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Chilukuri K. Mohan 
School of Computer and Information Science 

Syracuse University, NY 13244-4100 

U.S.A. 

mohan@top.cis.syr.edu 

Abstract: This paper investigates the semantics of conditional term rewriting systems with negation 

which do not satisfy useful properties like termination. It is shown that the approach used by Fitting [5] 

for Prolog-style logic programs is applicable in this context. A monotone operator is developed, whose 

fixpoints describe the semantics of conditional rewriting. Several examples illustrate this semantics for 

non-terminating rewrite systems which could not be easily handled by previous approaches. 

1 Introduction 

Conditional term rewriting systems (CTRS) have attracted much attention in the recent 

past as a useful generalization of the simpler formalism of term rewriting systems (TRS). 

But CTRS have not been unconditionally accepted, due to the absence of well defined 

semantics for conditional rewriting mechanisms. This paper suggests one remedy, following 

the approach of Melvin Fitting, who suggested similar semantics for Prolog-style logic 

programs [5]. 

Past work on the semantics of conditional term rewriting has followed three direc-

tions: 

1. Impose restrictions on the syntax of the CTRS formalism to ensure termination and 

the existence of a unique precongruence which is considered to describe the meaning of 

the rewrite relation [8]. This approach does not define the meaning of rewriting when 

the CTRS does not satisfy the relevant termination criterion. Also, the termination 

criterion itself is undecidable, and is not a necessary condition for each rewrite step 

and all rewrite sequences to terminate finitely. 

1 "fitting" (Webster's Dictionary): (adjective) suitable, appropriate; (verb) the act of adapting or making fit. 
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2. Give logical semantics for a CTRS R as a set of conditional equations £(R) together 

with a set of "default" negative equality literals (13]. This approach is useful either 

all rewrite sequences terminate or if the CTRS is intended to describe a specification 

based on a set of free constructor functions. 

3. Transform CTRS into "equivalent" TRS, and identify the semantics of the CTRS with 

that of the transformed systems [1]. Assign an "initial algebra" semantics for TRS. 

The drawback of this approach is that it does not adequately describe the operational 

use of CTRS with negative literals in the antecedents of rules. 

This paper attempts to fill the lacuna using an elegant approach of Fitting, which 

brings together an analysis of Kripke's theory of truth (10], Kleene's multivalued logics 

[9], and Tarski's lattice-theoretical fixpoint theorem (15]. Fitting [5] uses this approach 

to present an alternative to the semantics of logic programming given by Apt and Van 

Emden [2], and successfully captures the semantics of the operational use of negation in 

logic programs. The main contribution of this paper is to show that this approach can also 

successfully explain the meaning of conditional rewriting systems with negation, including 

the problematic CTRS whose semantics have eluded the grasp of previous approaches (e.g., 

p =1- q::} p- q,p = q::} p- q). 

In the next section, we introduce CTRS and point out the deficiencies of a two

valued fixpoint semantics. Following some mathematical preliminaries, we describe the 

new semantics for conditional rewriting. Several examples are then given to illustrate the 

semantics. References follow concluding remarks. 

2 Preliminaries 

2.1 Conditional Rewriting 

We define the formalism and operational use of a natural language for expressing data type 

and function specifications [13, 8]. 

Definition 1 Equational-lnequationai-Conditional Term Rewriting Systems (EI-CTRS) are fi

nite sets of rules of the general form 

in which lhs and rhs are two terms, and the antecedent is a conjunction of zero or more 

equations Si = ti and negated equality literals Pi =f. qi. Every variable occurring in each 

si, ti,Pj, q; and rhs must also occur in lhs. 
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Following [4], 'p/ j' refers to the subterm of pat position j, and 'p[q]/ refers to there

sult of replacing pf j by q in p. For instance, when positions are described in Dewey decimal 

notation, f(g(a, h(b, c)), d)/1.2 is h(b, c), and f(g(a, h(b, c)), d)[m]t.2 is f(g(a, m), d). 

Besides matching and replacement, conditional rewriting requires checking that the 

antecedent of a rule holds. The basic idea underlying the definition of EI-rewriting is to 

conclude that two terms are equal if they have converging reduction sequences, and not 

equal otherwise (for ground terms). Not surprisingly, the attempt to find a valley-proof 

for an equality does not always terminate. But if reduction sequences from two terms p, q 

do terminate without converging, then we can assert that p = q has no valley-proof using 

the given rewriting system. But if p and q are not ground, it is not safe to conclude from 

such non-convergence that p =/:- q, if we wish to preserve the property of closure under 

substitution; it is possible that pu = qu for some instantiation u. 

Variables in different rules are first renamed to be distinct from each other and from 

those in the term to be EI-reduced. To maximize the ability to make positive or nega

tive conclusions, we assume a non-strict parallel evaluation strategy in examining rewrite 

sequences issuing from various literals. 

Definition 2 :A term m EI-Reduces (or El-Rewrites) ton using an EI-CTRS R (denoted 

m--+nn) if R contains a rule cond~lhs~rhs and there is a substitution u matching lhs 

with a subterm m/ j of m, such that each of the following conditions hold: 

1. Match and Replace: (lhs)u=mfj and n=m[(rhs)ulJ. 

2. Demonstrable Convergence: For each equality Si = ti E cond, there is a common term 

to which SiU and tiu can be EI-reduced in a finite number of steps. 

3. Demonstrable Non-Convergence: For every negated equality literal si=/:-ti E cond, it can 

be demonstrated by finite EI-rewriting sequences that SiU and tiu are ground terms 

with no common reduct. More precisely, the following conditions must hold: 

(i) siu and tiu are ground terms; 

(ii) all EI-rewriting sequences from SiU and tiu terminate; and 

(iii) the set of all reducts of siu is disjoint from that of tw. 

2.2 Fixpoint Semantics 

Definition 3 Iff is a function (of one argument) whose domain and range are the same, 

then S is a fixpoint (or fixed point) off whenever f(S) = S. If the domain elements are 

partially ordered, f may have zero or more partially ordered fixpoints: 
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- a fixpoint Sis minimal if there is no other fixpoint T such T < Sin the ordering; 

- a minimal fixpoint Sis the least fixpoint if S ~ T for every fixpoint; 

- a fixpoint Sis maximal if there is no other fixpoint T such that T > Sin the ordering; 

- two fixpoints S, T are compatible if they have a common upper bound which is a fixpoint, 

i.e., 3S'.(S ~ S') A (T ~ S') /\ (f(S') = S'); 

- a fixpoint is intrinsic (or optimal (12]) iff it is compatible with every fixpoint of f. 

In the fixpoint semantics approach, the 'meaning' of a program is considered to be 

the least fixpoint of a function/relation which represents the behavior of the program on 

some input. The following fixpoint semantics can be suggested for conditional rewriting, as 

in [8]. A function \11 R is associated with each CTRS R such that if S is a binary relation, 

and S* is its reflexive transitive closure, then \11 n( S) is a binary relation which is the set 

of all two-tuples (p, q} such that for some rule [s1 = t1 /\ ... /\ sn = tn] /\ [pl :f:qt /\ ... /\ 

Pm:f=qm] :::;.. 1---+r in R, we have 3k, 3u. pfk = lo-, q - p[ro-]k, Vi, 3ri.(Si, ri} E S* and 

(ti,ri} E S*, and Vj, there is no rj such that (pj,rj} E S*, {qj,rj} E S*. In this approach, 

the 'meaning' of rewriting with R is identified with the least fixed point of \11 n, if it exists. 

But such a least fixed point exists only when the CTRS satisfies certain stringent (and 

undecidable) conditions that ensure the decidability and finite termination of all rewrite 

sequences. The following is an example of a CTRS R such that \11 R has no fixpoint according 

to the above definition: {a :f: b :::;.. a ---+ b}. 

The problems with the above approach can be pinpointed to the following reasons: 

1. The use of a two-valued logic precludes distinguishing between cases when we know 

that a rewrite doesn't occur, and cases when we do not know whether a rewrite can 

occur, particularly cases involving non-terminating reductions arising from terms in 

the antecedent of an invoked rewrite rule. 

2. The relation \11 R is not 'monotone'. 

Definition 4 A mapping~ is monotone iff for all the elements in the (partially ordered) 

domain, S ~ T implies ~(S) ~ ~(T). 

2.3 Kleene's 3-valued logic 

Kleene (9] presented a three-valued logic, partly motivated by the desire to give truth

value meanings to partial recursive functions. The logic hence lends itself easily to explain 

non-deterministic and infinite computations. Kleene's third truth value represents the 
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indeterminate or unknown nature of statements. The truth, falsehood, or indeterminacy of 

statements may be captured by using Smullyan's notation of 'signed statements': 

Definition 5 If '1/; is a statement, T'lj; is a signed statement which is to be understood as 

asserting "'1/; is true". Similarly, F'lj; is a signed statement which is to be understood as 

asserting "'1/; is false", which is contradictory to T'lj;. A set of signed statements is consistent 

if it is consistent in the usual sense, and also does not contain the pair T'l/;, F'lj; for any 

statement '1/J. 

Implicitly, if a set of signed statements contains neither T'l/; nor F'lj; for some formula 

'1/;, it is understood that '1/; is indeterminate or has Kleene's third truth value. 

'Saturated' consistent sets of signed statements are intended to serve as models for 

logic programs. To summarize a lengthy definition in [5], a set S of signed statements is 

saturated iff it contains the intuitive consequences of the members of S; e.g., 

- T(X A Y) E S implies T(X) E S and T(Y) E S, 

- F(Vx.P(x)) E S implies F(P(t)) for some closed term t, 

- F X E S implies T( •X) E S, 

- FX E Sand FY E Simply F(X V Y) E S, 

et cetera. 

3 New Semantics 

Unlike Prolog-style logic programs, the operational use of CTRS involves iterated rewrites 

ensuing from the antecedents of conditional rules. So the definition of conditional rewriting 

recursively involves that of iterated rewriting. A careful definition of what it means for 

"p ---+ 'R q" to be "false" is needed, since this is needed when evaluating negative equality 

literals in the antecedents of rules. 

Let S be a consistent set of signed two-tuples; intuitively, S is a potential description 

of a rewrite relation. T(p, q) E Sis an abbreviation for T(Rewrites(p, q)), intended to mean 

that p rewrites to q; and similarly F(p, q) E S means p is known not to rewrite to q. If 

neither of these is present in S, that means the reduction from p to q is not known to be 

true or false, i.e., "p--+ q" has the third truth value. 

A new set of signed statements S*, describing the iteration of rewrites in S, is 

defined as follows. For convenience, let S* = Sf l±J S}, distinguishing sets of statements 

with prefixes T and F, respectively. Sf is just the reflexive transitive closure of the true 

statements in S, which is the least set satisfying the following three conditions. 
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1. Va. T(a, a) E Sf, 

2. Va, b, if T(a, b) E S, then T(a, b) E Sf, and 

3. Va, b, c, if T(a, b) E Sf and T(b, c) E Sf, then T(a, c) E Sf. 

The construction of Sj;. is slightly more complicated; note that F(a, b) E S does not 

necessarily imply that F(a, b) E S*: a rewrite sequence from a to b might exist through 

some other terms, e.g., if {F(a, b), T(a, c), T(c, b)} ~ S, then T(a, b) E S*. 

To conclude the absence of rewrite sequences, there should be no intermediate term 

from which a reduction sequence can occur. It is safe to assert that (p ---+:R q) is false iff 

it can be determined that there is no rewrite sequence of finite length from p to q. This 

aspect can be satisfied by an iterative construction as follows, where S} represents 2 tuples 

among which there is no reduction sequence of length :::; i. 

Sfj. 
S} 
S}+l -

S} 

{F(a, b)Ja ¢ b} 

{F(a, b)JF(a, b) E Sfj. A F(a, b) E S} 
{F(a, b)JF(a, b) E S} A Vy[F(y, b) E S} V F{a, y) E S]} 

.limS} 
1--->00 

Note: Vi, S}+l ~ S}, thus S} is the greatest lower bound of a chain of sets in the subset 

ordering. 

Example 1 Let the language contain only the constants a, b, c, d. 

{
a---+b} 

Let R = b ---+ c . 

c---+d 

Let S = { F(a, a}, T(a, b), F(a, c), F(a, d), 

F(b, a), F(b, b), T(b, c), F(b, d), 
F(c, a), F(c, b), F(c, c), T(c, d), 

F(d, a), F{d, b), F(d, c}, F(d, d)} 

Then Sf= {T(a, a), T(a, b), T(a, c), T(a, d), 

T(b, b), T(b, c), T(b, d), 
T(c, c), T(c, d), 
T(d, d)} 
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SoF-

SlF-

S2-F-

s* -s3-F- F-

{F(a, b), F(a, c), F(a, d), 

F(b,a),F(b,c),F(b,d), 

F(c, a), F(c, b), F(c, d), 
F(d,a),F(d,b),F(d,c)} 

{F(a, c), F(a, d), 

F(b, a), F(b, d), 

F(c, a), F(c, b), 
F(d,a),F(d,b),F(d,c)} 

{F(a,d),F(b,a),F(c,a),F(c,b),F(d,a),F(d,b),F(d,c)} 

{F(b, a), F(c, a), F(c, b), F(d, a), F(d, b), F(d, c)} 

Example 2 Let the language contain only the constants a, b, c, d. 

LetR= { ::: }· 
c-+d==?c-+d 

Let S = {F(a, a), T(a, b), F(a, c), F(a, d), 

F(b, a), F(b, b), T(b, c), F(b, d), 
F(c,a),F(c,b),F(c,c), 

F(d,a),F(d,b),F(d,c),F(d,d)} 

Then s:;. = {T(a,a),T(a,b),T(a,c), 

T(b, b), T(b, c), T(c, c), T(d, d)} 

Sf;,= {F(a, b), F(a, c), F(a, d), 

F(b,a),F(b,c),F(b,d), 

F(c, a), F(c, b), F(c, d), 
F(d, a), F(d, b), F(d, c)} 

S} = {F(a, c), F(a, d), 

F(b, a), F(b, d), 

F(c, a), F(c, b), 
J?(d,a),J?(d,b),J?(d,c)} 

s;.. = { J?(a, d), J?(b, a), J?(c, a), J?(c, b), J?(d, a), J?(d, b), J?(d, c)} 

Sj,. = S} = { J?(b, a}, J?(c, a), J?(c, b}, J?(d, a}, J?(d, b), J?(d, c)} 
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Lemma 1 If Sis consistent, then S* is also consistent. 

Lemma 2 The '*'operator is monotone, i.e., if S1 ~ S2, then s; ~ S2. 

Definition 6 When R is an EI-CTRS, a mapping <I>R from sets of signed two-tuples to 

sets of signed two-tuples is defined as follows: <I>R(S) is the smallest relation such that 
n m 

• T(a, b) E <I>R(S) if R contains a rule 1\ Si = ti /\Pi =J qi =? l -t r such that 
i::::l i=l 

• F(a, b) E <I>R(S) if for every rule [1\isi = ti 1\i Pi =J qi =? l -t r] in R, 

V [ (ajk = lu 1\ b = a[ru]k) =? (:3i · Vri · F(sw, ri) E S* V F(tiu, ri) E S*) l 
Vk· u 

V(:3j:3ri · T(piu, ri) E S* 1\ T(qiu, ri) E S*) 

Lemma 3 If S is consistent, then <I>R(S) is consistent. 

Proof: Assume S1 ~ S2• 

Let T(a, b) E <I>R(St)· 
n m 

Then R contains a rule 1\ Si = ti 1\ Pi =J qi =? l -t r such that 
i::::l i=l 

[ 
ajk = lu 1\ b- a[ru]k ] 

3k, 3u. 1\ [Vi.· :3ri · T(siu, ri) E s; */\ T(tiu, ri) E s;] * 
1\ [VJ · Vri · F(piu, ri) E S1 V F(qiu, ri) E S1 ] 

Since s; ~ s; (by lemma 2), we have 

Vi· 3ri · T(siu, ri) E s; 1\ T(tw, ri) E s;, 
and VjVri · F(piu, ri) E S2 V F(qp, ri) E S2 

T{a, b) E <I>R(S2). 

Similarly, we can show that if F{a, b) E <I>R(S1 ), then F(a, b) E <I>R(S2). 

Hence <I>R(St) ~ <I>R(S2). D 

Key Observation: The fixpoints of <I>R describe the semantics of conditional rewriting with 

an EI-CTRS R; particularly important are the least fixpoint and the largest intrinsic fixpoint. 
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We now investigate the fixpoints of the monotone relation <I> R corresponding to each 

rewrite system R. 

Theorem 2 Let R be any EI-CTRS, and <I>R be as defined above. Then: 

1. <PR has maximal fixpoints. 

2. <PR has a smallest fixpoint. 

3. <I>R has a largest intrinsic fixpoint, which is a subset ofn{maximal fixpoints of <PR}· 

4. The smallest fixpoint of <PR above the empty set { } is intrinsic. 

Proof: Let D be the collection of all consistent sets of signed statements, ordered by 

the subset relation. D has a smallest member { }, since the emptyset is consistent. Every 

chain 8 1 ~ S2 ~ • • • of elements of D has an upper bound U lim Si. Also, every non empty 
' set having an upper bound has an 1. u. b. Since <P R is monotone on D, all the premises of 

theorem 2.2 in [6] are satisfied, and the conclusions stated in this theorem directly follow. 

0 

A smallest fixpoint can be constructed using the following transfinite sequence of 

consistent sets of signed statements. Let <PR be as defined earlier, for any EI-CTRS R. 

Definition 7 
Ao = {} 

Ai+l = <I>(Ai) 

A>. = U{Aala < ..\} for limit ordinals..\ 

By transfinite induction, it can be shown that this is a weakly increasing sequence, i.e., 

Aa < Aa+l for all a. But the sequence cannot be strongly increasing, i.e., it is not possible 

that Vo. · Aa < Aa+b since a sequence of consistent sets cannot have as many members as 

there are ordinals. Hence, for some a, we must have Aa = <PR(Aa), i.e., some member of 

the sequence is a fixpoint of <P R· 

4 Examples 

The following are some examples which illustrate the application of the new fixpoint se

mantics. Some of the CTRS's considered here cannot be handled adequately by previously 

given semantics, because they do not satisfy the conditions for termination, and are not 

constructor-based specifications. In each case, we assume that the only symbols in the 

language are those that appear in the rules of the rewriting system being considered. For 

each CTRS R, we begin with candidates for fixpoints which are supersets of 'Z', defined as 
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{ F(p, q) I there is no rule ( C :::} l ---+ r) E R such that 3k, a.la pj k/\q - p[ra]k}. 

The rationale is that for any S, ci>n(S) will always contain F(p, q), for those pairs of terms 

p, q such that no rule in R can possibly reduce p to q. 

Example 3 Let R1 be {a= b:::} a---+ b}. 

Let Z = {F(a, a), F(b, a), F(b, b)}. Candidates for the fixpoints of ci>n1 are: Z, 

Z U {T(a, b)}, and Z U {F(a, b)}. Each of these is a fixpoint; Z itself is the least fixpoint, 

whereas the other two are maximal fixpoints, with each of which Z is compatible. Hence 

Z is also the greatest intrinsic fixpoint of cJ> R 1 • 

Example 4 Let R2 be {a =f. b:::} a---+ b}. 

Again, let Z = {F(a,a),F(b,a),F(b,b)}. Candidates for the fixpoints of ci>n2 are 

also again Z, Z U {T(a, b)}, and Z U {F(a, b)}. Of these, only Z is a fixpoint: note that 

ci>n2 (Z U {T(a, b)}) will contain F(a, b), and ci>n2 (Z U {F(a, b)}) will contain T(a, b). Hence 

the others are not fixpoints of cJ> R 2 • 

Example 5 Let R3 be {a =f. c:::} a ---+ b }. 

Let Z = {F(a, a), F(a, c), F(b, a), F(b, b), F(b, c), F(c, a), F(c, b), F(c, c)}. Candi

dates for the fixpoints of ci>n3 are Z, Z U {T(a, b)}, and Z U { F(a, b)}. Of these, Z is a 

fixpoint, because the absence of T(a, b) and F(a, b) from Z implies that ci>n3 (Z) will contain 

neither T(a, b) nor F(a, b). Also, Z U {T(a, b)} is a fixpoint since ci>n2 (Z U {T(a, b)}) will 

contain T(a, b). But ci>n2 (Z U {F(a, b)}) will contain T(a, b), hence the third candidate is 

not a fixpoint. Hence Z is the least fixpoint, whereas Z U {T(a, b)} is the only maximal 

fixpoint, which is hence the greatest intrinsic fixpoint. 

Example 6 Let R4 be {a= c:::} a---+ b}. 

Let Z = {F(a, a), F(a, c), F(b, a), F(b, b), F(b, c), F(c, a}, F(c, b), F(c, c)} again. Can

didates for the fixpoints of cJ>~ are Z, ZU {T(a, b)}, and ZU {F(a, b)}. Of these, Z is again 

a (least) fixpoint. Z U {F(a, b)} is also a fixpoint, but not ZU {T(a, b)}. Thus ZU {F(a, b)} 

is the greatest intrinsic fixpoint. 

Example 7 Let R5 be { c =f. d:::} a ---+ b }. 

Let Z = {F(a, a), F(a, c), F(a, d), F(b, a), F(b, b), F(b, c), F(b, d), F(c, a), F(c, b), 
F(c, c), F(c, d), F(d, a), F(d, b), F(d, c), F(d, d)}. Candidates for the fixpoints of ci>n5 are 

Z, ZU {T(a, b)}, and ZU {F(a, b)}. This time, Z is not a fixpoint because ci>n5 (Z) contains 

T(a, b). For the same reason, Z U {F(a, b)} is also not a fixpoint. The only fixpoint is 

Z U {T(a, b)}. 
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Example 8 Let Rs be {c =F d =>a-+ b, a =F b => c-+ d}. 

Let Z = {F(a,a),F(a,c),F(a,d),F(b,a),F{b,b),F{b,c),F(b,d), F{c,a),F(c,b), 
F(c, c), F(d, a), F(d, b), F(d, c), F(d, d)}. Candidates for the fixpoints of ~Re are those 

supersets of Z which contain at most one of T(a, b), F(a, b), and also at most one of 

T(c, d), F(c, d). Of these, Z itself is a (least) fixpoint since it does not contain signed 

tuples which would enable either of the rewrite rules in Rs to be activated. If a fixpoint 

contains F{a, b), then it must also contain T(c, d) since the second rewrite rule is activated; 

indeed, Z U {F(a, b), T(c, d)} is a {maximal) fixpoint. Similarly, Z U {F(c, d), T(a, b)} is 

also a (maximal) fixpoint. These maximal fixpoints are not mutually compatible, and Z is 

a fixpoint compatible with each of these maximal fixpoints. Hence Z is the least as well as 

the largest intrinsic fixpoint. 

It can be shown that the other candidates are not fixpoints. For instance, ci> Re ( Z U 

{T(a, b)}) does not contain T(a, b), since the antecedent of the first rewrite rule is not 

enabled: F(c, d) fl. Z U {T{a, b)} 

Example 9 Let R7 be {a= b =>a-+ b, a =F b =>a-+ b}. 

Let Z = {F(a,a),F(b,a),F(b,b)}. Candidates for the fixpoints of ~R7 a.re Z, Z U 

{T(a, b}}, and Z U {F(a, b)}. Of these, Z is a (least) fixpoint. Also Z U {T(a, b)} is a 

fixpoint, but not Z U {F(a, b)}. Hence Z U {T(a, b)} is the greatest intrinsic fixpoint. Note 

that a 'disjunctive' conditional rewriting mechanism which examines the antecedents of 

multiple rules achieves computation of the greatest intrinsic fixpoint in this case. 

Example 10 Let R8 be {c =F d =>a-+ b, a =F b =>a-+ b}. 

Let Z = { F(a, a), F(a, c), F(a, d), F(b, a}, F(b, b), F(b, c), F(b, d), F(c, a), F(c, b), 

F(c, c), F(c, d), F(d, a), F(d, b), F(d, c), F(d, d)}. Candidates for the fixpoints of ~Rs are 

Z, Z U {T(a, b)}, and Z U {F(a, b)}. Since Z contains F(c, x) and F(d, x) for every x, every 

superset of Z which is a fixpoint must contain T(a, b) since the first rewrite rule is enabled. 

Hence Z U {T(a, b)} is the only fixpoint. 

Example 11 Let~ be {c =F d =>a-+ b, a =F b => c-+ d, a= b::} c-+ d}. 

Let Z = {F(a, a), F(a, c), F{a, d), F(b, a), F(b, b), F(b, c), F(b, d), F(c, a), F(c, b), 

F(c,c), F(d,a),F(d,b),F(d,c},F(d,d)}. Candidates for the fixpoints of ci>.ng a.re those 

supersets of Z which contain at most one of T(a, b), F(a, b), and also at most one of 

T(c,d), F(c,d). Of these, Z itself is a (least) fixpoint since it does not contain signed 

tuples which would enable either of the rewrite rules in R9 • If a fixpoint contains F(a, b), 

then it must also contain T{c, d) since the second rewrite rule is activated; indeed, Z U 

{F(a, b), T(c, d)} is a (maximal) fixpoint. 
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There are no other fixpoints: every superset of Z which contains F{a, b) or T{a, b) 

must also contain T{c, d) if it is a fixpoint, since the second or third rewrite rule is enabled. 

But every superset of Z which contains T{c, d} must also contain F{a, b) if it is a fixpoint, 

since the antecedent of the first rewrite rule is falsified. And every superset of Z which 

contains F{c, d} must also contain T(a, b} if it is a fixpoint, since the first rewrite rule is 

enabled. 

Example 12 Let R10 be 

{ c i= d ::::} a -+ b, a i= b ::::} c -+ d, a = b ::::} c -+ d, c = d ::::} a -+ b}. 

Again, let Z = {F{a, a), F{a, c), F{a, d), F{b, a}, F{b, b), F{b, c), F{b, d), F{c, a), 

F{c,b), F(c,c}, F(d,a),F(d,b},F(d,c},F(d,d}}. We again examine various consistent su

persets of Z which are potential candidates for the fixpoints of (_[) Rto. Z itself is a (least) 

fixpoint, as in the previous example. If one of the other candidates contains T{a, b), then 

the third rewrite rule dictates that it must also contain T { c, d) if it is a fixpoint (and con

versely). Indeed, Z U {T(a, b}, T{c, d}} is a (maximal) fixpoint. Candidates which contain 

F{a, b) (or F{c, d}) are not fixpoints, because the second (or first) rewrite rule is then en

abled, generating T{c, d} (or T(a, b}, respectively), which in turn implies that the candidate 

must contain T(a, b} (or T{c, d}, respectively) making it inconsistent. Hence there are no 

other fixpoints. 

5 Conclusions 

We have investigated the fixpoint semantics of conditional term rewriting systems with 

negation. Two-valued semantics does not ascribe a meaning to some CTRS's which do not 

satisfy useful properties like termination. We have shown that a three-valued approach 

used by Fitting [5] for Prolog-style logic programs is applicable in this context. A mono

tone operator is developed, whose fixpoints describe the semantics of conditional rewriting. 

Several examples illustrate this semantics for 'troublesome' rewrite systems which could 

not be handled easily by previous approaches. This work supports the contention that 

results achieved in research on Prolog-style logic programming can be useful in the context 

of conditional term rewriting. 

We have hesitated to say whether it is the least fixpoint or the greatest intrinsic 

fixpoint which better describes the semantics of the EI-CTRS. The examples may motivate 

a preference for one or the other. The operational mechanism described in [13] and [8] 

computed members of the least fixpoint. To compute the greatest intrinsic fixpoint, we 
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need a different operational mechanism which uses "disjunctive rewriting" [14] ( cf. example 

9) as well as a mechanism which returns failure in some cases when naive evaluation of the 

antecedent leads to non-termination (cf. example 5). The formulation of such a rewriting 

mechanism, which computes precisely the greatest intrinsic fixpoint, is an issue for future 

work. In non-controversial cases, when termination requirements are satisfied, the least 

fixpoint and the greatest intrinsic fixpoint coincide ( cf. examples 3, 4, 7). 
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