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Abstract Let R be a complete local ring of dimension d over a
perfect field of prime characteristic p, and let M be an R-module of
finite length and finite projective dimension. S. Dutta showed that

the equality limn→∞

ℓ(F n

R
(M))

pnd = ℓ(M) holds when the ring R is a

complete intersection or a Gorenstein ring of dimension at most 3.
We construct a module over a Gorenstein ring R of dimension five
for which this equality fails to hold. This then provides an example
of a nonzero Todd class τ3(R), and of a bounded free complex whose
local Chern character does not vanish on this class.

1 Introduction

Let R be a complete local ring of dimension d over a perfect field
of prime characteristic p, and let G• be a bounded complex of free
modules with finite length homology. In [Du] S. Dutta introduced the
limit multiplicity

χ∞(G•) = lim
n→∞

χ(Fn(G•))

pnd
,

where Fn(−) denotes the n th iteration of the Frobenius functor.
C. Szpiro and L. Peskine showed in [PS2] that the equality

χ(Fn(G•)) = pndχ(G•)
⋆ Present address: Department of Mathematics, University of Utah, 155 South,

1400 East, Salt Lake City, UT 84112–0090, USA
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holds for a graded complex over a graded ring, and Szpiro conjectured
that this would hold in general over a Cohen-Macaulay ring, see [Sz].
In the specific case that G• is the resolution of a module M of finite
length and finite projective dimension, the conjecture then asserts
that

ℓ(Fn(M)) = pndℓ(M).

Dutta showed that this equality does hold if the ring R is a complete
intersection or a Gorenstein ring of dimension at most 3, see [Du].
In [Ro3] P. Roberts constructed a counterexample to Szpiro’s con-
jecture over a Cohen-Macaulay ring of dimension three using the
famous example of negative Serre intersection multiplicity due to
Dutta, Hochster and McLaughlin, [DHM]. The question however re-
mained open for Gorenstein rings, and the main aim of this paper is
to demonstrate that the conjecture is false in general over Gorenstein
rings. Specifically, we construct a module M of finite length and finite
projective dimension over a Gorenstein ring R of dimension five such
that

lim
n→∞

ℓ(Fn
R(M))

p5n
6= ℓ(M).

Using techniques similar to those used in [DHM], we first construct
a module N of finite length and of finite projective dimension over
the hypersurface

A = K[U, V,W,X, Y,Z]m/(UX + V Y +WZ),

where m is the ideal (U, V,W,X, Y,Z), such that χ(N,A/P ) = −2,
where P is the prime ideal (u, v,w). (Lower case letters will denote
the images of the corresponding variables.) We believe this is of inde-
pendent interest since it is an example of two modules, one of whom
has finite projective dimension, with a nonvanishing intersection mul-
tiplicity where the sum of the dimensions of the modules is dimA−2.
It should be pointed out that if N1 and N2 are two modules, each of
which has finite projective dimension over A, then the condition

dimN1 + dimN2 < dimA

does imply χ(N1, N2) = 0 by the main theorems of [Ro1] or [GS].
The limit multiplicity has an interpretation in terms of localized

Chern characters and the local Riemann-Roch formula, see [Ro3] or
[Ro4]. The results mentioned above then provide an example of a
nonzero Todd class τ3(R) over a Gorenstein ring R of dimension five,
and of a bounded free complex whose local Chern character does not
vanish on this class. In [Ku] K. Kurano does obtain a Gorenstein ring
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R of dimension five with a nonzero Todd class τ3(R), but it is not
known if there is a free complex whose local Chern character does
not vanish on this Todd class.

2 Background

In this section we give a brief summary of the relevant terminology as
well as record some well-known facts about χ and χ∞ that we shall
find useful later in our work.

For two modules M and N over a local ring (R,m) such that
M ⊗RN has finite length and M has finite projective dimension, the
Serre intersection multiplicity is defined as

χ(M,N) =
dimR
∑

i=0

(−1)iℓ(TorR
i (M,N))

where ℓ(−) denotes the length. This definition does agree with the
geometric notion of intersection multiplicity, see [Ser]. For a bounded
complex G•

0 → Gs → · · · → G1 → G0 → 0

with finite length homology, we define

χ(G•) =

s
∑

i=0

(−1)iℓ(Hi(G•)).

Let R be a ring of positive characteristic p and dimension d. Using
the Frobenius endomorphism f of R (which takes r to rp for r ∈ R),
Peskine and Szpiro defined the Frobenius functor FR(−). This functor
takes an R-module M to

FR(M) = M ⊗R
fR,

where fR is R viewed as a module over itself with a left action via the
Frobenius endomorphism, and a right action via the usual multipli-
cation. We use Fn

R(−) (or simply Fn(−)) to denote the n th iteration
of the Frobenius functor. For a bounded free complex G• with finite
length homology, Dutta defined

χ∞(G•) = lim
n→∞

χ(Fn(G•))

pnd
.

If G• is a finite free resolution of an R-module M of finite length and
finite projective dimension, then

χ(G•) = ℓ(M) and χ∞(G•) = lim
n→∞

ℓ(Fn
R(M))

pnd
.
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For the second assertion note that

Hi(F
n
R(G•)) = TorR

i (M, f
n

R) = 0

for all i ≥ 1 and n ≥ 0, by [PS1, Theorem 1.7].

Lemma 2.1 Let R be an integral domain of characteristic p > 0 and

let S be a module-finite extension ring which has rank r as an R-

module. Then for any bounded complex G• of free R-modules which

has finite length homology,

χ∞(G• ⊗R S) = r · χ∞(G•).

Proof Since S is an R-module of rank r, there exists a short exact
sequence

0 −−−−→ Rr −−−−→ S −−−−→ T −−−−→ 0

where T is a torsion R-module and thus has dimension less than d.
Since χ(Fn

R(G•) ⊗R −) is additive on short exact sequences, we get

χ(Fn
R(G•) ⊗R S) = r · χ(Fn

R(G•)) + χ(Fn
R(G•) ⊗R T ). (∗)

Since the module T has dimension less than the dimension of R,

lim
n→∞

χ(Fn
R(G•) ⊗R T )

pnd
= 0

by [Sei, Proposition 1]. We obtain the desired equality by dividing
the equation (∗) by pnd and forming the appropriate limits since

Fn
R(G•) ⊗R S = Fn

S (G• ⊗R S).

⊓⊔

We will also use the following lemma, which is patterned after
Proposition 2.4 of [DHM].

Lemma 2.2 Let (R,m,K) be a local ring, and let M be a finitely

generated R-module. Suppose that P is an ideal of R such that R/P
is a regular ring. Then M has finite projective dimension if and only

if TorR
i (M,R/P ) = 0 for i≫ 0.

Proof Since R/P is regular, the residue field K has a finite resolution
by free R/P -modules. Then TorR

i (M,R/P ) = 0 for i≫ 0 if and only
if TorR

i (M,K) = 0 for i ≫ 0. However TorR
i (M,K) = 0 for i ≫ 0 if

and only if M has finite projective dimension. ⊓⊔
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3 Overview of the construction

We summarize the work that will be carried out in Sections 4 and 5
and explain how this provides the example we are aiming for.

In Section 4 we construct a module N of length 55 and finite
projective dimension over the local hypersurface

A = K[U, V,W,X, Y,Z]m/(UX + V Y +WZ),

where m is the maximal ideal (U, V,W,X, Y,Z), such that N has a
nonzero intersection multiplicity with A/P where P is the prime ideal
(u, v,w). Specifically, we have

χ(N,A/P ) =
5

∑

i=0

(−1)iℓ(TorA
i (N,A/P )) = −2.

In Section 5 we construct a Gorenstein normal domain R which is a
module finite extension of A and for which there is an exact sequence
of A-modules

0 −−−−→ A3 −−−−→ R −−−−→ P −−−−→ 0. (∗∗)

Note that the ring R has rank 4 as an A-module. Consider the R-
module M = N ⊗A R. We claim that for this module

lim
n→∞

ℓ(Fn
R(M))

p5n
6= ℓ(M).

To see this, let F• be a finite free resolution of N over A. Since
A →֒ R is a module-finite extension, the complex G• = F• ⊗A R has
finite length homology. Furthermore since R is Cohen-Macaulay, the
complex G• is acyclic by the Acyclicity Lemma of Peskine and Szpiro,
[PS1, Lemma 1.8]. Hence G• provides a finite free resolution of M as
an R-module. To compute the length of M we use the additivity of
χ(F• ⊗A −) on the exact sequence (∗∗). This gives

ℓ(M) = χ(G•) = χ(F• ⊗A R) = 3χ(F•) + χ(F• ⊗A P ).

The additivity also gives

χ(F• ⊗A P ) = χ(F•) − χ(F• ⊗A A/P ),

and so

ℓ(M) = 4χ(F•) − χ(F• ⊗A A/P ) = 4ℓ(N) − χ(N,A/P )
= 4 · 55 − (−2) = 222.
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On the other hand, since R has rank 4 as an A-module, Lemma 2.1
gives

lim
n→∞

ℓ(Fn
R(M))

p5n
= χ∞(G•) = χ∞(F• ⊗A R) = 4χ∞(F•).

Since A is a hypersurface and F• is a finite resolution of N , we have
χ∞(F•) = ℓ(N) by [Du, Theorem 1.9]. Therefore,

lim
n→∞

ℓ(Fn
R(M))

p5n
= 4 · 55 = 220.

4 A module of finite projective dimension

Consider the local hypersurface

A = K[U, V,W,X, Y,Z]m/(UX + V Y +WZ)

where U, V,W,X, Y and Z are indeterminates over a field K of ar-
bitrary characteristic, and m is the maximal ideal (U, V,W,X, Y,Z).
We construct a module N of finite length and finite projective dimen-
sion over A, which has a nonzero intersection multiplicity with the
module A/P , where P denotes the prime ideal (u, v,w)A. Specifically,
we construct N such that

χ(N,A/P ) =

5
∑

i=0

(−1)iℓ(TorA
i (N,A/P )) = −2.

The following complex is an minimal free resolution of A/P :

· · · φ3−−−−→ A4 φ4−−−−→ A4 φ3−−−−→ A4 φ2−−−−→ A3 φ1−−−−→ A −−−−→ 0.

The maps in this complex are given by the matrices:

φ1 =
(

u v w
)

, φ2 =





x 0 −w v
y w 0 −u
z −v u 0



 ,

φ3 =









0 u v w
u 0 z −y
v −z 0 x
w y −x 0









, and φ4 =









0 x y z
x 0 −w v
y w 0 −u
z −v u 0









.

The modules TorA
i (N,A/P ) may be computed by tensoring the

above complex with the module N . If N has length 55, the resulting
complex may be viewed as

K220 β−−−−→ K220 α−−−−→ K220 θ2−−−−→ K165 θ1−−−−→ K55 −−−−→ 0
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where θ1, θ2, α and β are matrices over K. The i th homology of
this complex is TorA

i (N,A/P ), and will vanish for i ≥ 3 provided
the sum of the ranks of the matrices α and β is 220. In this case the
module N has finite projective dimension by Lemma 2.2, and an easy
calculation shows that

χ(N,A/P )

= ℓ(TorA
0 (N,A/P )) − ℓ(TorA

1 (N,A/P )) + ℓ(TorA
2 (N,A/P ))

= 55 − 165 + 220 − rank(α) = 110 − rank(α).

In our construction, the matrix α will have rank 112 and β will have
rank 108.

As in [DHM], we regard a module of finite length over A as a
finite dimensional vector space over K. The action of the generators
of the ring can then be treated as commuting nilpotent endomor-
phism of this vector space. We shall denote the endomorphisms given
by the action of u, v,w, x, y, z by the matrices ψ1, ψ2, ψ3, ψ4, ψ5, ψ6,
respectively. Note that the matrices must satisfy the relation

ψiψj = ψjψi, for all i and j,

corresponding to commutativity, and the relation

ψ1ψ4 + ψ2ψ5 + ψ3ψ6 = 0,

corresponding to the defining equation of the hypersurface.
The module of finite length and finite projection that we construct

is annihilated by m3 +(x, y, z)m. Consequently ψi may be written in
block form as

ψi =









0 0 ai ci
0 0 0 di

0 0 0 bi
0 0 0 0









for i = 1, . . . , 6.

Furthermore we set

a4 = a5 = a6 = 0 and b4 = b5 = b6 = 0.

Since

ψiψj =









0 0 0 aibj
0 0 0 0
0 0 0 0
0 0 0 0









,

the relation ψ1ψ4 + ψ2ψ5 + ψ3ψ6 = 0 is easily seen to be satisfied.
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The matrices a1, a2, a3 are

a1 =
(

1 0 0
)

, a2 =
(

0 1 0
)

, a3 =
(

0 0 1
)

,

where 1 denotes the 4 × 4 identity matrix, and 0 denotes the 4 × 4
zero matrix. For bi we take

b1 =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 , b2 =





0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



 , b3 =





0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1





where 1 denotes the 4 × 4 identity matrix, and 0 denotes the 4 × 4
zero matrix. Note that for all i and j we have aibj = ajbi, and so the
commutativity relations ψiψj = ψjψi do hold.

After interchanging certain rows and columns, the matrix α is







































0 a1 a2 a3 0 c1 c2 c3
a1 0 0 0 c1 0 c6 −c5
a2 0 0 0 c2 −c6 0 c4
a3 0 0 0 c3 c5 −c4 0
0 0 0 0 0 d1 d2 d3

0 0 0 0 d1 0 d6 −d5

0 0 0 0 d2 −d6 0 d4

0 0 0 0 d3 d5 −d4 0
0 0 0 0 0 b1 b2 b3
0 0 0 0 b1 0 0 0
0 0 0 0 b2 0 0 0
0 0 0 0 b3 0 0 0







































.

The rank of the matrix α is easily seen to be the sum of 40 and the
rank of the submatrix

α1 =













d1 d2 d3

0 d6 −d5

−d6 0 d4

d5 −d4 0
b1 b2 b3













.
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Similarly, after deleting rows and columns of zeros and interchang-
ing certain rows and columns, the matrix β reduces to





































0 0 0 0 c4 c5 c6
0 −a3 a2 c4 0 −c3 c2
a3 0 −a1 c5 c3 0 −c1
−a2 a1 0 c6 −c2 c1 0
0 0 0 0 d4 d5 d6

0 0 0 d4 0 −d3 d2

0 0 0 d5 d3 0 −d1

0 0 0 d6 −d2 d1 0
0 0 0 0 0 −b3 b2
0 0 0 0 b3 0 −b1
0 0 0 0 −b2 b1 0





































.

This rank of this matrix is the sum of 12 and the rank of the submatrix

β1 =

























0 c4 c5 c6
0 d4 d5 d6

d4 0 −d3 d2

d5 d3 0 −d1

d6 −d2 d1 0
0 0 −b3 b2
0 b3 0 −b1
0 −b2 b1 0

























.

We next let c1 = c2 = c3 = c4 = c5 = 0 and

c6 =
(

0 0 0 0 0 1
)

where 1 denotes the 4 × 4 identity matrix, and 0 denotes the 4 × 4
zero matrix. It remains to exhibit matrices di for 1 ≤ i ≤ 6 such that
the matrices α and β have ranks 112 and 108 respectively. We let
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d1 = d2 = 0 and

d3 =



















































0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0



















































,

d4 =



















































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0



















































,
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d5 =



















































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



















































,

and

d6 =



















































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0



















































.

Of course, any choice of matrices d3, d4, d5 and d6 in general posi-
tion will serve our purpose. That the matrices exhibited above do
have the required rank properties is an elementary, though tedious,
verification.

5 Construction of Gorenstein rings

We now construct a Gorenstein normal domain R which is an ex-
tension of a free A-module by the prime ideal P . The construction
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is carried out in the case that A is a hypersurface over a field of
characteristic 2.

Consider the ring R = A[a, b, c, d, e] where

a =
√
uyz, b =

√
vxz, c =

√
wxy, d =

√
uvw, e =

√
vwyz.

The ring R is a normal domain; in fact, it is the integral closure of A
in the field L(

√
uyz,

√
vxz) where L is the fraction field of A. This

furthermore shows that the ring R has rank 4 as an A-module.
To show that R is a Cohen-Macaulay ring, we work with the sys-

tem of parameters u, x, v, y, w − z and show that the multiplicity of
the ideal I = (u, x, v, y, w − z) is 8 and that this equals the length of
the K vector space R/I.

Consider the extension K[u, x, v, y, w− z] ⊆ R. The degree of this
extension may be computed by examining the corresponding exten-
sion of fraction fields, and so is easily seen to be 8.

The following relations show that R is generated as an A-module
by the elements 1, a, b, c, d, e.

a2 = uyz, ab = ze+ vyz, ac = ye+ wyz,
ad = ue, ae = dyz, b2 = vxz,
bc = xe, bd = ve+ vwz, be = vzc,
c2 = wxy, cd = we+ vwy, ce = wyb,
d2 = uvw, de = vwa, e2 = vwyz.

The relations amongst the elements of R also include

ux+ vy + wz, xa+ yb+ zc, wb+ vc+ xd,
wa+ uc+ yd, va+ ub+ zd.

Consequently the images of the following elements form a generating
set for R/I as a K vector space:

1, z, a, b, c, d, e, ze.

Hence the length of R/I is less than or equal to 8, but since the
multiplicity of the ideal I was earlier computed to be 8, the length
must be precisely 8. This shows that R is a Cohen-Macaulay ring,
and furthermore that it is Gorenstein, since the socle in R/I is of
dimension one, being generated by the image of ze. It is not difficult
to verify that the relations listed above are precisely the relations
amongst the generators of R.

Lastly, it may be verified that there is an exact sequence of A-
modules

0 −−−−→ A3 −−−−→ R −−−−→ P −−−−→ 0
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where the map R→ P is determined by

1 → 0, a→ u, b→ v, c→ w, d→ 0, e→ 0.

6 Local Chern Characters

LetX be a closed subset of SpecR where the ringR is a d-dimensional
homomorphic image of a regular local ring. For each integer i, let
Zi(X) denote the free Q-module generated by cycles of the form
[R/P ] for P in X such that dimR/P = i. For a prime Q with
dimR/Q = i+ 1 and an element x of R such that x /∈ Q, define

div(x,Q) =
∑

dim R/P=i

ℓ((R/(Q+ xR))P )[R/P ].

Let Bi(X) denote the subgroup of Zi(X) generated by elements of
the form div(x,Q) for Q in X. The i th graded piece of the Chow
group of X is Ai(X) = Zi(X)/Bi(X), and the Chow group of X is

A∗(X) =
d

⊕

i=1

Ai(X).

Let G• be a bounded free complex of R-modules, and let Z ⊂
SpecR be the support of this complex. The local Chern character
ch(G•) is the sum

ch(G•) = chd(G•) + chd−1(G•) + · · · + ch0(G•)

where, for each k,

chk(G•) : Ai(X) → Ai−k(X ∩ Z)

is a Q-module homomorphism. (For precise definitions and properties
we refer the reader to [Fu].) We consider the special case of the local
Riemann-Roch formula where the homology modules of the complex
G• are of finite length: for any finitely generated R-module N , there
is an element

τ(N) = τd(N) + · · · + τ0(N) ∈ A∗(Supp(N)),

called the Todd class of N , such that

χ(G• ⊗N) = ch(G•)(τ(N)).

Note that since the support of G• is the closed point of SpecR,
ch(G•)(τ(N)) is an element of A0(Spec(R/m)) ∼= Q. If G• is the
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resolution of a module M of finite length and finite projective dimen-
sion, the local Riemann-Roch formula then gives

ℓ(M) = ch(G•)(τ(R)) =

d
∑

i=0

chi(G•)(τi(R)).

Now suppose in addition that R is a complete local ring over a
perfect field of prime characteristic p. Since the local Chern characters
are compatible with finite maps, one can show that

lim
n→∞

ℓ(Fn
R(M))

pnd
= chd(G•)(τd(R)),

see, [Ro4, Proposition 12.7.1]. If the ring R is a complete intersection
then τi(R) = 0 for all i < d, and so

ℓ(M) = ch(G•)(τ(R)) = chd(G•)(τd(R)) = lim
n→∞

ℓ(Fn
R(M))

pnd
.

For a Gorenstein ring R the duality property shows that τd−i(R) = 0
for all odd numbers i. In the specific case that R is a Gorenstein ring
of dimension 3 and G• is the resolution of a module M of finite length
and finite projective dimension, this then gives

ℓ(M) = ch(G•)(τ(R)) = ch3(G•)(τ3(R)) + ch1(G•)(τ1(R)).

The operator ch1(G•) can be identified with the MacRae invariant,
and is known to vanish whenever the module M has codimension
greater than one, see [Ro2, Theorem 3], and also [Fo,Ma]. In [Ku]
Kurano gave examples of Gorenstein rings R for which τi(R) 6= 0
for some i < d. However it is not known in the case of Kurano’s
examples if there exists a bounded free complex G• with finite length
homology for which chi(G•)(τi(R)) does not vanish for some i < d.
We would also like to point out that, using the example in [DHM] of a
module with negative intersection multiplicity, Roberts did construct
an example of a Cohen-Macaulay ring R of dimension 3 such that
ch2(G•)(τ2(R)) 6= 0 for a bounded free complex G• with finite length
homology, which is, in fact, the resolution of a module of finite length
and finite projective dimension.

In our example, where R is a Gorenstein ring of dimension 5 and
G• is the finite free resolution of the module M , we have

ℓ(M) = ch5(G•)(τ5(R)) + ch3(G•)(τ3(R)) = 222.

(Recall that ch1(G•) = 0 by [Ro2, Theorem 3].) On the other hand,

ch5(G•)(τ5(R)) = lim
n→∞

ℓ(Fn
R(M))

p5n
= 220,
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and so, we must have

ch3(G•)(τ3(R)) = 2.

Thus our example provides an example of a Todd class τ3(R) over a
five dimensional Gorenstein ring R, and of a bounded free complex
with a local Chern character that does not vanish on this class. Fur-
thermore, we may also conclude that in our example, where p = 2,
we have the formula

ℓ(Fn
R(M)) = 220 · 25n + 2 · 23n for all n ≥ 0

by the following proposition, which follows from the compatibility
of local Chern characters with finite maps: see the proof of [Ro4,
Proposition 12.7.1].

Proposition 6.1 (Roberts) Let R be a Noetherian local ring of pos-

itive characteristic p and dimension d. Suppose that the residue field

of R is perfect and that the Frobenius endomorphism is a finite map.

Then for any bounded free complex G• with finite length homology,

we have

ch(Fn
R(G•))(τ(R)) =

d
∑

i=0

pnichi(G•)(τi(R))

for all n ≥ 0.

7 Further consequences of the example

Let (R,m) be a complete local ring of dimension d, and let M be an
R-module of finite length. The length ℓ(Fn(M)) is equal to pndℓ(M)
if the ring R is regular, and this may be viewed as a special case of
the following result, [Du, Theorem 1.9]:

Theorem 7.1 (Dutta) Let (R,m) be a complete intersection ring

of dimension d, and let M be an R-module of finite length. Then

ℓ(Fn
R(M)) ≥ ℓ(M)pnd,

and equality holds if the module M has finite projective dimension.

C. Miller has obtained a converse to this theorem in [Mi], which
then gives a characterisation of modules of finite length and finite
projective dimension:

Theorem 7.2 (Miller) Let (R,m) be a complete intersection ring

of dimension d, and let M be an R-module of finite length. Then the

following statements are equivalent:
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1) ℓ(Fn
R(M)) = ℓ(M)pnd for all n ≥ 0.

2) The module M has finite projective dimension.

3) limn→∞

ℓ(F n

R
(M))

pnd
= ℓ(M).

A natural question raised by these theorems is whether there is a
relationship between ℓ(Fn

R(M)) and ℓ(M)pnd if the ring R is Goren-
stein, but is not a complete intersection. The examples we have con-
structed already show that over a Gorenstein ring R of dimension
5, the equality ℓ(Fn

R(M)) = ℓ(M)p5n need not hold for a module M
of finite length and finite projective dimension. We next show that
the inequality ℓ(Fn

R(M)) ≥ ℓ(M)pnd which holds for all modules M
of finite length over a complete intersection ring, fails to hold over
Gorenstein rings even when the finite length module M has finite
projective dimension.

In Section 4 we constructed a module N over the hypersurface

A = K[U, V,W,X, Y,Z]m/(UX + V Y +WZ)

which has finite length and finite projective dimension and has the
property that

χ(N,A/P ) = −2,

where P is the prime ideal (u, v,w). Let Q denote the prime ideal
(x, v,w), and consider the short exact sequence

0 −−−−→ A/Q −−−−→ A/(v,w) −−−−→ A/P −−−−→ 0,

where the first map is multiplication by the element u. Since the
elements v and w form a regular sequence in the ring A, the Koszul
resolution gives that

χ(N,A/(v,w)) =

2
∑

i=0

(−1)iHi(v,w;N),

where Hi(v,w;N) denotes the i th Koszul homology module. Since
dim(N) < 2, we then have

∑2
i=0(−1)iHi(v,w;N) = 0 by [Ser, Theo-

rem 1, Chapter IV]. Consequently,

χ(N,A/Q) = −χ(N,A/P ) = 2.

Consider the automorphism σ of A which switches x and u, and fixes
v, w, y and z. Let N ′ denote the module N now viewed as an A-
module by restriction of scalars via σ. We then have

χ(N ′, A/P ) = χ(N,A/Q) = 2.
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The same argument as in Section 3 then shows that the R-module
M ′ = N ′ ⊗A R has length

ℓ(M ′) = 4ℓ(N ′) − χ(N ′, A/P ) = 218,

whereas

lim
n→∞

ℓ(Fn
R(M ′))

p5n
= 220.

Remark 7.3 For a Cohen-Macaulay local ring A, let Æ(A) denote the
Grothendieck group of A-modules which have finite length and finite
projective dimension. If x1, . . . , xd is a system of parameters for A,
then [A/(x1, . . . , xd)] is an element of Æ(A). The intersection theory
of the modules of the form A/(x1, . . . , xd) is well understood: if M is
a finitely generated A-module with dimM < d, then

χ(A/(x1, . . . , xd),M) = 0

by [Ser, Theorem 1, Chapter IV]. Consequently it is of interest to
understand the group G(A) which is the quotient of Æ(A) by the
subgroup generated by all modules of the form A/(x1, . . . , xd) where
x1, . . . , xd is a system of parameters for A. Using K-theoretic meth-
ods, M. Levine has computed this group for certain hypersurfaces,
see [Le, §4]. We would like to point out that in the case where A is
the hypersurface

A = K[U, V,W,X, Y,Z]m/(UX + V Y +WZ),

and N is the module of finite length and finite projective dimension
constructed in Section 4, the fact that χ(N,A/(u, v,w)) 6= 0 shows
that [N ] is a nonzero element of the group G(A).
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