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Abstract

This paper addresses the relationship between the number of hidden layer nodes In a

neural network, the complexity of a multi-class discrimination problem, and the number

of samples needed for effective learning. Bounds are given for the latter. We show that

O(min(d, n).M) boundary samples are required for successful classification of M clusters

of samples using a 2 hidden layer neural network with d-dimensional inputs and n nodes

in the first hidden layer.



1 Introduction

In recent years, multilayer neural networks have been increasingly popular for applications

in pattern recognition, classification, learning, and function approximation. While there is

a profusion of empirical results attesting to the usefulness of neural learning techniques,

the capabilities, limitations and requirements of neural networks are relatively less well

understood. Many important issues (e.g., how many training samples are required for

successful learning, how large a neural network is required for a specific task) are solved in

practice by trial-and-error. Some results have been achieved recently in an attempt to solve

these piquant problems, but the area is largely open for investigation. These questions are

hard because there is considerable dependence on the specific problem being attacked using

a neural network.

With too few nodes, the network may not be powerful enough for a given learn

ing task. With a large number of nodes (and connections), computation is too expensive.

Also, a neural network may have the resources essentially to 'memorize' the input training

samples; such a network typically performs poorly on new test samples, and is not con

sidered to have accomplished learning successfully. For neural learning to be considered

successful learning, it is essential for the system to perform correct classification of test

samples on which the system has not been trained. We emphasize capabilities of a network

to generalize from input training samples, not to memorize them.

In this paper, we address the question of how many samples are needed for ade

quately successful learning using a 2 hidden layer neural network (Figure 1). As pointed

out by several researchers (e.g., [7] [8]), in a 2 hidden layer neural network with d input

nodes, first hidden layer nodes often function like hyperplanes that effectively partition

d-dimensional space into various regions. Each node in the second hidden layer represents

a cluster of points that belong to the same class. We assume that the problem that the

neural network is trying to learn is such that these clusters are separable. Other attempts

to answer this question are inadequate due to the unrealistic assumptions made, e.g. [9],

that a single input sample is sufficient to characterize each cluster of inputs.

1.1 Main Results

In the next section, we enumerate the minimum number of 'hyperplane segments' when a

given neural network is used successfully for a classification task. This is then related to

the number of clusters in a given problem being solved using a neural network. We then
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consider the case where the number of hyperplanes (hidden nodes) exceeds the minimum

number required for successful classification of a given number of clusters, and estimate

the number of hyperplane segments and regions in such cases. Finally, we establish bounds

on the number of samples needed for successful learning. Discussion and conclusions then

follow. To improve readability of the main body of the paper, proofs and calculations are

relegated to the appendix.

The results obtained in this paper are summarized as follows:

1. Assume that the input sample clusters are in 'general position' In d-dimensional

space, i.e., no subset of (d + 1) samples lies in a (d - 1) dimensional hyperplane 1.

At least O(n L:t::J Ci
n

-
1

) boundary samples are required for successful learning of a

classification problem using a neural network with least possible number n of hidden

nodes2
•

2. If there are groups of PI, · · · ,Pk hyperplanes in d ~ 2 dimensional space, such that

all and only the hyperplanes from different groups intersect (i.e. hyperplanes within

a group are parallel to each other), then the number of regions formed by these is:

Rk =t [.L Pal' · · pail in general, and IT (1 + Pi) when k :::; d.
1=0 'v'J.aj<aj+l t=1

3. In the same situation, the number of hyperplane segments is

4. The ratio A k / Rk lies between min(k, d)/2 and min(k, d).

5. For a given classification problem with M clusters of samples in d-dimensional input

space, such that adjacent clusters belong to different classes, if a sufficiently powerful

neural network with n hidden nodes is chosen, then the number of boundary samples

required is at least O(M.min(n, d)).

6. Under the assumption that O(d) samples are needed in d-dimensional space to identify

each hyperplane segment, the number of boundary samples needed to learn (success

fully) M clusters of training samples is at least !l(MJ2); if each hyperplane segment

1 For the rest of the paper we assume hyperplanes to be of dimension (d - 1), unless otherwise specified
2For the rest of the paper hidden nodes will refer to nodes in the first hidden layer, unless otherwise

specified
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can be learnt by only a constant number of samples, then only !1(M d) boundary

samples are needed for successful learning.

1.2 Related Work

Cover's work [5] established the number of dichotomies that can be implemented by a single

threshold unit. Given n samples in general position in d-dimensional space, Nilsson [10]

showed that a network with one hidden layer containing n - 1 units was capable of learning

any dichotomy; Baum [3] showed that rn/dl hidden units are sufficient and necessary.

In [11], the learning time for back-propagation networks is examined in the context

of learning boolean logic equations. The learning time is observed to increase with training

sample set size, motivating the question: 'how many samples are adequate'?

By a different approach and with different assumptions, Baum and Hassler [4] show

that any learning algorithm using lower than S1( Number :1 weights) random training samples

will (for some distributions) fail a fixed fraction of the time to correctly classify more than

(1 - t) fraction of the future test samples.

Our analysis, which follows a different approach, gives bounds for the number of

boundary samples for effective generalization. Boundary samples are samples of each class

that are 'near' (in the input space) samples of a different class. The importance of bound

ary samples ('salient examples', 'near-misses') has been recognized in the research area of

machine learning [6]. Experimental results [1] confirm that boundary samples are better

than random samples for training neural networks. Ahmad and Tesauro [1] also mention

the number of samples required in practice for learning the linearly separable majority

function mapping d-dimensional inputs to two classes: at least 3d boundary samples were

required, but generalization was better with more samples (7d). These numbers are in

accordance with our results in this paper.

In [9], a lower bound for the number of training samples required for neural learning

is given to be the number of regions in d-dimensional space. The analysis in [9] assumes that

one point in the input space is sufficient to identify a region in d-dimensional space. When

the task is that of learning or classification, particularly under noisy conditions, a region is

identified by a cluster of points, not just one point in the region. For good "generalization"

capabilities, it is not useful for a neural network merely to memorize each input sample

and the class to which it belongs. When only a few points in each region are given as

training samples, there is much greater leeway in formulating the hyperplanes which divide

these points into different regions, and hence the network is not likely to classify new test

4



samples correctly.

The dependence of the number of samples needed for successful learning on the

number of hyperplane segments is illustrated in figure 2. Figure 2(a) depicts two (linearly

separable) classes of points in two-dimensional space, whose partition has to be learnt by a

neural network. Encircled points are the samples actually presented to the neural network,

in each of three cases. In figure 2(b), a few arbitrary samples are presented to the neural

network, but the network's performance on test samples may be poor, since it may learn

any among a wide range of lines (each of which can partition the training samples) which

result in high misclassification errors. Figure 3(c) illustrates how the situation is improved

by presenting boundary samples (close to the intended partition) in the training phase;

however, a sufficient number of them has not been presented, hence learning performance

still has considerable scope for improvement. Finally, figure 2(d) indicates that performance

is significantly improved with a larger number of boundary samples. Now the partitioning

line is much more restricted, and has only a small degree of freedom.

2 Pairwise Intersecting Hyperplanes

A "hyperplane segment" is defined as a continuous part of a hyperplane, possibly bounded

by its intersection with other hyperplanes. A "region" is a section of d-dimensional space

separated from other regions by some hyperplane segments. Possibly (but not necessarily),

each region could belong to a separate category for classification purposes. In this section,

we evaluate the number of regions and hyperplane segments formed by the intersection of

various hyperplanes separating points in general position in d-dimensional space.

Each region can be uniquely identified by the hyperplane segments which bound it

together with the information as to which 'side' of the hyperplane segment it lies. There

must be sufficient number of samples to identify each hyperplane segment. This is the

reason for our interest in the number of hyperplane segments. Figure 3 illustrates certain

regions (a - k) and hyperplane (line) segments (1 - 16) formed in 2-dimensional space by

four intersecting lines.

2.1 NUlllber of Regions (R)

The first issue we address is that of enumerating the number of different clusters of sam

ples that may be distinguishable using a neural network with a given number of hidden

5
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Figure 3: Hyperplane segments (1-16) and regions (a - k), in 2 dimensions
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nodes. The problem can be reformulated as that of enumerating the number of regions

in hyperspace obtained using a given number of hyperplanes. By "regions", we denote

distinct partitions of the hyperspace. Note that each class of input samples may consist of

a number of clusters of points distributed in different regions of the relevant hyperspace.

Let R(n, d) denote the maximum number of regions into which ad-dimensional

hyperspace can be partitioned using n (mutually intersecting) hyperplanes. Note that

R(n, 1) = n + 1, and R(l, d) = 2, while R(n, 0) is assumed to be o. It has been shown [13],

[10], that

d .,

R(n, d) = L Ci where ct = 0'( oJ~ 0)' for j 2: i, and 0 otherwise.
i=O '1,. J '1,.

If the given classification problem has M clusters of points, and the neural network is

chosen to have the least possible number of hidden nodes n, then, in general, we must

have R(n, d) ~ M, but R(n - 1, d) may be less than M. This condition is used below: the

analysis is in terms of the number of hyperplanes partitioning the clusters, which is assumed

to correspond to the number of hidden nodes. Note, however, that as many as M - 1

hyperplanes may be needed in the worst case to separate M clusters, e.9~, to separate M

collinear points in two-dimensional space, when adjacent points belong to different classes.

2.2 Number of Hyperplane Segments (A)

Given n hyperplanes in d-dimensional space, we ask how many hyperplane segments are

obtained by their mutual intersections. We now obtain an expression to evaluate "A(n, d)" ,

the maximum number of hyperplane segments formed by mutual intersections among n

hyperplanes in d-dimensional space. Obviously, when there are no hyperplanes, A(O, d) = 0;

also note that A(n, 1) = n+l. Clearly, since each hyperplane contains at least one segment,

A(n, d) ~ n~ Since no hyperplane can be divided into more than 2n
-

1 segments by the n-l

other hyperplanes, we must also have A(n, d) ~ n.2n - 1 ~ An exact value is now obtained.

Each hyperplane segment in d-dimensional space corresponds to a region in (d - 1)

dimensional space. For instance, when d == 3, a hyperplane segment corresponds to a

2-dimensional region on the surface of the relevant hyperplane. In the maximal case, all

hyperplanes intersect each other, thereby dividing each hyperplane into various segments.

The maximum number of segments of a given hyperplane (obtained in this way) corresponds

to the number of (d - 1)-dimensional regions formed by the (n - 1) other hyperplanes

which intersect the relevant hyperplane. This is just R(n - 1, d - 1), since we can view

each hyperplane as itself being a (d - 1)-dimensional space in which there are (n - 1)

8



hyperplanes (in the smaller dimension), formed by the intersections with the original (d

dimensional) hyperplanes. Since each of the n original hyperplanes can thus be divided

into R(n - 1, d - 1) segments in this way, the total number of hyperplane segments is

d-l

A(n, d) = n.R(n -1, d -1) = n L CF- I
.

i=O

2.3 Bounds for the Ratio AIR

The above formula for A(n, d) is an abstract problem-independent property of a neural

network with a given number of input nodes and hidden nodes. But if the network can

successfully accomplish learning a specific task with M clusters of samples, we know that

R(n, d) ~ M. So, to bring in consideration of the specific task to be learned, we consider

the ratio A(n, d) / R(n, d), which can help us obtain better bounds on the number of samples

required for successful learning in a specific case. Naturally, if R(n, d) < M for a given

problem, the number of hidden nodes is inadequate for successful learning, and the following

analysis is not applicable. Note that n > n' iff R(n, d) > R(n',d) iff A(n, d) > A(n', d).

Simple bounds are derived for the ratio

A(n,d)
R(n, d)

n R(n - 1, d - 1)
R(n, d)

(1)

Summarizing the analysis in appendix 6.1, we have:

Theorem 1

min(n, d) A(n, d) min(n, 2d)
< « .2 - R n,d) - 2

3 Groupwise Intersecting Hyperplanes

The preceding analyses, for a least number of hidden nodes, are now generalized by an

swering the following question. Given a specific classification task with M clusters, and given

a (fixed) neural network which is adequate for a classification task, how many sam pies are re

quired for successful learning? An answer is obtained by generalizing the idea that all the

hyperplanes intersect each other.

Previously, we had assumed that the clusters in the given problem are in general

position, and the number of hidden nodes n in the network is chosen, according to the

9



Figure 4: Groups of 2,2, and 3 parallel hyperplanes, with d = 2

requirements of the problem, such that R(n, d) ~ M > R(n - 1, d). We now assume only

that R(n, d) ~ M, so that neural learning is possible. For instance, some of the hyperplanes

may be mutually 'parallel' (non-intersecting), instead of being in general placement. In one

extreme case, none of the hyperplanes intersect, so that we require M - 1 hyperplanes, and

there are as many hyperplane segments; so if f2(d) boundary samples are required to identify

each hyperplane, we require altogether f2(d.(M -1)) boundary samples. In general, we may

assume that there are groups of PI, · · · ,Pk parallel hyperplanes, where L:7=I Pi = n.

Let 'Rk(Pl,··· ,Pk, d)' denote the number of regions formed in d dimensions by n

hyperplanes, consisting of k groups of 'parallel' Pi hyperplanes; i.e., no two hyperplanes in

the same group intersect. Similarly, let'Ak(Pl , · · · ,Pk, d)' denote the number of hyperplane

segments formed by k groups of 'parallel' Pi hyperplanes, in d-dimensional space. Note

10



that the order of arguments Pi is irrelevant, e.g., R3(2, 2, 3, 2) = R3(3, 2, 2,2). Figure 4

above illustrates this situation, with k = 3, d = 2, PI = 3 and P2 = P3 = 2; we have

R3 (3, 2,2,2) == 24 and A3 (3, 2, 2,2) = 39. The 'R(n, d)' used in earlier analyses corresponds

to Rn(l, · · · , 1, d) in this notation.

3.1 Number of Regions (Rk)

For the case of regions in one-dimensional space, we define Rk(PI,· · · ,Pk, 1) to be 1+2:7=1 Pk.

Analysis for the case of higher dimensional spaces uses the following argument: if we

previously had parallel groups of aI, · · · ,ak hyperplanes in 8-dimensional space, adding one

new hyperplane which is not parallel to any of the existing hyperplanes results in increasing

the number of regions by Rk(al'···, ak, fJ - 1). Hence adding ao new parallel hyperplanes

which are not parallel to any of the existing hyperplanes results in increasing the number

of regions by ao.Rk(al,···, ak, 8 - 1). It hence follows that:

By expanding this recurrence relation for (k -1) steps, the following result is proved

(in the appendix).

Theorem 2 For d ~ 2 and k :::; d, we have:

k

Rk (Pl'··· ,pk, d) = II(l +pi).
i=1

When k > d, the simplification procedure in the proof of the above theorem cannot

proceed in the same way for k - 1 steps, since the right-hand-side of equation (2) contains

a term which invokes a reduced dimension, and this cannot be repeated for more than d - 1

steps. But an analogous result can still be obtained.

Theorem 3 For d ~ 2 and k ~ d, we have:

where Sk = 1 Sk = "'~ p' Sk = '""~ "'~. .. Sk - "'~ "'~. ",k " ...o '1 Ut=1 J' 2 u,=l uJ=I+1 PIP), 3 - L.,..t=1 L.,..)=t+l L.,..m=j+l P'PJPm, ,

i.e., S~ + Sf +···+ Sz = [17=1 (1 +pi).

11



Corollary 1 For d ~ 2 and k ~ d, we have:

d
'"'" i kRk{p,p,··· ,p,d) = L.J{p .Ci )·
i=O

3.2 Number of Hyperplane Segments (A k )

In d-dimensional space, each segment of a hyperplane (in the first group of Pl parallel

hyperplanes) is a region in d-I dimensions, formed by the intersections of other hyperplanes

(in the other (k - 1) groups). The number of hyperplane segments in d dimensions is hence

the number of regions in d - 1 dimensions caused by intersections of other hyperplanes with

each hyperplane.

Corollary 2 For d ~ 2 and k ~ d, we have:

d

Ak(Pl,P2'··· ,pk,d) = 'E(i.Sf)
i=l

From theorem 2, we also obtain the following result:

Corollary 3 For d ~ 2 and k :::; d, we have:

(3)

(4)

We now address the following question: given a network with a fixed number of

hidden nodes (n) that have to be partitioned into k groups of non-intersecting hyperplanes

to solve a given classification task, how would the number of regions be maximized?

In the special symmetric case when Pl = P2 = ... = Pk = n/k = p, we have

Ak(n/k,· · · ,n/k, d) = n.Rk-l{n/k,· · · ,n/k, d - 1)

By the corollary above, if k ::; d, we have

Such a simplification is not possible when k > d, since Rk (p, p, · · · ,p, 1) = Rl (p, 1) = (p+ 1).

The case of minimally differing Pi'S provides an upper bound, corresponding to the maximal

value of Rk , among all possible distributions of k groups of n parallel hyperplanes.

12



(5)

Theorem 4 Rk(Pl'··· ,pk,d) and A k(Pl'··· ,pk,d) are maximized (for a given k and n =
2:7=1 Pi) when IPi - Pil ::; 1 for every Pi, Pi, and minimized when only one of the Pi'S is

non-zero.

3.3 Bounds on the Ratio A k / Rk

As a natural generalization of the analysis in section 2.3, we may study the dependence

of Ak (Pl'··· ,Pk, d) on Rk(Pl,··· ,Pk, d), which is relevant when a specific problem with M

clusters is being considered, where Rk(Pl,··· ,pk,d) 2:: M. Starting from the expressions in

theorem 3 and equation 3), w now estan ish noun s for the r t ~:~:~::::::::~~ :

Theorem 5
min(k,d) < Ak(pl,"',Pk,d) <min(k,d).

2 - Rk(Pl,··· ,pk,d) -

Note: When more information is available, better bounds can be obtained; e.g., theorem 1

gives a better upper bound when PI = P2 = · · · = Pk = 1 and k = n.

4 Number of Samples Required

Among the points that identify a region, the most salient for establishing classification

boundaries are (naturally) those that are closest to the boundaries. These "boundary sam

ples" provide the maximum information for classification. For our purposes, it is sufficient

to work with a fuzzy definition: we consider boundary samples to be those samples with

nearby points that belong to a different class.

We assume that the number of boundary samples needed for successful training is

proportional to the number of hyperplane segments needed, since some boundary samples

are needed to identify uniquely the two classes corresponding to the sample clusters bor

dering each hyperplane segment. For the case when all hyperplanes intersect each other

(k = n), theorem 1 gives the result

min(n, d) < A(n, d) min(n, 2d)
( < .

2 - R n,d) - 2

The number of boundary samples required for successful classification is hence proportional

to min(n, d).R(n, d). When k parallel groups of hyperplanes intersect each other, theorem

13



5 asserts that
min(k,d) Ak(Pl,···,Pk,d) < . (k d)< ) mzn , ,

2 - Rk(Pl,··· ,pk,d -

implying that the number of boundary samples required is proportional to min(k, d).R(n, d).

There is no a priori way to determine k; all we know is that 1 :S k :S n; hence we only

have an upper bound asserting that proportional to min(n, d).R(n, d) boundary samples

are required.

The above characterization is in terms of the parameter n (i.e., number of hid

den nodes) describing the network; it is more desirable to obtain an estimate in terms

of the given problem space, assuming an optimal network is chosen. Again, if the given

classification problem has M clusters of points, and the neural network is chosen to have

the least possible number of hidden nodes n, then, in general, we have R(n, d) ~ M but

R(n - 1, d) < M. The number of boundary samples required for successful classification

is hence proportional to min(n, d).M. This is under the assumption that M 2: n; other

wise, if the number of hyperplanes n > M, at least d samples are required to identify each

hyperplane, hence the number of boundary samples required is instead proportional to nd.

The above analysis assumes that we are trying to use a neural network with as few

hidden nodes as possible, putting available resources to the best use; note that the number

of connections (weights) in a network is also minimized by minimizing the number of nodes

in the first hidden layer. But in some applications, reducing training time may be more

important than minimizing the number of hidden nodes. If each of the M clusters is to

be separately learnt (possibly in parallel) using 2d hidden nodes (hyperplanes describing a

bounding d-dimensional hypercube) or d +1 hidden nodes (the smallest number of hyper

planes needed to enclose a cluster in d-dimensional space), then the network as a whole still

requires S1(M d) hidden nodes and hyperplane segments. Assuming S1(d) boundary samples

are needed to identify the hyperplane segments, the number of boundary samples required

is proportional to <PM.

This provides a-pointer towards an estimate of how many input samples are required

overall: in general, most input samples are not boundary samples. The nature of the dis

tribution of points within clusters determines the proportion of the number of boundary

samples, and hence the overall number of input samples required, assuming these are ran

domly drawn from the distribution. For instance, the ratio of the hypersurface (oc rd- 1 )

to the hypervolume (oc rd
) of a hypersphere is inversely proportional to its 'radius' r, a

(I-dimensional) measure of length. Under the assumption that samples are uniformly dis

tributed within a region, the probability of an arbitrary sample being a boundary sample is

14



inversely proportional to a I-dimensional distance measure of the region. Hence the number

of random input samples required for correct classification is likely to be proportional to

min( d, n)Mr. Other distributions warrant different assumptions, so that many more input

samples may be required for obtaining even a few boundary samples.

We have assumed in the above analyses that a constant number of boundary samples

are required to identify each hyperplane segment. In practice, we conjecture that this

number is likely to scale up with the dimension d of the input space. This means that the

total number of boundary (input) samples is likely to be O(Md2
) rather than just O(Md).

We now consider a specific example, illustrated in figure 5. Let the input data consist

of M = ad clusters in a d-dimensional chessboard-like pattern, where neighboring clusters

belong to different classes. The number of classes itself is irrelevant, as long as it is 2: 2.

The minimum number of hyperplanes required to separate these clusters is approximately

da = dM1 / d , assuming M ~ O. But this many boundary samples is not sufficient, since

different hyperplane segments may separate different classes. Each cluster is bounded

by 2d hyperplane segments, but each hyperplane segment is shared by two neighboring

clusters. Hence the number of hyperplane segments is approximately Md. Hence the total

number of boundary samples required is proportional to M d (or M d2 by the conjecture

that d boundary samples are required to identify each hyperplane segment). A different

configuration of hyperplanes may instead be used for the same problem. For instance,

assuming the clusters are sufficiently well-separated, d + 1 hyperplanes (and hyperplane

segments) can enclose each cluster completely. Since f2(d) samples are needed to identify

each bounding hyperplane, and assuming that each hyperplane is 'shared' by two clusters,

the total number of boundary samples needed to enclose M clusters is now proportional to

M d(d + 1)/2, of the same order of magnitude as M d2
• However, note that the number of

hidden nodes has increased to M(d+ 1)/2 in this case, a considerable increase from dM1/ d •

5 Concluding Discussion

In this paper, we have analyzed the maximum number of regions and hyperplane segments

obtained using a given number of hyperplanes. We have considered first the maximal

intersections case, assuming that all hyperplanes intersect each other. We have then gener

alized the results to the case when there are groups of 'parallel' hyperplanes, which reduces

the number of regions and hyperplane segments obtained by intersections of hyperplanes.

We have established that !l(min(n, d).M) boundary samples are required for successful

15
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Figure 5: Two classes with chessboard-patterned clusters, in 2-dimensional space
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classification, where d is the dimensionality (number of input nodes in a neural network), n

is the number of hyperplanes (first layer hidden nodes in a network), and M is the number

of clusters of input samples (generally 2: the number of classes or output nodes) ~ Our

analysis uses the idea that some number of boundary samples are needed to identify each

hyperplane segment.

In order to make effective use of the above analysis in designing neural networks

for a given classification task, certain clustering procedures may first be required as a

preprocessing step. Using a first estimate of the number of clusters of samples, we can

obtain an estimate of the number of regions to be separated by hyperplane segments. Thus

clustering is useful even in the supervised learning paradigm. Clustering also helps estimate

the "radius" of each region, which is needed to estimate the number of samples needed for

correct learning~ A preliminary analysis of the clusters can indicate whether a sufficient

number of boundary samples have been obtained, as required by our analyses.

The utility of knowing the number of required samples is obvious when we want

to place high reliance on the learning accomplished by a neural network. In the interest

of reducing training time, we would like to train neural nets with a limited and available

number of training samples. But if too few samples have been used, the generalization

capability of the neural net will be poor, and we cannot expect the net to perform well on

test cases on which it has not been trained~ Our results help in this regard, by indicating

how many samples are required for correct classification.
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6 Appendix

We now give the proofs and detailed calculations omitted from the preceding sections.

6.1 Bounds for A(n, d)jR(n, d)

Theorem 1:
min(n, d) A(n, d) min(n, 2d)

2 :=:; R(n, d) :=:; 2 ·

Proof: We start from equation (1) in section 2.3:

A(n,d) _ n R(n -I,d -1)
R(n, d) R(n, d)
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We first consider the case when n < d, when R(n-1, d-I) = 2n
-

1
, and R(n, d) = 2n

,

since each hyperplane divides the relevant space into two regions. Hence A(n, d) / R(n, d) =

n.2n - 1 /2n = n/2.

When n ~ d, we use the combinatory relation C;--1 = c;: - C;:~l to expand the

right-hand-side of the equation R(n - I,d ~ 1) = C3-1 + ... + cd~I. After regrouping

terms, we have:

R(n - 1, d - 1) = [C; + Of + ... + Cd-I] - [C;-1 + Cf-1+ ... + Cd~i]·

Adding (and subtracting) terminal elements to the bracketed sequences, we have:

d d-l

R(n - I d - 1) = "" c!" - "" C:,,-1 - [en - cn-I], LJ 1 LJ t d d-I .
i=O i=O

In other words, we have R(n -1, d -1) = R(n, d) - R(n -1, d -1) - (n:d) Cd which implies

that R(n - 1, d - 1) = ~[R(n, d) - (n:d) Cd].

The expression for the ratio being evaluated is hence ~~:::~ = ~[1 - ~~~~f] ~

~[1 - (n:d)], since R(n, d) = E%=o Cr: ~ Cd' Hence we obtain the lower limit: ~~::~~ ~ ~.

An obvious upper limit of the ratio is ~. Thus, when d :::; n < 2d, we have ~~:::l < d.
en

When n 2:: 2d, we observe that irf- = n-~±I, and further that for d ~ i > 0, we have
d-l

CJrl :::; n-~+l :::; 1. Hence R(n, d) = Cd + Cd- 1 +. · ·+ Co :::; Cd [1 + n-~+l + (n-~+l ? + · · .] :::;
l-~' Hence, substituting into the earlier expression, we have

n-d+l

A(n,d) < ~ (1- (n - d)Cd(l - ~))
R(n,d) - 2 Cd

= ~ [2d _ 1 + n - 2d + 1] .
2 n-d+I

Upon simplification, we finally obtain the upper limit:

A(n, d) d
R(n,d):::; ·

Note that when d:::; n < 2d, this analysis is not applicable because CJ-;.l is not :::; 1.
t

Summarizing the above discussion for the three cases of n < d, d ~ n < 2d, and

n ~ 2d, we have:
min(n, d) < A(n, d) min(n, 2d)

2 - R(n, d) :::; 2 ·

o
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6.2 EstiIllating Rk, A k

Theorem 2: For d ~ 2 and k ~ d, we have:
k

Rk(Pl,· · · ,Pk, d) = IT (1 +pi).
i=l

Proof (by induction on k, d):

Induction Base: For d = 2, there is only one case to consider where k < d; clearly,

R1(PI , 2) = PI + 1. In fact, we also note that R1(Ph, d) = Ph + 1 for any Ph, d 2 1.

Also, R2(PI,P2, 2) = RI(P2, 2) +PI R1(P2, 1) = (P2 + 1) +P1(P2 + 1) = (PI + 1)(p2 + 1).

Induction Hypothesis: Rh{P1,··· ,ph, d - 1) = TI?=t(l + Pi) for every h ~ (d - 1); and

Rj(aI, · · · ,aj, d) = TI1==1 (1 + ai) for every j < k.

Induction Step:

k k k

Rk(PI, P2,· · · ,Pk, d) = IT (1 +Pi) + Pl· IT (1 + Pi) = IT (1 + Pi)
i=2 1=2 i==l

by equation (2) and the induction hypothesis.

o

When k > d, the simplification procedure in the above proof cannot proceed in the

same way for k - 1 steps, since the right-hand-side of equation (2) contains a term which

invokes a reduced dimension, and this cannot be repeated for more than d - 1 steps. But

an analogous result can still be obtained.

Theorem 3: For d ~ 2 and k ~ d, we have:

Rk (P1,··· ,Pk, d) = S~ +Sf +... + S~,

where S~ = 1, Sf = 2:7=1 Pi, S~ = 2:7=1 2:.7=i+1 PiPj, S; = 2:7=1 2:.7=i+1 2:~=j+1 PiPjPm,· · · ,

i.e., s~ + Sf + · · · + SZ = TI7=1 (1 +Pi).

Proof: (by induction on d): [For readability, we sometimes omit the superscript k in st].
Induction Base: Rk(Pl'···' Pk, 2) = 1 +81+ 8 2 = 1 +2:7:1 Pi + 2:7=1 2:.7=i+1 PiPj.

This is proved by induction on k. By theorem 2, we have R 2(Pl,P2, 2) = (1 +P1)(1 +
P2) = 1 + (PI + P2) + PIP2, conforming with the statement of the lemma. By applying

equation (2) twice, we find that R 3 (P1,P2,P3,2) = 1 + 2:r=l Pi + 2:r=1 2:7=i+1 PiPj. If we

assume that Rh (P1, · · · ,Ph, 2) = 1+2:7:1 Pi +2:7=1 2:j'=i+1 PiPj for every h < k, we have, by

equation (2): R k(PI, P2, · · · , Pk, 2) := Rk- 1(P2, · · · , Pk, 2) + Pl. Rk-l (P2, · · w , Pk, 1)
k k k k

= 1 +LPi + L L PiPj +P1(1 + LPj)
i=2 i=2 j=i+l j=2
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k k k

= 1 + LPi + L L PiPj·
i=1 i=1 j=i+l

o

Induction Hypothesis: For k > h ~ d ~ 2, assume Rh (PI, · · · ,ph, d) = S8 + Sf + · · · + 83·
Induction Step: By equation (2) and the induction hypothesis,

= 80 + (8;-1 +PkS~-l) +... + (S;-l +PkS~=:).

But we observe that st-1 + PkSt~11 = St, for each [ ~ d. Hence

Rk(Pl,··· ,Pk, d) = S~ +s; +... + S~,

o

Corollary 2: For d ~ 2 and k ~ d, we have:

d

A k (PI,P2,··· ,Pk, d) = L(i.S:)
i=l

(6)

Proof: Since the number of hyperplane segments in d dimensions corresponds to the

number of regions in d - 1 dimensions caused by intersections of other hyperplanes with

each hyperplane, we obtain:

k

A k (PI,P2,··· ,Pk, d) = LPi.Rk-l(PI,··· ,Pi-l,Pi+I,··· ,Pk, d - 1). (7)
i=l

Using theorem 3, we have:

(8)

where st\i denotes Sf with Pi changed to 0, i.e., the [th term in the expansion of

Rk (PI, · · · , Pi-I, 0, Pi+l, · · · , Pk, d) from theorem 1. We find by expansion that for 0 ::::; 1 ::::; d,

k

LPi.S;\i = (l + l)S!'-rl"
i=l

From this, it follows that:

d

A k(Pl,P2,··· ,pk, d) = L(i.S:)
i=l
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6.3 Maximizing A k , Rk

Theorem 4: Rk(Pl'··· ,pk, d) and Ak(Pl,··· ,Pk, d) are maximized (for a given k and

n = I:7:=I Pi) when IPi - pjl :::; 1 for every Pi,pj, and minimized when only one of the Pi'S is

non-zero.

Proof: Let a be Rk(Pl,P2,··· ,Pk, d), and (3 be Rk(Pl + 1,p2 - 1,··· ,Pk, d), where the

latter corresponds to switching one hyperplane from the second group to the first. Upon

expansion and simplification using equation (2) twice, we find that:

(a - (3) = [Rk- 1(P2, · . · ,Pk, d) +PI.Rk-1 (p2' · · · ,Pk, d - 1)]

-[Rk- 1 (P2 - 1,··· ,pk, d) + (PI + 1).Rk- 1 (P2 - 1,··· ,pk, d - 1)]

+PIP2.Rk-2(P3,··· ,Pk, d - 2)] - [Rk - 2(P3,··· ,Pk, d) + (P2 - 1).Rk-2(P3,··· ,Pk, d - 1)

+(PI + 1).Rk-2(P3,··· ,Pk, d - 1) + (PI + 1)(p2 - 1).Rk- 2 (P3,··· ,Pk, d - 2)]

This simplifies to:

(10)

If PI > (P2 - 1), the change from a to (3 results in a lower value; if PI = (P2 - 1) then

the change is irrelevant, and simply corresponds to shufRing around the order of the groups

that are arguments of Rk • But if PI < (P2 -1), then the change results in a higher value for

Rk • Carrying the argument to its logical conclusion, the maximal Rk-value is obtained by

repeatedly making the arguments of Rk 'as equal as possible'. A similar argument shows

that Ak is also maximized in the same case; since

k

Ak (PI,P2,··· ,Pk, d) = LPi.Rk-I(Pl,··· ,Pi-l,Pi+l,··· ,Pk, d - 1).
i=l

k

LPi.[Rk-l(Pl,··· ,Pi-l,Pi+l,··· ,Pk, d-l)-Rk- 1 (PI +1,p2-1,p3,··· ,Pi-l,Pi+l,··· ,Pk, d-l)]
i=3

+Rk - 2 (P3,··· ,Pk, d - l).[Pl + P2 - (PI + 1) - (P2 - 1)]

+Rk - 2 (P3,·· · ,Pk, d - 2). [PIP2 + PIP2 - (PI + 1)(p2 - 1) - (PI + 1)(P2 - 1)].

The first summation is positive iff PI > P2 - 1 (by the above analysis maximizing Rk ), the

second term vanishes (zero coefficient), and the last term simplifies to 2Rk-2 (P3, · .. ,Pk, d -
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(12)

(13)

2).[Pl + 1 - P2], which is also positive iff PI > P2 - 1. In other words, A k is also maximized

when its arguments are 'as equal as possible'.

Conversely, the above argument also shows that Rk (and A k ) is minimized in

the case when all hyperplanes are mutually parallel (non-intersecting). We then have

Ak(n,O,··· ,O,d) = nand Rk(n,O,··· ,O,d) = n + 1.

o

Theorem 5:

min(k, d)/2 :::; Akt1"" ,Pk, ~~ :::; min(k, d). (11)
Rk PI,··· ,Pk,

Proof: We show that the ratio lies between ~ and k when k :::; d, and lies between ~ and

d when k ~ d.

For d ~ 2 and k ~ 2,

Ak(pt,'" ,Pk, d) = d [S; + 2~~ + + d~;] < d.
Rk (Pl'··· ,Pk, d) d + dSl + + dSd -

Interestingly, this upper bound is the same as that obtained earlier for the simpler case

when all the hyperplanes intersect each other.

Lower Bound: [Note: Superscript k is omitted from Sf terms below.] Assuming d is even

and k ~ d ~ 2, we have;

A k (Pl'··· ,Pk, d) = ~ [1 + SI + 82 + ... + 3d ]

Rk (Pl,· · · ,Pk, d) 2 1 + S1 + 82 + · · · + Sd

_ [~ + (~-1)SI + ... + l.S~_1 - (1.S~+t + ... + (~-1)Sd-l + ~Sd)]
1 + 51 + 32 + ···+ 3d a

H Ak(Pt,···,Pk,d) > d+ ()ence: -
Rk (Pl,···,pk,d) - 2 1+S1 +S2 +···+Sd

where () = ~(Sd - 1) + (~ - 1)(8d- 1 - S1) +... + 1.(54+1 - S4_1)
2 2

We show that () is positive, by showing that each term Sd-i - Si is positive, when

d . >.. d .
- 1, _ 't, 1,.e., '2 > 'l.

For this analysjs, we treat each of the summed terms (TIi Pi) in each Sj as a string

(an ordered sequence) of Pi'S. Let Mj be the set of strings = {TIT is a permutation of some

string in Sj}. Similarly, let M j - 1 be the set of permutations of strings in 8 j - l • For each
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z.e.,

string ql · · · qj-l in M j - I , we observe that Mj contains precisely k - (j - 1) strings of the

form qi · · · qj-lQj, where each qi is a distinct member of {PI,· · · Pk} (since qj can be chosen

to be any of PI, · · · Pk that do not occur in Ql, · · · , qj-I).

Since each qi 2: 1, the product ql · · · qj-lqj ~ ql · · · qj-l· Hence

But

since each M i contains i! permutations of each term in Si. Hence

(j!)Sj ~ (k - j + l)[(j - l)!]Sj-l,

Y-L > (k-j+l) _ Cj
- k8j - 1 - j Cj _ 1

Since j above is arbitrary, we have:

Si+l > Cj Cj-1 C1+1 _ Cj
·-8 - -Ck·-Ok..... Gle - Cle·

i j-I j-2 ~ t

In terms which we are interested in (to show that () is positive), we have:

Sd-i C;_i-->-
S· - Clt ·

t t

By the nature of the binomial distribution, it is known that OJ ~ Ci
k whenever k-i 2:: j ~ i.

Hence C;-i 2:: Of if k - i ~ d - i ~ i. Since these conditions are implied by k ~ d and

d - i 2:: i, we have the desired result:

which implies that () is positive, hence

Ak(pl,··· ,pk,d) > ~

Rk(PI,···,Pk,d) - 2·

This gives us the desired lower bound d/2 for Ak / Rk. The assumption that d is even is just

a matter of convenience of explanation, and can be trivially relaxed. In the above analysis,

we assumed that k ~ d. The contrary case is separately analyzed below.
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We now consider the case when k ~ d. By theorem 3 and equation (4), we have

Ak(Pl,··· ,Pk, d)
Rk(Pl,· · · ,Pk, d)

Since each Pi ~ 1, we have 1/2 :s; Pi/(l +Pi) < 1 for each Pi. Hence:
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