
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

12-1990

Fitting Semantics for Conditional Term Rewriting Fitting Semantics for Conditional Term Rewriting

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mohan, Chilukuri K., "Fitting Semantics for Conditional Term Rewriting" (1990). Electrical Engineering and
Computer Science - Technical Reports. 79.
https://surface.syr.edu/eecs_techreports/79

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/79?utm_source=surface.syr.edu%2Feecs_techreports%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Fitting Semantics for
Conditional Term Rewriting

Chilukuri K. Mohan

December 1990

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

SU-CIS-90-38

Fitting 1 Semantics for Conditional Term Rewriting

Chilukuri K. Mohan
School of Computer and Information Science

Syracuse University, NY 13244-4100

U.S.A.

mohan@top.cis.syr.edu

Abstract: This paper investigates the semantics of conditional term rewriting systems with negation

which do not satisfy useful properties like termination. It is shown that the approach used by Fitting [5]

for Prolog-style logic programs is applicable in this context. A monotone operator is developed, whose

fixpoints describe the semantics of conditional rewriting. Several examples illustrate this semantics for

non-terminating rewrite systems which could not be easily handled by previous approaches.

1 Introduction

Conditional term rewriting systems (CTRS) have attracted much attention in the recent

past as a useful generalization of the simpler formalism of term rewriting systems (TRS).

But CTRS have not been unconditionally accepted, due to the absence of well defined

semantics for conditional rewriting mechanisms. This paper suggests one remedy, following

the approach of Melvin Fitting, who suggested similar semantics for Prolog-style logic

programs [5].

Past work on the semantics of conditional term rewriting has followed three direc-

tions:

1. Impose restrictions on the syntax of the CTRS formalism to ensure termination and

the existence of a unique precongruence which is considered to describe the meaning of

the rewrite relation [8]. This approach does not define the meaning of rewriting when

the CTRS does not satisfy the relevant termination criterion. Also, the termination

criterion itself is undecidable, and is not a necessary condition for each rewrite step

and all rewrite sequences to terminate finitely.

1 "fitting" (Webster's Dictionary): (adjective) suitable, appropriate; (verb) the act of adapting or making fit.

1

2. Give logical semantics for a CTRS R as a set of conditional equations £(R) together

with a set of "default" negative equality literals (13]. This approach is useful either

all rewrite sequences terminate or if the CTRS is intended to describe a specification

based on a set of free constructor functions.

3. Transform CTRS into "equivalent" TRS, and identify the semantics of the CTRS with

that of the transformed systems [1]. Assign an "initial algebra" semantics for TRS.

The drawback of this approach is that it does not adequately describe the operational

use of CTRS with negative literals in the antecedents of rules.

This paper attempts to fill the lacuna using an elegant approach of Fitting, which

brings together an analysis of Kripke's theory of truth (10], Kleene's multivalued logics

[9], and Tarski's lattice-theoretical fixpoint theorem (15]. Fitting [5] uses this approach

to present an alternative to the semantics of logic programming given by Apt and Van

Emden [2], and successfully captures the semantics of the operational use of negation in

logic programs. The main contribution of this paper is to show that this approach can also

successfully explain the meaning of conditional rewriting systems with negation, including

the problematic CTRS whose semantics have eluded the grasp of previous approaches (e.g.,

p =1- q::} p- q,p = q::} p- q).

In the next section, we introduce CTRS and point out the deficiencies of a two

valued fixpoint semantics. Following some mathematical preliminaries, we describe the

new semantics for conditional rewriting. Several examples are then given to illustrate the

semantics. References follow concluding remarks.

2 Preliminaries

2.1 Conditional Rewriting

We define the formalism and operational use of a natural language for expressing data type

and function specifications [13, 8].

Definition 1 Equational-lnequationai-Conditional Term Rewriting Systems (EI-CTRS) are fi

nite sets of rules of the general form

in which lhs and rhs are two terms, and the antecedent is a conjunction of zero or more

equations Si = ti and negated equality literals Pi =f. qi. Every variable occurring in each

si, ti,Pj, q; and rhs must also occur in lhs.

2

Following [4], 'p/ j' refers to the subterm of pat position j, and 'p[q]/ refers to there

sult of replacing pf j by q in p. For instance, when positions are described in Dewey decimal

notation, f(g(a, h(b, c)), d)/1.2 is h(b, c), and f(g(a, h(b, c)), d)[m]t.2 is f(g(a, m), d).

Besides matching and replacement, conditional rewriting requires checking that the

antecedent of a rule holds. The basic idea underlying the definition of EI-rewriting is to

conclude that two terms are equal if they have converging reduction sequences, and not

equal otherwise (for ground terms). Not surprisingly, the attempt to find a valley-proof

for an equality does not always terminate. But if reduction sequences from two terms p, q

do terminate without converging, then we can assert that p = q has no valley-proof using

the given rewriting system. But if p and q are not ground, it is not safe to conclude from

such non-convergence that p =/:- q, if we wish to preserve the property of closure under

substitution; it is possible that pu = qu for some instantiation u.

Variables in different rules are first renamed to be distinct from each other and from

those in the term to be EI-reduced. To maximize the ability to make positive or nega

tive conclusions, we assume a non-strict parallel evaluation strategy in examining rewrite

sequences issuing from various literals.

Definition 2 :A term m EI-Reduces (or El-Rewrites) ton using an EI-CTRS R (denoted

m--+nn) if R contains a rule cond~lhs~rhs and there is a substitution u matching lhs

with a subterm m/ j of m, such that each of the following conditions hold:

1. Match and Replace: (lhs)u=mfj and n=m[(rhs)ulJ.

2. Demonstrable Convergence: For each equality Si = ti E cond, there is a common term

to which SiU and tiu can be EI-reduced in a finite number of steps.

3. Demonstrable Non-Convergence: For every negated equality literal si=/:-ti E cond, it can

be demonstrated by finite EI-rewriting sequences that SiU and tiu are ground terms

with no common reduct. More precisely, the following conditions must hold:

(i) siu and tiu are ground terms;

(ii) all EI-rewriting sequences from SiU and tiu terminate; and

(iii) the set of all reducts of siu is disjoint from that of tw.

2.2 Fixpoint Semantics

Definition 3 Iff is a function (of one argument) whose domain and range are the same,

then S is a fixpoint (or fixed point) off whenever f(S) = S. If the domain elements are

partially ordered, f may have zero or more partially ordered fixpoints:

3

- a fixpoint Sis minimal if there is no other fixpoint T such T < Sin the ordering;

- a minimal fixpoint Sis the least fixpoint if S ~ T for every fixpoint;

- a fixpoint Sis maximal if there is no other fixpoint T such that T > Sin the ordering;

- two fixpoints S, T are compatible if they have a common upper bound which is a fixpoint,

i.e., 3S'.(S ~ S') A (T ~ S') /\ (f(S') = S');

- a fixpoint is intrinsic (or optimal (12]) iff it is compatible with every fixpoint of f.

In the fixpoint semantics approach, the 'meaning' of a program is considered to be

the least fixpoint of a function/relation which represents the behavior of the program on

some input. The following fixpoint semantics can be suggested for conditional rewriting, as

in [8]. A function \11 R is associated with each CTRS R such that if S is a binary relation,

and S* is its reflexive transitive closure, then \11 n(S) is a binary relation which is the set

of all two-tuples (p, q} such that for some rule [s1 = t1 /\ ... /\ sn = tn] /\ [pl :f:qt /\ ... /\

Pm:f=qm] :::;.. 1---+r in R, we have 3k, 3u. pfk = lo-, q - p[ro-]k, Vi, 3ri.(Si, ri} E S* and

(ti,ri} E S*, and Vj, there is no rj such that (pj,rj} E S*, {qj,rj} E S*. In this approach,

the 'meaning' of rewriting with R is identified with the least fixed point of \11 n, if it exists.

But such a least fixed point exists only when the CTRS satisfies certain stringent (and

undecidable) conditions that ensure the decidability and finite termination of all rewrite

sequences. The following is an example of a CTRS R such that \11 R has no fixpoint according

to the above definition: {a :f: b :::;.. a ---+ b}.

The problems with the above approach can be pinpointed to the following reasons:

1. The use of a two-valued logic precludes distinguishing between cases when we know

that a rewrite doesn't occur, and cases when we do not know whether a rewrite can

occur, particularly cases involving non-terminating reductions arising from terms in

the antecedent of an invoked rewrite rule.

2. The relation \11 R is not 'monotone'.

Definition 4 A mapping~ is monotone iff for all the elements in the (partially ordered)

domain, S ~ T implies ~(S) ~ ~(T).

2.3 Kleene's 3-valued logic

Kleene (9] presented a three-valued logic, partly motivated by the desire to give truth

value meanings to partial recursive functions. The logic hence lends itself easily to explain

non-deterministic and infinite computations. Kleene's third truth value represents the

4

indeterminate or unknown nature of statements. The truth, falsehood, or indeterminacy of

statements may be captured by using Smullyan's notation of 'signed statements':

Definition 5 If '1/; is a statement, T'lj; is a signed statement which is to be understood as

asserting "'1/; is true". Similarly, F'lj; is a signed statement which is to be understood as

asserting "'1/; is false", which is contradictory to T'lj;. A set of signed statements is consistent

if it is consistent in the usual sense, and also does not contain the pair T'l/;, F'lj; for any

statement '1/J.

Implicitly, if a set of signed statements contains neither T'l/; nor F'lj; for some formula

'1/;, it is understood that '1/; is indeterminate or has Kleene's third truth value.

'Saturated' consistent sets of signed statements are intended to serve as models for

logic programs. To summarize a lengthy definition in [5], a set S of signed statements is

saturated iff it contains the intuitive consequences of the members of S; e.g.,

- T(X A Y) E S implies T(X) E S and T(Y) E S,

- F(Vx.P(x)) E S implies F(P(t)) for some closed term t,

- F X E S implies T(•X) E S,

- FX E Sand FY E Simply F(X V Y) E S,

et cetera.

3 New Semantics

Unlike Prolog-style logic programs, the operational use of CTRS involves iterated rewrites

ensuing from the antecedents of conditional rules. So the definition of conditional rewriting

recursively involves that of iterated rewriting. A careful definition of what it means for

"p ---+ 'R q" to be "false" is needed, since this is needed when evaluating negative equality

literals in the antecedents of rules.

Let S be a consistent set of signed two-tuples; intuitively, S is a potential description

of a rewrite relation. T(p, q) E Sis an abbreviation for T(Rewrites(p, q)), intended to mean

that p rewrites to q; and similarly F(p, q) E S means p is known not to rewrite to q. If

neither of these is present in S, that means the reduction from p to q is not known to be

true or false, i.e., "p--+ q" has the third truth value.

A new set of signed statements S*, describing the iteration of rewrites in S, is

defined as follows. For convenience, let S* = Sf l±J S}, distinguishing sets of statements

with prefixes T and F, respectively. Sf is just the reflexive transitive closure of the true

statements in S, which is the least set satisfying the following three conditions.

5

1. Va. T(a, a) E Sf,

2. Va, b, if T(a, b) E S, then T(a, b) E Sf, and

3. Va, b, c, if T(a, b) E Sf and T(b, c) E Sf, then T(a, c) E Sf.

The construction of Sj;. is slightly more complicated; note that F(a, b) E S does not

necessarily imply that F(a, b) E S*: a rewrite sequence from a to b might exist through

some other terms, e.g., if {F(a, b), T(a, c), T(c, b)} ~ S, then T(a, b) E S*.

To conclude the absence of rewrite sequences, there should be no intermediate term

from which a reduction sequence can occur. It is safe to assert that (p ---+:R q) is false iff

it can be determined that there is no rewrite sequence of finite length from p to q. This

aspect can be satisfied by an iterative construction as follows, where S} represents 2 tuples

among which there is no reduction sequence of length :::; i.

Sfj.
S}
S}+l -

S}

{F(a, b)Ja ¢ b}

{F(a, b)JF(a, b) E Sfj. A F(a, b) E S}
{F(a, b)JF(a, b) E S} A Vy[F(y, b) E S} V F{a, y) E S]}

.limS}
1--->00

Note: Vi, S}+l ~ S}, thus S} is the greatest lower bound of a chain of sets in the subset

ordering.

Example 1 Let the language contain only the constants a, b, c, d.

{
a---+b}

Let R = b ---+ c .

c---+d

Let S = { F(a, a}, T(a, b), F(a, c), F(a, d),

F(b, a), F(b, b), T(b, c), F(b, d),
F(c, a), F(c, b), F(c, c), T(c, d),

F(d, a), F{d, b), F(d, c}, F(d, d)}

Then Sf= {T(a, a), T(a, b), T(a, c), T(a, d),

T(b, b), T(b, c), T(b, d),
T(c, c), T(c, d),
T(d, d)}

6

SoF-

SlF-

S2-F-

s* -s3-F- F-

{F(a, b), F(a, c), F(a, d),

F(b,a),F(b,c),F(b,d),

F(c, a), F(c, b), F(c, d),
F(d,a),F(d,b),F(d,c)}

{F(a, c), F(a, d),

F(b, a), F(b, d),

F(c, a), F(c, b),
F(d,a),F(d,b),F(d,c)}

{F(a,d),F(b,a),F(c,a),F(c,b),F(d,a),F(d,b),F(d,c)}

{F(b, a), F(c, a), F(c, b), F(d, a), F(d, b), F(d, c)}

Example 2 Let the language contain only the constants a, b, c, d.

LetR= { ::: }·
c-+d==?c-+d

Let S = {F(a, a), T(a, b), F(a, c), F(a, d),

F(b, a), F(b, b), T(b, c), F(b, d),
F(c,a),F(c,b),F(c,c),

F(d,a),F(d,b),F(d,c),F(d,d)}

Then s:;. = {T(a,a),T(a,b),T(a,c),

T(b, b), T(b, c), T(c, c), T(d, d)}

Sf;,= {F(a, b), F(a, c), F(a, d),

F(b,a),F(b,c),F(b,d),

F(c, a), F(c, b), F(c, d),
F(d, a), F(d, b), F(d, c)}

S} = {F(a, c), F(a, d),

F(b, a), F(b, d),

F(c, a), F(c, b),
J?(d,a),J?(d,b),J?(d,c)}

s;.. = { J?(a, d), J?(b, a), J?(c, a), J?(c, b), J?(d, a), J?(d, b), J?(d, c)}

Sj,. = S} = { J?(b, a}, J?(c, a), J?(c, b}, J?(d, a}, J?(d, b), J?(d, c)}

7

Lemma 1 If Sis consistent, then S* is also consistent.

Lemma 2 The '*'operator is monotone, i.e., if S1 ~ S2, then s; ~ S2.

Definition 6 When R is an EI-CTRS, a mapping <I>R from sets of signed two-tuples to

sets of signed two-tuples is defined as follows: <I>R(S) is the smallest relation such that
n m

• T(a, b) E <I>R(S) if R contains a rule 1\ Si = ti /\Pi =J qi =? l -t r such that
i::::l i=l

• F(a, b) E <I>R(S) if for every rule [1\isi = ti 1\i Pi =J qi =? l -t r] in R,

V [(ajk = lu 1\ b = a[ru]k) =? (:3i · Vri · F(sw, ri) E S* V F(tiu, ri) E S*) l
Vk· u

V(:3j:3ri · T(piu, ri) E S* 1\ T(qiu, ri) E S*)

Lemma 3 If S is consistent, then <I>R(S) is consistent.

Proof: Assume S1 ~ S2•

Let T(a, b) E <I>R(St)·
n m

Then R contains a rule 1\ Si = ti 1\ Pi =J qi =? l -t r such that
i::::l i=l

[
ajk = lu 1\ b- a[ru]k]

3k, 3u. 1\ [Vi.· :3ri · T(siu, ri) E s; */\ T(tiu, ri) E s;] *
1\ [VJ · Vri · F(piu, ri) E S1 V F(qiu, ri) E S1]

Since s; ~ s; (by lemma 2), we have

Vi· 3ri · T(siu, ri) E s; 1\ T(tw, ri) E s;,
and VjVri · F(piu, ri) E S2 V F(qp, ri) E S2

T{a, b) E <I>R(S2).

Similarly, we can show that if F{a, b) E <I>R(S1), then F(a, b) E <I>R(S2).

Hence <I>R(St) ~ <I>R(S2). D

Key Observation: The fixpoints of <I>R describe the semantics of conditional rewriting with

an EI-CTRS R; particularly important are the least fixpoint and the largest intrinsic fixpoint.

8

We now investigate the fixpoints of the monotone relation <I> R corresponding to each

rewrite system R.

Theorem 2 Let R be any EI-CTRS, and <I>R be as defined above. Then:

1. <PR has maximal fixpoints.

2. <PR has a smallest fixpoint.

3. <I>R has a largest intrinsic fixpoint, which is a subset ofn{maximal fixpoints of <PR}·

4. The smallest fixpoint of <PR above the empty set { } is intrinsic.

Proof: Let D be the collection of all consistent sets of signed statements, ordered by

the subset relation. D has a smallest member { }, since the emptyset is consistent. Every

chain 8 1 ~ S2 ~ • • • of elements of D has an upper bound U lim Si. Also, every non empty
' set having an upper bound has an 1. u. b. Since <P R is monotone on D, all the premises of

theorem 2.2 in [6] are satisfied, and the conclusions stated in this theorem directly follow.

0

A smallest fixpoint can be constructed using the following transfinite sequence of

consistent sets of signed statements. Let <PR be as defined earlier, for any EI-CTRS R.

Definition 7
Ao = {}

Ai+l = <I>(Ai)

A>. = U{Aala < ..\} for limit ordinals..\

By transfinite induction, it can be shown that this is a weakly increasing sequence, i.e.,

Aa < Aa+l for all a. But the sequence cannot be strongly increasing, i.e., it is not possible

that Vo. · Aa < Aa+b since a sequence of consistent sets cannot have as many members as

there are ordinals. Hence, for some a, we must have Aa = <PR(Aa), i.e., some member of

the sequence is a fixpoint of <P R·

4 Examples

The following are some examples which illustrate the application of the new fixpoint se

mantics. Some of the CTRS's considered here cannot be handled adequately by previously

given semantics, because they do not satisfy the conditions for termination, and are not

constructor-based specifications. In each case, we assume that the only symbols in the

language are those that appear in the rules of the rewriting system being considered. For

each CTRS R, we begin with candidates for fixpoints which are supersets of 'Z', defined as

9

{ F(p, q) I there is no rule (C :::} l ---+ r) E R such that 3k, a.la pj k/\q - p[ra]k}.

The rationale is that for any S, ci>n(S) will always contain F(p, q), for those pairs of terms

p, q such that no rule in R can possibly reduce p to q.

Example 3 Let R1 be {a= b:::} a---+ b}.

Let Z = {F(a, a), F(b, a), F(b, b)}. Candidates for the fixpoints of ci>n1 are: Z,

Z U {T(a, b)}, and Z U {F(a, b)}. Each of these is a fixpoint; Z itself is the least fixpoint,

whereas the other two are maximal fixpoints, with each of which Z is compatible. Hence

Z is also the greatest intrinsic fixpoint of cJ> R 1 •

Example 4 Let R2 be {a =f. b:::} a---+ b}.

Again, let Z = {F(a,a),F(b,a),F(b,b)}. Candidates for the fixpoints of ci>n2 are

also again Z, Z U {T(a, b)}, and Z U {F(a, b)}. Of these, only Z is a fixpoint: note that

ci>n2 (Z U {T(a, b)}) will contain F(a, b), and ci>n2 (Z U {F(a, b)}) will contain T(a, b). Hence

the others are not fixpoints of cJ> R 2 •

Example 5 Let R3 be {a =f. c:::} a ---+ b }.

Let Z = {F(a, a), F(a, c), F(b, a), F(b, b), F(b, c), F(c, a), F(c, b), F(c, c)}. Candi

dates for the fixpoints of ci>n3 are Z, Z U {T(a, b)}, and Z U { F(a, b)}. Of these, Z is a

fixpoint, because the absence of T(a, b) and F(a, b) from Z implies that ci>n3 (Z) will contain

neither T(a, b) nor F(a, b). Also, Z U {T(a, b)} is a fixpoint since ci>n2 (Z U {T(a, b)}) will

contain T(a, b). But ci>n2 (Z U {F(a, b)}) will contain T(a, b), hence the third candidate is

not a fixpoint. Hence Z is the least fixpoint, whereas Z U {T(a, b)} is the only maximal

fixpoint, which is hence the greatest intrinsic fixpoint.

Example 6 Let R4 be {a= c:::} a---+ b}.

Let Z = {F(a, a), F(a, c), F(b, a), F(b, b), F(b, c), F(c, a}, F(c, b), F(c, c)} again. Can

didates for the fixpoints of cJ>~ are Z, ZU {T(a, b)}, and ZU {F(a, b)}. Of these, Z is again

a (least) fixpoint. Z U {F(a, b)} is also a fixpoint, but not ZU {T(a, b)}. Thus ZU {F(a, b)}

is the greatest intrinsic fixpoint.

Example 7 Let R5 be { c =f. d:::} a ---+ b }.

Let Z = {F(a, a), F(a, c), F(a, d), F(b, a), F(b, b), F(b, c), F(b, d), F(c, a), F(c, b),
F(c, c), F(c, d), F(d, a), F(d, b), F(d, c), F(d, d)}. Candidates for the fixpoints of ci>n5 are

Z, ZU {T(a, b)}, and ZU {F(a, b)}. This time, Z is not a fixpoint because ci>n5 (Z) contains

T(a, b). For the same reason, Z U {F(a, b)} is also not a fixpoint. The only fixpoint is

Z U {T(a, b)}.

10

Example 8 Let Rs be {c =F d =>a-+ b, a =F b => c-+ d}.

Let Z = {F(a,a),F(a,c),F(a,d),F(b,a),F{b,b),F{b,c),F(b,d), F{c,a),F(c,b),
F(c, c), F(d, a), F(d, b), F(d, c), F(d, d)}. Candidates for the fixpoints of ~Re are those

supersets of Z which contain at most one of T(a, b), F(a, b), and also at most one of

T(c, d), F(c, d). Of these, Z itself is a (least) fixpoint since it does not contain signed

tuples which would enable either of the rewrite rules in Rs to be activated. If a fixpoint

contains F{a, b), then it must also contain T(c, d) since the second rewrite rule is activated;

indeed, Z U {F(a, b), T(c, d)} is a {maximal) fixpoint. Similarly, Z U {F(c, d), T(a, b)} is

also a (maximal) fixpoint. These maximal fixpoints are not mutually compatible, and Z is

a fixpoint compatible with each of these maximal fixpoints. Hence Z is the least as well as

the largest intrinsic fixpoint.

It can be shown that the other candidates are not fixpoints. For instance, ci> Re (Z U

{T(a, b)}) does not contain T(a, b), since the antecedent of the first rewrite rule is not

enabled: F(c, d) fl. Z U {T{a, b)}

Example 9 Let R7 be {a= b =>a-+ b, a =F b =>a-+ b}.

Let Z = {F(a,a),F(b,a),F(b,b)}. Candidates for the fixpoints of ~R7 a.re Z, Z U

{T(a, b}}, and Z U {F(a, b)}. Of these, Z is a (least) fixpoint. Also Z U {T(a, b)} is a

fixpoint, but not Z U {F(a, b)}. Hence Z U {T(a, b)} is the greatest intrinsic fixpoint. Note

that a 'disjunctive' conditional rewriting mechanism which examines the antecedents of

multiple rules achieves computation of the greatest intrinsic fixpoint in this case.

Example 10 Let R8 be {c =F d =>a-+ b, a =F b =>a-+ b}.

Let Z = { F(a, a), F(a, c), F(a, d), F(b, a}, F(b, b), F(b, c), F(b, d), F(c, a), F(c, b),

F(c, c), F(c, d), F(d, a), F(d, b), F(d, c), F(d, d)}. Candidates for the fixpoints of ~Rs are

Z, Z U {T(a, b)}, and Z U {F(a, b)}. Since Z contains F(c, x) and F(d, x) for every x, every

superset of Z which is a fixpoint must contain T(a, b) since the first rewrite rule is enabled.

Hence Z U {T(a, b)} is the only fixpoint.

Example 11 Let~ be {c =F d =>a-+ b, a =F b => c-+ d, a= b::} c-+ d}.

Let Z = {F(a, a), F(a, c), F{a, d), F(b, a), F(b, b), F(b, c), F(b, d), F(c, a), F(c, b),

F(c,c), F(d,a),F(d,b),F(d,c},F(d,d)}. Candidates for the fixpoints of ci>.ng a.re those

supersets of Z which contain at most one of T(a, b), F(a, b), and also at most one of

T(c,d), F(c,d). Of these, Z itself is a (least) fixpoint since it does not contain signed

tuples which would enable either of the rewrite rules in R9 • If a fixpoint contains F(a, b),

then it must also contain T{c, d) since the second rewrite rule is activated; indeed, Z U

{F(a, b), T(c, d)} is a (maximal) fixpoint.

11

There are no other fixpoints: every superset of Z which contains F{a, b) or T{a, b)

must also contain T{c, d) if it is a fixpoint, since the second or third rewrite rule is enabled.

But every superset of Z which contains T{c, d} must also contain F{a, b) if it is a fixpoint,

since the antecedent of the first rewrite rule is falsified. And every superset of Z which

contains F{c, d} must also contain T(a, b} if it is a fixpoint, since the first rewrite rule is

enabled.

Example 12 Let R10 be

{ c i= d ::::} a -+ b, a i= b ::::} c -+ d, a = b ::::} c -+ d, c = d ::::} a -+ b}.

Again, let Z = {F{a, a), F{a, c), F{a, d), F{b, a}, F{b, b), F{b, c), F{b, d), F{c, a),

F{c,b), F(c,c}, F(d,a),F(d,b},F(d,c},F(d,d}}. We again examine various consistent su

persets of Z which are potential candidates for the fixpoints of (_[) Rto. Z itself is a (least)

fixpoint, as in the previous example. If one of the other candidates contains T{a, b), then

the third rewrite rule dictates that it must also contain T { c, d) if it is a fixpoint (and con

versely). Indeed, Z U {T(a, b}, T{c, d}} is a (maximal) fixpoint. Candidates which contain

F{a, b) (or F{c, d}) are not fixpoints, because the second (or first) rewrite rule is then en

abled, generating T{c, d} (or T(a, b}, respectively), which in turn implies that the candidate

must contain T(a, b} (or T{c, d}, respectively) making it inconsistent. Hence there are no

other fixpoints.

5 Conclusions

We have investigated the fixpoint semantics of conditional term rewriting systems with

negation. Two-valued semantics does not ascribe a meaning to some CTRS's which do not

satisfy useful properties like termination. We have shown that a three-valued approach

used by Fitting [5] for Prolog-style logic programs is applicable in this context. A mono

tone operator is developed, whose fixpoints describe the semantics of conditional rewriting.

Several examples illustrate this semantics for 'troublesome' rewrite systems which could

not be handled easily by previous approaches. This work supports the contention that

results achieved in research on Prolog-style logic programming can be useful in the context

of conditional term rewriting.

We have hesitated to say whether it is the least fixpoint or the greatest intrinsic

fixpoint which better describes the semantics of the EI-CTRS. The examples may motivate

a preference for one or the other. The operational mechanism described in [13] and [8]

computed members of the least fixpoint. To compute the greatest intrinsic fixpoint, we

12

need a different operational mechanism which uses "disjunctive rewriting" [14] (cf. example

9) as well as a mechanism which returns failure in some cases when naive evaluation of the

antecedent leads to non-termination (cf. example 5). The formulation of such a rewriting

mechanism, which computes precisely the greatest intrinsic fixpoint, is an issue for future

work. In non-controversial cases, when termination requirements are satisfied, the least

fixpoint and the greatest intrinsic fixpoint coincide (cf. examples 3, 4, 7).

References

[1] H.Aida and J .Meseguer, Getting Rid of Conditional Equations, Second Int '1. Workshop
on Conditional and Typed Term Rewriting Systems, Montreal, June 1990.

[2] K.R.Apt and M.H.Van Emden, Contributions to the Theory of Logic Programming, J.
ACM, Vol.29, pp841-862, 1982.

[3] K.L.Clark, Negation as Failure, in Logic and Data Bases, H.Gallaire and J.Minker
(eds.), Plenum Press, N.Y., 1978.

[4] N.Dershowitz, J.-P.Jouannaud, Rewrite Systems, in Handbook of Theor. Comp. Sci.,
1989.

[5] M.Fitting, A Kripke-Kleene Semantics for Logic Programs, Journal of Logic Program
ming, Vol.4, pp295-312, 1985.

[6] M.Fitting, Notes on the Mathematical Aspects of Kripke 's Theory of Truth, Notre
Dame Journal of Formal Logic, Vol.27, No.1, pp75-88, Jan. 1986.

[7] S. Kaplan, Simplifying Conditional Term Rewriting Systems: Unification, Termination
and Confluence, Rapport de Recherche no. 194, Universite de Paris-Sud, Nov. 1984.

[8] S.Kaplan, Positive/Negative Conditional Rewriting, Proc. First Int'l. Workshop on
Conditional Term Rewriting Systems, Paris, Springer-Verlag LNCS 308, 1987.

[9] S.C.Kleene, Introduction to Metamathematics, Van Nostrand, New York, 1952.

[10] S.Kripke, Outline of a Theory of Truth, J. Philosoph., vol. 72, pp690-716, 1975.

[11] R.Kowalski, Predicate Logic as a Prog. Lang., IFIP Info. Processing, North-Holland,
pp569-574, 1974.

[12] Z.Manna, A.Shamir, The Theoretical Aspect of the Optimal Fixed Point, SIAM J. of
Computing, Vol.5, pp414-426, 1976.

[13] C.K.Mohan, M.K.Srivas, Conditional Specifications with Inequational Assumptions,
Proc. First Int'l. Workshop on Conditional Term Rewriting Systems, Paris, Springer
Verlag LNCS 308, 1987.

[14] D.Plaisted, Confluence and Reduction Properties of Conditional Term Rewriting Sys
tems, Manuscript, 1985.

[15] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math.,
Vol.5, pp285-309, 1955.

13

	Fitting Semantics for Conditional Term Rewriting
	Recommended Citation

	SU-CIS-90-38_001c
	SU-CIS-90-38_002c
	SU-CIS-90-38_003c
	SU-CIS-90-38_004c
	SU-CIS-90-38_005c
	SU-CIS-90-38_006c
	SU-CIS-90-38_007c
	SU-CIS-90-38_008c
	SU-CIS-90-38_009c
	SU-CIS-90-38_010c
	SU-CIS-90-38_011c
	SU-CIS-90-38_012c
	SU-CIS-90-38_013c
	SU-CIS-90-38_014c

