.1,6.3),

(6.4) 1><1 (7rx(pf)) = 1><1 (7rx(p~)) = 1><1 (7rx(kdp' - pi))

Noting that, (1) pf = k2IPH - pj, (k2 = Lae T IPH(o:)- p(o:)l), and also
that, (2) p~ is a maximum entropy distribution (from Eqns. 6.1, 6.2), we
get,

(6.5)

16

It is well known that [12], if q is an arbitrary finite probability distribution of
say n variables, and J() a function, with domain and range the set of all finite
probability distributions on n variables (so that /(q) is also a distribution
on n variables), then,

H(q) = H(f(q)) + H(qif(q))

(Roughly, this translates to the statement that in the absense of no new
observation, uncertainity cannot be removed by mere transformation of the
distribution alone).

Define /i(q) = lki(q- p)I where q is some arbitrary distribution on n

variables, p is the original non reconstructible function, and ki is a normal
izing factor and depends on both q as well asp. Then,

(6.6) H(p') = H(f1(p')) + H(p'l/1(p'))

= H(lk1 (p' - pi)+ H(p'l (k1IP' - pi))

(6.7) H(Pw) = H(f2(Pw)) + H(Pwi/2(Pw))

= H(lk2 (Pw - pi)+ H(Pw I (k2IPw - pi))

But knowledge of k1 IP' - PI determines p' (p is fixed and p' has to be non
negative),

(6.8)

and similarly,

(6.9)

Then Eqns. 6.6,6. 7 reduce to,

(6.10) H(p') = H(f1(p')) = H(lk1 (p' - p)I)

H(p") = H(f2(Pw)) = H(lk2(P" - p)l)

Comparing Eqn 6.10 with Eqn. 6.5, it is seen that,

This immediately implies a contradiction, since we must have:

(because of the definitions of Pw), Hence such a distribution p' cannot exist
and the theorem follows. I

17

References

[1) W. R. Ashby. Constraint Analysis of Many-Dimensional Relations,
volume 2. 1965.

[2] H. Barabara, H. Garcia-Molina, and D. Porter. The management of
probabilistic data. IEEE Trans. Know. and Data Eng. (to appear).

[3) C. Beeri, R. Fagin, D. Maier, and M Yannakis. On the desirability of
acyclic database schemes. J. of the ACM, 30(3):1983, 479-513.

[4) C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[5) Martin Bischsel and Peter Seitz. Minimum class entropy: A maximum
information approach to layer networks. Neural Networks, 2:133-141,
1989.

[6) R. Cavallo and G. Klir. Reconstructability analysis of multi-dimensional
relations: a theoretical basis for computer-aided determination of ac
ceptable system models. Int. J. General Systems, 5(3):143-171, 1979.

[7) R. Cavallo and G. Klir. Reconstructability analysis: Evaluation of
reconstruction hypotheses. Int. J. General Systems, 7(1):7-32, 1981.

[8] R. Cavallo and M. Pittarelli. The theory of probabilistic databases.
Proc. of the 13th VLDB Con/., pages 71-81, 1987.

[9) R. Fagin. Mutlivalued dependencies and a new formal form for re
lational databases. ACM Trans. on Database Systems, 2(3):262-278,
1977.

[10] R. Fagin. Acyclic Database Schemes (of Various Degrees): A Painless
Introduction, volume LNCS 159 of Trees in Algebra and Programming,
pages 65-89. Springer-Verlag, 1983.

[11] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. J. of the ACM, 30(3):514-550, 1983.

[12] M. Robert Gray. Entropy and Information Theory. Springer-Verlag,
New York, 1990.

18

[13] E. T. Jaynes. Prior information and ambiguity in inverse problems. In
D. McLaughlin, editor, Inverse Problems, pages 151-166. SIAM-AMS,
14, 1984.

[14] J. MacQueen and J Marschak. Partial knowledge, entropy and estima
tion. Proc. Natl. Acad. Sci., 72:3819-3824, 1975.

[15] M. Marchand, M. Golea, and P. Ruja'an. A convergence theorem for se
quential learning in two layer perceptrons. Europhysics Letters, 11:487-
492, 1990.

[16] A. Menon. Database schemes: Formalisms and applications. Master's
thesis, SUNY Inst. of Technology, 1991.

[17] M. Me'zard and J.P. Nadal. Learning in feedforwad layered networks:
The tiling algorithm. Journal of Physics A, 22:2191 - 2204, 1989.

[18] M. Pittarelli. Uncertainity and estimation in reconstructability analy
sis. Int. J. General Systems, 15:1-58, 1988.

[19] T. Seidenfeld. Entropy and uncertainity. Philosophy of Science, 53:467-
491, 1986.

19

	Putting Humpty-Dumpty together again: Reconstructing functions from their projections.
	Recommended Citation

	SU-CIS-93-28_001c
	SU-CIS-93-28_002c
	SU-CIS-93-28_003c
	SU-CIS-93-28_004c
	SU-CIS-93-28_005c
	SU-CIS-93-28_006c
	SU-CIS-93-28_007c
	SU-CIS-93-28_008c
	SU-CIS-93-28_009c
	SU-CIS-93-28_010c
	SU-CIS-93-28_011c
	SU-CIS-93-28_012c
	SU-CIS-93-28_013c
	SU-CIS-93-28_014c
	SU-CIS-93-28_015c
	SU-CIS-93-28_016c
	SU-CIS-93-28_017c
	SU-CIS-93-28_018c
	SU-CIS-93-28_019c
	SU-CIS-93-28_020c
	SU-CIS-93-28_021c

