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The solution of integer optimization problems by relaxation methods consists of three parts. First, 
the discrete problem is converted into a continuous optimization problem, which is generally more 
tractable. Second, the relaxed problem is solved efficiently, yielding a optimal solution in the con­
tinuous space. Finally, an assignment procedure is used to map this solution to a "suitable" discrete 
solution. 

One heuristic - we call it the relaxation heuristic - that often guides the choice and design of 
assignment algorithms is: "given a continuous optimal solution, the corresponding integer optimal 
solution is likely to be nearby" (with respect to some well defined metric). Intuitively, this heuristic 
is reasonable for objective functions that are, say, Lipschitz functions. For such functions, an assign­
ment algorithm might map the continuous optimal solution to the nearest feasible1 solution in the 
discrete space, in the hope that the discrete solution will be optimal as well. 

In this paper, we consider properties of a particular assignment algorithm known as the median rule. 
Define a binary vector to be balanced when the numbers of its 1 's and O's differ at most by one. 
The median rule used to assign n-dimensional real vectors ton-dimensional balanced binary vectors, 
may be loosely described as follows: map the ith component of a real vector to a 0 or 1, depend­
ing on whether that component is smaller or greater than the median value of the vector components. 

We address two aspects of the median rule. The first result is that given a real vector, the median 
rule produces the closest balanced binary vector, with respect to any Schur-convex distance criteria. 
This includes several Minkowski norms, entropy measures, gauge functions etc. In this sense, the 
median rule optimally implements the relaxation heuristic. 

The second result addresses the issue of relaxation error. Though the median rule produces the near­
est balanced integer solution to a given real vector, it is possible that this solution is sub-optimal, 
and the actual optimal solution is located elsewhere. The difference between the actual optimal cost 
and the cost of the solution obtained by the median rule is called the relaxation error. 

We consider the optimization of real valued, parametrized, multivariable Lipschitz functions where 
domains are the set of balanced binary vectors. Varying the parameters over the range of their 
values, we obtain an ensemble of such problems. Each problem instance in the ensemble has an 

1 By a "feasible" solution we mean a solution that satisfies the constraints of the problem. 

1 



optimal real cost, an integer cost, and an associated relaxation error. We establish upper bounds on 
the probability that the relaxation error is greater than a given threshold t. In general, these bounds 
depend on the random model being considered. 

These results have an immediate bearing on the important graph bisection width problem, which 
involves the minimization of a certain semidefinite quadratic cost function over balanced binary do­
mains. This important problem arises in a variety of areas including load balancing [11, 16], storage 
management [22], distributed directories [15], and VLSI design [10]. The results obtained indicate 
that the median rule in a certain precise sense, is an optimal assignment procedure for this problem. 

The rest of the paper is organized as follows: In section 3, we prove the shortest distance properties 
of the median rule. In section 4, we introduce the concept of relaxation error and the Lipschtiz 
bisection problem. Upper bounds on the relaxation error are obtained in Section 5. A discussion on 
these results is given in Section 6. 

2 Preliminaries 

We will use the following conventions: 

• R.n denotes n-dimensional real space. 

• R.+. = {(x., ... Xn): Xi > 0, fori = 1, ... , n} 

• :a:::lf' {(x., ... , Xn): 0 :S Xi :S 1, fori= 1, ... , n} = [0, 1]n 

• A2 {(bt, ... , bn): bi E {0, 1}, I Ei bi- ln/2J I < 1 fori = 1, ... , n}. A2 is referred to 
as the set of balanced binary vectors. 

If a: is a vector, then a:t stands for its transpose. Also, 

• Xm = median value of the vector a:t = (xt, ... Xn) 

• ot = (o, o, · · · , o) 

• et = (1, 1, · · · , 1) 

• X[l] ~ X[2] ~ • • • ~ X[n] denote the components of z arranged in decreasing order. :I:,J.. 

(x[l]t ... , X[nj) is the decreasing rearrangement of z. 

• Similarly, :t:t = (x(l) x(2) • • • X(n)) denotes the increasing rearrangement of z. 

The following definition is central to what follows: 

Definition 2.1 (Majorization, Schur-Convexity) [12, pp. 7,54] If z,y E ,R.n then, z is said 
to majorize y, denoted y :j z (equivalently, z t y) if the following conditions are satisfied: 

1. E7= 1 X[al ~ E~= 1 Y[i] V k = 1, ••• , n - 1 

2. E?=l X[al = Ei=l Y[i] 
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Definition 2.2 (Schur-Convexity) A function F : Rn ~ R. is said to be Schur-convex, if a:, y E 
_an and a: ~ y implies that F(a:) :$; F(y). If the inequalities listed above are strict then F is said 
to be strictly Schur-convex. I 

3 Median Rule 

Consider the following optimization problem: 

Given a vector a: E Rn, find a vector JL = (J.LI, ..• , J.Ln) E Rn that minimizes Ei (xi -
J.Li) 2, subject to the condition that J.LI = J.L2 = · · · , = J.Ln· 

Let x denote the average of the components Xi· Then it is well known that the vector JL 
(x, x, ... , x) is the unique solution to the above problem. In this section we consider a similar 
problem: 

Problem A: Given a vector a: E Rn, find a vector b = (bl! ••• , bn) E ~ that mini­
mizes F(a: - b), where F: an ~ R is any Schur-convex function. 

Thus we seek a balanced vector b closest to the given vector z with respect to a distance measure 
based on the class of Schur-convex functions. Schur-convex functions occupy an enormous amount 
of mathematical real estate. Examples of such functions include the Minkowski lp norms2 for p ~ 1, 
Shannon entropy, symmetric quasi-convex functions, star shaped functions, elementary symmetric 
functions, and many "inequality measures" such as the Gini coefficient, Simpson's measure, and the 
Schutz coefficient [12, pp. 54-99,407-411]. We shall show that the following algorithm, known as 
the median rule, produces such a balanced vector. Basically, the procedure involves (1) finding the 
median of the components of the vector a:, and (2) assigning the ith component of b to 0, if the ith 
component of a: is less than the median, and to 1 otherwise. Components of z equal to median are 
only technically troublesome. Formally, the rule may be defined as follows: 

Definition 3.1 Let a: E Rn, and Xm denote the associated median. The median rule is a function 
M : Rn ~ ~ such that for all z E an, 

(( )) ( ) {
0 if Xi < Xm 

M x1,x2, · • ·, Xn = b11b2, · · ·, bn where bi = . 
1 lf Xi > Xm 

(3.1) 

Those components of a: equal in value to Xm are assigned in the following manner. Let k < n be 
the the number of components of a: equal in value to Xm· Assign Lk/2J of these components to 0, 
and the remaining fk/21 components to 1. We shall write bi = M(xi), to indicate that the i-th real 
co-ordinate is mapped to bi by the median assignment rule. I 

The following theorem is the solution to Problem A. 

Theorem 3.1 (Optimality) Let F: Rn ~ R be any Schur-convex function. Define: 

G F : R.n X ~ -? _an 

Gp(a:, b) = F(z - b) 
(3.2) 

If M : R.n -? ~ is the median rule and 1r is any n x n permutation matrix, then Gp(a:, M(a:)) < 
GF(z, tr(M(a:))). I 
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Proof: Let c = rr(M(x)); in other words assignment of xi's to binary values inc differs from the 
median assignment and is some permutation of M(x)). In view ofSchur-convexity ofF, it suffices to 
show that the vector x - M ( x) ::S x - c for all 1r. Without loss of generality, assume that the com­
ponents of x are in decreasing order; M(x) will therefore be of the form: (1, 1, 1, ... , 1, 0, 0, ... , 0). 
From a standard result in majorization, to prove x - M(x) ::5 x - c, it suffices to establish the 
result for the case when x - M(x) and x - c differ in any two components only [12, pp. 58, note 
A.5]. Since F( ·) is Schur-convex it is necessarily symmetric, hence the order of the components do 
not matter, and without loss of generality we may assume x - M ( x) and x - c differ in the first 
two components, i.e. let, 

x- M(x) 

X-C 

(xi - M(xi), x2 - M(x2), y3, Y4• · · · , Yn), 

(xi - Ct, X2 - c2, Y3, Y4, · · · , Yn), 

and XI - M(xi) =I XI - c1, x2 - M(x2) =I x2 - c2. Since, cis a permutation of M(x), it follows 
that c1 = M(x2). Similarly, c2 = M(xt). Also, Xt 2: x2 implies that M(xt) 2: M(x2) (and 
therefore c1 ~ c2). Now, 

Xt - M(xt) 

x1 - M(xi) + x2 - M(x2) 

< XI - M(x2) = Xt - c1 

Xt - M(x2) + x2 - M(xt) = XI - Ct + x2 - c2 

Other components of x - M(x) and x - c being the same it follows that x - M(x) ::5 x -c. I 

Gp is a really a functional, but we have chosen to finesse over this point, writing it as a function. 

Remark 3.1 Theorem 3.1 is a significant extension of the work of Chan et. al. [7], the starting 
point for this paper. They had proved the above result with respect to the Minkowski lp norms 
with p 2: 1. Since all symmetric gauge functions - of which the ls norms with s 2: 1 constitute 
a special sub-class - are Schur-convex functions [12, pp. 96], the result of Chan et. al. [7] is an 
immediate consequence of Theorem 3.1. Many such results could be generated by suitably choosing 
the Schur-convex function, and (perhaps) restricting the domains of the real vectors x. 

The proof of Theorem 3.1 reveals that: 

• Specific aspects of the median rule enter the arguments in a relatively minor way, and rules 
based on other positional means could well be constructed that give similar Schur-convex 
optimality results. 

• Theorem 3.1 can be extended to other finite discrete spaces, as follows. Let~ ~ {0, 1, 2 · · · , p-
1 }n such that if c E ~, then n0 = n1 = · · · = np-l, where ni is the number of i's in c. 
Then what is the vector in A; nearest to a vector x E R.n? The proof of Theorem 3.1 can be 
extended to show that the discrete vector obtained by first sorting the elements of x, and then 
assigning the first k elements to 0, the next k elements to 1 etc., and finally assigning the last 
k elements top - 1, is the closest vector to x (with respect to the same distance measures as 
in Theorem 3.1). In other words assign a real component Xi to l if Xi lies between the (l/p)th 
quantile and the ((l + 1)/p)th quantile. The case when n is not a multiple of p can be handled 
by suitably defining the assignment rule, in a manner similar to Definition 3.1. 
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• The restriction of the median rule's range to {0, 1} vectors is not crucial for proving Theo­
rem 3.1. If the median rule maps the real components greater than the median to say, a, and 
elements less than the median to (3, with ties being decided in a manner similar to that outlined 
in Definition 3.1, then as long as a > (3, the theorem is essentially unchanged. For example, 
we could use { -1, 1}n as the range of M(·), rather than {0, 1}n. 

By choosing appropriate Schur-convex functions F and using Theorem 3.1, many interesting special 
cases may be proved, as shown by the next example. 

Example 3.1 If p E on such that Ei Pi = 1, then the (Shannon) entropy of pis given by: 

n 

H(p) = H(pt,p2, · .. ,pn) = - L Pi log2Pi· (3.3) 
i=l 

It can be shown that -H(p) is strictly Schur-convex [12, pp. 71]. Let U C R+ such that if 
X E u then Vi : Xi > 1. Set K(x) = (E?=l Xi) - (n/2) so that (x - b)/ K(x) E on and 
Ei ( (Xi - bi) / K ( x) = 1. Therefore, ( x - M ( x)) / K ( x) represents the normalized "deviation vector" 
of x with respect to its median mapping M ( x). The entropy H ( ( x - b)/ K ( z)) is well defined for all 
x E U and bE~. From Theorem 3.1, it follows that 

H (x- M(z)) > H (x- 1r(M(x))). 
K(z) - K(x) 

(3.4) 

Thus the Shannon entropy of (x- M(z))/K(z) exceeds that obtained with any other permutation 
of M(x). I 

The following lemma generalizes Theorem 3.1 to the class of arrangement decreasing functions. See 
[?, pp. 375-378], [12, pp. 158-164] for definitions and many examples of this class of functions. 

Lemma 3.1 Let G : ~ x R.n --t R. be any arrangement decreasing function. Let zt = (x(1), x(2), ... , X(n)), 

bt = (b(1), b(2), ... , b(n))· Let 1r and 1r1 be two n X n permutation matrices such that 1r is better 
arranged than 1r'. Then, G(bt, 1r(zt)) :S G(bt, 1r'(xt)). I 

Proof: The function GF defined in Theorem 3.1 can be shown to be arrangement decreasing [?, 
pp. 377]. From the definition of arrangement decreasing functions, it follows that other arrangement 
decreasing functions must also decrease upon any rearrangement that disturb the natural order spec­
ified by zt and bt. I 

Thus, with respect to a very wide family of functions, the median rule is optimal. One may think 
of the balanced vectors as Voronoi seed points; they partition real space into regions (Voronoi cells) 
such that every point in a cell is closer (with respect to some distance metric) to one seed than 
to another. Points equidistant from two or more seed points lie on the boundaries of the Voronoi 
regions. The construction of Voronoi cells is dependent on the choice of the seed points, and on the 
choice of a distance measure. The same set of seed points with different distant measures can give 
rise to different Voronoi cells. Theorem 3.1 and Lemma ?? attest that with the balanced vectors 
as seed points, and with respect to a wide variety of distance measures, the same Voronoi cells are 
obtained. 
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4 Relaxation error and the Median rule 

We are interested in studying the efficacy of the median rule for the graph bisection problem with 
respect to a criterion we call the relaxation error. We study the relaxation error in a more general 
setting, viz. the class of Lipschitz continuous functions. We refer to this general class of problems as 
Lipschitz bisectioning. We first define the graph bisection problem, and then the Lipschitz bisection 
problem. 

4.1 Graph Bisection 

Let G = (V, E) be an undirected graph, with node set V, edge set E, and no self loops. Let the 
total number of nodes ben = lVI· The nodes are assumed be numbered 1 through n. To each edge 
from node i to node j is assigned a positive real value, the "edge-weight" Wij. Define the weighted 
adjacency matrix A(G) = (ai;)nxn 1 and the associated row-sum diagonal matrix D(G) = (dij)nxn 

by, 

aij = {
0 if (i,j) ¢ E 

Wij = Wji otherwise 
d·· - {0 if i # j 

IJ - n • 
Ek = 1 aik otherwise 

(4.1) 

Then the Laplacian (Fiedler matrix, Kirchoff matrix, admittance matrix) of the graph is given by, 
L(G) = D(G) - A(G). The Laplacian enjoys several useful and remarkable properties; positive 
semidefiniteness is one of them [14]. The graph bisection problem, formally stated below: 

Determine bE A2 that minimizes bt L(G) b. (4.2) 

is NP-complete [8, pp. 209]. 

The graph bisection problem is of particular relevance to parallel computing where it translates to 
minimizing the net communication cost (cut-size) between processors given that each processor is 
to be subject to the same computational load. Other applications include storage management [22], 
distributed directories [15], and VLSI design [10]. 

To obtain a (suboptimal) solution of the graph bisection problem one method is to relax the constraint 
on the domain of b from A2 to R.f., and solve: 

Minimize :a:t L(G) a: 
n 

such that:llzll2 = 2 and z E Rf.. 

(4.3) 

(4.4) 

The quadratic function bt L(G) b forb E A2, identified as the net communication cost, is also known 
as the bisection width of the graph. Note that the cost of the optimal real solution is always less 
than or equal to that of the optimal discrete solution since A2 ~ Rf.. 

For any graph, irrespective of the Laplacian, the relaxed graph bisection problem has a globally 
minimizing solution a:* oc e, with a corresponding cost of 0 (i.e., (a:*)tL(G)z* = 0), and carries no 
information about the integer solution. We therefore impose an additional constraint: 

for any s E R. {4.5) 
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In fact the solution e is an eigenvector corresponding to A1 = 0, the smallest eigenvalue of the 
Laplacian L(G), and Equation?? excludes solutions that correspond to the smallest eigenvalue. An 
eigenvector corresponding to the second smallest eigenvalue A2(L) of L(G) is the desired continuous 
optimal solution [14]. The median rule is then applied to map the continuous solution to a discrete 
one, hopefully also optimal. We generalize bisection problems to cost functions that are Lipschitz 
continuous. 

4.2 Lipschitz bisection 

Let U ~ Ri and C : lR.f:. X U --+ JR. be a multivariable Lipschitz function with constant a > 0. We 
shall refer to variables in U as parameters of the function C. In short, Cis a Lipschitz function with 
n variables and k parameters (the reason for introducing parameters is to set up an "ensemble" later 
on in this section). To emphasize the special role of the parameters, we shall use the notation Cu(:z:) 
to denote C(:z:, u), where :z: E IRn and u E U. Cu is a Lipschitz function with constant a > 0 if, 

ICu(:z:) - Cu(Y)I :5 a ll:z: - Yll V :z:, Y E lR.f:., U E U, (4.6) 

where 1111 is the 12 norm, i.e., ll:z:ll = CEi x~)l/2. Cu is to be thought of as an instance of a family of 
similar problems with the same Lipschitz constant, differing only in the values of certain parameters. 
We are interested in the following minimization problem: 

For a fixed u E U, minimize Cu(c) where c E ~ 

Denote the (unknown) optimum solution to the above problem by b*, i.e., Cu(b*) 

Assume that there exists an efficient method to solve the following relaxed version, 

min Cu(c). 
ce A!] 

Minimize Cu(:z:) such that ll:z:ll 2 = i and :z: =I se, V s E JR. and :z: E lR.f:. (4.7) 

Thus in the relaxed version of the optimization problem, we place a norm constraint (ll:z:ll 2 = n/2), 
a domain constraint (:z: E IRf:.), and one structural constraint, viz., all components of :z:* are not the 
same ( :z: =I s e). If :z:* denotes the optimal solution to the above problem, i.e., Cu ( :z:*) = min Cu ( :z:) 

z eJRn 

then, due to ~ ~ lR.f., 

Cu(:z:*) :5 Cu(b*). (4.8) 

Given a continuous optimal solution :z:*, the median rule can be used to find the nearest (in 12 norm) 
feasible solution b = M(:z:*) E A~. It is possible that b is not the optimal integer solution, i.e., 
b =I b* and, 

Cu(b*) = min Cu(b) < Cu(b) = Cu(M(:z:*)). 
bE A!] 

(4.9) 

Let b denote any feasible solution. The relaxation error 8 is defined as the absolute difference between 
the two costs associated with the solutions b* and b, 

8 = ICu(b*) - Cu(b)l (4.10) 
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Now, it is possible that Cu(b*) will be equal to its lowest possible value Cu(:z:*), so that 8 < 
ICu(:z:*) - Cu(b)l. Since Cu(-) is Lipschitz it follows that, 

8 ~ ICu(:z:*) - Cu(b)l ~ a ll:z:* - bll (4.11) 

Therefore, smaller the value of ll:z:* - bll, the smaller the worst case relaxation error is expected to 
be. Since ll:z:* - bll has the least value when b = b = M(:z:*) (Theorem 3.1), the relaxation error 
is likely to be smallest when the median rule is used. Our goal is to study the expected behavior of 
8 in terms of its maximum possible value a ll:z:* - bjj. In other words we consider the problem of 
bounding the relaxation error in a probabilistic setting. 

5 Relaxation Error: Probabilistic Analysis 

A probabilistic analysis can be initiated by constructing an ensemble of problems, assign the ensemble 
a suitable measure and then study the relaxation error with respect to this measure. Thus, assign 
the uniform measure to U. To each random selected vector u E U, there corresponds a unique 
minimization problem: 

Minimize Cu(c) where c E A2. 
Associated with this problem is its continuous relaxation, the quantities b, b*, :z:* and relaxation 
error 8. Since u is a random variable, so are 8, b, b*, and :z:*. 

Endowing U with the uniform measure leads to a sample space of random minimization problems, 
where each problem is uniquely characterized by its parameters. We refer to this sample space as 
the ensemble C(n, a). With respect to the assigned measure, it is valid to ask for the probability 
that the relaxation error is greater than some arbitrary positive value. Lemma 5.1 addresses this issue. 

Note: Though we should distinguish between the optimal solution to a randomly chosen problem 
from the ensemble C(n, a), and the optimal solution :z:* to a fixed, particular instance C, we shall be 
denote both by :z:*. This will enable us to avoid writing X* instead of :z:*, or B* instead of b* and 
so on. Thus :z:*, b*, b and 8 are all understood to be random variables, and not solutions to a given 
problem. I 

The following lemma establishes bounds on the relaxation error for Lipschitz bisectioning when the 
median rule is used. 

Lemma 5.1 Let C(n, a) denote the ensemble of random minimization problems C with Lipschitz 
constant a. Let the random variables :z:*, b, and 8 be as defined in Section 4.2. Then, 

Prob(O > t) ::; Prob { ~ x[.1 ::; n - ~/<>)'} (5.1) 

I 

Proof: By the definition of Lipschitz functions and arguments presented before Equation (4.13), 

(5.2) 
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In other words for any t > 0, the event { 8 > t} is a subset of the event {a liz* - bll > t }. Hence: 

Prob( 8 > t) < Prob { a liz* - bll > t } 

Prob { liz* - bjj 2 > (t/a)2 } (5.3) 

But liz* - bll 2 

that, 
n - E?=l xfbi. Since bi = 1 for the largest half of z* and 0 otherwise, it follows 

Prob( 8 > t) < Prob { ~ x'!'b· < n - (t/a) 2
} L..J ,,_ 2 

i:::l 

Prob { ~ x*· < n - (t/a) 2
} I 

L..J [t] - 2 
i:::l 

(5.4) < 

Equation (5.1) has important consequences. Since we have shown that the random variable 8 is 
stochastically smaller3 than a liz* - bll, it follows that 

E[8]:::; aE[IIz*- bll]. (5.5) 

We use this result to obtain bounds on the expected error in relaxation. 

The following corollary, a consequence of the arithmetic mean-geometric mean inequality, provides 
another bound on the relaxation error in an alternative form. 

Corollary 5.1 Let z*, 8, n, a be as defined in Section 4.2, and let T = t/ a. Then, 

Prob(b t) < Prob { g xi,1 <; (1- ~r} (5.6) 

< Prob { g xi,1 <; exp( -T2 /2)} I (5.7) 

The median rule is optimal in the sense that if z* was mapped to an integer solution b =f. b then, 

Prob( .5 > t) <; Prob { t. b;xi <; n - ~/a)' I it, b; = ~ } · (5.8) 

In other words, the tightest bounds on the relaxation error are obtained when the median rule is 
used. Any other rule leaves greater room for the relaxation error4 • 

3 A random variable X is stochastically smaller than Y iff Prob(X > t) ::5 Prob(Y > t) for all t E lR [12, pp. 481]. 
4 0n the other hand, the "clocking paradox" complicates matters. A random variable Lt can be stochastically less 

than random variable L2, i.e., Prob(Lt > t) < Prob(L2 > t) for all t, but Prob(Lt > L2) can be arbitrarily close to 
1 [2]. 
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The geometry of the problem may be exploited to give rough upper bounds on the maximum possible 
relaxation error. To see this, let 8 denote the angle between z* and b so that, 

""n • A • """!'/2 x* 
( fJ) L...ti = 1 Xi b, L...t, = 1 [11 ( 9) 

cos = llz*llllbll = llz*llllbll 5. 

Since liz* II = llbll = y'nl2, and z* is most distant from b when z* - (1/-/2, 1/-/2, ... , 1/-/2) 
equidistant from all the balanced vectors, it follows that 

1 n/2 

1 ~ cos(8) ~ -/2 or i ~ ~ x[.1 ~ 2~ (5.10) 

If 8 were greater than 1r /4, then the median rule would map x* to some other balanced vector. 
Equation (5.9) is simple but useful. For instance if [n - (t/a)2J/2 ~ n/(2-/2), i.e. t ~ 0.5412 a.Jri 
then E~~~ x[.1 ~ [n - (t/a)2J/2 is impossible, and hence 

8 ~ 0.5412 ay'ii (5.11) 

Thus, the relaxation error 8 is O(a-Vn}. If a little more information is available, such as the mean 
and variance of the components of z*, then the classical bounds in order statistics may be used 
[1, 5). To illustrate this approach, we present two examples. In the first, we assume the existence 
and knowledge of the mean and variance of the components xi, and apply the Arnold-Groeneveld 
bound on the median to the relaxation error. In the second, we assume that the distributions of the 
Xi's are available, and apply a recent bound due to Caraux and Gascuel [4J. 

5.1 Arnold-Groeneveld Bounds 

In what follows, assume5 that the expectations and variances of xt, P,i and o} respectively, exist 
and are all equal, i.e., p,1 = · · · = P,n = p,, and similarly u~ = · · · = u~ = u2 • Then the 
Arnold-Groeneveld bound [17) on the expected value of the median E[x~] reduces to: 

p, - u ~ E[ x~] ~ p, + u (5.12) 

In Equation (5.13) u is the common standard deviation of the components xt. We establish two 
bounds: the first is tighter but requires an assumption, while the second is looser but requires no 
such assumption: 

E[8] ~ a vn J1 + u - p, provided p, ~ 1 + u, 

and, 

E[8] ~ avn(1 + (u- p,)/2). 

In particular, since 8 ~ 0, E[8) ~ 0 and the following non-obvious inequality is implied, 

1 + (u - p,)/2 ~ 0 

* p,~u+2 

5 The assumptions are not essential, but greatly simplify the algebra. 
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(5.13) 

(5.14) 

(5.15) 

(5.16) 



The remainder of this section will establish (~.14) and (5.15). Our starting point is Lemma 5.1. 

Prob(O > t) < Prob { ~ xib; :<; n - ;tf<>)'} (5.17) 

< { n n- r 2 } Prob 2x~ ::; 2 

< Prob (x~ ::; 1 - r 2 fn) 

< Prob (1 - x~ ~ r 2fn) 

< Prob (a y'1i (1 - x~) ~ t) (5.18) 
:::} E[8] < ay'TiE[y'1 - x~] (5.19) 

Equation (5.19) asserts that 8 is stochastically smaller than a y'n y'l - x~, and provided the ex­
pectations of 8 and x~ exist, we get Equation (5.20) [12, pp. 481]. Since y'1 - x~ is a concave 
function, from Jensen's inequality yields, 

E[ y'1 - x~] ::; y'1 - E[x~]. (5.20) 

We digress briefly to mention that in Equation (5.21) the term y'1 - E[x~] is always well-defined, 
since Equation (5.9) and x~ ::; X[i] for 0 ::; i ::; n/2, imply that 

n/2 
n L x[iJ 

n * > > -X 
2 2 m 

i= 1 

1 > x* m 
1 > E[x~] 

Also, since :z:* E R.+. 
0 ::; E[x~] ::; 1 

From the Arnold-Groeneveld bound, 

1+a-J.L > 
y'1 +a - J.L > 

Hence, provided J.L ::; 1 + a, 

1 - E[x~] ~ 1 - (a + J.L) 
y'1 - E[x~] if 1 + a - J.L ~ 0 

E[8] ::; a y'1i y'1 - E[x~] ::; a v'n y'1 + a - J.L 

Alternatively, from Equation (5.25), 

E[ y'1 - x~] ::; y'1 - E[xm] ::; 1 - (E[x~]/2) 

Applying the Arnold-Groeneveld bound to 1 - (E[x~]/2) we obtain, 

E[8]::; avfn(1- E[x~]/2)::; ay'Ti(1 +(a- J.L)/2) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

Equation (5.28) and Equation (5.30) are useful provided they give tighter bounds than Equa­
tion (5.12). The main thing to notice about these bounds is that they are relatively distribution-free, 
i.e., they do not assume any knowledge about the specific form of the distribution, only its mean 
and variance. Also, note that the mean and variances of the components xt cannot be arbitrary. By 
virtue of Lemma 5.1 and the non-negativity of the relaxation error, the difference between the mean 
(J.L) and the standard deviation (a) is always less than 2. 
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5.2 Distribution Bounds 

A different set of bounds can be obtained if the cumulative distribution functions (c.d.f.) of xi are 
known. In particular, a recent result due to Caraux and Gascuel is applicable. We reproduce their 
result here for convenience. 

Proposition 5.1 [4, Proposition 1]: Let Y1 , ... , Yn be a set of n random variables which are 
identically distributed with c.d.f. Fy. Then for the c.d.f. of the rth increasing statistic F(r)' 

(5.30) 

I 

Assume for convenience that the components xi are identically distributed according to a common 
distribution Fx* (t), i.e., 

Fxo(t) = Prob (xi < t) 
• 

(5.31) 

Consequently, from Proposition 5.1; 

Prob(<5 > t) ~ Prob( x~ ~ 1 - :~2 ) ~ inf { 1, 2 F(1 - nt~2 )} (5.32) 

So, for some known distribution functions of xi's, the relaxation error may be bounded for any 
threshold t. 

An alternate approach to distribution-based bounds is to make specific assumptions about the dis­
tribution of x* itself, i.e., consider what happens when the x* in the ensemble are distributed in 
different ways. We consider three random models; in the first, x* is assumed to be uniformly dis­
tributed on the hypersphere of radius Fn/2, in the second the angle between x* and b is assumed 
to be uniformly distributed and in the third, the sine of the angle is uniformly distributed. 

Model 1: It will be shown that the relaxation error goes to zero asymptotically if x* is assumed to 
be uniformly distributed on the surface of the non-negative orthant of ann-dimensional hypersphere 
of radius Fnfi. In this section we show that asymptotically, the expected relaxation error goes 
to zero, at a rate given by 0(1/Jn). We begin with an intuitive explanation of why this is to be 
expected, given the above uniform distribution of x*. 

In Lemma 5.1, to place an upper bound on o, one needs to place a bound on the probability that 
llx* - bll > tja, for a given t. Though x* may be uniformly distributed on the hypersphere, the 
fact that b = M(x*) means that to obtain an upper bound on this probability, we need only con­
sider those points that are closer to b (in 12 norm) than to any other balanced vector. One may fix 
a balanced vector say, b0 = (0, 0, ... , 0, 1, 1, 1, ... , 1) and try to obtain an upper bound on the 
probability that ll:z:* - boll > tf a given that :z:* is closer to b0 than any other discrete solution. 
However, if we compute the measure of the set of points that are closer to b0 than to any other 
discrete balanced vector (of which there are (n/2)), it turns out that the measure tends to zero 
asymptotically. The following simple calculation shows why. 
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Assume without loss of generality that n is even, i.e. n = 2k. Each of the (n;2) discrete solutions 

also lie on this hypersphere. Consider the surface area of the first quadrant per balanced vector in 
J\2. Now the surface area of an n-dimensional hypersphere of radius r is given by, 

(5.33) 

where r(x) is the Euler Gamma function. From Equation (5.34), it follows that the surface area of 
the first quadrant for n = 2k and r = VnJ2 = Vk is 

S+(Vf) sn( Vn/2)/2n (5.34) 

(2k) 'Irk ( VnJ2)2k-1 21rk kk+ 1/2 
(5.35) 

22k r(k + 1) 4kf(k + 1) 
21rk kk + 1/2 

(5.36) 
4k (k!) 

where we have used the fact that for integer k > 0, r(k + 1) = (k!). S+(Vk) is monotonically 
increasing with respect to n. But if z* is to be mapped to b, it must lie in a certain area of the 
hypersphere. In this area, all points are closer to b than to any other balanced vector. Since there 
are (ni2) balanced vectors in n-dimensions, the surface area per discrete balanced vector is given by, 

2 kk+1/2 'Irk 

e:) (k!) 4k 
(5.37) 

kk k! k 
2 Vk (2k)! (7r /4) (5.38) 

2 ../k (1r/4)k (k + 1) 
kxkx···Xk 

(5.39) 
X (k + 2) X • • • X (k + k) 

From Equation (5.40) we see that, 

. S+(Vk) 
hm (n) -tO 

k-+ oo n/2 
(5.40) 

One may conclude that the measure of the set of points that are closer to b0 than to any other 
balanced vector is zero (asymptotically). In other words, for this model, if we find an optimal 
continuous solution, then with probability one, the associated relaxation error is zero. The next 
section gives an estimate for the rate of convergence. For simplicity we have relied heavily on 
symmetry arguments, using the 2-dimensional example to illustrate the calculations for the general 
case. 

5.2.1 Asymptotics for Model 1 

To clarify what will follow, consider the case when n = 2, shown in Figure 1. There are two possible 
discrete solutions, viz., b0 = (0, 1) and b1 = (1, 0). Real solutions z* are closer to b0 provided 
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b0 = (0, 1) 

/ 
I 

/ 
:i 

I 
I : 

i . . .. 
I •' ,• ,.• 

0 I,•' 

bl = (1,0) 

Figure 1: Geometry of the relaxation error for 
n = 2. There are only two discrete solutions, 
viz. b0 = (0, 1) and b1 = (1, 0). The random 
continuous solution z* is mapped to b0 if it lies 
in that section of the circle (two dimensional 
"hypersphere") between b0 and C, else to b1. The 
expected distance E[llz* - boll] is the distance 
between CG and b0 , where CG is the center 
of mass of the distribution of z* in the section 
b0 -CG-C. 

0101 

• 

All real solutions in this zone 

are map ed to 0011 

0110 • 

0011 

• • 1001 

Figure 2: For n = 4, there are six discrete so­
lutions, from 0011 (bo) to 1100. The "zone of 
attraction" for 0011 is delimited by "edges" 
{hyperplanes), where each edge represents a 
region in which points are equidistant between 
0011 and a neighbor. Knowing the co-ordinates of 
C1, ... , C4 enables the calculation of the center 
of mass of DOll's zone of attraction. 

they lie on the circular arc b0 -CG-C. If the distribution of z* is known, then one can calculate the 
expected distance between such a solution and b0 • Irrespective of whether b0 is at the actual optimal 
distance or not, the expected relaxation error is necessarily less than this expected distance. To 
illustrate this approach, we perform the explicit computations for the two dimensional case, under 
the assumption that the z* is uniformly distributed along the circle in Figure 1. From elementary 
geometry, the co-ordinates of Care given by (1/J2, 1/J2). So if a solution z* = (xi, x2) is to be 
mapped to b0 , we must have, 

x* < 1 -
1 

J2 
x* > 2 -

1 

J2 
(5.41) 

If z* were uniformly distributed along the line b0 -C, then the expected distance between z* and b* 

would be the distance between the centroid SG and b0 • The co-ordinates of SG are ( 1
10 , 1 +:). 

2v2 2 2 
However the solutions are distributed uniformly along the circular arc. The expected distance then 
becomes the distance between b0 and CG. The co-ordinates of CG are computable from those of 
SG, using the fact that CG is the intersection of the line 0-SG and the circular arc. This gives, 

CG = ( V2- J2 V2+J2) 
2 ' 2 

(5.42) 
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Then the Euclidean distance between CG and bo is equal to 

Then, 

~ 0.1521 

d(b0 , CG) ~ 0.39 

Prob(8 > t) < 
~ E[8] < 

< 

Prob { ll:z:* - bll > tja} 

a E[ll:z:* - bli] 
ad(b0 , CG) 

< 0.39 Q; 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

This analysis can be extended to the multi-dimensional case as well. Figure 2 shows a schematic 
illustration of the four dimensional case. There are six discrete solutions. As before, we fix 
b0 = (0, 0, 1, 1). b0 has four nearest neighbors, i.e discrete solutions at a hamming distance of 
2; (1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1) and (0, 1, 1, 0). The edges in Figure 2 represent regions containing 
points equidistant from b0 and a neighbor. These edges delimit a Voronoi polytope, such that if 
a continuous solution lies in this "zone", then it is mapped to b0 , rather than any other discrete 
solution. Geometrically, all solutions lie on a hypersphere of radius ..jnf2 = \1"2, and origin at 
0 = (0, 0, ... , 0, 0). The points C1 through C4 are analogous to the point C in Figure 1. For 
example, cl lies on the midpoint of the geodesic (on the hypersphere) joining the point (0, 1, 1, 0) 
and (0, 0, 1, 1). Therefore, the co-ordinates of the Ci's are given by, 

(5.47) 

(5.48) 

If the a:* were uniformly distributed on the polytope formed by b0 and the points Ci's, then the 
expected distance of E[ll:z:* - boll] would be given by the Euclidean distance between b0 and the 
polytope's centroid SG, where the co-ordinates of SG are given by, 

SG (5.49) 

(5.50) 

(5.51) 

SG is then used to compute the co-ordinates of CG, by using the fact that CG lies at the intersection 
of the line 0-SG and the hypersphere. Finally, knowing CG's co-ordinates enables one to compute 
an upper bound on the expected value of 8, analogous to that for the two dimensional case. When 
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1r'--'=~~=c~~~==~ 

0.9 

0.8 

0.7 

0.6 
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0.4 
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0.3 ( ) .J2 n 
u n:\.(n2 + 4) 0.2 

0.1 

oLL-L~~~~~~~ 
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n- No. of Dimensions 

Figure 3: Plot of u(n),l(n) versus n 

au(n)yln 
.J2 vs n 

0.5 

0.4 

0.3 

0.2 

0.1 L...-.....__---L_.....__---L_.....__---L_.I-__.__.1---1 

5 10 15 20 25 30 35 40 45 50 
n- No. of Dimensions 

Figure 4: The expected relaxation error as a 
function of problem size, and Lipschitz constant 
of cost surface 

generalized to n dimensions, we obtain the following: 

SG 
1 (n/2)2 

(n/2)2 + 1 (bo + ~ Ci) (5.52) 

( u(n), ... , u(n), 1 - (J2- 1) u(n), ... , l(n), ... , l(n)) (5.53) 

first n/2 terms last n/2 terms 

where 

u(n) 
..,fin 

(5.54) 
(n2 + 4) 

l(n) - 1 - (V2- 1) u(n) (5.55) 

Figure 3 is a graph of u(n) and l(n) versus n. Clearly, as the number of dimensions increase, u(n) 
rapidly goes to zero (at a rate of 0(1/n)). This fact is significant in controlling the asymptotic 
behavior of the relaxation error. 

From Equation (5.54) it is now possible to compute the centroid CG; tedious but simple calculations 
give, 

CG _ ( u(n) u(n) l(n) l(n) ) 
- y'u(n)2 + l(n)2' · · · ' y'u(n)2 + l(n)2' y'u(n)2 + l(n)2' · · · ' y'u(n)2 + l(n)2 

first n/2 terms last n/2 terms 

Since u(n) ~ 0 as n ~ oo, it follows that l(n) ~ 1 as n ~ oo, i.e., asymptotically CG tends to 
b0 = (0, 0, ... , 0, 1, 1, ... , 1), and d(b0 , CG) ~ 0 for increasing n, where d(b0 , CG) is the distance 
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between band CG, or the expected value of JJ:z:* - boll· Precisely, d(b0 , CG) is given by, 

d(b0 , CG) = .,fii J u(n)2 + l(n)2 - l(n) y'u(n) 2 + l(n) 2 (5.56) 

where u(n) and l(n) are as given earlier. Equation (5.57) implies and Equation (5.47) imply that 

E[8] ~ a fo J u(n)2 + l(n)2 - l(n) y'u(n)2 + l(n)2 (5.57) 

Therefore, 

au(n) vfn 
V2 

lim E[8] --+ 
n-+oo 

(5.58) 

anfo a 
----=---=-- --+ -
n2 + 4 Vn (5.59) 

Thus E[8] --+ 0 as n --+ oo, and does so at a rate given by 0(1/ y'n) (see Figure 4). Asymptotically, 
if the random optimal continuous solutions are uniformly distributed over the hypersphere, the re­
laxation error goes to zero. 

The worst case occurs when ;z:* is not uniformly distributed over the hypersphere but the distribution 
is instead concentrated around a point, which while still in the zone of attraction of b0 , is fartherest 
from it. The co-ordinates of this point are easily seen to be given by (1/v'2, 1/v'2, ... , 1/v'2) which 
is the unique point on the hypersphere equidistant from all the discrete balanced solutions. The 
relaxation error is then bounded by 

1 
E[8] ~ avfn[1- V2p12 ~ 0.541avfn 

which is O(fo) as given by Equation (5.12). 

Model 2: From Equation (5.7), viz., 

E7-t x£bi 
cos(O) = JJ:z:*JJllbJJ 

"\"n/2 * 
L..ti = 1 x[i] 

ll:z:*llllbJJ 

one can rewrite Equation (5.2) as follows: 

Prob( 8 > t) < Prob { ~ x'!'b· < n - (tfa) 2
} L...J ,,_ 2 

i=l 

Prob {cos( B) ~ 1 - r 2 jn} 

= Prob { sin(9/2) ~ rfv'21i} 

Prob { e ~ T !v'21i} 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

where 0 ~ 9 ~ 1r/4 (see Equation (5.9)), and we have introduced the variable e = sin(9/2). 
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1 - Fo(tf../2a) 

0. 

o~----~----~~--~~----_. ______ ._ ____ ~----~ 
0 0.2 0.4 0.6 t 0.8 1 1.2 1.4 

Figure 5: Plot of 1 - Fa(tj.J'i01) with respect tot for two different values of 01. The number of dimensions 
n is fixed at 20. Notice that for increasing 01 ("rougher") surfaces the upper bound on the relaxation error 
increases (for a given t). 

Consider the random model in which (J is uniformly distributed in the interval [0, n"/4]. Then it is 
possible to explicitly evaluate Fe(t), the c.d.f. of the random variable e = sin(fJ/2). From routine 
transform operations, we get 

Prob(8 > t) ~ 1- ~sin-1 (r/~) = 1- Fe(r/~). 
7r 

Vt ~ av'iiV1- 1/h 
(5.66) 

Or equivalently (renaming t appropriately), 

Prob(8 > ty'ri) ~ 1- ~sin-1 (~a) = 1- Fe(tfha), Vt ~ a V1 - 1/h 
(5.67) 

The right hand side of Equation (5.67) is the c.d.f of the arc-sin density distribution, and is a function 
of three variables, n, t and a. Figure 5 plots the right hand side of Equation (5.68) with respect to t 
for two different values of the Lipschitz constant. Equation (5.68) shows that for any fixed multiple 
of y'n, the probability that 8 is greater than it is a constant, irrespective of problem size. In other 
words, the relative relaxation error 8r = 8/ y'ii is independent of problem size in this model. 

Model 3: Rather than letting (J be uniform in [0, 7r/4], an alternative model could require (J to be 
so distributed that 8 = sin(8/2) is uniform in [0, 1/v'2J (for example, this is the case if (J has an 
arc-sin c.d.f). It then follows that, 

t t 
Prob( 8 > t) < 1 - V2 -- = 1 - --

V2fia y'iia 
(5.68) 
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Or equivalently (renaming t appropriately), 

t 
Prob( ~ > ty'n) ~ 1 - -

a 

Therefore, the asymptotic behavior of~ in both models is essentially the same. 

6 Discussion 

(5.69) 

The usefulness of the upper bounds on the relaxation error (developed in Section 5.2), depends on the 
available information regarding the distribution of z* in the ensemble C(n, a). Typically, one would 
expect the solutions (z*) to be tightly concentrated around the discrete solutions, i.e., xi is either 
close to 0 to 1. Such is the case, for instance, if z* was distributed according to the arc-sine density 
distribution (Beta distribution with both parameters set to 1/2). Such a concentration of measure 
can only reduce the relaxation error. Typically, the situation is usually even much better than that 
afforded by assuming the distribution to be uniform; certainly, there is no reason to suppose that 
the continuous optimal solutions are concentrated around the point (1/-/2, 1/-/2, ... , 1/-/2) (worst 
case scenario). 

Second, the results make explicit the relationship between ~ and the "smoothness" constant of the 
surface, a. The expected relaxation error is linearly dependent on the smoothness of the cost surface. 
With respect to relaxation, regularization techniques which smooth a cost surface by some kind of 
averaging process (say) thus have only a limited benefit, since they only reduce the relaxation error 
by a linear factor. 

We have studied the relaxation error associated with a particular relaxation. Other problem relax­
ations may yield different conclusions. For example, rather than relaxing as in Equation (4.8), 

Minimize C(z) such that llzll 2 = i and z E Rf. (6.1) 

one could have relaxed it as follows, 

n 

Minimize C(z) such that L Xi = i and z E Rf. 
i= 

(6.2) 

Now z is constrained to lie on a simplex rather than a hypersphere. The conclusions obtained in this 
paper remain essentially unchanged, for this particular relaxation, especially the asymptotic results. 

It is interesting to compare the bounds obtained on the relaxation error with related work in the 
literature. In mathematical programming, seminal work by Baum, Chandrashekaran, Giles, Orlin, 
Shirali, Trotter and several others have led to deterministic results that bound the difference between 
the continuous and optimum integer solutions for constrained separable convex programming prob­
lems [18, pp. 237-242], [23]. Typically, their results state that for this class of problems, the distance 
(usually with respect to 100 norm) between the integer and continuous solutions, is bounded by some 
value, which depends on the number of variables and constraint matrix. These bounds are often 
the best possible, in the sense that one can always construct examples achieving the stated bounds. 
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But it also implies that such results refer to worst-case scenarios, since they have to account for all 
possibilities. Fundamentally, this class of results is pessimistic in nature. Probabilistic analyses seem 
to have been few, though in recent years there has been an upsurge in new techniques and promising 
results, such as [6, 13, 20, 21]. 

In the area of graph bisectioning, the results are of a mixed nature. On the one hand it is possible 
to construct graphs on which "standard" techniques (such as spectral methods) are guaranteed to 
produce poor bisection [9]. In fact, there are no known approximation algorithms for the graph 
bisection problem. On the other hand, there is a catalogue of positive results; for example the 
performance of spectral methods (or alternative techniques) on "regular" graphs such as finite ele­
ment meshes is asymptotically optimal [19, 3]. There is also a great deal of folklore that seems to 
suggest that many heuristic algorithms are quite efficacious "in practice." Intuitively , the graph 
bisection problem is "easier" than say, the Hamiltonian path problem. Our results on the relax­
ation error suggest that the Lipschitz continuity of the cost function is the single most important 
factor underlying the ease of obtaining good solutions for the graph bisection problem. It is likely 
that similar results hold for Lipschitz continuous cost functions subject to general convex constraints. 
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