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ABSTRACT: 
We present a problem decomposition approach to reduce neural net training 
times. The basic idea is to train neural nets in parallel on marginal distri
butions obtained from the original distribution (via projection), and then 
reconstruct the original table from the marginals (via a procedure similar 
to the join operator in database theory). A function is said to be recon
structible, if it may be recovered without error from its projections. Most 
distributions are non-reconstructible. The main result of this paper is the 
Reconstruction theorem, which enables non-reconstructible functions to be 
expressed in terms of reconstructible ones, and thus facilitates the applica
tion of decomposition methods. 
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1 Introduction 

Suppose a neural network is to be taught a complicated, real valued mul
tivariable function f : ~n ___.. ~' represented as a table. Real-time calcu
lation of f is assumed to be infeasible or undesirable. The decomposition
reconstruction problem is the problem of reconstructing a function from its 
projections. Metaphorically, it is the problem of putting Humpty-Dumpty 
together again, without having to call in all the King's horses or men. We 
present a solution to the decomposition-reconstruction problem, using tools 
and techniques from database theory. 

The main idea underlying our solution is quite simple. We start with a 
multi variable distribution and obtain a set of marginals. Obviously, it is not 
always possible to reconstruct the original distribution from the marginals. 
One may construct a "best" reconstruction in many different ways. A par
ticularly appealing criterion is to obtain a reconstruction that has the max
imum Shannon entropy. In probabilistic database theory such a maximum 
entropy reconstruction is referred to as the join distribution. It is possible 
then, to compute an error distribution; basically nothing more than the 
difference between the original and the join distributions. It may be shown 
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(the Reconstruction theorem) that after some minor processing, the error 
distribution is reconstructible. In other words, the error distribution after 
some modification, is also a maximum entropy reconstruction of a set of 
marginals. The original distribution may then be expressed as a linear com
bination of the join distribution and the error distribution. The marginals 
of each of these two distributions are taught to a disjoint set of neural nets 
in parallel. For other approaches to the problem of reducing the training 
time, of neural networks, (for example, by reducing the size ofthe network), 
see [5, 15, 17]. 

The decomposition-reconstruction problem has of course, already been 
studied in great depth from various points of view, including Reconstruct abil
ity theory, Database theory, Statistics and Information theory. Many of the 
fundamental issues involved were first worked out by Ross Ashby in the early 
60's, in a Systems theoretic context [1]. The joint work of George Klir and 
Roger Cavallo laid the foundations for the notion of system reconstructabil
ity [6, 7], much of it destined to be rediscovered in the then emerging field of 
relational database theory. In recent years there has been an increasing in
terest in a generalization of relational databases, the theory of probabilistic 
databases [2, 8]. 

We believe probabilistic database theory offers a fresh, simple, powerful 
and elegant approach to the problem of training neural networks on tables 
of data. It is possible to develop a much more systematic and logical ap
proach to this problem, free of the rampant ad hockery present in current 
approaches. 

Section 2 defines the basic tools underlying this approach, drawn from 
the theory of probabilistic databases[8]. In Section 3 we present the Recon
struction theorem, the central theorem of this paper. Section 4 is concerned 
with how ideas from probabilistic database theory may be used to advan
tage in neural network theory. Finally, in Section 5, we illustrate these ideas 
by applying them to a control problem. There are many kinds of neural 
networks. For concreteness, the semilinear feedforward network may be as
sumed to be the basic underlying neural architecture for this paper (though 
the results are architecture independent). 

2 Probabilistic Systems 

Definition 2.1 A probabilistic system (PS) is a 2-tuple D = (V, p) where, 
V = { v1, .•• , vn}, referred to as the scheme of the PS, is a non-empty set 
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of variables, each v; taking values from a finite set S;, and, 

p: 'T(V) -+ [0, 1] 

L: p(t) = 1; 
tET(V) 

where, the finite product space 'T(V) = TI; S;, is the set of tuples of the 
system D. A model of a scheme V is a set X = {Vll ... , Vn} such that 
U~ltj ~ V and Vi g; ltj,'rfi,j E {1, ... ,n}. A model X, of a scheme V, is 
non-trivial iff X =I- {0} and X =I- {V}. A collection of probabilistic systems 
Db ... , D~c is a probabilistic database (PD). A collection of probabilistic 
systems D; =(Vi, pi) together define a probabilistic database (PD). I 

Notation: 
The tuples of a PS will be referred to by small greek letters o:, {3, etc. The 
kth component of a tuple o:, will be denoted by a~c. Given two schemes V 
and V' with V' ~ V, and tuple a E 'T(V) then o:[V'] is the restriction of a 
to variables in V'. I 

Probabilistic systems closely resemble contingency tables. However, view
ing them as generalizations of relational databases leads to important con
ceptual and computational advantages. It is fortunate that the development 
of probabilistic database theory was largely motivated by problems peculiar 
to database theory. A wealth of new ideas (at least, most of them are only a 
decade old) lie waiting to be interpreted in contexts and applications, other 
than database theory. We will consider this issue in greater detail in Sec
tion 4. The next two definitions formalize the notions of decomposition and 
reconstruction. 

Definition 2.2 (Projections): Let D = (V, p) be a probabilistic system. 
Let V = { vb ... vn}, where variables v; take values from finite sets S;, Let 
V' = { V;l' •.. V;k} ~ v, k ~ n and 'T(V') = n: = 1 S;j. The projection of 
p onto V' yields a new distribution, p' = 7rv•(P) such that, 

p' : 'T(V')-+ [0, 1] 

p'(f3) = L: p(o:) 
a E T(V), a[V)=.B 

The projection of a distribution p onto a model, X 
7rx(P) = {7rv1(p), ... ,7rv.(p)}. I 
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Definition 2.3 (Extensions): Let Pv denote the set of all probability 
distributions over the finite product space T(V). Then if V' is a scheme 
with distribution p, V' ~ V, the extension of p' to the scheme V, is the set 
Ev (p') of all preimages of p' under the mapping 1rv'· Formally, Ev (p') = 
{p E Pv 11rv•(P) = p'}. Similarly, the extension of a set of distributions 
P = {Pt. ... , Pr }, is defined to be the intersection of the extensions of its 
constituent distributions. Formally, Ev(P) = n Ev(p). In particular, if 

pEP 

X is a model for a scheme V, the extension of V relative to X, Ev ( 1rx(P )), 
is seen to be the set Ev(1rx(P)) = {p' E Pv l1rx(p') = 1rx(p)} I 

Example 2.1 Consider the PS D = (V = { v17 v2, va}, p ): 

Vt v2 Vs p(.) 
0 0 0 0.12 =Po 
0 0 1 0.04 = Pt 
0 1 0 0.32 = P2 
0 1 1 0.11 = Ps 
1 0 0 0.01 = P4 
1 0 1 0.00 = Ps 
1 1 0 0.29 = P6 
1 1 1 0.11 = P1 

Choose a model X of V to be { { Vt, v2}, { v2, va}, { V17 va} }. Then P = 
1rx(P) = { 11'"{v1,v2)l11'"{v2,v3}, 1r{v1,v3}} is: 

Vt v2 1r 111,112} v2 va 1l'"{v:~,v3 Vt Va 11'"{v,,va 

0 0 0.16 0 0 0.13 0 0 0.44 
0 1 0.43 0 1 0.04 0 1 0.15 
1 0 0.01 1 0 0.61 1 0 0.30 
1 1 0.40 1 1 1.22 1 1 0.11 

It is clear that there are many such p's that would have produced precisely 
the same sub-tables. In fact any solution to the set of equations below: 

Po+ Pt = 0.16 

P2 +Ps = 0.43 

P4 + Ps = 0.01 

P6 + P1 = 0.40 

Po+ P4 = 0.13 

P1 +Ps = 0.04 

P2 + P6 = 0.61 

Ps + P1 = 0.22 
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Po+ P2 = 0.44 

P1 + Pa = 0.15 

P4 + P6 = 0.30 

Ps + P1 = 0.11 



will be a member of Ev(P) = Ev(1rx(p)). The above twelve equations 
in eight unknowns characterize Ev completely. Note that the system of 
equations is overdetermined; it is by no means guaranteed that solutions 
will always exist. When solutions do exist, the set of projections are said to 
be consistent. Equivalently, Ev(P) = Ev(1rx(p)) # 0. I 

A model X of V, partitions Pv into classes Ev ( 1r x (p)) equivalent with 
respect to projections onto X. The polyhedral structure of Ev, can be 
used to show that there exists a unique representative for each class, the 
maximum entropy distribution, or the join distribution [13]. Formally: 

Definition 2.4 (Join): Let { Di = (V;, Pi)} be a set of probabilistic 
systems. Let V = Ui V; and X = {Vh ... , Vn} be a model for V. Let 
P = {Pb ... , Pn}· H Ev(P) # 0 (the distributions are consistent), then 
define the join of the systems {Di}, DH = (V, PH), such that, 

H(pH) =max {H(p') I p' E E(1rx(P))} 

where H() is the Shannon entropy function. In particular, PH will be referred 
to as the probabilistic join of the distributions {p1 , ••• , Pn} and is denoted 
bypH =M({p1 , .•• ,pn}).Ifp =M(7rx(P))thenD = (V,p)issaidtobe 
reconstructible relative to X. I 

Remark 2.1 To reconstruct via the join operator, is to reconstruct adopt
ing a maximum entropy philosophy. The pros and cons of this approach have 
been argued extensively in the literature [13, 14, 18, 19]. The M operator 
may be thought of as a binary operator acting on a pair of probabilistic sys
tems, and defined in a manner analogous to the classical relational database 
join operator. It is a remarkable fact that the generalization of the database 
join operator to probabilistic systems is equivalent to maximum entropy 
reconstruction. 

3 Function Reconstruction 

A relational database is a set RD = { Dh D 2 , ••• , Dn} of relational systems 
D; = (V;, r;), where the range of each r; is the set {0, 1}. These functions 
are relatively trivial to reconstruct owing to the fact that, at the cost of 
introducing one additional variable, for any relational system, a non-trivial 
model exists such that, the system is reconstructible relative to that model, 
with respect to relational join. Formally, 
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Theorem 3.1 Let D = (V, r) be a relational system and X = {V11 V2} 
be a model for the scheme V. Let v9 be a variable such that v9 (j. V, and 
let v9 take values from a finite set S9. For the scheme V' = V U { vb}, let 
X' = {V1 U {vb}, V2 U {vb}} be a model. Then, there exists a relational 
system D' = (V', r') such that, 

I 

r1' = 1l"{V.J(r') = 1l"{vt}(r) = r1 

r 2' = 1l"{v,}(r') = 1l"{v,}(r) = r 2 

r' = tx1 (r1', r2') 

A proof for the above theorem is given in Appendix A. We adopt the 
position that 0- 1 functions are intrinsically easy to learn and are interested 
primarily in the general case of real valued functions. It is assumed that 
efficient methods exist for the computation of a given 0- 1 function. It may 
even be the case that a methodology other than that of neural networks 
be more appropriate for computing functions that take only either of two 
values. 

The situation for probabilistic systems is embodied in the Reconstruc
tion theorem. This theorem asserts that the error distribution, obtained as 
a difference between the original distribution and the maximum entropy re
construction of a set of marginals, is always reconstructible. This is done by 
separating the magnitude of the error distribution (Pc) from its sign (p., ). 
The former is reconstructible with respect to a non-trivial model, and the 
latter is converted to a simple 0 - 1 function and is trivially learnable. The 
practical implications are that we may always parallelize the training process 
by projecting the original function onto some appropriate model. The sum 
of the pre-calculated error and the join enables us to retrieve the original 
distribution. The following definition aids the statement of the theorem. A 
proof of Theorem 3.2 is given in Appendix B. 

Definition 3.1 Let D = (V, p) be a PS, lVI ~ 2, X be a model for V, 
T be the set of tuples of D, and let p 114 = txl (1rx(P)). err : T -+ lR 
is the error function of D, where err(a) = p(a) - p 114 (a). Further, if 
K = L-reT I P(l) - P"(l) I = L-reT I err( I) I, define p, : T-+ [0, 1], 
and p., : T-+ {0, 1} such that, p,(a) = I err( a) I/ K, and p.,(a) = 0 if 
err(a) :$; 0, otherwise p.,(a) = 1. I 
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Theorem 3.2 (Reconstruction theorem) Let D = (V, p) be a PS, 
lVI ~ 2, X be a model for V, Poe =M (7rx(p)), and let Po Pa, and K be 
as defined above. Then, pf = M (7rx(Pf)) (i.e. pf is reconstructible). Hence 
pf is reconstructible and p(a) = p 04 (a) + K (2pa(a) - 1) X pf(a) Va E 
T. I 

When is a function reconstructible? An answer to this query is provided 
by the concept of functional and multivalued dependency. If one variable y, 
functionally dependent on another x, then given x, there is no uncertainity 
regarding the y. On the other hand if x multidetermines y, knowledge of 
x may not remove all our uncertainity regarding y, but it is definitely the 
case that knowledge of any other variable, say z, will not remove any further 
uncertainity regarding y. Formally, 

Definition 3.2 For a probabilistic system D = (V, p), with X, Y ~ V, 
and with the distributions over X and Y obtained by projection of p, we say 
that X is functionally dependent on Y, denoted X --+ Y iff. H(Y I X) = 0. 
Additionally, we say that X multidetermines Y, denoted X --+--+ Y, iff. 
H(YIX) = H(YIV- (Y u X)). Let Z = V- (Xu Y). The de
grees offunctional and multivalued dependencies ofY on X, FD(D; X, Y), 
MV D(D; X, Y) respectively, are given by: 

I 

{
1 if H(Y) = 0 

FD(D; X, Y) = H(Y) - H(Y I X) . 
H(Y) otherwise 

{ 
1 if H(Y I X) = 0 

MV D(D; X, Y) = H(Y I {X u Z}) otherwise 
H(YIX) 

Clearly, if X --+ Y then, X --+--+ Y. In general however, the converse is not 
true. The answer to our query about the reconstructability of a function 
with respect to a model, lies in Theorem 3.3, first proved for relational 
databases by Fagin [9], for probabilistic databases by Cavallo and Pittarelli 
[8]. and may be generalized for models other than binary ones. 

Theorem 3.3 Let D = (V, p) be a PS, X, Y ~ V and X --+--+ Y. Then 
pis reconstructible with respect to the binary model {X, Y}. Formally, 

p = M (7rx(p), 1ry(p)) I 
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4 Choosing a Model 

It is clear that given a PS D = (V, p ), a model X for V has to be chosen 
judiciously, so that effective use can be made of parallelization. We illustrate 
how basic concepts from database theory suggest guidelines for such a choice. 

A model X may be viewed as a reduced hypergraph, basically a collection 
of some of the incomparable subsets of a set (4]. an important class of re
duced hypergraphs is that of the acyclic hypergraphs. Hypergraph acyclicity 
is a non trivial generalization of the familiar concept of a tree (in a graph), 
and has deep connections many other fields (16]. In hypergraphs, there are 
three degrees of acyclicity, o:,(3 and 'Y [11]. The main guideline for choos
ing a model, is to select one that is also acyclic ( o:, (3 or 'Y) (3]. The main 
reason for choosing an acyclic model is that its presence guarantees many 
nice properties for the join operator such as monotonicity and consistency, 
(10, 11] and convergence [7, 18]. 

Faced with two or more acyclic models, a choice may be made on the ba
sis of their entropies relative to a standard distribution, such as the uniform 
distribution. Given two distributions p 1 and p 2 , define H(p1 II p 2 ) to be the 
directed divergence (cross-entropy, relative entropy) of p 1 with respect to p 2 

(12]. Then, if we have two acyclic models, X; and Xj, and p; = ~ ( 7rx, (p) ), 
Pi = M (7rx;(P)), select X; over xj iff, H(p; II u) ~ H(pjllu), where u is the 
uniform distribution. Choosing the smaller value ensures that information 
loss is minimized in the decomposition process. 

For a multivariable function, it may be the case that some variables 
group together naturally into interdependent blocks. Models that give de
compositions along these "natural fissures" are better than those that ignore 
such interdependencies. These qualitative statements may be made precise 
by using the dependency measures defined in the last section. 

1. If X, Y ~ V, and if X -- Y, then decompose the system D 
(V, p) onto the model {X, Y}. 

2. If such a multi valued dependency does not exist for a scheme V, 
then choose a decomposition of V into subsets X and Y, such that 
MVD(D; X,Y) is maximum. 

8 



5 Example 

The methods outlined earlier are particularly suited for control problems. 
For example, consider the well known Gantry Crane system control problem. 
A gantry crane is used to move large parts and assemblies from one loca
tion to another on a factory floor; the control system is responsible for the 
horizontal motion of crane and load. Four key variables may be identified, 
(see Figure 5), x 17 x 2 , the positions of the load and crane, with respect to 

Crane 

X 

Figure 1: Gantry Crane System 

the origin, and v1 and v2 , the velocities of the load and crane respectively. 
The problem is to compute the value of the force, for a given set of values of 
x17 x2 , v1 and v2 • It is assumed that it is infeasible to compute Fin real-time 
using the above two equations. Essentially two data sets (one for testing and 
the other for training, were generated, using the system control equations. 
All values were normalized to lie in closed-open interval [0, 1). The domains 
of the input variables were quantized into ten states, by using the following 
rule for classification: 

z/10 <= y < (x + 1)/10, x E {0, ... ,9} 
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i.e. y was said to belong to "class x", if it satisfied the above equation for 
the given x. Thus if x1 = 0.56 then x1 would belong to class 0 etc. Note 
that quantization was done for the input variables alone and not for F. In 
what follows, the training table will be referred to as the master table or 
Table 0. A typical set of entries in the master table is shown below. 

1 
1 

6 
6 

3 1 1 
3 1 1 

3 6 5 
4 6 5 

F 
0.0068925912 
0.0073849196 

0.0046771155 
0.0085336845 

The training procedure is schematically outlined in Figure 5. Table 0 was 
decomposed into Tables 1,2,5,7 and 8. A separate 1-2-1layer backpropaga
tion network was trained to learn the relation in each of these tables. The 
testing procedure involved the following, 

• For each input (x1,-vhx2,v2), in testing sample do: 

1. Present (xh vh x2) to the Table 1 and Table 7 networks1; present 
( x 2 , v2 , vt) to the Table 2 and Table 8 networks; and similarly 
present ( xh vh x2, v2) to the Table 0 and Table 5 networks. 

2. Compute Pr = p" + K(2p17 - 1) X ~ (p~,p~), the recon
structed output, where K is a normalization factor obtained while 
training. This gives the output obtained after decomposition. 

3. For each network, the deviation with the actual output value is 
noted. 

The results are shown below. The last row lists the net mean square error 
of the reconstructed output compares very favorably with that for the Table 
0 network. 

1 By "Table 1 " network, we mean the "the network originally trained on Table 1" etc. 
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Projecting 
onto vl 

0- 1 table, 
Derived error 
table 

After Quantization 

Master Table 1---------, 

Table 0 

Join Table 
Table 3 

Table 5 

Projecting onto 
V1 

Table 4 Error table = 
Table 0 - Table 3 J...-------1 

Table 6 
Obtained 
by stripping 

A----------1 signs from 
Table 4 

Figure 2: Tables Generated during Training Phase 
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Tables Training Testing 
Trained/Tested Samples M.S.E Samples M.S.E 
Table 0 == (V, p) 120 0.000005 481 0.0000759 

Table 1 = (V', p') 120 0.000043 110 0.0001470 
Table 2 == (V", p") 322 0.000003 376 0.0000043 
Table 7 == (V', p~) 120 0.000013 94 0.0003080 
Table 8 == (V", p~) 222 0.000008 312 0.0000082 

Reconstructed table = (V, Pr) 846 0.0000101 

6 Conclusion 

The Divide-and-Conquer paradigm has long been recognized as a useful tool 
for conquering complexity. Our work address the question of when problem 
decomposition is possible. The Reconstruction theorem (Section 3), asserts 
that any non reconstructible function may be expressed as a linear com
bination of reconstructible functions. This suggests a natural input space 
decomposition method for training neural networks on functions expressed 
as large tables, drawing on ideas from probabilistic database theory. This 
approach will be most useful in solving problems characterized by a large 
number of inputs. 

Acknowledgements : This work was supported in part by NSF under 
CCR-9110812. 
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Appendix A 

Theorem 4.1 Let D = (V, r) be a relational system and X = {V17 V2} 

be a model for the scheme V. Let v9 be a variable such that v9 ¢ V, and 
let v9 take values from a finite set S9 • For the scheme V' = V U {v11}, let 
X' = {V1 u {v11}, V2 u {v11}} be a model. Then, there exists a relational 
system D' = (V', r') such that, 

I 

Proof: 

r1' = 1r{V1}(r') = 1r{V1}(r) = r1 

r2' = 1r{v2}(r') = 1r{v2}(r) = r2 

r' = 1><1 (r1',r2') 

The basic idea is to extend the set of variables V, by one, and construct 
a reconstructible relational system D' = (V', r'), which yields the same 
projections as D, including D itself (i.e. 1r{v}(r') = r). 

Let D1 = (Vh1rv1 (r)) and D2 = (V17 1rv1 (r)) be the projections of D 
onto the schemes V1 and V2 respectively, and let D" be their relational 
join. Also, let T, 1i., 12, and~ be the set of tuples in D, D 17 D2 and D" 
respectively. If D = (V, r) is reconstructible with respect to X = {V17 V2}, 
then there is nothing to prove and we are done. So we may assume that D is 
not reconstructible with respect to X, relative to relational join. From the 
definition of relational join, it then follows that 7i ~ 7;. Let !:iT denote 
the set of such tuples found in T", but not in T. 

Every tuple t in !:iT is formed by the join of a pair, consisting of one 
tuple, say t 1 E 'li, from D17 and one from D2, say t 2 E 7;. Tuples t 1 and 
t 2 agree on the set of attributes belonging to the set V1 n l/2. If they didn't 
so agree, then the tuple t would not have been created while taking the join 
of D1 and D2 • This suggests a simple method to prevent the creation of 
unwanted tuples in D". 

Construct the systems D~ = (V1 U {v9}, ~)and D~ = (V2 U {v9}, ra) 
and let D' = (V U {v9 }, r') be the join of the systems D~ and D~. Let 
t ¢ !:iT, i.e. t E ~ n T. Now t = t1 1><1 t2 for some t1 E 'li, and 
t 2 E 7;. Now, for every such t 1 and t 2 , there exists t~ E T;, t~ E T.l with 
~[V1] = t 17 t;[V2] = t2 , and ta{v9 }] = t;[{v9 }] (see Section 2 for notation). 
In other words, the tuples t~ and t~ agree on the value of v9 , and t~ agrees 
with t1 on all other variables. Similarly, t~ agrees with t 2 on all variables 
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other than v9 • By choosing a different value for v9 for each other pair t 1 and 
t2, we can ensure that, 1l"{v1}(rD = r11 1l"{v2 }(r~) = r2 and 1l"{v}(r') = r I. 

Example A.l This example illustrates the procedure described in the 
proof. Consider the relational database D = (V, r) given by the table 
below. 

X y z r 

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Upon projecting the above system onto the model X = {V1 V2}, where 
vl = {x,y} and v2 = {y,z} we get, 

X y rl y z r2 
0 0 1 0 0 1 
0 1 1 0 1 0 
1 0 1 1 0 1 
1 1 1 1 1 0 

The relational join of D 1 = ({x,y}, r1), and D 2 = ({y,z}, r2) yields, 

X y z r" 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1+-
1 1 1 1 

The tuple marked with an arrow is not present in the original system D. 
Hence Dis not reconstructible. We note that the problem stems from the 
fact that the tuple t 1 = 11 in D 1 joins with tuple t 2 = 10 in D 2 • All the 
following combinations however are required viz. , 
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X y y z 
0 0 X 0 0 
0 1 X 1 0 
0 1 X 1 1 
1 1 X 1 1 

Introduce a new variable w, such that, 

X y w w y z 
0 0 0 0 0 0 
0 1 1 1 1 0 
0 1 2 2 1 1 
1 1 3 3 1 1 

Or, defining two new systems D~ = ( { x, y, w}, r~) and D~ = < {y, z, w }, ra), 

X y w r~ w y z r' 2 

0 0 0 1 0 0 0 1 
0 1 1 1 1 1 0 1 
0 1 2 1 2 1 1 1 
1 1 3 1 3 1 1 1 

We have shown only the nonzero tuples in both D~ and D~. The join of D~ 
and D~, D~ = ({x,y,w,z}, r'"), yields, 

X 

0 
0 
0 
1 

y 
0 
1 
1 
1 

w 

0 
1 
2 
3 

z 
0 
0 
1 
1 

1 
1 
1 
1 

Again all other tuples a, have r'( a) = 0. It is easy to see that D' = D~ N 

D~ yields D when projected onto {V} and also yields D 1 and D 2 when 
projected onto V1 and v;. By construction D' is reconstructible and may be 
used in place of D. Note that w here takes values from a set {0, 1, 2, 3}. It 
is not too difficult to see that in this case, we could have done with w taking 
values from the smaller set {0, 1, 2}. It is fairly straightforward to extend 
the procedure. I. 
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Appendix B 

Theorem 5.1 (Reconstruction theorem) Let D = (V, p) be a PS, 
lVI ~ 2, X be a model for V, PH =1><1 (7rx(p)), and let Po pC7, and K be the 
derived error functions, and the normalization factor of D respectively (see 
Definition 3.1). Then, 

i.e. p£ is reconstructible with relative to X. In particular, 

Vo: E T 

I 

Proof: 
From Theorem 3.1, we know that pC7, being a simple 0-1 relational function 
is reconstructible, although an additonal variable may have to be introduced 
to effect this. The issue at hand is whether pf is also reconstructible. This 
is quite easy to demonstrate. Suppose it is the case that, 

(6.1) 

Since p~ is the join of the probabilistic database 7rx(Pf), it must satisfy the 
consistency requirement that, 

(6.2) 

This in turn implies that there exists at least one distribution p' -:/: PH, 
such that, 

(6.3) 

where k1 = Lae T IP'(o:) - p(o:)l. Since 1><1 (7rx(p~)) = p~, we have (from 
Eqns. 6.1,6.3), 

(6.4) 1><1 (7rx(pf)) = 1><1 (7rx(p~)) = 1><1 (7rx(kdp' - pi)) 

Noting that, (1) pf = k2IPH - pj, (k2 = Lae T IPH(o:)- p(o:)l), and also 
that, (2) p~ is a maximum entropy distribution (from Eqns. 6.1, 6.2), we 
get, 

(6.5) 
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It is well known that [12], if q is an arbitrary finite probability distribution of 
say n variables, and J() a function, with domain and range the set of all finite 
probability distributions on n variables (so that /( q) is also a distribution 
on n variables), then, 

H(q) = H(f(q)) + H(qif(q)) 

(Roughly, this translates to the statement that in the absense of no new 
observation, uncertainity cannot be removed by mere transformation of the 
distribution alone). 

Define /i( q) = lki( q- p )I where q is some arbitrary distribution on n 

variables, p is the original non reconstructible function, and ki is a normal
izing factor and depends on both q as well asp. Then, 

(6.6) H(p') = H(f1(p')) + H(p'l/1(p')) 

= H(lk1 (p' - pi)+ H(p'l (k1IP' - pi)) 

(6.7) H(Pw) = H(f2(Pw)) + H(Pwi/2(Pw)) 

= H(lk2 (Pw - pi)+ H(Pw I (k2IPw - pi)) 

But knowledge of k1 IP' - PI determines p' (p is fixed and p' has to be non 
negative), 

(6.8) 

and similarly, 

(6.9) 

Then Eqns. 6.6,6. 7 reduce to, 

(6.10) H(p') = H(f1(p')) = H(lk1 (p' - p )I) 

H(p") = H(f2(Pw)) = H(lk2(P" - p)l) 

Comparing Eqn 6.10 with Eqn. 6.5, it is seen that, 

This immediately implies a contradiction, since we must have: 

(because of the definitions of Pw ), Hence such a distribution p' cannot exist 
and the theorem follows. I 
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