
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

Adaptive Linkage Crossover Adaptive Linkage Crossover

Ayed A. Salman
Syracuse University, ayed@top.cis.syr.edu

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Salman, Ayed A.; Mehrotra, Kishan; and Mohan, Chilukuri K., "Adaptive Linkage Crossover" (1998).
Electrical Engineering and Computer Science. 56.
https://surface.syr.edu/eecs/56

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215692906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/56?utm_source=surface.syr.edu%2Feecs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Adaptive Linkage CrossoverAyed A. Salman, Kishan Mehrotra1, and Chilukuri K. Mohan2-120 CST, Dept. of EECSSyracuse UniversitySyracuse, NY 13244-4100ayed/kishan/mohan@top.cis.syr.eduABSTRACTProblem-speci�c knowledge is often implemented in search algorithms using heuristics to deter-mine which search paths are to be explored at any given instant. As in many other AI searchmethods, utilizing this knowledge will lead a genetic algorithm (GA) faster towards better results.In many problems, crucial knowledge is to be found not in individual components, but in interre-lations between those components. For such problems, we develop an interrelation (linkage) basedcrossover operator that has the advantage of liberating GAs from the constraints imposed by the�xed representations generally chosen for problems. The strengths of linkages between compo-nents of a chromosomal structure can be explicitly represented in a linkage matrix and used inthe reproduction step to generate new individuals. For some problems, such a linkage matrix isknown a priori from the nature of the problem. In other cases, the linkage matrix may be learnedby successive minor adaptations during the execution of the evolutionary algorithm. This paperdemonstrates the success of such an approach for several problems.Keywords Genetic algorithms, crossover operators, deception, linkage probabil-ities.
1Author for correspondence 1

1 IntroductionWhat is the role of crossover in a GA? Current explanations mention maintaining diversityin the population while preserving good building blocks. What constitute good buildingblocks? The Schema Theorem (Holland, 1975) and the Building Block Hypothesis (Gold-berg, 1989) imply that successive generations contain an exponentially increasing numberof instances of short, low-order, high (sampled) �tness schema, assuming the use of 1-pointcrossover (1PTX) and �tness-proportionate reproduction selection. However, these resultsdo not say anything about schema whose order or de�ning length is non-trivially large. Ifa problem is such that the �rst and last components of individuals need to evolve together,such linkages are so likely to be disrupted that an operator such as 1PTX becomes uselessat maintaining such linkages. As in the case of any other weak (general-purpose) operator,there are as many problems for which 1PTX works well as those for which 1PTX does notwork well, paraphrasing the No Free Lunch Theorems (Wolpert and Macready, 1995). Somedeceptive problems can be solved using linear transformations that change representation(Lippens and Vose, 1991) and hence linkage structure. Harik and Goldberg (1997) haveformulated a \Linkage friendly" crossover operator very similar to the two-point crossoveroperator. However, discovering the linkages of distant components is di�cult. By contrast,we develop operators that work well by exploiting known linkages between the componentsof chromosomes.The incorporation of pleiotropy (one gene a�ects multiple traits) and polygeny (manychromosomal components are responsible for a single trait) remains largely unexplored byresearchers in evolutionary computation, although these are believed to exist in \all sys-tems with complex behavior" (Atmar, 1992). Is there any advantage to such complicatedmany-to-many (gene-to-trait) coding mechanisms? We hypothesize that such mechanismsdo serve an additional purpose equivalent to encoding \linkage probabilities" that deter-mine the likelihood with which di�erent traits are inherited from the same parent duringcrossover.Distributed representations carry the advantages of fault tolerance and robustness,which partially explains the method behind the madness of pleiotropy and polygeny inbiological evolution. In addition, we argue that these mechanisms indirectly code for elab-orate representations of linkages between traits, transcending the limitations of the linearsequencing of genes. If we view nature's algorithm in terms of traits rather than genes,what emerges is not a simple string (linear sequence) in which each element (trait) is con-nected to its immediate neighbors. Instead, we �nd a complex of multiple connections2

between di�erent traits implemented by the connections between multiple genes (for eachtrait) within the linear chromosomal structure.By analogy with nature, a GA with a \one-gene-per-trait" (or a \one-sequence-of-genes-per trait") representation must not rely merely on a sequential arrangement of thegenes with implied strong linkages only among neighboring genes. In order to be e�ective,
g

9 1
t

2

3
t

t

g
1

g
2

g
3

g
4

g
8

g
7

g
5 g

6

g
4g

5

g
8

9g
9 g

10

g
22 1 21 3 1 1 3

t t t t t t t t t

g g gg g g g g g
81 3 42 5 6 7 10

1
t

1
t

2

3
t

t
3

2 2

 (a) (b)

(c)Figure 1: Abstract interpretation of pleiotropy, polygeny, and linkages: (a) Simple gene-level linkages; pleiotropy and polygeny trait representation, (b) Trait-level linkages; adja-cencies in gene level representation, (c) Abstraction of linkage strengths between traits.a GA must instead allow for an adaptation for the representations of multiple connec-tions between traits. We suggest that this be accomplished via \linkage probabilities":each individual in the population is a collection of traits whose \sequencing" is irrele-vant. The population consists of a number of individuals as well as a representation ofthe species-speci�c linkages between traits. For simplicity of implementation and computa-tional considerations, we propose that a two-dimensional array of �rst-order linkage valuesis adequate for this purpose. In keeping with this understanding, we consistently use theterm \individual" instead of the traditional \chromosome" in reference to the members ofthe population.If we use a \one-gene-per-trait" encoding, then such linkage probabilities must beexplicitly stated and used by operators of the GA.3

Problem-speci�c knowledge can be utilized by genetic search in several ways, oneof which addresses the \move-generation" step: how can we de�ne genetic operators thatutilize knowledge speci�c to each class of problems? Maini, Mehrotra, Mohan & Ranka(1994) have addressed two ways of doing this: incorporating allele-speci�c biases, andutilizing information about the history of genetic search. Another simple approach isfound in the `particle swarm optimization' system (see Kennedy and Eberhardt, 1995).This paper explores a third, crucial approach, the development of operators that exploitlinkages between components of problem representations.In order to show the e�ectiveness of our operators, we tested them against the well-known one-point, two-point and uniform crossover operators. Our test set was composedof three problems, two of which (30bits, order-three problem (Goldberg, Korb & Deb, 1989)and bipolar, order-six problem (Goldberg, Deb & Horn, 1992)) are theoretically constructedto be GA-deceptive, yet have a well-known linkage structure, and the third of which is thewell-known bipartitioning problem, whose exact linkage structure is unknown a priori.Experiments show the superiority of the linkage crossover over other operators.The proposed framework is described in Section 2. Section 3 de�nes a class ofcrossover operators using this approach and the relation of these to crossover operatorstraditionally used in GAs. Section 4 elucidates our algorithms, Section 5 presents experi-mental results that support our new approach, Section 6 evaluates the adaptive procedure,and Section 7 concludes.2 FrameworkThis section describes the overall framework establishing the relation between crossover andprobabilistic inference. In our notation, i pj denotes the event that the ith gene in theo�spring comes from the jth parent when crossover occurs, � denotes a partial inheritanceassignment, and �(i) denotes the parent p1 or p2 from which an o�spring inherits the ithgene. We assume that there is no a priori bias toward either parent, p1 or p2, i.e., symmetryis assumed.Without loss of generality we assume that parents p1 and p2 generate only oneo�spring.2 In examining which genes are inherited from which parent, we restrict attention2Operators that generate multiple o�spring can easily be viewed as the results of multiple applicationsof operators that generate single o�spring. For instance, one-point crossover applied to p1; p2 at position k4

to those genes where the parents di�er. Also, let fx1; x2; : : : ; xng denotes a permutation off1; : : : ; ng, where n is the number of genes (components) in a chromosome.Classical crossover operators break linkages among some genes, irrespective of po-tential dependence among them, whereas it would be desirable to use a crossover operatorthat honors special attractions between sets of alleles. This dependence can be reformulatedin terms of problem-speci�c conditional probabilities. Speci�cally, the crossover operatorshould address: if the ith gene is inherited from parent p1, then what is the probabilitythat the jth gene is also inherited from parent p1? More generally, if x1; x2; : : : ; xi arethe positions of genes inherited from �(x1); �(x2); : : : ; �(xi), respectively, then what is theprobability that the xi+1th element of the o�spring is inherited from p1? We view crossoveras accomplishing this probabilistic inference task, where the probability depends on theproblem, and is \hard-coded" into biological chromosomal structures via the mechanismsof pleiotropy and polygeny.Special cases:One-Point CrossoverIn one-point crossover (1PTX), the structure of linkages is linear, similar to probabilisticinference with a chain structure. The only linkage between the (i + 1)th gene and the(i�1)th gene is through the ith gene. The linkage probabilities associated with 1PTX maybe described in the following manner:P (i p1 j (i+ a) p1 & (i� b) p1) = 1; where a > 0; b > 0;P (i p1 j (i+ a) p2 & (i� b) p2) = 0; where a > 0; b > 0;and P (i p1 j (i+ 1) p1 & (i� 1) p2) = 0:5:One-point crossover is expected to work well when the linkages in the problem areof a similar linear nature, e.g., when the desirable \building blocks" consist of alleles forphysically proximate genes.is generally de�ned to produce two o�spring, but can be viewed as equivalent to two separate applicationsof an operator that generates only one o�spring; the second application is obtained by reversing the orderof the parents. 5

The cases of two-point and k-point crossovers can be derived in a similar manner.Uniform CrossoverIn uniform crossover (UX), no linkages are preserved.P (i p1jj �(j)) = 0:5;8j 6= i:Whether 1PTX or uniform crossover works better on a problem depends on whetherthe problem itself has implicit linkages of the kind preserved by 1PTX.3 Linkage CrossoverA general class of crossover operators can be formulated using the framework of linkageprobabilities. This class is referred to as General Linkage Crossover (GLinX), and is de-scribed below. We use the following additional notation:� P (xi+1 : x1; : : : ; xi; �) denotes the conditional probability that the xi+1th positionin the child chromosome comes from parent p1, given that the xjth position comesfrom parent �(j); j = 1; � � � ; i, i.e.,P (xi+1 : x1; : : : ; xi;�) = P�xi+1 p1jx1 �(x1)& : : :&xi �(xi)�:� For the special case when x1; : : : ; xi are all inherited from p1, the \linkage probability"L(xi+1 : x1; : : : ; xi) denotes P�xi+1 p1 j x1 p1 & : : : & xi p1�:Computation of o�spring components using GLinX: Suppose p1 and p2 di�er fromeach other in k locations. Let x1; : : : ; xk denote these locations.� Alleles for the �rst two locations, x1 and x2, of the o�spring are inherited from p1and p2 respectively. 6

� Alleles for the remaining (k�2) locations are successively assigned as follows: Supposei additional locations, x3; : : : ; xi+2, have been assigned alleles from p1 or p2. Then.the (i+ 3)th component of the o�spring is inherited from parent p1 with probabilityP (xi+3 : x1; : : : ; xi+2;�).Example 1 Consider p1 = (0; 0; 1; 0; 0); p2 = (0; 1; 0; 1; 1), di�ering in the last three posi-tions (k = 3). The �rst position in the o�spring is assigned 0, common to both parents.Let (x1; x2; x3; x4) = (2; 4; 3; 5). The second (x1th) position in the o�spring is chosen fromparent p1 and the fourth (x2th) position in the o�spring is chosen from p2. Next, the third(x3th) position in the o�spring is chosen from p1 with probability P (x3 : x1; x2;�) = P (x3 p1jx1 p1&x2 p2). Suppose it is chosen from p1. Finally, the �fth (x4th) position inthe o�spring is chosen from p1 with probability P (x4 : x1; x2; x3 : �) = P (x4 p1jx1 p1&x2 p2&x3 p1).Only in the ideal case, would probabilities P (xi+1 p1jx1 �(x1)& : : :&xi �(xi)) be available for each i. There are far too many joint linkage probabilities to bespeci�ed and these would be impossible to specify even for problems whose nature is rel-atively well understood. In practice, these have to be estimated or approximated basedon limited information, a task similar to that of probabilistic reasoning with uncertaintyin expert systems while making conditional independence assumptions. For instance, theexpert systems literature addresses the estimation of P (AjB & C) given only P (AjB) andP (AjC) in addition to the priors. For speci�c problems, a dependency structure may beavailable, enabling calculations of such quantities. This is the approach we have taken,described in later sections.A �rst step toward using linkage information would be to develop a crossover op-erator that makes use of pairwise linkage, L(xi : xj). Pairwise linkages among genes areconsidered to be \�rst order" linkages. Information about such linkages is most likely to beavailable as domain knowledge for practical problems. For instance, in the graph partition-ing problem, the connection weight between nodes suggests a choice for the correspondinglinkage probability. Note that P (xj pijxk pi) = L(xj : xk) We assume that conditionalsymmetry prevails, i.e.,P (xj p1jxk p2) = P (xj p2jxk p1) = 1 � L(xj : xk): (1)We assume that the problem description speci�es the �rst order linkage probabilities,L(i : j), for each i; j; no other information is available. Other probabilities, such asP (xi+1 : x1; : : : ; xi; �) need to be estimated from L(xi+1 : x1); : : : ; L(xi+1 : xi).7

This is analogous to the expert system's task of combining the conclusions obtainedfrommultiple sources of uncertain knowledge. We examine two heuristics used in the expertsystems literature. For any two events A and B, Bayes' rule givesP (AjB) = P (B \A)P (A)P (B \A)P (A) + P (B \ A)P (A)= P (B \A)P (B \A) + o(A)P (B \A) (2)where o(A) = P (A)=P (A) represents the odds (of the prior probabilities of occurrence) ofA. Applying Equation (2) to the problem of interest gives:P (xi+1 : x1; : : : ; xi;�) = P (xi+1 p1j \ij=1 xj �(xj))= P (\ij=1xj �(xj)j(xi+1 p1)P (\ij=1xj �(xj)j(xi+1 p1) + o(xi+1 p1)P (\ij=1xj �(xj)j(xi+1 p2))(3)It would be reasonable to replace the odds ratio o(xi+1) = P (xi+1 p1)=P (xi+1 p2)by 1; there is no a priori preference that the allele in the i+ 1th position of the o�springshould come from parent p1 or p2. In the rest of the development, we assume that the priorprobabilities are the same for inheriting any component from either parent.Conditional independence assumption. Using this assumption, one writesP (\iAijC) =Yi P (AijC)for arbitrary events (C;A1; A2; : : :). In the present context it is assumed thatP (xj p1 & xk p1 j xi+1 p1) = P (xj p1 j xi+1 p1)P (xk p1 j xi+1 p1);andP (xj p1 & xk p1 j xi+1 p2) = P (xj p1 j xi+1 p2)P (xk p1 j xi+1 p2):Application of conditional independence assumption to Equation (3) givesP (xi+1 : x1; : : : ; xi;�) = Qij=1 P (xj �(xj)jxi+1 p1)Qij=1 P (xj �(xj)jxi+1 p1) +Qij=1 P (xj �(xj)jxi+1 p2)For the purpose of easy evaluation this expression can be further simpli�ed.8

Combining positive and negative evidence: As considered earlier, parents p1 and p2di�er in genes fx1; : : : xjg. In an o�spring of p1 and p2, some of the genes in fx1; x2; : : : ; xigare inherited from parent p1, and others from p2. Let Si;1 be the set of genes inherited fromparent p1 and Si;2 be the set of genes inherited from parent p2, then the above equationcan be written as P (xi+1 : x1; : : : ; xi;�) = h1h1 + h2where h1 = Yj2Si;1 P (xj �(xj)jxi+1 p1) Yj2Si;2 P (xj �(xj)jxi+1 p1)= Yj2Si;1 L(xj : xi+1) Yj2Si;2(1 � L(xj : xi+1))and h2 = Yj2Si;1 P (xj �(xj)jxi+1 p2) Yj2Si;2 P (xj �(xj)j(xi+1 p2)= Yj2Si;1(1� L(xj : xi+1)) Yj2Si;2 L(xj : xi+1)Thus, approximation based on the independence assumption suggests that a jointlinkage probability such as L(xi+1 : y1; y2; : : : yj) can be estimated based on the pairwiselinkage probabilities L(xi+1 : y1) , L(xi+1 : y2); : : : ; L(xi+1 : yj): The amount of space takenup by these pairwise linkage probabilities is O(number of genes per chromosome)2, whichis reasonable for most problems. For problems amenable to a hierarchical decomposition,e�cient sparse matrix representations can be used to reduce space requirements consider-ably. Problem-speci�c information can also be easily stated in terms of pairwise linkageprobabilities; a local property that examines two components.The method described above employs pairwise independence to approximate thegeneral linkage probabilities, and is called the LinX crossover operator.3.1 Adaptive LinXFew problems are understood well enough that the precise linkage probabilities are knowna priori. Indeed, the main reason for \tinkering" with several operators is ignorance ofrelationships between di�erent genes. In such cases, the hardest problem becomes that9

of learning the linkage probabilities on the y, during the application of the evolutionaryalgorithm to the problem. The neural networks literature provides one useful paradigm forsuch adaptation: Hebb's rule states that the simultaneous (synchronous) excitation of twoneurons results in a strengthening of the connections between them, while asynchronousactivation for two neurons will result in a weakening of the connections. The linkageprobabilities are analogous to \connection strengths" (weights attached to edges betweennodes) in neural networks. In the context of learning pairwise linkage probabilities, Hebb'srule may be adapted as follows: The �tness of the o�spring resulting from a crossovershould be used to judge the e�cacy of the linkage probabilities used for that crossoverstep, leading to a small change in the same. We use the following adaptation of Hebb'srule to estimate pairwise linkage probabilities.LetX be an n�nmatrix whose entries (X[j; k]) are initially randomly assigned to liein the interval (�1; 1) and changes according to the Hebb rule. The magnitude of amountof change in X[j; k] is directly proportional to (f(o�spring) � f). A change in X[j; k] ismade whenever both genes in the pair (j; k) are inherited from parent p1 or p2; a positivechange if f(o�spring) > f , negative otherwise. Over the course of many generations,jX[j; k]j can grow to be arbitrarily large. To obtain a value 2 [0; 1], interpretable asa probability, we use the linear transformation (subtract min`;m(X[`;m]) and divide by(max`;m(X[`;m]) � min`;m(X[`;m])). Finally, since the proposed changes in X[j; k] aremeant to reect changes in the joint probabilityP [(xj p1&xk p1)]which, under our assumptions, cannot be larger than 1/2 at all times, the joint probabilitymatrix is obtained as J whereJ [j; k] = 0:5(X[j; k]�min`;m(X[`;m])(max`;m(X[`;m])�min`;m(X[`;m]) :Associated conditional probabilitiesP (xj p1jxk p1) = P [xj p1&xk p1]P (xj p1)= 2J [j; k]will lie between 0 and 1.The adaptive linkage crossover algorithm described in Figure 3 is derived from thisheuristic. 10

4 LinX and Adaptive LinX AlgorithmsThe canonical genetic algorithm implemented here has the following characteristics:� Chromosomes are randomly initialized.� Roulette wheel selection methodology is used to control the mating process.� The best 10% of the existing population is merged with the best 90% of the generatedpopulation.� Necessary adjustments on chromosomes are applied when required by the problemconstraints (e.g., in graph bipartitioning problems, there must be equally many allelesof each kind).� The whole population, except the best individual, is reinitialized if javerage �tness�best �tnessj < �, a small threshold.A high-level description of LinX crossover is given in Figure 2. The adaptation stepsrequired by Adaptive LinX are shown in Figure 3.5 ResultsIn this section, we address several general questions with respect to the performance ofLinX crossover and ALinX algorithm. Speci�cally, we address the following questions.� If there are de�nite known linkages between genes, will LinX outperform other generalpurpose crossover operators?� Will ALinX be able to perform competitively when compared to other crossoveroperators?Three benchmark problems are used to address the above questions. These benchmarkproblems belong to two major categories: the deceptive-problemcategory, and the unknownlinkage-structure category. 11

LinX Crossover:� Copy all common genes from parents to the o�spring. For the remaining genes of theo�spring, use the following steps.� For two randomly chosen genes, select one allele from parent p1 and the other fromp2.� Find the remaining (unallocated) o�spring genes iteratively as follows:{ Let S1 = fy1; : : : ; yjg be the o�spring's genes inherited so far from parent p1.{ Let S2 = fz1; : : : ; zkg be the o�spring's genes inherited so far from parent p2.{ Randomly select i, a gene whose value has not yet been determined. Calculate\RelativeLinkage" RLi = h1h1 + h2 ;h1 = Yj2S1 L(xj : xi+1) Yj2S2(1� L(xj : xi+1))and h2 = Yj2S1(1� L(xj : xi+1)) Yj2S2 L(xj : xi+1)Generate a random number 0 � r � 1 from the uniform distribution and assigno[i] = 8<: p1[i] if r � RLip2[i] otherwise:� Adjust the generated o�spring, if required by the problem constraints.Figure 2: A high-level description of LinX crossover5.1 GA Deceptive ProblemsThe fundamental schema theorem states that the genetic algorithm works by giving themost highly �t schemata an exponentially growing presence in the population, thereby less�t schemata will diminish quickly. This reasoning directs the attention of GA-researchersto a special group of problems known as \GA-deceptive" problems (Bethke, 1980; Gold-berg, 1989b,c; Forrest and Mitchell, 1993), where the most competitive schemata are much12

ALinX Linkage Adaptation Procedure:Initial step: Initialize all entries L[j; k]'s randomly with positive real numbers between0 and 1 (via X[j; k] 2 [�1; 1], as explained in the text).Reproduction step: Do the following for all o�spring generated in this iteration and allj 6= k.� Let �f be the average �tness of the current population.� Let o be an o�spring of p1 and p2 produced in the current generation using LinX.� Let p1[j] denote the jth allele of p1 and p2[k] denotes the kth allele of p2.� Let g(o) = �tness(o)� �f .� For each j; k, where parents p1 and p2 di�er in the jth and kth positions and bothalleles of the o�spring come from the same parent, (i.e., p1[j] 6= p2[j]; p1[k] 6= p2[k] and,o[j] = pi[j] and o[k] = pi[k] for pi 2 fp1; p2g) adapt the linkage matrix as describedbelow. 4X[j; k] = � � g(o)L[j; k] = (X[j; k]�min`;m(X[`;m])(max`;m(X[`;m])�min`;m(X[`;m])Figure 3: A high-level description of Linkage matrix adaptation.
13

di�erent than the optimal one. A problem with a relatively larger number of local optimathan global optima may then mislead the GA towards the wrong attractor. Goldberg,Deb & Horn (1992), Goldberg and Richardson (1987), Goldberg, Korb, & Deb (1989), andothers have proposed di�erent problems of this kind. Two of the problems proposed byGoldberg and his colleagues are the order-3 30-bit deceptive problem (Goldberg, Korb, &Deb, 1989) and the order-6 multi-modal bipolar problem (Goldberg, Deb & Horn, 1992).The following subsections de�ne each problem and corresponding results.5.1.1 Goldberg's Order-Three ProblemGoldberg, Korb, and Deb (1989) de�ned a 30-bit concatenation of an order-three deceptiveproblems that is likely to be di�cult for a standard crossover operator to solve. Thisdeceptive function depends on linkages across di�erent genes. Linkages are expressed interms of a subfunction. The stronger the linkage, greater is the �tness of the subfunction.Two versions of it, \Easy30" and \Hard30" (Whitley, 1991) are de�ned below. Easy30 is a30-bit function, where each strongly related 3-tuple of bits (of the subfunction) are tightlyand minimally distributed across the chromosome, i.e., they reside adjacent to each other.In Hard30, the 3 bits of each subfunction are located far away from each other. Separatedby other bits, each 3-tuple of bits are located at i; i+10, and i+20 for i = 1; 2; : : : ; 10. Weused the following subfunction in our experiments; minor variations of the function led tosimilar results: !3(1; 1; 1) = 1:0; !3(0; 0; 0) = 0:9!3(1; 1; 0) = !3(1; 0; 1) = !3(0; 1; 1) = 0:3!3(0; 1; 0) = !3(0; 0; 1) = !3(1; 0; 0) = 0:6Using this subfunction, we de�neEasy3n = n�1Xi=0 !3(x3i+1; x3i+2; x3i+3)and Hard3n = nXi=1 !3(xi; xi+n; xi+2n)A standard genetic algorithm should work �ne on the Easy30 problem using 2PTX or1PTX. For UX, both problems are equally di�cult. On the other hand, it has been shown14

(Goldberg, Korb, & Deb, 1989) that they consistently fail to converge to the correct optimafor the Hard30 version. We apply LinX and ALinX on both problems, and compare with2PTX, 1PTX and UX. We �xed every parameter to be the same for all of the operators.We execute each of the algorithms for three di�erent sets of parameters as shown in Table1. Figures 4, 5 and 6 graph best �tness values against generation number for Easy30,and Hard30. As expected, LinX outperforms all crossover operators for Hard30 problem,while competing favorably with other operators in the Easy30 case. For Easy30, note thatGAs using all operators converge to the correct answer.Problem Pop. No. of Fitnessversion size Gen. LinX ALinX 2PX 1PX UX50 500 10.00 9.98 9.99 9.98 9.79Easy30 200 200 10.00 9.97 10.00 10.00 9.89100 1000 10.00 10.00 10.00 9.99 9.9350 500 10.00 9.96 9.50 9.46 9.84Hard30 200 200 10.00 9.98 9.65 9.55 9.88100 1000 10.00 10.00 9.62 9.50 9.90Table 1: Average of the best solutions over 30 iterations obtained using di�erent crossoveroperators. Global optimal �tness = 10.0.5.1.2 Bipolar Deceptive ProblemFor this deceptive problem, the solution string is constructed by concatenation of manyorder-6 bipolar functions i.e., discrete functions with two global optima for complementarybit-strings. Points near the global optima are the lowest in �tness, and the function tendsto take larger values as we move towards bit-strings with as many zeroes as 1s, wherelocal optima are located. Concatenation of �ve such 6-bit functions yields a problem with5 million suboptima and 32 global optima (Goldberg, Deb & Horn, 1992), making thisproblem a challenging one. By varying the coupling between each function's bits, we caninstantiate di�erent versions of this problem. An \easy order-6 bipolar" problem is de�nedto have tightly coupled bits close together; i.e., the distance between the �rst and last bitsof the 6-bits is exactly 5; a \hard order-6 bipolar" problem is such that the six bits of each15

9

9.2

9.4

9.6

9.8

10

0 100 200 300 400 500 600 700

F
itn

es
s

 Generations

LinX
2PX
1PX

Adaptive LinX
UX

(a) 9

9.2

9.4

9.6

9.8

10

0 100 200 300 400 500 600 700

F
itn

es
s

 Generations

LinX
Adaptive LinX

UX
2PX
1PX

(b)Figure 4: Fitness of the best solution (average of 30 iterations) versus number of generation.Population size = 50, maximum number of generations = 500. (a) Easy30 (b) Hard30
9.6

9.65

9.7

9.75

9.8

9.85

9.9

9.95

10

10.05

0 50 100 150 200 250 300

F
itn

es
s

 Generations

LinX
2PX
1PX

Adaptive LinX
UX

(a) 9

9.2

9.4

9.6

9.8

10

0 50 100 150 200 250 300

F
itn

es
s

 Generations

LinX
Adaptive LinX

UX
2PX
1PX

(b)Figure 5: Fitness of the best solution (average of 30 iterations) versus number of generation.Population size = 200, maximum number of generations = 200. (a) Easy30 (b) Hard3016

9.85

9.9

9.95

10

10.05

0 200 400 600 800 1000 1200

F
itn

es
s

 Generations

LinX
2PX

Adaptive LinX
1PX
UX

(a) 9

9.2

9.4

9.6

9.8

10

0 200 400 600 800 1000 1200

F
itn

es
s

 Generations

LinX
Adaptive LinX

UX
2PX
1PX

(b)Figure 6: Fitness of the best solution (average of 30 iterations) versus number of generation.Population size = 100, maximum number of generations = 1000. (a) Easy30 (b) Hard30constituent function are physically separated by greater distances.Experiments were carried out attempting to solve both easy and hard-order-6-bipolar problems with 1PTX, 2PTX, and UX along with the LinX and ALinX crossoveroperators. In order to compare the performance of these crossover operators, all otherparameters of GA were taken to be the same in all experiments.Problem No. of Pop. No. of FitnessVersion bits size Gen. optimal LinX ALinX 2PX 1PX UX30 30 1000 5.0 5.00 4.91 5.00 4.99 4.82Easy 90 100 5000 15.0 15.00 14.19 14.81 14.21 13.00120 200 5000 20.0 20.00 18.53 19.91 19.71 17.0830 30 1000 5.0 5.00 4.94 4.53 4.51 4.78Hard 90 100 5000 15.0 14.90 14.09 12.36 12.41 13.04120 200 5000 20.0 20.00 18.00 16.46 16.34 17.00Table 2: Bipolar order-6 problems: Average over 30 trials of the �tness of the best solutionsand the global optima.Table 2 shows the average of the best solution �tness found at the end of theexecution. Graphs 7, 8, and 9 show that LinX outperforms all other crossover operatorsfor both versions of the problem, and the global solution is obtained in a very short time.1PTX and 2PTX �nd the optimal solution most of the time for the easy versions of the17

4.5

4.6

4.7

4.8

4.9

5

200 400 600 800 1000 1200 1400

F
itn

es
s

 Generations

LinX
2PX
1PX

Adaptive LinX
UX

(a) 4

4.2

4.4

4.6

4.8

5

0 200 400 600 800 1000 1200 1400

F
itn

es
s

 Generations

LinX
Adaptive LinX

UX
2PX
1PX

(b)Figure 7: Fitness of the best solution (average over 30 trials) versus number of generationfor population size = 30, maximum number of generations = 1000. (a) Easy bipolar with30 bits, (b) Hard bipolar with 30 bits.
12

12.5

13

13.5

14

14.5

15

0 1000 2000 3000 4000 5000 6000

F
itn

es
s

 Generations

LinX
2PX
1PX

Adaptive LinX
UX

(a) 12

12.5

13

13.5

14

14.5

15

15.5

0 1000 2000 3000 4000 5000 6000

F
itn

es
s

 Generations

LinX
Adaptive LinX

UX
2PX
1PX

(b)Figure 8: Fitness of the best solution (average over 30 trials) versus number of generationfor population size = 100, maximum number of generations = 5000. (a) Easy bipolar with90 bits, (b) Hard bipolar with 90 bits. 18

14

15

16

17

18

19

20

0 1000 2000 3000 4000 5000 6000

F
itn

es
s

 Generations

LinX
2PX
1PX

Adaptive LinX
UX

(a) 14

15

16

17

18

19

20

0 1000 2000 3000 4000 5000 6000

F
itn

es
s

 Generations

LinX
Adaptive LinX

UX
2PX
1PX

(b)Figure 9: Fitness of the best solution (average over 30 trials) versus number of generationfor population size = 200, maximum number of generations = 5000. (a) Easy bipolar with120 bits, (b) Hard bipolar with 120 bits.problem, but fail to do so for the hard versions. For easy as well as hard versions, ALinXmanages to discover the approximate linkages between genes. This makes it possible forAlinX to slowly advance towards the optimal solution and get much better results than1PTX, 2PTX, and UX. Each generation of LinX and ALinX takes more time than thosefor the other three crossover operators, occasionally by as much as factors of 2.5 and 5respectively. The extra time is needed for the manipulation of the linkage matrix andcomputation of probability values. Although the time to evaluate the next population ishigher for the ALinX operator, the best �tness obtained improves with each generation. Onthe other hand 1PTX, 2PTX, and UX rapidly converge to local optima, and performancedoes not improve with additional generations. Time required to obtain a good qualityresult is much less for the new algorithms than using traditional crossover operators.5.2 Graph PartitioningThe graph bipartitioning problem has been attempted by several researchers using the GAapproach (see Maini, Mehrotra, Mohan & Ranka, 1994b). The optimization criterion ofthis problem is to minimize the total cost of communication between the two partitions.As in the previous section, the purpose of the simulations is to compare the performanceof LinX and ALinX with other crossover operators. In this example, the linkage behavioris not predetermined, it has to be learned. Several data sets were considered. For ALinX,19

the linkage matrix was initialized randomly, whereas for LinX, the linkage matrix wasconstructed using the following heuristic:The larger the cost of communication between two nodes, the greater the needto put them into the same bin.To minimize the cost of communication across the two bins we attempt to maximize thesum of edge costs between nodes belong to the same bin. A linkage matrix that reectsthis property will lead the algorithm in the right direction. To implement this heuristic wemake the linkage entries proportional to the communication costs between the nodes; thehigher the communication cost, the higher is the linkage, and vice versa. Table 3 shows theresults (minimum cost of communication) for each operator on three graphs containing 45,80, and 100 nodes with random edge weights between 0 and 1, respectively. Results areobtained by taking averages of the best solutions over 10 trials. Figure 10 shows how theGA performance improves with the number of generations for various crossover operators.Results show that ALinX outperforms the other operators, including LinX.In the graph bipartitioning problem, it is di�cult to predetermine the right linkagematrix from the graph. Thus, it is not surprising that ALinX learns a linkage matrix thatoutperforms the LinX operator whose linkage matrix was based on a reasonable heuristic.No. of Pop. Generations Communication cost of best SolutionNodes size ALinX LinX 2PTX UX45 100 1000 222.68 222.80 222.74 222.7375 90 10000 620.06 651.32 632.69 650.3980 100 4000 714.24 748.05 731.14 747.16100 200 6000 1154.81 1189.90 1180.49 1189.08Table 3: Graph Partitioning Problem, average over 10 trials6 Evaluating the Adaptation ProcessThis section examines some of the important issues relating to the linkage matrix adaptationprocess. In particular, we consider how to evaluate the linkage matrix adaptation process.Naturally, the �rst signi�cant issue relates to performance { what is the quality ofthe solutions obtained using the adaptively modi�ed linkage matrix? The average and best20

222

222.2

222.4

222.6

222.8

223

223.2

223.4

223.6

223.8

224

200 300 400 500 600 700 800 900 1000

F
itn

es
s

 Generations

Adaptive LinX
2PX
LinX

UX

(a) 710

715

720

725

730

735

740

745

750

755

760

0 500 1000 1500 2000 2500 3000 3500 4000 4500

F
itn

es
s

 Generations

Adaptive LinX
2PX
UX

LinX

(b)
615

620

625

630

635

640

645

650

655

660

0 2000 4000 6000 8000 10000 12000

F
itn

es
s

 Generations

Adaptive LinX
2PX
LinX

UX

(c) 222.8

223

223.2

223.4

223.6

223.8

224

224.2

224.4

0 50 100 150 200 250 300 350 400

F
itn

es
s

 Generations

Adaptive LinX
2PX
UX

LinX

(d)Figure 10: Fitness (average over 30 trials) improvement versus number of generation for thegraph bipartitioning problem. (a) Graph size = 45 nodes, population size = 100, maximumnumber of generations = 1000. (b) Graph size = 80 nodes, population size = 100, maximumnumber of generations = 4000. (c) Graph size = 75 nodes, population size = 90, maximumnumber of generations = 1000. (d) Graph size = 45 nodes, population size = 100, numberof generations = 300 with no reinitialization21

�tness obtained using ALinX can be compared with the corresponding values obtained byusing other di�erent crossover operators and algorithms. In the previous section, we usedthis as the main comparison criterion.The second issue is: Will the adaptation process stabilize? Will elements of thelinkage matrix deviate little in later iterations of the GA? A deviation measure such asDL = 1NvuuutN�1Xi=0 N�1Xj=0 (NewLinkage[i][j]�OldLinkage[i][j])2may be used to compare the linkage matrix entries before and after each generation. Asmall value of DL indicates that stabilization has occurred.
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 50 100 150 200 250 300

Li
nk

ag
e

m
at

rix
 d

ev
ia

tio
n

 Generations

D.L.

Figure 11: DL (variation in linkage values) for ALinX for the graph bipartition problemwith 45 nodes and population size 100.Finally, does the adaptive algorithm result in a linkage matrix whose elements arereasonable and easy to interpret? This is easy to verify for those problems where the linkagematrix is well known. An objective measure may be constructed as a function of the actuallinkage values and the linkage values obtained by adaptation. In the Easy30, Hard30, andthe bipolar problems, we had prior knowledge of the linkage matrices. Our experimentscon�rm that the ALinX is successful in adapting an initially random matrix to obtain thedesired linkage values.In some problems, no detectable linkages among elements exist. In such cases,an evolutionary algorithm may be successful if it uses linkage-neutral operators (such asuniform crossover). The adaptive algorithm should approach the results of such algorithms.However, since the linkage values are irrelevant to the problem, elements in the matrix mayuctuate randomly in each iteration. 22

In many multi-constraint optimization problems, linkages exist between di�erentelements, but the best choice of a linkage matrix is not known a priori. In these situa-tions, the adaptive algorithm is expected to be more successful than other strategies usingtraditional crossover operators or a �xed linkage matrix. If some information about theproblem is available (e.g., in graph partitioning problems), this may be used to initialize thelinkage matrix; starting the adaptive process from such a state would give better solutionsfaster than from a randomly initialized state. In other words, any available problem-speci�cinformation should be utilized by the adaptive algorithm, not ignored.Some problems are structured so that adjacent elements in the individual are stronglyrelated, so that one-point or two-point crossover operators succeed in �nding good qual-ity solutions without much e�ort. In such cases, the adaptive algorithm is to be judgedsatisfactory if its results approach that of 1PTX or 2PTX, with high linkage values foradjacent elements. Our experiments (on Goldberg's Easy30 and bipolar problems) con�rmthat ALinX is capable of achieving this result.For other problems whose linkages are well understood, so that a good linkagematrix can be chosen a priori, the adaptive algorithm is to be judged satisfactory if ityields solutions whose quality approaches that of the algorithm using the predeterminedlinkage matrix. We should also expect that the adaptive algorithm will yield a linkagematrix close to the good linkage matrix known a priori. Experiments on Hard30 and otherdeceptive problems con�rms that ALinX satis�es this property as well. Data in Table 4gives some of the values for strongly linked and weakly linked genes.Pop. No. of Strongly linked genes Weakly linked genessize Gen. Initial Final Initial Final50 500 0.634 0.552 0.616 0.169200 200 0.507 0.694 0.463 0.164100 1000 0.414 0.820 0.438 0.097Table 4: Average conditional probabilities for strongly linked and weakly linked genes,before and after adaptation using ALinX
23

7 ConclusionThis paper relates the �eld of probabilistic inference to the application of crossover oper-ators in genetic algorithms. Probabilistic computations have a long history, and can beused with considerable advantage in GAs. The framework presented in this paper allowsexplicit formulation of problem-speci�c linkages and their subsequent use in crossover. Anew class of crossover operators is presented, implemented and tested. These operatorsexploit problem-speci�c linkages among components in a chromosome. The concept ofadapting linkage between genes is shown to be e�ective and successful, even for problemswith only partially known linkage structure. Many practical optimization problems such asload balancing, scheduling, routing, and assignment problems are characterized by a set ofconstraints that relate some parameters. Such problems can be solved using a GA with theLinX methodology, using the following principles, assuming a direct representation withone gene per problem parameter.� If a constraint relates parameter i with parameter j, then the linkage probability ishigh for the corresponding pair of genes.� Hard constraints correspond to higher linkage probabilities than weak constraints.� If xi+1 depends on fx1; x2; : : : ; xig only through a subset S � fx1; x2; : : : ; xig, thenP (xi+1 : x1; x2; : : : ; xi; �) = P (xi+1 : S).� If a problem parameter xi+1 is deterministically dependent on fx1; x2; : : : ; xig, thenthe appropriately determined value is to be assigned to the o�spring gene instead ofusing linkage probabilities.
24

ReferencesAtmar, W. (1992). On the rules and nature of simulated evolutionary programming, Proc.First Conf. Evolutionary Programming, La Jolla (CA), pp.17{26.Bethke, A. D. (1980). Genetic algorithms as function optimizers, Ph.D. thesis, Universityof Michigan, Ann Arbor.Forrest, S. and Mitchell, M. (1993) What makes a problem hard for genetic algorithm?Some anomalous results and their explanation, Machine Learning, vol 13, pp. 285{319.Goldberg, D.E. (1989a). Genetic Algorithms in Search, Optimization, and Machine Learn-ing, Addison-Wesley, Reading, MA.Goldberg, D.E. (1989b). Genetic algorithms and Walsh functions: Part I, A gentle intro-duction. Complex Systems, vol 3, pp.129{152.Goldberg, D.E. (1989c). Genetic algorithms and Walsh functions: Part II, Deception andits analysis. Complex Systems, vol 3, pp.153{171.Goldberg, D.E. and Richardson J. (1987), Genetic algorithms with sharing for multimodalfunction optimization, Genetic Algorithms and Their Applications: Proceedings of theSecond International Conference on Genetic Algorithms, Erlbaum, pp. 41.Goldberg, D.E., Korb, B. & Deb, K.(19000). Erlbaum, Messy genetic algorithms: Motiva-tion, analysis, and �rst results, Complex Systems, vol 3, pp. 493{530.Goldberg, D.E., Deb, K. & Horn, J. (1992). Massive multimodality, deception, and geneticalgorithms, Parallel Problem Solving from Nature, vol 2, Elsevier Science, pp. 37{46.Grefenstette, J. J. (1987). Incorporating problem speci�c knowledge into genetic algo-rithms, Genetic Algorithms and Simulated Annealing, L. Davis and Morgan Kaufmann,eds..Harik, G. R. & Goldberg, D. E. (1997). Learning Linkage, Foundation of Genetic Algo-rithms { IV, Morgan Kaufmann, pp. 247{262.Holland, J. H. (1975). Adaptation in Natural and Arti�cial Systems, University of MichiganPress, Ann Arbor.Kennedy, J. and Eberhardt, R. C. (1995). Particle swarm optimization, Proceedings of theIEEE International Conference on Neural Networks, Perth, Australia, pp. 1942{1948.Liepins, G. E. and Vose, M. D. (1991). Deceptiveness and Genetic Algorithm Dynamics,Foundations of Genetic Algorithms, Morgan Kaufmann, pp. 36{50.Maini, H. S., Mehrotra, K. G., Mohan, C. K., & Ranka, S. (1994a). Knowledge-BasedNonuniform Crossover, Complex Systems, Vol.8, pp.257-293.25

Maini, H. S., Mehrotra, K. G., Mohan, C. K., & Ranka, S. (1994b). Genetic Algorithmsfor graph partitioning and incremental graph partitioning. In Proceedings of Supercom-puting'94.Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann.Shafer. G. & Pearl, J. (eds.), (1990). Readings in Uncertainty Reasoning, Morgan Kauf-mann.De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems,Doctoral Dissertation, U. of Michigan.Spears, W. M. and De Jong, K. A. (1991). An Analysis of Multi-Point Crossover, Founda-tions of Genetic Algorithms, Morgan Kaufmann, pp. 301{315.Syswerda, G. (1989). Uniform crossover in genetic algorithms, Proc. of the 3rd ICGA, pp.2{9.Whitley, L. D. (1991). Fundamental principles of deception in genetic search, Foundationsof Genetic Algorithms, Morgan Kaufmann, pp. 221{241.Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search, Tech.Rep. SFI-TR-02-010, Santa Fe Institute.

26

	Adaptive Linkage Crossover
	Recommended Citation

	tmp.1286291883.pdf.efuH0

