
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

9-1990

Unification in Modal Theorem Proving Unification in Modal Theorem Proving

Xiaolin Zhang

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Xiaolin and Mohan, Chilukuri K., "Unification in Modal Theorem Proving" (1990). Electrical
Engineering and Computer Science - Technical Reports. 87.
https://surface.syr.edu/eecs_techreports/87

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/87?utm_source=surface.syr.edu%2Feecs_techreports%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Unification in Modal Theorem Proving

Xiaolin Zhang and Chilukuri K. Mohan

September 1990

School of Computer and Information Science
Syracuse University

Suite4-116
Center for Science and Technology

Syracuse,NY 13244-4100

(315) 443-2368

SU-CIS-90-30

Unification in Modal Theorem Proving

Xiaolin Zhang Chilukuri K. Mohan

School of Computer and Information Science
4-116 Center for Science and Technology

Syracuse University, NY 13244-4100

315-443-2368, xzhang/mohan~top.cis.syr.edu

ABSTRACT: Modal formulas can be proved by translating them into a three-typed logic

and then using unification and resolution, with axioms describing properties of the reach

ability relation among possible worlds. In this paper, we improve on the algorithms in

[1], showing that "strong skolemisation" and occurrence checks are not needed for proving

theorems of Q, T, Q4, and S4. We also extend the 'path logic' approach to S5, give the

appropriate unification algorithm, and prove its correctness.

1 Introduction

Modal logics extend classical logic, with formulas containing additional symbols 'D' (ne

cessity) and '<>' {possibility) [4]. One common technique for modal theorem proving is to

translate modal formulas into first order logic, along with axioms representing the reacha

bility relation defined by Kripke's possible worlds semantics for the modal logic [5, 6, 7, 11].

We can then apply the widely available, well studied techniques for classical first order the

orem proving. But a major disadvantage of this method is that much of the structure of the

original modal formulas is lost in the process of translation. This prevents the development

of efficient theorem provers for specific modal logics. In most cases, though provability in a

propositional modal logic is decidable, this approach yields only a semi-decision procedure.

To overcome this shortcoming, Auffray and Enjalbert introduced three typed first

order logics, called path logics, tailored to fit the structure of modal logics (1, 2]. When

the translated path logic formulas have the Unique Prefix Property (U .P.P.), the commonly

used modal logics allow formulas to have a finite complete set of unifiers under certain

conditions [12]. Since path logic formulas do not always have the U.P.P., Auffray and

1

Enjalbert introduced a special method called Strong Skolemisation, and showed how it can

be used for unification in the modal logics T, Q, Q4, and S4.

We show that strong skolemisation is not necessary for unification in Q, T, Q4, and

S4. In fact, the translated formulas without strong skolemisation already have U.P.P.! This

allows us to substantially simplify the relevant unification algorithms. Another important

consequence is that we have been able to derive a unification algorithm even for the modal

logic S5, which could not be handled by the strong skolemisation approach in [1].

At first, the existence of a most general unifier for S5 may seem counter-intuitive.

(Notation: "tjx" in a substitution denotes that the variable x is mapped to term t. Intu

itively, "a!/3" denotes a path of possible worlds where {3 follows a. Greek letters a, {3, [, 8

with subscripts/superscripts stand for variables, and "1" is the identity element.] For in

stance, in the theory of S5, unifiers of a!/3 and 1!8 should include 61 = {1/a, 1!8j{3} as

well as 62 = {1!8ja, 1/{3}. But these substitutions are instances of the most general uni

fier {(a!f3!a'')/1, [a'1]-1 /8} generated by our algorithm, where a'' is a new variable. For

instance, the substitution which composes with this m.g.u. to generate the less general

unifier 61 is {1/a, 1!8/ {3, 8-1 fa''}.

In the next section, we introduce path logics, and show how modal formulas are

translated into p&th logics. In section 3, we define the unique prefix property, and show

that translating modal formulas into path logic preserves this property. Section 4 describes

our unification algorithm for S5, with examples. Section 5 contains the proof of correctness

for this algorithm.

2 Path Logic

LetS be any of the modal logics Q, T, Q4, S4 or S5 (cf. (4] for details). The Path Logic

L(S) consists of three types (sorts) A, W, 1J. The language of L(S) is the classical typed

first order language built using one of the following signatures Es, depending on S. We

denote by "t : T" that a term "t" is of type "T". Note that function and predicate symbols

now have an extra (first) argument of type W.

2

:EQ: € : W, constant

! :WxA--+W

Function symbols, f: W X 1Y'---+ 1J

Predicate symbols, p : w X vn ---+ {true, false}

:ET: :EQ u {1 :A}

:EQ4: :EQ u { * : A X A ---+ A}

:Es4: :EQ4 U :ET

:Ess: :Es4 U {()-1 : A---+ A}

Intuitively, 1) is the usual domain of individuals associated with a first order lan

guage, W is the set of possible worlds, following Kripke's semantics [10], and A is a set of

operators on W, such that "The world w' is accessible from w" is interpreted as "There

is some a of type A such that w' = w!a". The constant "c" stands for the distinguished

"present world". [Notation: Binary operators associate to the left].

An interpretation K for L(S) is a classical interpretation subject to typing con

straints which imply that terms are mapped to objects of the correct type, and modulo the

equational theory E(S) which depends on the choice of S. E(S) is chosen to be faithful to

Kripke's semantics, according to which the reachability relation among possible worlds is

reflexive for the logic T; transitive for Q4; reflexive and transitive for S4; and is an equiva

lence relation for S5.

E(Q) = 0

E(T) = {w!l = w}

E(Q4) = {w!(a *a')= (w!a)!a', (a* a')* a"= a* (a'* a")}

E(S4) = E(Q4)UE(T)U{a * 1 = a,1 *a= a}

E(S5) = E(S4) U{a * a-1 = 1}

The following rules [1] show how formulas in commonly studied modal logics can be

uniformly transformed into path logic formulas. We assume that implication symbols have

already been eliminated from the formulas, with "¢>---+ '1/J" replaced by "•</>V'Ij;" everywhere.

The transformation is defined as the normal form obtained by repeated reduction using the

following (canonical) rewrite rules, where the first step in the translation of a formula "B"

is "t(c, B)".

3

t(1r, ·B) -+ •t(1r, B)

t(1r, B 1 V B2)-+ t(1r, B1) V t(1r, B2)

t(1r,B1 A B2)-+ t(1r,B1) A t(1r,B2)

t(1r, VxB) -+ Vxt(1r, B)

t(1r, 3xB) -+ 3xt(1r, B)

t(1r, DB)-+ Vat(1r!a,B), where a is a new variable of sort A

t(1r, <>B)-+ :lat(1r!a, B), where a is a new variable of sort A

t(1r,p(t1, ... , tn))-+ p(1r, t1, ... , tn) for each predicate/proposition symbol p.

Example 1 The reduction sequence translating D((•Vx.OA(x)] V 03y.A(y)) is

t(c:, D((•Vx.OA(x)] V 03y.A(y)))

-+ Va.t(c:!a, ([•Vx.<>A(x)] V 03y.A(y)))

-+ Va.([t(c:!a, •Vx.<>A(x))] V [t(c:!a, 03y.A(y))])

-+ Va.([•t(c:!a, Vx.<>A(x))] V [3,B.t(c:!a!,B,3y.A(y))])

-+ Va.([•Vx.t(c:!a, <>A(x))] V [3,83y .t(c:!a!,B, A(y))])

-+ Va.([•Vx3,.t(c:!a!l, A(x))] V [3,83y .t(c:!a!,B, A(y))])

-+ Va.([•Vx31.A(c:!a!/, x)] V [3,83y.A(c:!a!,B, y)])

Elimination of quantifiers with skolemisation then yields the clause •A(c:!a!1, f 1 (a)) V

A(c:!a!F(a), h(a)), where JI, h,F are skolem functions.

3 The Unique Prefix Property

Unification is an important part of the resolution proof procedure [14], generalized to

unification (and resolution) modulo equational theories [8], [9], [13]. For resolution-based

theorem-proving, it may be necessary to have a procedure to generate a "complete set of

unifiers" (CSU} for pairs of terms such that

where u, 0, p are substitutions, and t 11 t 2 are terms. In general, non-trivial equational the

ories (e.g., with an associativity axiom) have no finite complete set of unifiers, and this

makes it difficult to use the generalized resolution proof procedure. Note that the modal

4

reachability relation is transitive for Q4, 84 and 85, hence the "*" operator in the corre

sponding path logics is associative. In some such cases (but not always1), the existence of

a finite complete set of E(S)-unifiers is guaranteed by the following property.

Definition [12], [1]: A set L of path logic formulas have the unique prefix property (U.P.P.)

iff for every subterm 1r!a : W that occurs in L, 1r uniquely depends on a, z.e., 1r = 7r1

whenever L contains the subterms 1r!a and 1r'!a.

Since formulas in path logic need not have the U.P.P., a complicated technique was

used in [1], motivated by the following alleged counterexample.

Example 2 Let E = E(Q4). The terms {u!a!a, u!a!a} (where a is a variable, and a is a

constant) do not have a finite complete set of E-unifiers.

In addition to added complexity, a disadvantage of the suggested strong skolemi

sation technique was that [1] could not include an algorithm for computing the CSU for

85. But we observe that strong skolemisation is really not necessary, for a simple reason.

Although arbitrary formulas do not have a finite CSU, such formulas never arise as a result

of the translation procedure described earlier! In other words, the set of translated formu

las and the clauses obtained from them (using previously known skolemisation techniques)

already have U.P.P., making the strong skolemisation procedure redundant. With there

moval of this obstacle, we are able to give an algorithm to generate the CSU even in the

case of 85 (see section 4).

In the following, we assume w .l.o.g. that variables in different modal formulas are

distinct, and that only new variables or skolem-terms are introduced when each modal

operator is eliminated. By "skolem-term", we refer to either a skolem constant or a term

"g(· · ·)" whose outermost symbolg is a skolem function, introduced during the skolemisa

tion process. In the rest of this section, "C" denotes a set of clauses obtained by translating

a set of modal logic formulas into path logic and applying the usual classical transformations

to conjunctive normal form and variable-elimination (including skolemisation).

Fact 1 In the translation of any modal formula to its path logic representation, elimination

of each modal operator introduces occurrences of only one new variable of type A.

1 For example, U.P.P. does not ensure a finite C.S. U. for an equational theory with a* b = 1

where "*" is an associative operator with identity "1 ". For instance, terms a* {3 and 1 * fJ have

no finite C.S. U.

5

Fact 2 In clauses inC, variables of type A occur only by themselves (as in "···!a!···"),

or as arguments in skolem terms. We refer to these as non-skolem and skolem occurrences

respectively.

Fact 3 Every non-skolem occurrence of a type A variable in any clause of C is due to the

same modal ("D") operator in the original modal formulas.

Fact 4 Each occurrence of a type A skolem-term in a clause inC is due to the same modal

("0") operator in the original modal formula.

Lemma 1 For any distinct variables a, {3 of type A, an occurrence of a precedes an occur

rence of fJ in any W-term, obtained on translating a modal formula (before skolemisation),

iff the corresponding original modal operator that generated a precedes the modal operator

that generated {3 in the original modal formula.

Proof: [Note: "L~~"l precedes ~2" denotes that ~2 is within the scope of ~1].

The "if" -part of the proof is a straightforward consequence of the translation procedure.

For the "only-if"-part of the proof, let the modal operators associated with a and {3 be

~ and ~' respectively (known to be unique, by the above mentioned facts). If a pre

cedes fJ but ~'precedes ~ in the modal formula, then it has a subformula of the form

~'(... ~B ...) such that t(1r, ~'(... ~B ...))= \lt(1r!{3, (... B ...)), where '\7' is V{3 or 3{3.

From this we can verify that every rule of translation will either not change 1r!{3 or add some

type A variable or skolem term after {3. So, a would have to follow {3, which contradicts

the assumption that a precedes {3.

Corollary 1 If an occurrence of a (a type A variable) precedes an occurrence of fJ in one

term in a path logic formula (obtained by translating a modal formula), then an occurrence

of a precedes every occurrence of {3 in every subterm of the same formula.

Proof: If a precedes {3 in a term, then the modal operator which generates a precedes the

operator which generates {3, by lemma 1. Then (by lemma 1 again), a precedes {3 in every

other term in which these variables occur.

Example 3 The path logic translation of DD(OA V DB) is

VaV{3[3-y A(c:!a!{3!-y) v Vo B(c:!a!{3!o)].

6

Note that a precedes f3 in every subterm, since the modal operator contributing a to the

translated form precedes that contributing {3. Both these precede 1 as well as 6, whereas

the scoping of modal operators is such that neither 1 precedes 6 nor vice versa, in any

term. For instance, even if the formula contained other subterms, we would expect every

occurrence of 1 to be preceded by the unique prefix "t:la!f3!".

Corollary 2 No type A variable occurs more than once in one term in a formula obtained

by translation of a modal logic formula.

To prove this, we observe that if a occurs more than once in a W-term, then (by

facts 3,4), a originates from the same modal operator. By Lemma 1, this operator will

have to precede itself, a contradiction.

Theorem 1 Every path logic formula obtained as the translation of a modal formula (using

the rules in section 2) has the unique prefix property.

Proof: If 1rla, 1r1la are two W-subterms of a formula in the subset such that 1r f:. 1r1, suppose

that 1r = {31 ! · · ·!f3n and 1r1 = {3~! · · ·!{3~. Let f3i and f3i be the first pair such that f3i f:. f3i,
then since f3i precedes a, by corollary 2, f3i E 1r. Similarly f3i E 7r1• Since f3i, f3i are the first

distinct pair and there is no more than one occurrence of f3i in 1r and f3i in 'Jr1 (by corollary

2), it must be the case that f3i precedes f3i in 1r and f3i precedes f3i in 1r'. This contradicts

corollary 1.

With minor modification, the above result continues to hold after the process of

converting path logic formulas into clauses using skolemisation.

Theorem 2 :

• Every non-skolem occurrence of an A-type variable inC has a unique prefix;

• every occurrence of an A-type skolem term inC has a unique prefix;

• a variable of type A may occur at most once in a skolem term in C; and

• every skolem occurrence of an A-type variable in C is preceded by its non-skolem

occurrence.

7

We note that the terms in example 2 do not satisfy corollary 1. Hence these can never

arise as subterms on translating modal logic formulas to path logic. Therefore, even though

there is no finite complete set of unifiers, this pair of terms is not a relevant counterexample.

We can hence proceed to apply classical E-resolution-based theorem-proving techniques to

the path logic formulas obtained by translating modal formulas. Neither factoring nor

the application of resolving substitutions disturbs the U.P.P., hence resolution-based proof

procedures can be readily applied.

4 Unification Algorithms

The algorithms we suggest for computing the complete set of unifiers for the cases of Q,

Q4, T and S4 are essentially the same as those given in [1], except that we safely omit the

"occurrence-check" present in the original algorithm, thanks to the unique prefix property.

Following preliminary discussion, we present an E-unification algorithm for the modal logic

S5. In what follows, we abuse notation a little, treating "*" and "!" as the same.

As in the previous section, let "C" denote a set of clauses obtained from translations

of a set of modal logic formulas into path logic L(S5). To E(S5)-unify any two distinct

W-terms t and t' inC (or in clauses obtained by resolution from C),· we have to consider

only the following non-trivial cases:

1. t = t'!1r or t' = tl1r, i.e., one term is a subterm of the other.

2. t' does not contain non-skolem occurrences of any variable

The only other possible case is when t = 1r!1r1 and t' = 1rl1r2 , where 1r1 and 1r2 start with

different symbols. In this case, to unify t = 1r!1r1 and t' = 1rl1r2 is the same as to unify 1r1

and 1r2 • This is covered by case 2. above: if {3 is a variable with a non-skolem occurrence in

1rt, then U.P.P. implies that {3 cannot occur in 1r or in 1r2 , hence {3 cannot occur in t'.

Note that every occurrence of a skolem-term must have the same prefix, hence

no skolem-term can be common to 1r1 and 1r2 • Skolem-terms whose leading symbols are

different function symbols cannot be unified with each other. If both 1r1 and 1r2 end with

skolem-terms with distinct outermost symbols, they cannot be unified.

8

ALGORITHM Unifier(S5, t, t1)

(1)• IF t = t1 , RETURN the identity substitution.
(2)• IF t = 1 or t1 = t!ai! ... !an, RETURN Unifier(55, t1, t).
(3)• IF t = t1!a1 ! ... !an,and t1 i: 1 RETURN Unifier(55, a1! ... !an, 1).
(4)• IF t = 1r!t1 and t1 = 1rltL where the first symbols of t1 and t~ are different,
(5) RETURN Unifier(55, t1, tO.
(6)• IF the first symbols oft and t 1 are different, and t1 i: 1:
(7) Let t be t1! .. . !tN, and t' be t~! ... !tM- respectively.
(8) CASE 1. If both tN and tM- are skolem-terms:
(9) Consider the longest skolem-term-sequence suffixes oft, t 1,

(10) i.e., select the largest k, k' such that
(11) tN-k, · · ·, tN, and tM-k'' · · ·, tM- are skolem terms.
(12) IF k i: k', or 3i ~ k such that tN-i and tM-i have different
(13) outermost (skolem) function symbols, THEN FAILURE
(14) ELSE If Unifier(55, t1!. .. !tN-k-1, t~!. . .!tM-k-1) succeeds returning u,

(15) Then (fori decreasing from k to 0 do

(16) with each pair tN-i = ¢>i(s1,···,sn;) and tM-i = </>i(s~,···,s~J:
(17) for j increasing from 1 toni do:
(18) if Unifier(S5, SjU, sju) returns a substitution 8,

(19) then u := uB

(20) else FAILURE];
(21) RETURN u
(22) Else FAILURE.
(23) CASE 2. IftM- is not a skolem-term, RETURN Unifier(55, r 1 !t1, 1).
(24) CASE 3. IftM- (but not tN) is a skolem-term, RETURN Unifier(S5,t1,t).
(25)• OTHERWISE i.e., (t' = 1 and t = t1! ... !tn):
(26) IF tn is not a variable THEN FAILURE,
(27) ELSE if t is itself a variable then RETURN { t1 ft}
(28) else
(29) Let t be written w.l.o.g. as C1!a2! .. .!a2~c!C2k+1!a2k+2 ... !a2m,
(30) where each Ci is either 1 or a sequence s1! .. . !sK of skolem terms;
(31) Let uo be the identity substitution.
(32) For i increasing from 1 to m, do:
(33) Ui := Ui-1 U {C;j:1ui-1 * a~da2i}, where each a~i is a new variable;
(34) L t I_ { llj I [II]-1 "/ I [II]-1; I } e u - a2 a2, · · ·' ai-2 * ai ai · · ·' a2m-2 a2m
(35) where each a~i is a new variable.
(36) RETURN Um o u'.

9

Since every term has an inverse, if 1r2 ends with a variable (i.e., 1r2 = t1! ···!a), then

we attempt to unify (1r1t 1!1r2 with "1" (the identity). In this process, since variables with

non-skolem occurrences in 1r1 do not occur in 1r2, the entire inverted term (1r1 t 1 may be

treated as equivalent to a new term "!({31 , ••• , f3n)" where each f3i is a variable occurring in

1r1 . Implicitly, it is assumed that f3i are "independent" variables, i.e., the unifier does not

assign any terms to variables f3i, but the variables in 1r2 are assigned terms that depend on

{31, • • . 'f3n·

We assume in the algorithm that at every stage terms may be reduced to their

"inverse-normal-form", reducing subterms by applying the following rewrite rules:

Example 4 Consider the task of unifying a 1!a2!g(ab a2)!a3 with {31!h({31)!{32, where each

ai and each {3i is a variable, g and h are skolem functions, This is converted into the task

of unifying 1 with [a1!a2!g(a1, a2)!a3J-1!{31!h({31)!{32. The result of E(S5)-unification using

our algorithm is

Example 5 Consider the formula D(OA 1\ O·A 1\ DA), whose path logic translation is

'v'8[:3{3A(c:!8!{3) 1\ ::l{•A(c:!O!I) 1\ 'v'8A(c:!8!8)]. Three clauses are obtained from this after vari

able renaming: A(c:!81!f(81)), •A(c:!82!g(82)), and A(c:!83!8), where f and g are skolem

functions.

In an attempt to resolve the first two clauses, we would first try to unify c:!Odf(OI)

and c:!02!g(02). Eliminating the common prefix (line 4 in the algorithm), we then call

Unifier(S5, 81!/(81), 82!g(02)). Unification fails by the IF-THEN part of CASE 1 (line 13)

in the above algorithm, since the terminal skolem terms have different outermost function

symbols. We hence cannot resolve the first two clauses to obtain a contradiction, even in

the theory of E(S5).

We now attempt to resolve the last two clauses, calling Unifier(S5, 02!g(02), 03!8),

after eliminating the common prefix as before. By CASE 2 in the algorithm, we then call

Unifier(S5, [02!g(02)J-1!03!8, 1). Now the last ('OTHERWISE') clause of the algorithm

applies, and the 'ELSE' and 'else' branches (line 28) are taken. [02!g(82)J-1 corresponds to

10

cl in the description of the algorithm, and c3 is just 1 since there is nothing between ()3

and 8. u1 is {[[02!g(02)]-1]-1 * a~/03}, and u2 is 0"1 U {a~/8}. u' is {aVa~, [a~]-1 /a~}.

Finally, the unifier u2u' == {[02!g(02)] * aUB3 , (a~]- 1 /8} is returned. Unification succeeds,

and hence so does resolution to the empty clause.

5 Proof of Correctness

In the following theorem and the lemmas that follow, we are concerned only with terms in

path logic formulas obtained as a result of translating modal formulas using the transfor

mation rules given in section 2.

Theorem 3 The algorithm Unifier(S5, t, t') returns the most general E(S5)-unifier when

evert and t' are E(S5)- unifiable, and returns FAILURE otherwise.

The proof follows from the lemmas that follow. For every pair of terms t, t', since there

is an 'OTHERWISE' clause (line 25) in the algorithm, a call to Unifier(S5, t, t') always

results in further recursive calls, or in failure, or in successfully returning some substitution.

Termination (lemma 2) ensures that either failure or a substitution is always returned. By

lemma 5, failure implies the absence of an E(S5)-unifier. By lemma 4, the substitution

returned is indeed a most general E(S5)-unifier.

Lemma 2 Unifier(S5, t, t') always terminates.

Proof: The only possible sources of non-termination are the recursive calls in lines 3, 23,

24, 2, 5, 14 and 18.

• If line 3 is invoked, then there is only a recursive call Unifier(S5, t', 1), which termi

nates because it is evaluated by the OTHERWISE clause (line 25) from which there

is no further recursion.

• The invocation of Unifier(S5, t-1 !t', 1) in line 23 terminates for the same reason.

• In line 24, there is a call to Unifier(S5, t', t) which can be evaluated only by line 23,

which leads to termination.

11

• If line 2 is invoked, then t = 1 or t' = t!a1 .•. an. If t = 1, the recursive call

Unifier(S5, t', 1) terminates as in the case ofline 3. If t' = t!a1 ... an, the recursive call

Unifier(S5, t!a1 ... an, t) is evaluated on line 3 of the algorithm, leading to termination

(as mentioned above).

• Line 5 is invoked when t = 1r!t1 and t' = 1r!t~ have a common prefix 1r. The recursive

call Unifier(S5, t1 , tD has arguments that are strictly smaller (in size) than the original

arguments, hence this cannot lead to non-termination.

• The recursive call Unifier(S5, t1! · · ·!tn-k-t,t~! · · ·!t~-k-l) in line 14 also calls the al

gorithm on prefixes oft, t', i.e., arguments that are strictly smaller in size. Hence this

call cannot lead to non-termination.

• Termination in the case of the recursive call Unifier(S5, SjO", sju) in line 18 is proved as

follows. From the method of translating formulas into path logic, Sj, sj do not contain

skolem function symbols. We also observe (from the substitutions in lines 33-34 of

the algorithm) that no term of the form'·· ·!4{ ··)'is ever substituted for a variable,

where</> is a skolem function. Hence SjO" and sju do not end with skolem terms, i.e.,

are not of the form'···!</>(···)' where</> is a skolem function. Hence evaluation of the

recursive call Unifier(S5, SjO", sju) will never satisfy the conditions for CASE 1 (line

8), hence this call is not repeated, and cannot lead to non-termination.

0

Lemma 3 Let cp be a skolem function symbol. If u is the m.g.u. oft and t', and u' is the

m.g.u. of u(s) and u(s'), then a o a' is the m.g.u. of t!cp(s) and t'!cp(s').

Proof: Let u1 be any unifier of t!cp(s) and t'!cp(s'). Then u1 is also a unifier oft and t', so u1

is an instance of u, the m.g.u. oft, t'. Let u1 = u o u2 • Since u1 must also be a unifier of s

and s', so u2 is a unifier of u(s) and u(s'). Hence u2 is an instance of u', the m.g.u. of u(s)

and u(s'). If u2 = u' o u3, we have u1 = u o (u' o u3). By the associativity of composition,

u1 is an instance of u o u', i.e., u o u' is the m.g.u. of t!cp(s) and t'!cp(s').

0

12

Lemma 4 When Unifier(S5, t, t1) terminates with success, the substitution it computes is

the most general unifier oft and t 1 in the theory of E(S5).

Proof: The success cases in lines 1, 2, 3, 5, 23, 24 and 27 are straightforward: unification

is commutative; the identity substitution is more general than any other substitution; and

unifiers of t1 with t 2 are exactly the unifiers of t1"1!t2 with 1, the identity for "!" and "*"

operators. The preceding lemma covers CASE 1 (line 21) in the algorithm. The core of the

algorithm is in the OTHERWISE case, and we accordingly analyze the remaining success

case (line 36). We first note that from the definition of "*", it follows that unification of

ad .. . !an with /31! .. .!f3n is the same as unification of a1 * ... *an with /31 * ... * f3n· From

the construction of the algorithm, it is a straightforward consequence that the substitution

returned by the algorithm is indeed an E(S5)-unifier of the argument terms; we now need

to show that it is the most general unifier.

Let Um o u1 be the substitution returned by the algorithm (cf. lines 25-36). We now

prove that, for any unifier u1 = {1r2l a2···7r2mla2m} of C1!a2!. .. !C2m-1la2m with 1, we

have u1 = um o U 1 o e, where e is defined as the following, where ai and ai1 are new variables

not occurring in t, t 1• There are three cases to be considered.

Case

1 "f II • • d "I I • • I • 1 a 1 ai IS m u m an a 1 a, IS m u

then 1r;la? is in e.
2 "f c-1 I I . . d " I I • • I . 1 2,_1ui-I * a 2; a2i IS In Um an a 2; a 2; ISm u

then c2i-10'i-1 * 7r2i/a~; is in e.
3 .f 0 -1 1 1 . . d -1 1' " 1 1 • • I . I 2,_1 Ui-1 * a 2, a2i IS m Um an a 2,_2 * a 2, a 2, IS m a-

then c2i-1 O'i-1 * a~i-2 * 7r2i/ a~; is in {).

Since an appropriate e can be constructed showing that any unifier in an instance

of the substitution returned by the algorithm, the latter is indeed the most general unifier.

0

Lemma 5 If Unifier(S5, t, t1) returns FAILURE, then t and t1 are not E(S5)-unifiable.

Proof: FAILURE is returned at lines 13, 20, 22, 26 in the algorithm: these cases are

analyzed below in reverse order.

13

• In line 26, t' = 1 and t = ttl .. .!tn where tn is a skolem term in which occur all the

variables in t1 through tn-l· By the 'occurs-check' criterion, no substitution for these

variables can make it! .. .!tn-t E(S5)-equivalent to t;;t. Hence t cannot E(S5)-unify

with 1.

• Line 22 is invoked if prefixes of the given terms are found to be not E(S5)-unifiable. If

1r and 1r1 are not E(S5)-unifiable, and if all variables of 1r occur in a skolem term p and

if all variables of 1r1 occur in a skolem term p', then 1r!p cannot E(S5)-unify with 1r'!p'.

Applying this argument k + 1 times, we conclude that {ttl .. .!tN-k-t)!tN-kl .. .!tN

cannot E(S5)-unify with (t~! .. .!tM-k-t)!tM-k! ... !tM, if it! .. . !tN-k-t, t~! ... !tM-k-t

are not E(S5)-unifiable, and the terms following them are skolem-terms (which contain

the variables of the relevant prefix). Hence t, t' are not E(S5)-unifiable in this case.

• We now consider the case of line 20, which results when Unifier(S5, s;u, sju) fails,

where u was the result of composing the unifier O"prefi:r: obtained for ttl .. .!tN-i-t,

t~! ... !tM-i-t with the substitutions successively E(S5)-unifying the terms SkO"prefi:r:,

s~O"prefi:r: where 1 :5 k < j, where tis ttl ... !tN-i-t!4>,(st, ... , snJ! .. .!4>o(...) and t' is

t~l .. .!tk-i-t!4>,(sL ... ,s~J! .. .!4>o(...). By lemma4, we may assume that u is indeed

the E(S5)-m.g.u. of these terms. Under these conditions, if some pair s;u, sju are not

E(S5)-unifiable, then </>i(s~, ... , sn;)u is not E(S5)-unifiable with 4>i(s~, ... , s~Ju, and

4>i(St, ... , snJ is not E(S5)-unifiable with 4>,(s~, ... , s~J This in turn implies that

t1!. . .!tN-i-tl4>,(st, ... , snJ and t~!. . .!tM-i-t !</>,(sL ... , s~J are not E(S5)-unifiable.

Finally, by the same argument as given above for the case of line 22, this implies that

it! .. .!tN-i-t!</>,(st, ... , snJl .. .!4>o(...) and t~ l .. .!tM-i-t !</>i(s~, ... , s~J! .. .!4>o(...) are

not E(S5)-unifiable.

• For the case of line 13, lett= tt!. . .!tN and t' = t~!. . .!tM, where tN-k, ... ,tN and

tk-k'' ... , tk are the skolem terms in the suffixes oft, t' respectively. Suppose t and t'

are E(S5)-unifiable by a substitution u. Then tu and t'u must be identical, modulo the

associativity, inverse and identity properties. We assume w .l.o.g. that the variables in

t and t' are distinct, and let u = O"t Wo-2, where u1 is the restriction of u to the variables

oft and 0"2 is the restriction of u to variables oft'. Let tu1 = 7rltN-A:O"t! .. . !tNO"t and

t'u2 = 1r'!tM-k'u2! .. .!tko-2 respectively, where 1r and 1r' are obtained by applying the

14

unifier u to the prefixes of t, t'. When maximally simplified, tu1 and t' u2 have this

form, since 1r cannot contain occurrences of the skolem symbols of tN-k ... tN, and

similarly with 1r'; the skolem symbols of each tN-i and tM-j cannot disappear from

these expressions. Unifiability implies that tu1 = t'u2.

If - I h h 1 1 - t' 1 It' h" h • 1 1r = 1r t en we must ave tN-ku1 .•••. tNu1 = M-k'u2 Mu2, w IC IS on y

possible if k = k' and each tN-i, tM-i have the same outermost skolem function

symbol. This justifies line 13: if k =/=- k', or corresponding skolem terms have

different function symbols, then the terms are not E(S5)-unifiable.

If 1r and 1r' are not identical, the requirement that tu1 = t' u2 may be satis

fied if 1r is a prefix of 7r1 or vice versa. Assume w.l.o.g. that 1r = 7r1!7r1 for

some nonempty (sequence) 7rt, and there is a non-empty suffix of t'u2 which

is identical to tN-ku1! ... !tNub implying that tNu1 - tMu2 which implies that

tN, tM must have the same outermost skolem function symbol. In this case

'1 1 1 It - 'It' 1 It' h" h . 1" h h k 1 f 1r .7r1.tN-kO'I Nul= 1r. M-k'uz Mu2, w 1c Imp 1es t at t e s o em unc-

tion symbol of tM -k' occurs in 1r1 . Hence some variable x in t must have been

assigned (by u1) a term which contains tM-k'u2 • Since each variable in t occurs

in tN, we observe that tNu1 contains tM-ku2 as a subterm of one of its argu

ments, say the ith argument. Let the ith argument of tM be Yi· The terms tNu1

and tMu2 cannot be the same (even if they have the same outermost skolem

function symbol), because yw2 is contained as a proper subterm of the ith argu

ment of tNu1. By reductio ad absurdum, since we have assumed the terms to

be E(S5)-unifiable by u, it is not possible for 1r1 to be non-empty, hence it is

sufficient to consider only the preceding case (1r = 1r').

0

15

6 Conclusions

We have simplified algorithms for modal theorem-proving based on path logic, improving

on the work in [1]. We have given a unification algorithm for S5, not obtained earlier, which

generates the most general unifier of path logic terms obtained from modal formulas, in the

theory of S5. The main advantage of the path logic-based technique is that the target logic

preserves the distinction between individuals and worlds, exploiting the properties of the

reachability relation among possible worlds. Our results vindicate the approach suggested

by [1]; the overall result is now cleaner and simpler. This approach seems promising, and

likely to yield other efficient procedures for modal theorem-proving.

Acknowledgements: We thank Profs. Howard Blair, Allen Brown, and Patrice Enjalbert

for comments and helpful suggestions.

References

[1] Y.Auffray and P.Enjalbert, Modal Theorem Proving: An Equational Viewpoint, Proc.

Intl. Joint Conf. on A.I., 1989.

[2] Y.Auffray and P.Enjalbert, Modal Theorem Proving Using Equational J\!Iethods,

Tech.Rep. 88-11, Laboratoire d'Informatique de l'Universite de Caen, France, Novem

ber 1988.

[3] C.L.Chang and R.C.Lee, Symbolic Logic and Mechanical Theorem-Proving, Academic

Press, 1973.

[4] B.F. Chellas, Modal Logic: An Introduction, Cambridge Press, 1980.

[5] P.Enjalbert and L.Farinas del Cerro, Modal Resolution in Clausal Form, Theoretical

Computer Science, Vol.65, pp1-33, 1989.

[6] L.Farinas del Cerro, Resolution Modal Logic, Logique et Analyse 110/111, ppl52-172,

1985.

[7] L.Farinas del Cerro, A simple deduction method for modal logic, Information Processing

Letters, Vol.l4, No.2, pp49-51, 1982.

16

[8] F.Fages, Formes canoniques dans les algebres booleennes et application a la demon

stration automatique en logique du premier ordre, These de 3eme cycle, Univ. Paris

(France), 1983.

[9] M.Fay, First Order Unification in Equational Theories, Fourth workshop on Auto

mated Deduction, Austin (Texas), 1979.

[10] S.Kripke, Semantical Considerations on Modal Logic, Acta Philosophica Fennica 16,

pp83-94, 1963.

[11] C.G. Morgan: Methods for Automated Theorem Proving in Nonclassical Logics, IEEE

Trans. Comp. Vol. c25. No.8, Aug.1976.

[12] H.J.Ohlbach: A Resolution Calculus for Modal Logic, Proc. 9th Int.Conf. Auto. De

due., (Eds: Lusk and Overbeek), Springer-Verlag LNCS 310, 1988.

[13] G.Plotkin, Building in Equational Theories, Machine Intelligence 7, pp73-90, 1972.

[14] J.A. Robinson, A Machine-Oriented Logic based on the Resolution Principle, J. ACM

20(1), pp23-41, Jan. 1965.

17

	Unification in Modal Theorem Proving
	Recommended Citation

	SU-CIS-90-30_001c
	SU-CIS-90-30_002c
	SU-CIS-90-30_003c
	SU-CIS-90-30_004c
	SU-CIS-90-30_005c
	SU-CIS-90-30_006c
	SU-CIS-90-30_007c
	SU-CIS-90-30_008c
	SU-CIS-90-30_009c
	SU-CIS-90-30_010c
	SU-CIS-90-30_011c
	SU-CIS-90-30_012c
	SU-CIS-90-30_013c
	SU-CIS-90-30_014c
	SU-CIS-90-30_015c
	SU-CIS-90-30_016c
	SU-CIS-90-30_017c
	SU-CIS-90-30_018c

