
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

7-1989

Term Rewriting with Conditionals and Priority Orderings Term Rewriting with Conditionals and Priority Orderings

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mohan, Chilukuri K., "Term Rewriting with Conditionals and Priority Orderings" (1989). Electrical
Engineering and Computer Science - Technical Reports. 56.
https://surface.syr.edu/eecs_techreports/56

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/56?utm_source=surface.syr.edu%2Feecs_techreports%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

8U-CIS-89-05

Term Rewriting with Conditionals
and Priority Orderings

Chilukuri K. Mohan
mohan@top.cis.syr.edu

July, 1989

School of Computer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology

Syracuse, New York 13244-4100

Term Rewriting with Conditionals and Priority Orderings

Chilukuri !(. Mohan

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244..4100

U.S.A.

315-443-2322 moha n(Qtop.cis.syr.edu

{July 6, 1989}

Abstract

Conditional re,vriting and priority re,vriting are two recent generalizations of term rewriting

systems. In the former, each re\vrite rule is accompanied by an antecedent which must be

sho,vn to hold before rewriting can OCCUI. In the latter, re,vrite rules can be used only' in

a particular order. We compare these formalisms: neither formalism encompasses the other

in a practical sense, but we give restrictions under which priority and conditional rewriting

can be equivalent. We combine the two operational mechanisms, obtaining a natural and

expressive formalism called Priority Conditional Rewriting Systems (PCRS). PCRS can be

used to "fully-define" data type specifications and function specifications. Towards this

goal, restrictions are given that encourage modularity of specifications and ensure properties

of termination, confluence, and total reducibility of ground terms. A logical semantics for

priority conditional rewriting is described, using equational formulas £(~) obtained from the

rules in the PCRS ~; we give conditions under which rewriting with PCRS is sound and

complete.

1

1 Introduction

Term rewriting systems (TRS) are sets of oriented equations, which implement equational

theories using simple operational mechanisms [HO], [DJ}. The rewriting paradigm has clear,

localized declara.tive semantics, and has applications in the areas of theorem-proving, alge

braic specifications and functional/logic programming. Recently, attention has beer... focused

on two extensions to term rewriting:

1. Conditional rewriting, using Conditional TRS (CTRS), where each rewrite rule is ac

companied by an antecedent that must be shown to hold before rewriting can occur

[I<J], e.g., the following "Equational-Inequational-CTRS" specifies an exponentiating

fundion.

int(O)~tTue

int(x) =true => int(succ(x))--ttrue

power(x, 0)--+1

power(!, y)-+l

int(x) = true 1\ int(y) = true => power(x, succ(y)--+times(x,power(x, y))

y f; 0" int(x) =1= true:::} power(x,y)--t..L

x =1= 1 Aint(y) =1= true => power(x,y)-+J.

2. Priority rewriting, using Priority rewriting systems (PRS), where certain higher priority

re\vrite rules can inhibit rewriting by lower priority rules [BBK], e.g., the following PRS

specifies a function that distinguishes pure lists from other data types, with Tl > T2 and

T3 > roC > r$ in the priority ordering.

1
rl: and(true, true)-+true

r2 : and(x, y)-+f alae

r3 : Islist(nil)--+true

r.. : Islist(cons(x,y))-+and(Islist(x),Islist(y))

rs : I slist(z)~ false

2

A specification written using one formalism (CTRS or PRS) cannot easily be translated

into an equivalent specification in the other formalism in a practical sensej attempts to do

so distort the language, the properties of the specification, or the concept of equivalence

of rewriting systems. In conditional rewriting, no rewriting occurs if the antecedent of

a potentially applicable rule does not hold; in general, this effect cannot be achieved by

merely using encoded unconditional definitions of if-then and equality predicates. Conversely,

priority rewriting is sometimes not "stable on replacement" i.e., it is possible that p rewrites

to q but M (. · ·p •• .) can only rewrite using a higher priority rule to some term other than

M(... q .. .). Hence no equivalent formulation for such PRS can be obtained using TRS or

CTRS, which are stable by definition ..

\Ve study special cases and restrictions under which priority and conditional rewriting can

be equivalent. More importantly, we amalgamate the two operational mechanisms, obtaining

a natural combination called Priority Conditional Rewriting Systems (PCRS). T,vo alternative

definitions are possible for priority rewriting. The first (P-rewriting) makes effective use of

priority ordering among rules defining different functions, but is not decidable. The second

definition (I-rewriting) uses an innermost-first rewriting strategy and is decidable, but ignores

the priority ordering among rules defining different functions.

A logical semantics for priority conditional rewriting is described, using equational for-

mulas E(~) obtained from the rules. In priority rewriting with a rule of lower priority, the

assumption that higher priority rules cannot apply implicitly necessitates assuming certain

default inequations which are not consequences of the rules themselves. Similarly, in con

ditional rewrite rules, negated equality literals in the antecedent have to be assumed since

they cannot be proved. Thus 'p rewrites to q' implies that p = q holds only in some of

the models/E-interpretations of £(~). Hence soundness and completeness are defined with

respect to the inequations (\IT) which must be assumed to permit rewriting with conditional

and lower priority rules. When functions are partitioned into defined functions and free

s;onlitruetQf§ (E e), soundness and completeness is naturally defined w.r.t. (re, the set of

inequations between non-unifiable constructor terms.

3

For example, let ~ be the following PCRS which defines a three-valued equality predicate,

augmented by other rules like type(O) -+ number and type(nil) --t list.

eq(x,x)-+T

type(x) =type(y) => eq(x,y)-+F ,where each rule has higher priority

eq(x, y)--+.l

V'x.[eq(x,x) = T] "

than the next. Then £(~)is Vx,y.[type(x):# type(y) V eq(x,y) = F V :t = y] "

Vx,y.[eq(x,y) =.1 V % = Y V type(x) = type(y)]

Using this PCRS, the term eq(nil, 0) would reduce to 1., the 'undefined' truth value, assuming

that type(nil) and type(O) evaluate to different constants (list and number, respectively).

Such a reduction implicitly assumes the inequations 0 =I nil and list =I number, which occur

in '1t; it can be sho,vn that priority rewriting with ~ is sound and complete w.r.t. this '1',

which implies inequations bet\\·een distinct ground constructor terms.

\Ve give conditions under which re\vriting with PCRS is sound and complete, general

izing previous results for (unconditional) PRS [Mo2]_ Towards the goal of using peRS to

"fully-define" data type and function specifications, restrictions are given that encourage

modularity of specifications and ensure properties of termination, confluence, and total re

ducibility of ground terms. These restrictions suffice to ensure that each ground term has a

unique constructor term reduct, thereby assuring soundness and completeness w.r.t. We-

This paper extends, combines, and generalizes the results given earlier for unconditional

PRS in [Mo2] , and unprioritized CTRS in [MS2]. Section 2 introduces conditional and

priority rewriting. In section 3, we compare these two rewriting concepts, giving restrictions

which enable translation of PRS to CTRS and vice versa. In section 4, we present alternative

definitions of priority conditional rewriting, which conform to the requirements of equational

reasoning. Section 5 presents the restrictions on PCRS needed for satisfying useful properties

like modularity and ground confluence. In section 6, we give an equational logical semantics

for PCRS, and criteria for soundness and completeness which are particularly relevant for

constructor-based specifications.

.(

2 Preliminaries

\Ve first review a few recently proposed formalisms for conditional rewriting. Then we define

the mechanisms involved in priority rewriting with an equational orientation.

We adopt standard notation and definitions for unexplained terms (see [HO, DJ]). "V.F' ,

"3.F" respectively denote that -all variables in F are universally or existentially quantified.

The scope of a quantifier followed by a period is the longest well-formed formula following

the period. "p =q" denotes that p and q are syntactically identical. "V(t)" denotes the set

of variables in t; a term t is ground if V(t) is empty. We indicate that p is a subterm of l.{

by writing k![P], and M[P/q] is the term resulting from the replacement of an Occurrence

of subterm p (in M[pJ) by q. A syb:stitution is a mapping from variables to termsj if t

is a term and (J' a substitution, then tu denotes the application of u to t, i.e., the result of

simultaneously replacing all occurrences of variables in t by the terms to which C1 maps them.

A grounding substitution is one ,vhich maps each variable (occurring in the terms to which

it is applied) to a ground term. A term t matches s if there is a "matching" substitution (1

such that t =50'; a term p \lnifies with q if there is a "unifying" substitution 9 such that

pO =q8. Each sub-formula Li is referred to as a disjunct when it occurs in the disjunction

L1 V··· V Ln , and as a conjunct when it occurs in the conjunction LI /\ ••• "Lm •

\Ve denote by p -+R q that a term p rewrites to q in one step using a rewrite system

R, with any relevant operational rewriting mechanism; p -+R q denotes that p rewrites to q

using R in zero or more steps, and we then say that q is a reduct of p. A rewriting system

is said to be (ground) cQnfiuent if for every (ground) term t, there are converging reduction

sequences from every pair of distinct reducts of t. Variables in different rules are generally

assumed to be distinct.

2.1 Conditional Rewriting

Definition 1 :

• A Conditional rewrite rule is a three-tuple, written [antecedent => lhs rhs I, consist

ing of a conjunction of literals ("antecedent"), and two terms ("lhs" and "rhs").

5

• A Conditional term rewriting system (CTRS) is a finite set of conditional rewrite rules;

unconditional TRS are a special case, containing rules with empty antecedents.

• A term t is redllced to s by the CTRS R conta'ining a ruleC => 1--+ r if

- t contains a 5ubterm m (the redex) which matches I using a substitution (1,

- s is the result of replacing in t an occurrence of m by ru, and

- the instantiated antecedent Cu is shown to "hold" (differently for different eTRS).

Conditional rewriting became a subject of study beginning with [BDJ], and [KJ] contains

a representative sample of papers on the topic. CTRS may be classified depending on what

literals are contained in the antecedents of rules, and on how the antecedents are sho,vn to

"hold" while reducing terms. Earlier work focused mostly on issues like hierarchical CTRS

[Re, Na], completion procedures [I{al, Ga], and implementation [RZ, Ka2] for eTRS with

equations in the antecedents of rules. The features which distinguish recent CTRS formalisms

are the respective presence of negated equality literals and 'logical' variables (~ Ihs) in

the antecedents of rules, which are useful for applications like data type specifications and

equational programming- Vle no,v identify these principal classes of CTRS, \vhich are to be

compared with PRS.

• In Equational-CTRS (E-CTRS) the antecedent of each rule is a conjunction of equations

[I{al], [J\V]. E-CTRS need not be hierarchical: well-defined evaluation of antecedents

is assured by ensuring that terms in the antecedent are strictly smaller than the Ihs

of the rule in some monotonic, well-founded stable term ordering. The equalities in

the antecedent a.re evaluated by checking whether the terms equated have converging

reduction sequences.

• In Equationa.l-Inequational-CTRS (EI-CTRS), the antecedent is a conjunction of equa

tions and inequations [MS2], [I{a3]. This formalism extends E-CTRS, by allo,\-ing the

inclusion of negated equality (#) literals; in evaluating antecedents, p # q is ASSUMED

if p, q are shown to be ground terms whose reduction sequences do not converge.

6

Example 1 : The following EI-CTRS is such that remove(x, S) reduces to an expres

sion representing S \ x. The relevant constructors are empty and insert, and the first

argument of the latter may be any type of element.

remove(x,empty) -+ empty

% =Y =? remove{x, insert(Yt%» -+ remove(xtz)

x # y:::} remove(x, insert(y, z)) -+ insert(y, remove(x, z))

Using this specification, together with the integer specification rules

s(p(x)) -+ %, p(s(x») --. x,

we observe that remove(s(O), insert(p(s(s(O))), z)) reduces using the second rule to

remove(s(O), z), because there is a reduction sequence from p(s(s(O)) to s(O). Use

of the third rule (with an inequation in the antecedent) is illustrated in reducing

remove(s(O), insert (p(p(s (0») , z» to insert(p(p(s(O»)), remove(s(O), z)), because there

are no con,"erging reduction sequences from s(O) and p(p(s(O))).

• In Satisfiable-Unsatisfiable-CTRS (SU-CTRS), the antecedent of a rule may contain a

conjunction of literals to be proved satisfiable, and another conjunction of literals to

be proved unsatisfiable in the relevant equational theory [MSl], {MS3]. This formalism

thus admits logical variables as well as negation in the antecedents of rules. For the

present, we restrict consideration to cases where equality is the only predicate allo\\'ed

in the antecedent, and assume that an equality is satisfiable iff its arguments can be

"narrowed" to unifiable terms [Hu].

Example 2 : The following SU-CTRS specifies a duplist function to verify whether

the first argument equals a combination of two copies of the second argument. This

specification includes an error-check to screen cases where the first argument is not a

non-empty list.

sat[x = cons(y, y)J =} duplist(x, y) -+ true

sat[x = cons(u,v)J unsat[x =cons(y,y)J =} duplist(x,y) -+ false

unsat[x = cons(u, v)J =} duplist(x, y) -+ error

7

With this CTRS, duplist(cons(a, a), a) reduces to true using the first rule,

duplist(cons(a, b), a) reduces to false using the second rule, and

duplist(a, a) reduces to error using the last rule.

2.2 Priority Rewriting

Definition 2 : A Priority Rewrite System (PRS) [R, >] consists of an underlying uncondi

tional TRS R, with a partial ordering > among its rules, called the priority ordering.

PRS were initially proposed in [BBI<], and further explored in [Mo2]. In PRS, the priority

ordering determines which of many competing rules may be used to reduce a given term.

We now contrast alternative definitions of priority re'\vriting, extracting from the results

presented earlier in [Mo2].

Notation: [R1 , >1] is a sub-PRS of [R2 , >2] if R1 c R2 and >1 is a restriction of >2 to the

rules in R1• \Ve often use the (possibly subscripted) symbol ~ to denote a prioritized system

[R, >]. In the examples, the priority ordering is indicated by a do,vn,vard arro,v: each rule is

of 'higher' priority than a lo\\'er rule to which it is connected by '1'. A maximal priority rule

is one such that there is no rule of higher priority in the relevant system; since the priorit}, is

a partial order, there may be several maximal priority rules in a PRS. Rules may be labelled

to allow convenient reference, as in Tl : Ihs -+ rhs, where Tl is the label.

Definition 3 : A term p is P-reducible, and P-rewrites (or P-red\1ces) to p[m/tu) using a

PRS !l (abbreviated p -+, p[m/tu), with -+,. denoting reflexive transitive closure) if

• r: s ~ t is a highest priority rule in !R such that

• p contains a subterm m (the redex), such that m =8<7 for some substitution 17;

• m is ground if T is not a maximal priority rule, and

• m does not have any P-reducible proper subterms {mi} such that mi --.,. ni and

p[m[··· mi/ni· · .]] is P-reducible using a rule of higher priority than r.

Example 3 : The following PRS (with rule rl > rule r2) specifies a function eq to checks

8

whether its two arguments are equal..

eq(x, x) -. T

eq(x, y) --+ F

(a) Here, eq(eq(b,a),eq(a,b» cannot be directly reduced at the outermost symbol using

either rule, although it matches with the Ihs of rule T2. This is because, as per the last

part of the above definition, we must first ensure that the higher priority rule Tl cannot

be used to reduce a reduct of the given term obtained by replacing proper subterrns.. The

reducible proper subterms eq(b, a) and eq(a, b) are first reduced to F using rule T2, resulting

in eq(F, F), which can then be reduced to T using rule rl ..

(b) Similarly, eq(F,eq(x,x» cannot be P-reduced at the outer occurrence of eq by either

rule; and the priority ordering (Tl > T2) prohibits reduction at the inner occurrence of eq

using rule T2' The only possible reduction replaces eq(x,x) byT using rule Tl; the resulting

term eq(F, T) can then be P-reduced to F using rule T2 ..

The major problems with the above definition are that:

(a) P-rewriting is not stable on replacement, e.g., if the rule [j(g(x» -+ a] is of higher

priority than [g(h(x» -+ b] in a PRS, we find that g(h(a» P-reduces to bbut f(g(h(a») has

no common reducts with f(b) ..

(b) P-rewriting is not always decidable, e.g., if [j(a) -+ aJ > [f(x) -+ aJ > [c -+ g(c)J are

three rules in a PRS, then an attempt to P-reduce f(c) to a using the second rule does not

terminate, because we must first verify that f(a) cannot be obtained on replacing c (in f(c))

by any of its reducts.

Since performing a P-rewrite involves checking whether P-reduction of subterms yields a

term P-reducible by a higher rule, the original step of P-rewriting may never finish due to

non-termination of the P-rewriting sequences issuing from the subterms. But P-rewriting is

decidable if every reduction sequence is finite, and stability upon replacement ceases to be

of concern when P-rewriting is confluent. Hence the following result, which is applicable for

PRS satisfying certain stringent conditions..

Proposition 1 : Let ~ be a PRS whose underlying TRS R is confiuent and noetherian.

9

Then any ground term reducible using R is also P-reducible using 3lj and for any p,q, if

p-+'q then there are converging P-reduction sequences from (every) M[P] and M[plq].

Proof: Given in the appendix.

We thus obtain a sufficient condition for a confluence property which compensates for the

lack of stability on replacement. However, the premises of proposition 1 are rather strong,

and are not satisfied by simple and interesting PRS's like that in example 3. This motivates

the follo\ving alternative definition for rewriting using PRS.

Definition 4 : A term p is J-redl1cible, and I-rewrites (I-reduces) to q using a PRS ~ if

• p contains a ground subterm (redex) m, no proper subterm of which is I-reducible;

• !R contains a rule s -+ t, such that

• m matches s \vith a matching substitution u (i.e., m =so'),

• q is the result of replacing an occurrence of m in p by to' (i.e., q=p[m/tu]), and

• m is not I-reducible by any rule in ~ of higher priority than s --+ t.

Notation: We abbreviate 'p I-re\vrites to q using ~' by 'p --+, q'. \Vhere justifiable, ,ve

denote both 'p -+~ q' and 'p -+, q' commonly by 'p -+R qt or "priority rewriting". The

reflexive transitive closure of priority rewriting is indicated by '-+R'; if p ~R q, then ,\"e say q

is a reduct of p. Since V(rhs) ~ V(lhs) in each rule, ground terms have only ground reducts.

Example 4 (for the same PRS as in example 3, defining eq):

1
Tl: eq(x, x) -+ T

r2: eq(x, y) -t F

This time, in attempting to I-reduce eq(eq(bt a), eq(a, b)), the innermost subterms eq(b, a)

and eq(a, b) are each reduced to F, before any attempt is made to reduce the bigger term

at the outermost occurrence of eq. Then, the resulting term eq(F, F) matches with eq(x,x)

and can be I-reduced using rule rl to T.

Although I-rewriting is decidable and stable on replacement, non-ground I-reductions

are practically banned, to preserve the property of "stability on instantiation" (i.e., if p

10

rewrites to q, then every instance pu must also rewrite to the corresponding instance qO').

For instance, it should not be the case that f(g(h(a») reduces only to fCc) and then to a,

[and not to b], whereas I(g(x» reduces to b, as might happen if non-ground I-rewriting were

to be allowed using the following PRS:

1
f(g(x)) --. b

f(x) -+ a

g(h(x)) --. c

But this restriction also prohibits some plausible rewrites; e.g., we cannot I-rewrite eq(x,x)

to T. Another problem with I-rewriting is that non-termination of I-reduction sequences

can have undesirable consequences: intended reductions may not be reachable, because the

innermost reduction strategy is not fair. For example, lea) cannot be I~reduced to c using

(
I(x) --+ c)

a-+a

For these reasons, we study both competing definitions of rewriting with PRS. Another rea

son for not discarding the alternative -., (P-rewriting) concept is that it bears resemblance

to a specification mechanism (used in practice) of giving different priorities to rules defining

different functions, which is irrelevant in I-rewriting. One of the questions investigated in

the latter sections of this paper is: when is the use of such a mechanism meaningful?

3 Comparison of Conditional and Priority Rewriting

We now compare conditional rewriting and priority rewriting, addressing when one formalism

can equivalently express specifications written in the other. We are interested in straightfor

ward transformations from one formalism to another (e.g., PRS to EI-CTRS, or vice versa)

which preserve the property that a term reduces to another in one formalism iff it does so

in the other as well. For instance, the set of all priority rewrites possible using a PRS [R, >]

is generally a proper subset of the set of rewrites possible using the underlying TRS R,

hence we would not say that R is equivalent to [R, >]. For a study of analogous equivalence

11

concepts in logic programming, see [MaJ. At the outset, we observe tha.t the definition of

equivalence needs to be restricted to ground term reductions, since the definitions of priority

rewriting have largely been restricted to ground reductions.

3.1 PRS VB. EI-CTRS

At first sight, PRS a.ppear to be more general than E-CTRS and EI-CTRS, since the equal

ity predicate can be expressed using a PRS, and priority rewriting implicitly uses negated

preconditions in rules of lo\ver priority. For instance, the PRS in example 3 defining the eq

predicate is 'equivalent' to the unordered EI-CTRS

{eq(x,x) --+ T, x # y => eq(x,y) --. F}.

By using the corresponding PRS, together with a PRS defining an 'if' predicate, it appears

possible to avoid conditionals in rules altogether. For example, a conditional rule like

can be simulated by the follo\ving PRS, with each rule Ti having a higher priority than Ti+l:

rl : not(T) -+ F rs : neq(x, y) -+ not(eq(x, y))

r2 : not(F) -+ T r6 : and(T, T) -+ T

r3 : eq(x, x) -+ T r7 : and(x, y) -t F

r4 : eq(x, y) --+ F rs : if(T, %) --. x

rg : ~ --. if(and[eq(pl' Ql), and(eq(P2' q2) .•• and(neq(t1, 31)'· .. , neq(tn , Sn)·· .)], p)

Ho\vever, this is not an accurate translation of the original conditional re,vrite rule: the

last (least priority) rule Tg would apply (A. can always be re\vritten), even when the antecedent

(if-condition) does not hold. \Vhereas we would nQ1 reduce a term using the corresponding

conditional rewrite rule r c, the PRS yields an irreducible term "if(··· ,p)". Superficially, it

appears that this problem can be overcome by using a 3-ary if - then - else predicate "if3"

[instead of just an if - then as above], and replacing rules rs, rs in the above specification

12

by the following sub-PCRS (again with each Ti > Ti+J):

TID: if3(T,z,y) --. z

rl1: if3(z, x, y) --+ 'II

r12 : >. -t if3(and[eq(Ph ql), and(eq(p2' q2)··· and(neq(t l , "I)'···' neq(tn , "n)·· ·)1, p, >.)

But this Csolution' introduces a new problem: r12 is a non-noetherian rule which leads to non

terminating re\vrite sequences) since the Ihs of the rule (A) is a. proper subterm of the rhs.

The above proposal (translation of CTRS to PRS using "if3") should be rejected, because

it does not preserve the computational behavior (properties like confluence and termination)

of the rewrite system.

Another important problem with such a translation is that a "partial" CTRS specification

with a negative literal in the antecedent of a rewrite rule cannot be expressed using a PRS

in a straightforward way (e.g., x:l y::} f(x,y) -+ t). We may use

1
f(x,:t)--+f(x,x)

f(x,y)--+t

to achieve this effect (when the arguments of f are equal), but using this PRS leads to

non-terminating reduction sequences, whereas f(x, x) is just not reducible in the suppos

edly "equivalent" CTRS. Hence EI-CTRS are not accurately translatable to PRS in general.

However, the following result holds for well-behaved EI-CTRS, giving PRS which are equiv

alent in a certain sense (of having the same normal form), over an extended language with

several ne\v "hidden functions". The new PRS specification is much less intuitive and under

standable than the translated EI-CTRS, and it is also not the case that single EI-reduction

steps correspond to single priority re,vriting steps after the transformation.

Proposition 2 : Jf an EI-CTRS R satisfies the property that every reduction sequence from

each ground term t is finite and yields the same irreducible constructor term NR(t), 1Mn a PRS

P(R) can be constructed such that priority reduction sequences from any ground term t using

P(R) terminate yielding the same normal form NR(t) as that produced using R.

Proof: See Appendix.

13

Conversely, priority rewrite systems cannot (in general) be translated to equivalent unprior

itized EI-CTRS. For example, the following PRS

1
f(c(x,y)) -+ 8

j(z) -t t

cannot be easily specified using an EI-CTRS, since we cannot ha.ve a rule to help us check

and decide whether or not 3x, y.[c(x, y) =p] and accordingly reduce f(p). This is because,

traditionally, 'logical' variables not occurring in the Ihs of a conditional rule are not allowed

to occur in the antecedent.

Another problem occurs ,vhen non--terminating rewriting I-sequences exist, e.g., using

{f(x) --t C, a -+ a}, where f(a) cannot be I-reduced to c since the subterm a repeatedly

I-reduces to itself. In principle, it is not possible to determine \vhen such non-terminating

reduction sequences occur so as to prevent reduction using the "equivalent" eTRS obtained

by translating such a PRS. However, PRS which satisfy restrictions given in the following

result can be translated into equivalent EI-CTRS.

Proposition 3 : A PRS can be translated into an equivalent EI-CTRS if

• all reduction sequences finitely terminate, .illif.

• whenever we have [T! : f(-.s) ~ p] > [r2: g(l) -+ q] in the priority ordering for any two

rules, we have f =g, and the tuple s contains only variables and ground terms.

Proof: See Appendix.

3.2 PRS vs. SU-CTRS

As in the case of EI-CTRS, there is no obvious way to use PRS to express partial SU-CTRS

specifications or to do all the necessary antecedent-checking. In addition, SU-eTRS allow

checking the satisfiability of arbitrary equations, whereas priority rewriting can only perform

pattern-matching on terms, with no satisfiability-checking mechanisms like narrowing. How

ever, neither does the SU-CTRS formalism encompass priority systems, although SU-CTRS

allo\v logical variables as well as negated literals in the antecedents of rules. Since EI-CTRS

can be considered to be a special case of SU-CTRS, the restrictions of the previous proposi-

14

1
/(x) b

c-+ d

· tomatically sufficient to ensure the translatability of PRS to SU-CTRS. We now
lIon are au

·d the possibility of relaxing those restrictions.conS1 er
In the case of P-rewriting, it is obvious that lack of stability on replacement denies the

existence of any equivalent unprioritized SU-CTRS, because SU-rewriting is stable on re

placement. For example, note that c P-reduces to d whereas f{c) does not P-reduce to I{d),

using the following PRS:

In any SU-CTRS, if c reduces to d, it is true by definition that f{c) can reduce to I{d).

In the case of I-rewriting, the above problem does not exist, due to stability on replace

mentj hence it may be possible to construct equivalent SU-CTRS as outlined below. However,

the existence of non-terminating I-rewriting sequences causes the same problem as that for

the translation of PRS to EI-CTRS. If a PRS has rules like

I
f (t 1 , • • • , tn) -t t

f(SI, • • • ,Sn) --+ S

fun the corresponding SU-CTRS (obtained by transforming the abo"'·e) would ha';e rules

like the follo\ving, after first renaming variables in different rules in the PRS to be distinct,

and \vhere "tuple" is a ne\v n-ary function symbol which may be considered a constructor

for practical purposes (two tuples are equal iff their arguments are pair,vise equal).

(
f(tl'· ··,tn) -+ t)

unsat[tuple(t1 , • • • ,tn) = tuple(81, • • • ,Sn)] => f(31, • • • ,Sn) -+ S

Although such a transformation is permitted by the SU-CTRS formalism, non-termination

often results due to the narro,ving mechanism used to check whether an equation is

[un]satisfiable in the theory being described by the SU-CTRS in question. For example,

j(h(a, b)) clearly I-reduces to s using the PRS

g(cons(x,y) -+ g(y)

1
f(g(z» -+ t

f(h(x, y)) -+ S

15

but the transformed SU-CTRS is (with no "tuple" operator since f is unary):

g(cons(x, y)) -+ g(y)

I(g(z)) -+ t

UDsat[g(z) = h(x,y)] => f(h(x,y)) --t S

Hence SU-reducing f(h(a, b)) leads to an attempt to prove that g(z) = h(a, b) is unsatisfiable.

As per currently known techniques for checking satisfiability in an equational theory [Hul,

this has to be done by sho~"ing that g(z) and h(a, b) cannot be narro\ved to unifiable terms.

Unfortunately, an infinite narro,ving sequence ensues from the first rule: g(z) "-+ g(Zl) ~

g(Z2) ~ •••, since each g(Zi) narro\vs to g(Zi+l) using a narro\ving substitution which maps

Zi to cons(xi+l,Zi+l). So the reduction from f(h(a, b)) to s using the last conditional rule is

never completed.

This illustrates that the ability to transform a PRS to an SU-CTRS does not assure that

every possible priority re\vrite (--+P or -+1) is reachable by SU-rewriting using the 'equivalent'

SU-CTRS. Ho,vever, it is conceivable that a. different method for re\vriting using SU-CTRS

will overcome the non-termination problem. Restrictions that circumvent the existence of

infinite narro\ving sequences suffice to help construct SU-CTRS equivalent to a gillen PRS,

fol1o\ving the schema outlined above.

Proposition 4 : let ~ be a PRS such that all I-reduction sequences finitely terminate, and

only non-narrowable terms occur as the arguments of the lhs in each non-maximal priority rule.

Then there is an equivalent 5U-CTRS S(~) such that each ground term has the same irreducible

reducts via SU-reduction using S(~) and via I-reduction using ~.

The bottomline of the abo\'e comparisons is as follows: priority and conditional rewriting

mechanisms do not subsume each other, and direct translations do not appear to be possible,

unless v.?e introduce non-terminating re\vrite rules, hidden functions, ne,v normal forms, and

other unnatural mechanisms which tend to destroy the clarity and utility of the specification.

Permitting ourselves both the conditional and priority rewriting mechanisms allo,vs writing

specifications in an easier manner than if we try to avoid the features of either mechanism.

This motivates combining the two mechanisms, which we explore in the next section.

16

4
Conditional Rewriting with Priorities

We propose to enhance conciseness of specification by incorporating both priorities and

conditionals into a new formalism, viz., Priority Conditional Rewriting Systems (PCRS).

The associated rewriting mechanism is a combination of priority rewriting and conditional

rewriting: informally, terms are reduced by the highest priority rule with matching lhs,

when the antecedent holds. While conditional rules in any CTRS formalism can be priority

ordered, by way of illustration we consider (in what follows) only PCRS with E-CTRS

as the underlying rewrite systems. In other words, rewrite rules have only equations in

their antecedents, and all variables in each rule must occur in the lhs of the rule. This

seems adequate in the sense that the "fully-defined" SU-CTRS specifications we have so far

encountered in practice can be naturally encoded in this formalism. The handling of '#'
(negation of equality) in EI-CTRS can be mimicked using the sub-PRS of example 3 which

defines the 'eq' predicate; each inequation "p 1= q" occurring in the antecedent is replaced

by "eq(p, q) =F" ·

Hence antecedents of rules in PCRS need not contain inequations to be handled in any

special manner, although this may yield more readable specifications. [A re,vrite rule ,vith

'f' as the outermost symbol of its Ihs is said to define 'f'.] For purposes of P-re\vritina usiner
C 0

PCRS, we assume that the rules defining 'eq', 'and', and other logical predicates hav-e higher

priority than all other rules in the peRS. For clarity, we will assume that each equation

"eq(t1, t 2) =T" in the antecedent of a rule is replaced by UtI = t 2".

Definition 5 A PCRS consists of an underlying eTRS, containing rules of the form

which are partially ('priority') ordered. A term p rewrites to q using a PCRS ~ if

• p has a subterm M, and ~ contains a rule r: PI =ql A ···/\ Pn =qra => L -. R, ,vhich

is a rule of the highest priority such that

• M matches L with a matching substitution (1' (i.e., M =Lu);

• q == p[Lu I Ru];

17

• there are finitely converging reduction sequences (using ~) from the insta.ntiated terms

(PiU , q,(J) in each literal of the antecedent (i.e., Vi3ti.PiU -+R tj 1\ qjU -+il tj);

• and {we distinguish between the two possible definitions of priority conditional rewriting}

- I-re\vriting (-+'): M is ground, and no proper subterm of M is I-reducible by ~.

- P-re\vriting (~~): if r is not a maximal priority rule, then M is a ground term,

and M contains DO proper subterms N j with reducts Nj (Nj -+,. Ni) such that

p[Atl[·· · Nj/Nj .. ·ll is P-reducible using a rule> r.

The two cases above distinguish between P-rewriting and I-rewriting with PCRS. Note that

with the operational definition of I-rewriting (-+1), the priority ordering among rules defining

different functions is irrelevant, and we may consider \v.I.e.g. the restriction of the priority

ordering to rules defining the same function. For example, even if I(S1) --+ t1 is given to

be a rule of higher priority than g(52) --+ t2, the choice of rule used for I-re,vriting a term

containing f and g is determined exclusively on whether the I-term occurs as a subterm

of the g-term or vice versa, and not on the relative priority ordering among the t,,·o rules

defining the different functions. \Ve will consider only PCRS such that there are no redundant

rules or orderings among rules. For example, we will assume that there is no rule ,,"hich ,viII

never be fired because its Ihs and antecedent are 'covered' and implied by those of a higher

priority rule.

Example 5 : PCRS ~ belo\v defines a 3-valued equality predicate, with TS > TS > T7.

rl : type(O) -+ number

r2 : type(x) =number => type(s(x)) --+ number

r3 : type(nil) --+ list

T4: type(x)· list 1\ type(y) = list:::} type(cons(x,y)) -+ list

rs : eq3(x, x) --+ T

r6: type(x) =type(y) => eq3(x, y) --+ F

r7 : eq3(x,y) --+.L

To I-reduce a term like eq3(O, nil) using ~, we first check whether any of its proper

subterms are I-reducible. Since 0 and nil do not match with the lhs of any rule E R, we

18

eed to find rules whose Ihs's can be matched with eq3(O, nil). The first four rules do
proc
not apply because they define a function symbol other than eq3, and TS also does not apply

because 0 and nil cannot both be bound to the same variable x in the Ihs of TS' The Ihs

of T6 matches, with the substitution mapping x to 0 and 'J/ to nil. For reduction to occur

using this rule, we must now check whether the correspondingly instantiated antecedent

type(O) ;: type(nil) can be shown to hold. So the terms type(O) and type(nil) are respectively

reduced, checking for convergence of their I-reduction sequences. type(O) reduces using the

first rule to numbeT, and type(nil) similarly reduces to list using T3' Since the resulting terms

(number and list) are not reducible, we conclude that there were no converging reduction

sequences from type(O) and type(nil), hence the antecedent of rule T6 has not been shown to

hold, hence T6 cannot be used to reduce eq3(O, nil). Finally, since the Ihs of the last rule T1

can be matched with eq3(O, nil), and the antecedent is empty, reduction gn be perfonned,

yielding .1.

Precisely the same result ensues from P-rewriting eq3(O, nil). In trying to P-reduce a

bigger term like eq3(eq3(O, nil), .1.), we again find that rules Tl -T" cannot be applied because

they define a function symbol other than eq3. Since the application of rule TS requires that

the arguments of eq3 be identical (they must match the same variable x), even T5 cannot

be applied yet to the term either at the outermost level or at the subterm eq3(O, nil). For

application of rule r6, we need to consider the possibility of reduction at both occurrences of

eq3. As mentioned above, eq3(O, nil) cannot be P-reduced using r6 because its instantiated

antecedent does not hold. To examine whether r6 can P-reduce eq3(eq3(O, nil),.L) at the

outer occurrence of eq3, with the substitution mapping x to eq3(O, nil) and y to .1., ,ve need

to check whether the corresponding antecedent type(eq3(O, nil)) = type(.L) holds, and also

ensure that P-reduction of any proper subterm of eq3(eq3(O, nil), 1.) will not result in a reduct

which allo,vs reduction by a rule of higher priority than TS. In this case, the antecedent is

sho,vn to hold, because eq3(O, nil) P-reduces to 1. and hence type(eq3(O, nil)) has a reduction

sequence that converges with type(l.). But the requirement that inner subterm reduction

should not result in reducibility by a higher priority rule is not satisfied; rs cannot be used

19

for P-reduction, due to P-reducibility of eq3(O, nil) to -1-, and P-reducibility of the term

eq3(.L,.1.) [obtained by substituting the reduct of the reducible proper subterm] using higher

priority rule TS. SO we are left to examine P-reducibility at both occurrences of eq3 using

the last rule T1- But P-reduction by T7 a.t the outer occurrence of eq3 is prohibited for

precisely the same reason as above, i.e., because potential reduction of a subterm can make

the result reducible using the higher priority rule rs- Hence the only possible P-reduction is

that obtained by P-reducing the inner term eq3(O, nil) to .L using r7, giving eq3(-l,.1) as a

reduct of eq3(eq3(O, nil), .1.). This reduct can finally be reduced to T using rule rs, since the

arguments of eq3 are no\v identical.

5 Properties of peRS

\Ve no,v explore certain desirable properties of ground rewriting using PCRS, in a frame\\'ork

\vhere functions are partitioned into defined functions (E D) and constructors (E C). \Ve

say that a rule whose Ihs has f as outermost symbol defines Ij a CODstructor term is one in

\vhich defined functions do not occur; defined functions occur in DOD-CoDstrtlctQT terms~ As in

the case of unprioritized conditional specifications [MSl], termination of ground reduction,

ground confluence and reducibility of every ground non-constructor term are sufficient to

ensure that each ground term has a unique constructor term reduct, thereby satisfying

the requirements for soundness and completeness of priority rewriting using such peRS

[discussed in a later section].

Finite termination of all reduction sequences using the underlying CTRS is a. sufficient

condition guaranteeing that priority re,vriting also terminates. Methods to sho,v termination

of rewriting using E-CTRS extend lvell-kno,vn techniques for TRS [De], and rely on proving

that there is a well-founded, stable (on instantiation and replacement) ordering among terms,

in which every instance of the Ihs of each rule is greater than the corresponding instance

of the rhs and each term in the antecedent of that rule [KaIl- We note that this is not a

20

dl·tion for priority rewriting to terminate; for example, priority rewriting using

D~ary con {I ::; }
terminates trivially, since the first rule is of higher priority than the second, although the

d 1 · g TRS is not noetherian. The following gives an appropriate modification to theun er yIn

termination criterionj the proof is straightforward.

Proposition 5 : Ground priority rewriting with a PCRS terminates if there is a well-founded

stable term ordering ">-" such that for every rule c ::} I -+ r and every grounding substitution

tI, we have

~ leT >- reT and leT >- each term in CeT;

m it can be shown that CeT cannot hold (e.g., because CeT contain3 p = q where p and q are

distind irreducible terms);

mthere is a higher priority rule C =? L --t R such that 10' is an instance of L. and Cu can be

shown to hold.

"Confluence" is an issue of central importance in rewriting systems and their applications,

if re\vriting is to have an equational interpretation, since the equality of terms is to be verified

by checking that they have common reducts. A re\\"I'iting system is said to be (ground)

confluent if for every (ground) term t, there are converging redudion sequences from every

pair of distinct reducts of t. Other,vise, there is no easy way to prove (by repeated reduction

alone) that the equality of two given terms is entailed by the equational theory which the

rewriting system purports to describe.

Ground confluence of PCRS's can be assured by avoiding 'top-level' overlaps between Ihs's

of rules, giving higher priority to one member of each subset of rules with unifiable lhs's,

and ensuring that non-unifiable 1hs's of rules cannot be equal in the theory described by the

PCRS. These conditions also enforce modularity of function definitions and specifications in

a natural way. For modularity, a PCRS specification should consist of disjoint sub-PCRS's

separately defining each non-constructor for all possible constructor term arguments.

Definition 6 : A Definitional PCBS (or DPCRS) is a PCRS in which the 1hs of each rule

21

is of the form "'f(T)", where f is not a constructor and T is a tuple of constructor terms.

This does not prohibit the antecedents of rules from containing non-constructor terms.

The sets of ground irreducible terms ("normal forms") obtained using a DPCRS ~ coincide

for both definitions (-+1, -+P) of priority rewriting, if ~ satisfies the condition for ground

termination. This is true even though non-constructor terms occur in the antecedent of a rule,

as long as V(antecedent) C V(lhs). We observe that such a rule [x = g(y) => f(x, y) -t t]

behaves differently from [f(g(y), y) --t t]; in reducing f(t l , t2), the former cheeks for equality

of t1 and g(t2) via convergence of reduction sequences, whereas the latter checks for the

syntactic identity of t1 and g(t2). Hence the former (conditional) rule will in general be

applicable to many more terms than the latter (unconditional) rule.

Definition 7 : A pair of terms f(51'·· ·,8,,), g(t1,···,tm) are constructor-wise distinct

(and can hence be· considered inequal) if

• f and 9 are distinct constructors; or

• f and 9 are identical constructors, but 3i. lSi and tj are constructor-wise distinct].

For example, if nil and cons are constructors of arity 0 and 2 respectively, then the follo\ving

pairs of terms are constructor-,vise distinct:

cons(x, nil) and cons(nil, cons(x,f(y))),

cons(f(x), cons(x, nil)) and cons(f(x), cons(nil, cons(y,z))).

But none of the follo,ving pairs of terms are constructor-wise distinct:

nil and f(x),

f(nil) and g(cons(x, y),

cons(x,y) and cons(nil, cons(u,v)),

cons(x, nil) and cons(y,f(cons(u, v))).

Intuitively, from each of the latter (non-constructor-wise distinct) pairs, it is possible that

suitable replacements of non-constructor terms by constructor terms may yield a unifiable

pair.. H two terms are constructor-wise distinct, their inequality is entailed by axioms which

22

h t n unifiable constructor terms are Inequal. A more complex procedure gener
assert t a no -

h
. ndition can be derived from a result in [MSK], which shows how to prove the

aJi%iDg t JS co
• 1 consequences of a given set of inequations.

iOequatlona

·t·on 6 A DPCRS· ~ is ground confluent if the following premise is satisfied.
PropOSl 1

(Premise:) For every pair of rules Tl: C1 => L1 --+ .R1, T2: C2 => L2 --+ R2 whose Ihs's

unify with m.g.u. 0" (i.e., LIO" =L20"), one of the following conditions holds:

> r or r2 > rl in the priority ordering;
• rJ 2

• there is another rule [r : C => L --+ R] of higher priority than Tl (or T2), such that

38.[L
1
u =L8 and terms equated by literals in CO are identical];

• RIC! and R2u are identical;

• 3eq(p, q) =FECI U C2 such that pu, qu are identical;

• 3p = q e C1 u C2 such that pCl and qu are constructor-wise distinct;

• ~ = q as well as eq(P, Q) = F E Cl U C2 such that PO', Qu are identical upto mutual

replacement of some occurrences of their subterms peT, qUj

• 0 1 U C2 contains p = q as ,veIl as P = Q (or Q = P), such that Pu,pu are identical,

but Qu, qu are constructor-wise distinct.

~: Let ~ be a DPCRS which satisfies the above premise. First consider I-re,vriting, where

we can focus on top-level reductions, since proper subterms must be I-reduced first, and 1

reductions at disjoint subterms must commute. Let P -+, Ql using rule rl : C1 => L1 --+ R1

and P -+~ Q2 using rule r2 : C2 => L2 -+ R2, where the two rules have different \~ariables. LI

and L2 must be unifiable since there are substitutions 81 and 82 such that L1()1 =P =L282•

Let 0" be the most general unifier of LI and L2• Let 0"11 0"2 be the restrictions of 0" to V(L I)

and V(L2) respectively. Then there must be a substitution u' such that 81 is the composition

of (7'1 and u'. We now show that reduction sequences from Q1J Q2 must converge if any of

the conditions in the premise of the proposition is satisfied.

• If Tl > T2 or vice versa, such reductions P --+, QI and P --+, Q2 cannot both be possible.

23

• If there is a rule r : C => L -to R such that 30. [LID" =LO and r > Tl and literals in CD

trivially hold], then P would be reducible using r and not TI, since P =LOu', and C(Jq'

holds.

• If R1(1 =R2u, then Ql =Q2' hence the reduction sequences trivially converge.

• If 3eq(p, q) = F E Ct UC2 such that pO' =qu, then neither rule (TI' r2) can reduce instances

of L1u, £2(1', hence neither rule can reduce P.

• H 3p = q E Ct U C2 such that pu and qu are constructor-wise distinct, then reduction

sequences from PSI =pucr' and q81 =quu' (or p02 and q92) cannot possibly converge hence

both rules could not possibly have been used to reduce the redex P.

{The remaining cases are similar to the last two cases above}.

In the case of P-rewriting, we also need to consider the possibility of reductions using

rl, r2 at different levels in the tree representation of P, e.g., P =L161 but L282 =a proper

subterm of P. But since ~ is a DPCRS, that reducible proper subterm must occur in P at a

position corresponding to that of a variable in Lt. Hence reduction by T2 lea'ves the resulting

term reducible by TI' implying convergence of reduction sequences.

• Q.E.D.

Similarly, conditions may be given ensuring that the application of each function is speci

fied by a peRS for every possible ground constructor term tuple of arguments. For sufficient

completeness w.r.t. \ltc, in addition to ground termination and confluence, it is also nec

essary that every ground non-constructor tenn is reducible using the PCRS (cf. 'inductive

reducibility', 'totality' [JK, Ko, MS2]). The simplest way to ensure that a function is defined

by a peRS for every possible constructor term argument is to have an 'otherwise'-case, an

unconditional rule whose Ihs has only variable arguments (or a set of conditional rules 'to

tally' defining the function, as in [Mo2]). Unlike ordinary TRS with such rules, we can avoid

disturbing or complicating the ground confluence requirement: for each defined function f, a

rule of the form f(xl' .. . , %n) -+ ... is ordered to have a priority lower than every other rule

defining the same function f. In the absence of such a rule, it is necessary to use techniques

similar to those of [Th, Ko] to ensure that each function definition is total.

24

Proposition 7 HA DPCRS ~

_ satisfies the premise of the previous (confluence) proposition 5,

_satisfies the condition needed for termina.tion (in proposition 4), and

_contains for each defined function f, a rule whose antecedent is empty and Ihs is f(Xl' •.• , xn),

then every ground term consisting of constructors and (one or more) functions defined by
~

rules in ~ has a unique ground constructor term reduct.

Eroof: Let t be any non-constructor term whose Don-constructor symbols are defined by

rules in~. Since all reduction sequences terminate, t has an irreducible reduct t'. Since

ground terms reduce to ground terms, t' is a ground irreducible term. Since each ground

non-constructor term in the language must be reducible, t' must be a constructor term. If t

had another irreducible reduct t", then til would also have to be a ground constructor term.

Since constructor terms are not reducible, t' and til would have to be identical, otherwise the

ground confluence condition would be violated.

• Q.E.D.
In the ne>..rt section, the utility of the above result is illustrated: a combination of the

premises in the above result assures soundness and completeness of priority rewriting w.r.t.

"'110 "', the set of inequations bet,veen non-unifiable constructor terms.

6 SeIIlantics

The major motivation for using rewrite systems in algebraic specifications and theorem

proving is their equational semanticsj otherwise we would not know what is being computed

when rewrite rules are invoked. In [BBK], a semantics is given for PRS with respect to

a 'sound and complete set of rewrites'. This definition is operational in Savor: a logical

semantics is preferable, which characterizes the theory (set of equational first order formulas)

deseribed by a PCRS, and whose logical consequences we should expect to compute via the

priority rewriting mechanism. Such an approach was followed in [Mol, Mo2, MS2] for CTRS

and PRS, and we now extend it to PCRS.

Term rewriting systems (without priorities) are intended to represent a set of equationsj

25

for example, the TRS R = {PI -+ ql,··· ,Pn -. qn } is intended to implement E(R) defined as

{(V.PI = ql) 1\ ••• A (V.Pn = qn)}. Soundness of rewriting with R is judged by asking whether

E(R) 1= p = q whenever a term p rewrites to another term q using Rj also, completeness

of rewriting with R is considered to be the property that converging reduction sequences

exist from any pair of terms whose equality is entailed by £(R). Priority orderings are

not just a superficial way of improving efficiency; their introduction seriously modifies such

semantics of rewriting systems. Since we can no longer perform certain rewrites which were

possible using the underlying unprioritized system, the equational theories represented by

prioritized systems are themselves different. The semantics of a PRS is no longer just the set

of equations obtained by removing the orientation from underlying re,vrite rules. The main

reason for this is that priority rewriting with non-maximal priority rules is performed after

making an assumption that higher priority rules are not applicable.. So the soundness of

such an assumption is a prerequisite for the soundness of priority re,vriting. Note that such

assumptions are utilized while constructing the peRS, and hence cannot be ignored. For

instance, the formula V.eq(z, z) =T A eq(x, y) =F does not represent the foIlo,ving PRS.

1
eq(z, z) --. T

eq(x,y) -t F

Hence the need for a, better explanation for the semantics of priority rewriting.

With the above considerations, we suggest that the intended equational formulas I£(~)I
corresponding to a PCRS ~ may instead be defined as:

• For each maximal priority rule [0 => p -+ q] in ~, £(~) contains the conditional

equation v.e::} p = q.

• For each non-maximal priority rule [ric: CI: => f(Tk) -+ Pk], let

{rl : Ct => 1(71) -+ PI,···, rn : Cn => f{Tn } -+ Pn} be the rules in ~ whose Ihs has

outermost symbol !, and which are of higher priority than Tk; then, E(~) contains

(where each Ti is a term-tuple, and variables in different rules are renamed to be distinct).

26

The first part of the above definition of t'(~) reflects the fact that when there are no

rules of higher priority, a rule [G ::} I -t r] can be used for reducing any term matching I for

which the correspondingly instantiated antecedent G is satisfied (subject to conditions in the

definition of I-rewriting and P-rewriting), and hence is assumed to denote just [G::} 1= rJ.
The second part of the definition intuitively means that if a term I(T), with irreducible

arguments, is priority reducible by a rule [Gk ::} f(Tk) -t Pk], then there is no rule of higher

priority defining I whose arguments can be considered equal to Tk and whose appropriately

instantiated antecedent holds.

Example 6

Let ~ be

eq(x,x)-tT

type(u) = type(v) => eq(u, v)--tF

eq(z, y)-+.L

Vx[eq(x,z) = T] A

Then £(~) IS V'u, v[type(u) =/; type(v) V eq(u, v) = F V u = v] "

V'z, y[eq(z, y) =.L V z = y V type(z) = type(y)]

Note that u = v and z = y above are really abbreviations for 3x(x = u 1\ x = v) and

3x(x = % 1\ x = y) respectively, and type(%) = type(y) above abbreviates the formula

3u, v.[u =z 1\ v =Y 1\ type(u) = type(v)].

Using this PCRS, the term eq(nil,O) would reduce to .L, assuming that type(nil) and

type(O) evaluate to different constants (list and number, respectively). Such a reduction

implicitly assumes the inequations 0 =/; nil and list =/; number, which are not directly

provable as logical consequences of £(~), but are nevertheless needed for reduction. Thus,

in addition to the above £(~) formulas, we need to make implicit default assumptions of

inequations ,vhen performing reduction with a lower priority rule. ¥le observe that non

Horn-clauses of the kind that may be contained in E(~) do not have initial or minimal

models, and using such clauses to infer a single positive literal is possible only if we also

assume some negative literals, a la negation by failure.

27

As in [MS2], we seek a set of inequations W with respect to which priority re,vriting is

"sound" and "complete"; these semantic notions are defined below for ground term reduc

tions, since we prohibit reduction of non-ground terms in most cases.

Definition 8 : Priority rewriting with ~ is said to be

• sQ\lnd \v.r.t. q; iff Vground p, q. P--+Rq => £(~) U 'It F P = q; and

• complete w.r.t. Wiff Vground p, q. £(~) u q, FP = q => 3t·P~Rt I\q--+Rt.

In a language with functions partitioned into free constructors and defined functions

of fiexd arity, the semantics of peRS specifications may be determined with respect to

the stipulation that non-unifiable constructor terms cannot be equal. From a specification

point of vie\v, a sublanguage of 'free' constructor terms presents a useful candidate for an

independently chosen set of inequations We. For example, for rewrite specifications using a

List data type, '1ic will consist of the inequations between non-unifiable terms constructed

using nil and cons.

Definition 9 : We is the set of inequations between non-unifiable constructor terms.

Note that arbitrary instantiation of variables in non-unifiable constructor terms, perhaps by

non-constructor terms, would nevertheless leave them inequal as per this definition of We.

In other words, \lie entails the inequality of any pair of constructor-,vise distinct terms. For

soundness and completeness of ground priority rewriting with respect to such independently

defined \II, v,·e need a property similar to 'sufficient completeness' [GH].

We now explore conditions under which priority rewriting is sound and complete, following

a strategy described in [Mol]. Note that ordinary (unprioritized unconditional) rewriting

is always sound, and confluence of a TRS implies completeness w.r.t. any W. In priority

rewriting, unlike conditional rewriting, we do not explicitly attempt to prove (by tracing

reduction sequences to check for possible convergence) that the arguments of a Io,ver priority

rule cannot equal those of a higher priority rule whose Ihs has the same outermost function

28

symbol. For example, given the PRS

1
f(f(x)) -+ b

f(b) -+ a

we find that feb) priority reduces to a, although feb) =a is 11cl a logical consequence of

£(~) 9
r ,~

f(f(x» = b A [feb) = a V 3x.f(x) = b] Aa:# b A···

The need to avoid disproving existentially quantified disjuncts with non-constructor terms

motivates the requirement that we should have a "Definitional" PCRS for soundness and

completeness. This ensures that Ihs's of rules do not contain arguments whose reduction may

conflict with the inequational assumption (e.g., \/x·f(x) :# b above) made during reduction

with a lo\ver priority rule. We also assume that rules in the PCRS are "normalized", i.e.,

proper subterms of the Ihs and the antecedent of each rule should not themselves be reducible.

This has the beneficial side-effect of disallo,ving certain non-terminating rewrite sequence

which \vould other\vise have been possible.

\Ve no,v present the main results of this section, viz., soundness and completeness of both

definitions of priority rewriting when certain premises are satisfied.

Theorem 1 let ~ be a DPCRS such that every ground non-constructor term (containing con

structors and function symbols occurring in ~) I-reduces in finitely many steps to some ground

constructor term. Then I-rewriting is sound and complete with respect to We.

Theorem 2 let ~ be a DPCRS such that every ground non-constructor term (containing con

structors and function symbols occurring in ~) P-reduces in finitely many steps to some ground

constructor term. Then ground P-rewriting is sound and complete with respect to lIte.

Proofs of the above theorems (and a lemma) are given in the appendix. Earlier conjectures

relaxing the premises of the above theorems (viz., choice of 'ltc, reducibility of non-ground

constructor terms to ground constructor terms, and the requirement that ~ must be a

DPCRS) proved to be false, as illustrated by the following examples.

29

Example 7 :

Let ~ be [1 f(f(y)) -+ a] . Then £(~) is (f.v'Y.f(J~)) = alA) .
f(x) -+ a Vx[f(x) = a V 3y.x = f(y)]

Although each ground term (with f as the only non-constructor) reduces to the constructor

term G, and all reduction sequences terminate, R is not a DPCRS. Hence a reduction like

f(a) -+R a is not sound, because [3y.a = f(y)] in the relevant instance of the conjunct in

£(~) is not contradicted by any '1i consistent with £(~).

Example 8 : The current definition for q,c is rather strong when compared to the analogous

case for "EI"-conditional re,vriting, whose soundness was proved in [Mol] with respect to

the set of inequations between distinct ground constructor terms. The weaker definition

proved to be inadequate. For instance, let (unary) c and (nullary) a be constructors, and let

the suggested \II be the set of inequations between each pair of distinct ground constructor

terms, i.e., {ci(a) # d(a)1 i > 0, j > 0, i # j}.
.

Let ~ be [1 f(c(y)) -. y] . Then &(~) is (f.v'y·f(c{y)) = y]/\)

f(z) ~ c(z) Vz.f(z) = c(z) V 3y.z = c(y)

The reduction of f(a) to c(a) using the second rule would be sound iff \ve can sho,v that

E(~) U "tP J= -,3y.[a = c(y)]. But we cannot conclude from &(~) U W that a # c(f(a)), since

we cannot assume that I(a) must egual a ground constructor term, although f(a) can be

reduced to a ground constructor term. Soundness obtains with the stronger definition, viz.,

when \lie implies that any t\VO constructor-wise distinct terms like a, c(f(a)) are inequaI.

Example 9 :

Let ~ be

f(c(y)) --t a

f(z) -. a · Then E(~) is

g(c(a)) -+ a

f.v'y·f(c(y)) = alA

f.v'z·f(z) = a V 3y.z = c(y)]/\ ·

g(c(a)) =a

Not all terms ha.ve ground constructor term reducts using this DPCRS. Here, although

f(g(a)) reduces to a using the second rule, we cannot conclude or assume the negation of

30

3y.g(a) = c(y), the latter disjunct in the relevant instance of the second conjunct in £(~).

Hence we cannot conclude £(~) U '1'e F f(g(a» = a.

If the rules defining 9 had instead reduced g(a) to a constructor term d whose outermost

symbol is distinct from c, .tllim q;e F V.d =I c(y), and soundness induction over reductions

in the proof tree implies £(~) U '1'e F 'v'.g(a) = d =I c(y), hence allowing the conclusion that

£(~)Uq;e F f(g(a» = a. In other words, soundness of the reduction of f(g(a» to a depends

on the existence of a reduction sequence from g(a) to a ground constructor term. Note that

if g(a) had instead been reducible to a constructor term t =c(·· .), whose outermost symbol

is c, then:

• I-rewriting of f(g(a» cannot occur at the top level before first replacing g(a) by t, so

that the resulting term f(c(·· -)) is reducible by the first rule and not the second.

• P-rewriting of f(g(a» can also not occur directly using the second rule because the

definition of P-re\vriting requires that we must first ensure that rewriting sequences

from proper subterms should not result in a term reducible by a higher priority rulej

hence the subterm g(a) must first be reduced, after \vhich only' the first rule can be

applied.

7 Summary

In this paper, we have first presented and compared priority rewriting and conditional re\vrit

ing, discussing when priority re\vriting systems do and do Dot have equivalent conditional

rewriting systems and vice versa. \Ve then studied the powerful combination of these two

rewriting mechanisms, viz., priority conditional rewriting systems, which consist of con

ditional rules on ,vbich a partial priority ordering is imposed. We have given the logical

semantics of such systems, extending a similar approach to the semantics of conditional

rewriting with negation. We gave restrictions needed for soundness and completeness of

priority rewriting, focusing on a sufficient condition for ground confluence.

In conclusion, PCRS appear to be provide a promising specification language, with a

reasonable equational-logical declarative semantics, and simple operational mechanisms.

31

References

[BBI{] J.C.M.Baeten, J.A.Bergstra, J.W.Klop, Term Rewriting Systems with Priorities}

Proc. II Con!. Rewriting Techniques and Applications, France, Springer-Verlag LNCS

256, 1987, pp83-94.

[BDJ] D.Brand, J.A.Darringer, W.Joyner, Completeness of Conditional Reductions, Res.

Rep. RC1404, IBM T.J.Watson Res. Center, Yorktown Heights (NY), 1978.

[De] N. Dershowitz, Termination of Rewriting, Proc. First Int'l. Con!. on Re,vriting Tech

niques and Applications, Dijon (France), 1985, Springer-Verlag LNCS 202, pp180-224.

[DJ] N.Dersho\vitz, J.-P.Jouannaud, Rewriting Systems, (to appear) in Handbook of The

oretical Computer Science, 1989.

[DP] N.Dersho,vitz, D.Plaisted, Logic Programming cum Applicative Programming, Proc.

Symp. on Logic Programming, Boston, 1985.

{Gal H.Ganzinger, Ground Term Confluence in Parametric Conditional Equational Spec

ifications, Proc. STACS 87, 1987, pp286-298.

[GH] J.V.Guttag, J.J.Horning, The Algebraic Specification of Abstract Data Types, Acta

Informatica 10, 1978, pp27-52.

[HO] G.Huet, D.S.Oppen, Equations and Rewrite Rules: A Survey, in Formal Languages:

Perspectives and Open Problems, R.Book (ed.), Academic Press, 1980, pp349

405.

[Hu] J.-~1. Hullot, Canonical Forms and Unification, 222zProc. Fifth Conf. on Automated

Deduction, Les Arcs (France), July 1980, pp318-334.

[JK] J.-P.Jouannaud, E.Kounalis, Proofs by Induction in Equational The.ories without

Constructors, Symp. on Logic in e.s., Cambridge (~1ass.), USA, 1986, pp358-366.

[JW] J.-P.Jouannaud, B.Waldmann, Reductive Conditional Tenn Rewriting Systems, Proc.

3TcI IFIP Working Conf. on Formal Description of Programming Concepts, Ebberup

(Denmark), 1986.

32

[Kal] S.Kaplan, Conditional Rewrite Rules, Theoretical Computer Science 33, 1984, pp175

193.

[Ka2] S.Kaplan, A Compiler for Conditional Term Rewriting Systems, Proc. II Conf.

Rewriting Techniques and Applications, France, Springer-Verlag LNCS 256, 1987,

pp25-41.

[Ka3] S.Kaplan, Positi~~/Negative Conditional Rewriting, Proc. First Int'l. Workshop on

Conditional Term Rewriting Systems, Orsay (France), Springer-Verlag LNCS 308,

1988, pp129-143.

[KJ] S.Kaplan, J.-P.Jouannaud (eds.), Proc. First Int'l. Workshop on Conditional Term

Rewriting Systems, Orsay (France), Springer-Verlag LNCS 308, 1988.

[Ko] E.Kounalis, Completeness in Data Type Specifications, Res. Rep. 84-R-92, C.R.I.N.,

Nancy (France), 1984.

[Ma] M.J.:Maher, Equivalences of Logic Programs, in Deductive Databases and Logic Pro

gramming, (ed., J.Minker), Morgan Kaufmann Pub., 1988, pp627-658.

[Mol] C.K.Mohan, Negation in Equational Reasoning and Conditional Specifications, Ph.D.

Thesis, State University of New York at Stony Brook, 1988.

[M02] C.K.Mohan, Priority Rewriting: Semantics, Confluence and Conditionals, in Proc.

3rci Conf. on Rewriting Techniques a.nd Applications, Chapel Hill, Springer-Verlag

LNCS 355, April 1989.

[MSl] C.K.Mohan, M.K.Srivas, Function Definitions in Term Rewriting and Applicative

Programming, Information and Control, Dec. 1986.

[MS2] C.I{.11ohan, M.K.Srivas, Conditional Specifications wIth Inequational Assumptions,

Proc. First Int'}. Workshop on Conditional Term Rewriting Systems, Orsay (France),

Springer-Verlag LNCS 308, 1988, pp161-178.

[MS3] C.K.?vlohan, M.K.Srivas, Negation with Logical Variables in Conditional Rewriting,

Proc. 3Td Conf. on Rewriting Techniques and Applications, Springer-Verlag LNCS

355, Chapel Hill, April 1989.

33

IMSK] C.K.Mohan, M.K.Srivas, D.}{apur, Inference-Rules and Proof Procedures for lnequa

tions, (to appear in) The Journal of Logic Programming.

[Na] M.L.Navarro t Tecnicas de Reescritura para Especificaciones Condicionales, Ph.D.

Thesis, Polytechnic Univ. of Catalunya, Barcelona (Spain), 1987.

IRe] J.-L.Remy, Etudes des syste.mes de reecriture conditionnels et application aux types

abstraits algebriquesJ These d'Etat, Nancy (France), 1982.

[Th] J.J.Thie1, Stop Losing Sleep over Incomplete Specifications, Proe. 11 th AC~I Symp.

on Prine. of Prog. Lang., 1983.

[ZR] H.Zhang, J.-L.Remy, REVEUR4: A system to proceed experiments on Conditional

Term Rewriting Systems, Tech. Rep., eRIN, Nancy (France), 1985.

APPENDIX (Proofs of Results)

Proposition 1: let ~ be a PRS whose underlying TRS R is confluent and noetherian. Then

(1) any ground term reducible using R is also P-reducible using ~; and

(2) if p --., q~ there are converging reduction sequences from every M[P] and M[P/q].

Proof: The imposition of priorities merely restricts the set of reductions possible using the

underlying TRS, i.e., p -+~ q ::} P -+R q. \Ve first present a weak converse.

(1): Suppose the ground term P -+R q but P is not P-reducible by !R. Then (a subterm of) p

matches the lhs of some rule E~. Since R is noetherian, P-rewriting using ~ is decidable,

i.e., any attempt to P-reduce a term finitely fails or succeeds. H more than one such rule

exists, then choose the rule r : A --t p E ~ of highest priority such that (a subterm of)

P == AU for some substitution cr. If p cannot be P-reduced by this rule, either it must have

been P-reducible by a higher prioriiY rule (in which case p is P-reducible), or some subterm t

of p must reduce to a term t' such that p[tJt'] is reducible by a, .higher priority rule (in which

case p is P-reducible at a subterm). In either case, p is P-reducible by ~.

(2): Suppose p -+, q, implying also that p -+R q. Since R is noetherian, every P-reduction

sequence finitely terminates, and each term has a P-irreducible reduct. Let M1 and !v12 be

34

the respeetive°1>-irreducible reduets of M[P] and M[p1q]. Since M 1 and kJ2 cannot be P

reduced by ~, they cannot be reduced by R either, by part (1) above. Since M[P] -t'. M lJ

P -t' q, and M[Plq] -t'. M2' we conclude that M[P] -til M1 as well as M[P] -til M2• Since

R is confluent and Mh M2 are not reducible by R, we conclude that MI =M2• Thus the

P-reduction sequences from M[P] and M[plq] have converged.

•
Proposition 2: If an EI-CTRS R satisfies the property that every reduction sequence from

any given ground term t finitely terminates yielding the same irreducible constructor term NR(t}.

then a PRS peR) can be constructed such that priority reduction sequences from any ground

term t using peR) terminate yielding precisely the same normal form NR(t) produced by R.

Proof: This result follows by observing that a modification of the transformation suggested

in section 3.1 suffices to efffectively produce the desired PRS peR). We include rules rl-r1 as

well as rIO, Tn mentioned in section 3.1 which define four logical functions: not, eq, neq, and,

as well as if3 (representing "if-then-else"). These rules, assumed to be of higher priority

than others, are:
rl : not(T) -. F

r2 : not(F) -+ T

r3°: eq(x, x) -+ T

r4 : eq(x,y) -+ F

Ts: neq(x,y) ~ not(eq(x,y»)

T6 : and(T, T) -+ T

r7 : and(x, y) -+ F

rIO: if3(T,x,y) -+ x

TIl: if3(z,x,y) -. y

For each pair of rules r, r' in R whose lhs's unify ,vith m.g.u. u, add the corresponding

instances ru and r'u to R; let il be the resulting EI-CTRS. For each rule r : C ::}). -t P E il,
let Rr be the set of appropriate instances of rules in il such that the Ihs's of all rules in R,.

are identical (to A). Redundant rule-sets obtained as variants of Rr (differing only in names

35

of variables) may be discarded. Now, if a ground term which matches A is EI-reducible at

the outermost level using R, it must be reducible using some rule in R,..

Let Rr consist of rules {C1 =>). -t PI,· · · ,em =>). -+ Pm}. We now organize these rules

into an equivalent sequence R>.., to be executed one after another as and when a term to be

reduced has a subterm that matches with..\. Cj, the antecedent [PI = ql A··· A Tn =/: 3n]

of each rule above, can be reformulated as ei, a term and[eq(pt,ql),and(- neq(rn,sn)].

The first rule in the sequence Rl is [A -+ if3(C~,Pl, ~2(X))],where x =V(A). Each remaining

rule in Rl is [Aj(X) -+ ij3(Cj,Pj,Aj+l("X))], (where 1 < j < m). Since every ground term

has a unique irreducible constructor term reduct using R, if a ground term matches with).

and EI-reduces using a rule in R,. then one of the antecedents Cj will certainly hold (reduce

to T), and no ground term will ever reduce to the last term Am+l(X) in the rhs of the last

such rule in the sequence R>..

The PRS P(R) is defined to have the underlying TRS consists of the basic logical rules

given above (Tl - r7, rIO, Ttl) as \vell as the union of the sets of rules R). obtained from each

rule (with distinct Ihs A) in R. A priority ordering is imposed on these rules, such that the

logical rules have higher priority than all others, and \vhenev'er A is (strictly) an instance of

A' (and not vice versa), every rule in R>.. is of higher priority than every rule in R)..,. This

ensures that the rules with most specific Ihs's are used for reduction whenever possible.

The above construction of 'P(R) is such that each ground reduction step using the rule in

R with most generallhs is mimicked by a terminating reduction sequence using P(R) which

leads to the same result as that obtained using R.

• Q.E.D.

Proposition 3: let ~ be a PRS such that every priority reduction sequence terminates, and

whenever [rl : 1("5) --+ p] > [r2 : 9(1) -+ q] as per the priority ordering of ~, we have f == 9

and s consists only of variables and ground terms. Then an equivalent EI-CTRS C(~) can be

constructed such that every ground term has the same irreducible reducts using ~ and C(~).

Proof: ~Iaximalpriority rules appear undisturbed in the new CTRS obtained by modifying

the given PRS~. "rVe now sho\v hOlY to construct conditional re\vrite rules E C(~) which

36

achieve the same effect via EI-rewriting whenever a corresponding rule in R (of non-maximal

priority) can be used to rewrite a term.

Rename all variables in different rules, to make them distinct. For any rule .

[rk: f(s~,···,a~) ~ II E~, let Ric be {rj: f(si,···,s~)~ llrj E ~"Tj > Tic}: The

premise in the statement of the proposition ensures that each a1 must be a variable or a

ground term.

For each variable multiply occurring as the subterms S~l , ••· ,s}.. in the lhs.of Tj, construct

a disjunct asserting that })ome corresponding pair of arguments in the Ihs of Tic must be

inequalj let cj (for each such variable) be {sjl =I sj2'· •• ,aj. =I aj.,· •• ,aj"_l =I sjJ. Now

construct a disjunct asserting that for some other (ground) argument s~ of the Ihs of Tj, the

corresponding argument sj in the Ihs of Tic is not equal to S~j let Gj in this case be {s} -:f sn.
Let Cj be the union (disjunction) of each of the above disjuncts Cj obtained from variable

and ground term arguments of Tj.

Let C be the conjunction of the disjunctions C j obtained from each rule Tj in Rk, i.e.,

By applying De?vIorgan's la\vs, C can be restructured into [D1 V··· V DN], a disjunction

of conjunctions D,. The follo,ving set of rules are finally obtained corresponding to rk E ~:

--+

Q.E.D.

Theorem 1: let ~ be a DPCRS such that every ground non-constructor term (containing

function symbols occurring in ~ in addition to constructors) I-reduces in finitely many steps to

some ground constructor term. Then I-rewriting with ~ is sound and complete w.r.t. \lie.

Proof:

SQundness: For soundness, we need to show that if P -+R q, then £(~)U iJIc t= p = q. Since

37

p =q implies M[P] = M[Pfq] in equational logic, we need not separa.tely consider reductions

which occur by replacing proper subterms of terms. It is sufficient to consider the restricted

case of top-level reductions, wherein a term in its entirety matches the Ihs of a rule, and is

hence replaced by the appropriate instance of the rhs of that rule.

Let p -+, q using the rule [r : C => >. -+ p], using a matching substitution u such that

p =AU, q =pu, and for each equation m = n E C it is the case that top-level reductions

from mer and ncr converge. It is also necessary that p could not be reduced using any rule

[ri : C, =? Ai --+ Pi] of higher priority than>r. Thus the single step P -+R q involves the

follo,ving successive terminating computations:

1. Does p match with the Ihs any of the higher priority rules (ri)?

2. H yes, with matching substitution Ui, is there an equation mj = ni E Cj such that

reduction sequences from miO'i, niui lead to distinct ground constructor terms?

3. Does p match with A?

4. H yes, with matching substitution 0', are there converging reduction sequences (to the

same ground constructor term), from mu, nO", for each equation m = n E C?

We consider the "Proof Tree" of P -+R q to consist of all these steps, and assume for

every reduction step S -+R t in this proof tree that £(~) U We F S = t. This constitutes

our Induction Hypothesis, and is justified because the above proof tree has to be finite if

reduction of p to q occurs. The soundness of reductions using unconditional rules, and

rules whose antecedents trivially hold, is assured by the soundness of modus ponens and

replacement of equals by equals.

Since reduction did not occur using any higher priority rule, we conclude that

1. ci.t.MI p did not match with the Ihs of any higher priority rule,

2. m: if p =AiCTi for some Ui and a higher priority rule [ri : Cj => Ai -+ Pi], then there is

some literal mi =ni E Ci such that miC1i and nj"j have reduction sequences ,vbich did

not converge (or led to distinct ground constructor terms).

38

Note that for any maximal priority rule Co => >'0 ~ po, the following discussion of these two

cases is not needed since E(~) contains a conjunct Co => >'0 = po, with no disjuncts arising

from other rul~s. For each non-maximal priority rule [r : C => >. ~ p] of lower priority than

1 { . · C· =>).. -+ p'} whose Ihs's (Ai =f(t;, ... ,t~)) have the same outermost symbol f
111 ~ T,. I , •

as that of >. == f(t
17

• • • ,tn), the instance Ep of the relevant conjunct in £(~) which justifies

reduction of p =>'0' to q == pO' using r is

&p: (CO' => f(t l ,···, tn)O' = PO') V [..• V [3.Ci A tlO' = t~ A··· A tnO' = t~] V·· .].

The following discussion first shows how we may eliminate each of the latter disjuncts in the

above formula £p, and then the antecedent (GO') of the first disjunct. Since rules which do

not define the same function symbol do not affect the relevant conjunct £p in the definition

of £(~), it is sufficient to restrict attention to rules {ri} which define the outermost symbol

f of p.

Case [V.P:t >'i]: By definition of the I-rewriting mechanism, proper subterms of p cannot

be I-reducible since p I-reduced to q by replacement of the entire term. Since all ground non

constructor terms are reducible, all proper subterms of p must be ground constructor terms

(this need not hold for P-rewriting]. For each rule ri whose Ihs does not match with p, we

need to show that £(~) U We F -, Aj[tjO' = t~O'i]' for each grounding substitution O'i. By

the lemma that follows, it is sufficient to consider only those substitutions (li which map

variables (occurring in terms to which they are applied) only to ground constructor terms.

Since p ='Au =!(t1(J',···, tnu) :t .AiO"i, the latter must have a ground constructor subterm

t~O'i distinct from tjO', hence We F tjO' # t~O'i. So for no grounding substitution O'j can it be

the case that each t;O' = t~O'i is a logical consequence of £(~) U We (assuming consistency).

Thus we can delete each of the disjuncts in the formula £1' which arose from rules whose Ihs

could not be matched with p.

Case 3.p == .Ai: For disjuncts in £1' arising from the remaining rules {ric} whose lhs's can be

matched with p, since the matching substitution (Uk) of a ground term p with each "k must

be unique, each disjunct [3.Ck 1\ t 1(J' = t~ 1\ ••• A tnu = t:J can be replaced by just CkUlc. Let

E', be the new formula [Coo => p = qV··· V CleUIe V·· .], where each remaining disjunct CkO"k

39

arises from a rule ric : CJc => AJc -+ Pic whose Ihs (Ak) was matched with p by substitution Uk.

Since p =~(7 and q =pO', we conclude from E, and the previous case that E(~)U'l'c F £'p.

Since p =Ak(7k but rule TJc could not reduce p, Gk must contain some literal m = n such

that mu/c and nOOk do not have converging reduction sequences. [Attempts to reduce mUk

and nu1c to the same reduct comprise part of the proof tree of P --+R q mentioned earlier.]

Let these two terms mUk, n(J'Jc have },tf and N as ground constructor reducts (\vhich exist

as per the premise in the statement of the theorem). M and N must be distinct due to

non-convergence of the reduction sequences, so that lIte F M :F N. Since mUle --+R M

and nl1Jc -+R N, by induction hypothesis (soundness of each reduction step in the proof

tree of P -+R q) and transitivity of equality we conclude that E(~) U We F mUk = M and

£(~) U \lie F nus; = N. Now \ITo F M :F N implies that E(~) U We F mUle :F nUk, hence

G/cO'k is inconsistent with £(~)UWe· Hence t:(~) UWe 1= Cu => p =q, obtained by deleting

each such disjunct G/t;u/c in the formula E'" obtained from the preceding analysis.

Finally, since reduction using rule r succeeded, for each literal Pi =qj E C, there must

have been reduction sequences from PjU, qj(1' which converged to some term ej_ By induc

tion hypothesis, and transitivity of equality, we conclude that £(~)U We FPj(J' =ej = qju.

Hence £(~) U \lie 1= Cu, and it follo,vs by modus ponens that £(~) U We 1= p = q. This

concludes the proof: if p --+, q, then p = q is a logical consequence of £(~) U We-

Completeness: For completeness, we need to show that if £(~) U \l1c FP =q, then there

are converging reduction sequences from the ground terms p and q, as per the premise in

the statement of the theorem. This result follows because p and q must have some ground

constructor reducts p'. and r/ respectively. Soundness of priority reduction with ~ (proved

above) implies that

£(~)U \lie F (P =p') A (q = q'). If p' and q' are not identical, \lie F p' :F q', and transitivity

of equality implies a contradiction with E(~) U \lie 1= p = q. Hence p' =q', and equal terms

ha.ve converging reduction sequences.

•

40

Q.E.D.

Lemma 1 : Let r =< .. ,tj · .. > and r' =< ... tj · .. > be two tuples of constructor terms

such that r is ground, and there is some s~bstitution u' such that £(~) U We 1= '" = ",'u'.

Then, if £(~) U We is consistent, there is a substitution 6 (mapping variables of r' to ground

constructor terms) such that r =r'6.

.fI2,Qf: If u' itself is a substitution mapping variables in ",' to ground constructor terms, then

r and r'u' must be identical; otherwise, the equality of two distinct ground constructor terms

would be implied by £(~)UWe,which contradicts the definition of We, assuming consistency

of £(~)U'I!e. The three cases (below) deal with situations in which u'maps variables in ",'

to non-constructor terms, so that r ¢ r'u', which means that they must differ at some lh

· · · 3 · t ~ t' IpOSItIon, I.e., I). j r j(7.

Case 1: If r and r'u' differ at some ;th position such that tju' and tj are constructor-wise

distinct, then 'I!e l= tj =f: tju', contradicting the consistency of £(~) U We which entails

tj =tju'. This leaves the remaining cases where tju' differs from tj at some non-constructor

subterm.

Case 2: If rand r'u' differ at some ;th position, and the outermost symbol of tju' is a

non-constructor, then tj must have been a variable, since 'T' was a tuple of constructor

terms. Hence £(~) U We F= T = 'T'tI implies that E(~) U \lie F= T = T'8, ,vhere 8 is a

new substitution which is identical to u' except that each such variable ti is mapped to

tj instead of tju'. This process of modifying the substitution q' is repeated until all such

variables tj are mapped to the corresponding ground constructor terms tj. If this cannot be

done consistently because of non-linearity (multiple occurrences of the same variable in T'

being assigned to distinct ground constructor subterms from T), then E(~) U \lie must be

inconsistent, because E(~) U We 1= (tjl = tju') " (tj2 = tier) and tjl ¢ tj2 is not possible;

distinct ground constructor terms cannot be equal.

Case 3: The last remaining case is when 'T and T'll differ at some jtA position only because

41

there are some subterm positions- where tju' has a non-constructor in a position corresponding

to that of a. constructor in tj. For example, tj =cr· ··CIc • ••] and tju' =cr· ··Sic • ••] with Sk

occurring in tj at a position (at arbitrary depth) corresponding to that Ck in tj, and in the

tree representation of the terms tj and tju' the same sequence of constructors separates the

root c from Ck and Sic respectively. Clearly, replacing ~1c by CJc in the offending position of

tjCT; would not affect the equality with t; entailed by t'(~) U We- Since tj is a constructor

term, u' must have instantiated some variable % to some superterm of Sk. As in case 2, we

can obtain a new equivalent substitution 8 which is identical to (7' except in mapping that

variable x to eJc. This modification can only preserve equality since £(~) U We F tj = tju'

implies £(~)UWc F tj = tju'[Sk/Ck]. Hence £(~)U\I1c F T = r'a' implies that £(~)U\l1c F
T = T'B, and this process of modifying 17' can be repeated, deleting various occurrences of

non-constructor terms.

At the end of deleting all non-constructor terms from T'cI as in cases 2 and 3 above,

modifying u' in the process, \ve are left with a ground constructor term Til such that

E(~) U We F T'u' = 'T". The process terminates because there are only finitely many

non-constructor terms in T'U', at least one of which is deleted at each step, and no ne\v

non-constructor symbol is introduced a.t any step. H Til is identical to T, we conclude that

a. matching substitution between 'T and T' has been found; othenvise, we conclude an incon

sistency, since We F T =# Til, hence it cannot be the case that £(~) U We F T = 7'(1'.

• Q.E.D.

Theorem 2: let ~ be a DPCRS such that every ground term (containing constructors and

function symbols occurring in ~) P-reduces in finitely many steps to some ground constructor

term. Then ground P-rewriting with ~ is sound and complete w.r.t. We-

Proof: For P-rewriting, the proof of completeness is identical to that of I-rewriting. But

the proof of soundness must additionally consider the fact that a ground term p may be

P-reducible at the topmost level although it may have a proper subterm Pi which is also

P-reducible using some rule in the peRS. Since Pi must also have a ground constructor

42

reduct qi, we may first focus on the soundness of Pi -.,. qi and then on the soundness of

the P-reduetion of p[Pdqi]' Even if the P-reduction of Pi does not necessarily precede the

reduction by replacement of the entire term P, the replacement of Pi by qi preserves equality,

and is logically permissible, if £(~) U 'lie F Pi = qi·

So let Pi be an innermost non-constructor (hence reducible) subterm of p. P-redudion

of Pi is sound, using the same proof as that used for the soundness of I-reduction. Since

the reduction of Pi could decidably occur, its soundness does not depend circularly on the

soundness of the P-reduction of a superterm J(. ··Pi ••.) using a rule which is not of maximal

priority; this is ensured by the definition of P-rewriting which requires that P-redudion using

a rule of Don-maximal priority can occur only if it is first established that enforcing prior

replacement of proper subterms by their reducts does not lead to reducibility using a higher

priority rule (> r'). [Note that soundness of reduction by maximal priority rules does not

depend on other rules as much, because the corresponding formula in £(~) is just of the

form C' ::} A' -+ p', without other disjuncts].

By induction on the soundness of the reduction sequence from Pi to the ground constructor

term qi, and transitivity of equality, we have £(~) U \lie 1= Pi = qi- Since replacement of

equals by equals is sound, we hence have £(~) U 'lie 1= P = p[Pi/qj]. In this fashion, each

innermost non-constructor proper subterm of p is successively replaced by the corresponding

constructor term reducts until we have £(~)U \lie 1= p = p' =P[Pl/Ql,··· ,Pm/qm]'1 ,,,,here all

proper 5ubterms of p' are ground constructor terms.

Since R is a DPCRS, proper subterms of the Ihs of each rule are constructor terms. So

if p is P-reducible to q using the rule r : C => A --. p, then p' = P[Pl/Ql'··· ,Pm!qm] is also

P-reducible to a term if =q[Pl/qIJ··· ,Pm/qm], since each Pi (or a superterm of Pi) must

occur in a position corresponding to that of a variable in -", and since p' cannot be P-reduced

by a higher priority rule. The proof of soundness of I-reduction can now be grafted in, giving

E(~) U \lie 1= p' = q'. Since for each i it is the case that E(~) U We 1= Pi = qi, we conclude

by replacement of equals by equals that £(~) U lIre 1= p = q.

•

43

Q.E.D.

	Term Rewriting with Conditionals and Priority Orderings
	Recommended Citation

	SU-CIS-89-05_001c
	SU-CIS-89-05_002c
	SU-CIS-89-05_003c
	SU-CIS-89-05_004c
	SU-CIS-89-05_005c
	SU-CIS-89-05_006c
	SU-CIS-89-05_007c
	SU-CIS-89-05_008c
	SU-CIS-89-05_009c
	SU-CIS-89-05_010c
	SU-CIS-89-05_011c
	SU-CIS-89-05_012c
	SU-CIS-89-05_013c
	SU-CIS-89-05_014c
	SU-CIS-89-05_015c
	SU-CIS-89-05_016c
	SU-CIS-89-05_017c
	SU-CIS-89-05_018c
	SU-CIS-89-05_019c
	SU-CIS-89-05_020c
	SU-CIS-89-05_021c
	SU-CIS-89-05_022c
	SU-CIS-89-05_023c
	SU-CIS-89-05_024c
	SU-CIS-89-05_025c
	SU-CIS-89-05_026c
	SU-CIS-89-05_027c
	SU-CIS-89-05_028c
	SU-CIS-89-05_029c
	SU-CIS-89-05_030c
	SU-CIS-89-05_031c
	SU-CIS-89-05_032c
	SU-CIS-89-05_033c
	SU-CIS-89-05_034c
	SU-CIS-89-05_035c
	SU-CIS-89-05_036c
	SU-CIS-89-05_037c
	SU-CIS-89-05_038c
	SU-CIS-89-05_039c
	SU-CIS-89-05_040c
	SU-CIS-89-05_041c
	SU-CIS-89-05_042c
	SU-CIS-89-05_043c
	SU-CIS-89-05_044c

