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HOMOLOGY OVER LOCAL HOMOMORPHISMS

LUCHEZAR L. AVRAMOV, SRIKANTH IYENGAR, AND CLAUDIA MILLER

Abstract. The notions of Betti numbers and of Bass numbers of a finite mod-
ule N over a local ring R are extended to modules that are only assumed to be
finite over S, for some local homomorphism ϕ : R→ S. Various techniques are
developed to study the new invariants and to establish their basic properties.
In several cases they are computed in closed form. Applications go in several
directions. One is to identify new classes of finite R-modules whose classical
Betti numbers or Bass numbers have extremal growth. Another is to transfer
ring theoretical properties between R and S in situations where S may have
infinite flat dimension over R. A third is to obtain criteria for a ring equipped
with a ‘contracting’ endomorphism—such as the Frobenius endomorphism—to
be regular or complete intersection; these results represent broad generaliza-
tions of Kunz’s characterization of regularity in prime characteristic.

Introduction

The existence of a homomorphism ϕ : R → S of commutative noetherian rings
does not imply a relationship between ring theoretical properties of R and S, such
as regularity, normality, Cohen-Macaulayness, etc. It is therefore remarkable that
certain homological conditions on the R-module S force stringent relations between
the ring structures of R and S. A classical chapter of commutative algebra, started
by Grothendieck, deals with the case when S is flat overR. Parts of this theory have
been extended to a situation where S is only assumed to have finite flat dimension
over R.

An initial motivation for this investigation was to find conditions on the R-
module S that allow a transfer of properties between the rings even in cases of
infinite flat dimension. It became rapidly apparent that such a program requires
new invariants. Our first objective is to introduce homological measures for finite
S-modules, which reflect their structure as R-modules. In the special case when ϕ
is the identity map of R, they reduce to classical invariants of finite R-modules. In
general, they have properties that adequately extend those of their counterparts in
the finite case. Our main goal is to demonstrate the usefulness of the new concepts
for studying homomorphisms of commutative noetherian rings. The central case is
when the homomorphism ϕ is local, which means that the rings R and S are local
and ϕ maps the unique maximal ideal of R into that of S.
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2 L. L. AVRAMOV, S. IYENGAR, AND C. MILLER

We start by constructing sequences of invariants modeled on the sequences of
integers, the Betti numbers and the Bass numbers, classically attached to a finite
R-module M . One way to introduce them is as ranks of modules in minimal
resolutions. Another is as ranks of the vector spaces TorRn (k,M) or ExtnR(k,M),
where k is the residue field of R. However, for a finite S-module N neither approach
provides finite numbers in general.

We define Betti numbers βϕn (N) and Bass numbers µnϕ(N) of N over ϕ, in a
way that ensures their finiteness when N is finite over S. To this end we use the
fact that TorRn (k,N) or ExtnR(k,N) have natural structures of finite S-modules,
and that this holds even when N is a homologically finite complex of S-modules.
This is the contents of Section 4. The necessary machinery is assembled in the first
three sections of the paper. It is put to different use in Section 2 where it is applied
in conjunction with the “Bass conjecture” to prove that if a finite S-module has
injective dimension over R, then R is Cohen-Macaulay.

Under special conditions we compute in closed form the entire sequence of Betti
numbers or of Bass numbers. Results are often best stated in terms of the cor-
responding generating function, called the Poincaré series or the Bass series of N
over ϕ, respectively. Section 5 contains instances of such computations, intended
both as illustration and for use later in the paper.

We start Section 6 by establishing upper bounds for the Poincaré series and the
Bass series of N over ϕ, in terms of expressions where the contributions of R, S, and
ϕ appear as separate factors. When the bound for Poincaré series is reached the
module N is said to be separated over ϕ; it is said to be injectively separated over ϕ
when the Bass series reaches its bound. We study such modules in significant detail.
Using numerical invariants of the S-module N obtained from a Koszul complex and
analyzed in Section 3, we prove that the Betti numbers of separated modules share
many properties with the classical Betti numbers of k over R. It came as a surprise
(to us) that separated modules occur with high frequency. For example, when the
ring S is regular every S-module is separated over ϕ.

As we do not assume the homological dimensions of N over R to be finite,
the sequences of Betti numbers and of Bass numbers of N over ϕ may contain a
lot of inessential information. Some of our main results show that the asymptotic
behavior of these sequences captures important aspects of the structure of N . Com-
parisons of Betti sequences to polynomial functions and to exponential functions
lead us in Section 7 to the notions of complexity cxϕN and curvature curvϕN ,
respectively; injective invariants are similarly derived from Bass numbers.

The next four sections are devoted to the study of various aspects of these new
invariants. In Section 8 we analyze their dependence on S, and prove that this
ring can be replaced by any other ring S′ over which N is finite module, provided
its action is compatible with that of S. In particular, it follows that when the R-
module N is finite, then its complexities and curvatures over ϕ are equal to those
over R, although the corresponding Betti numbers or Bass numbers may differ
substantially. In Section 9 we investigate changes of (injective) complexities and
curvatures under compositions of homomorphisms. In Section 10 we prove that they
do not go up under localization. In Section 11 we give conditions that ensure that
the asymptotic invariants of N over ϕ have the maximal possible values, namely,
those of the corresponding invariants of k over R.
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In Section 12 we focus on the case when ϕ is a contracting endomorphism of R, by
which we mean that for every non-unit x ∈ R the sequence (ϕi(x)) converges to 0 in
the natural topology of R. The motivating example is the Frobenius endomorphism,
but interesting contractions exist in all characteristics.

The final Section 13 contains applications of the methods developed in the pa-
per to the study of local homomorphisms. We obtain results on the descent of
certain ring theoretical properties from S to R. We also prove that when ϕ is a
contraction its homological properties determine whether R is regular or complete
intersection. Thus, we obtain vast generalizations and a completely new proof of
Kunz’s famous characterization of regularity in prime characteristic. Some of our
results concerning the Frobenius endomorphism are announced in Miller’s survey
[28] of the homological properties of that map.

Even when dealing with modules, in some constructions and in many proofs we
use complexes. We have therefore chosen to develop the entire theory in terms of the
derived categories of R and S, stating both definitions and results for homologically
finite complexes of modules over S, rather than just for finite S-modules.

Notation

Throughout this paper (R,m, k) denotes a local ring: this means (for us) that
R is a commutative noetherian ring with unique maximal ideal m and residue field
k = R/m. We also fix a local homomorphism

ϕ : (R,m, k) −→ (S, n, l)

that is, a homomorphism of noetherian local rings such that ϕ(m) ⊆ n.
As usual, edimS stands for the embedding dimension of S, defined as the minimal

number of generators of its maximal ideal n. In addition, we set

edimϕ = edim(S/mS)

A set of generators of n modulo mS is a finite subset x of n whose image in S/mS
generates the ideal n/mS. Such a set is minimal if no proper subset of x generates n

modulo mS; by Nakayama’s Lemma, this happens if and only if card(x) = edimϕ.
Throughout the paper, N denotes a complex of S-modules

· · · −→ Nn+1

∂N
n+1−−−→ Nn

∂N
n−−−→ Nn−1 −→ · · ·

which is homologically finite, that is, the S-module Hn(N) is finite for each n and
vanishes for almost all n ∈ Z.

Complexes of S-modules are viewed as complexes of R-modules via ϕ. Modules
are identified with complexes concentrated in degree 0.

We let Ŝ denote the n-adic completion of S and set N̂ = N ⊗S Ŝ. This complex

is homologically finite over Ŝ: the flatness of Ŝ over S yields Hn(N̂) ∼= Hn(N)⊗S Ŝ.

1. Complexes

This article deals mainly with homologically finite complexes. However, it is
often convenient, and sometimes necessary, to operate in the full derived category
of complexes.
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1.1. Derived categories. For each complex M , we set

supM = sup{n ∈ Z |Mn 6= 0} and inf M = inf{n ∈ Z |Mn 6= 0}
We say that M is bounded when both numbers are finite and that it is homologically
bounded when H(M) is bounded.

Let D(R) denote the derived category of complexes of R-modules, obtained from
the homotopy category of complexes of R-modules by localizing at the class of ho-
mology isomorphisms. The procedure for constructing this localization is the same
as for derived categories of bounded complexes, see Verdier [37], once appropriate
“resolutions” are provided, such as the K-resolutions of Spaltenstein [34].

The symbol≃ denotes isomorphism in a derived category, and Σ the shift functor.
We identify the category of R-modules with the full subcategory of D(R) consisting
of the complexes with homology concentrated in degree zero, and let Df(R) denote
the full subcategory of homologically finite complexes.

The derived functors of tensor products and of homomorphisms are denoted
(− ⊗L

R −) and RHomR(−,−), respectively. These may be defined as follows: for
complexes of R-modules X and Y , let P be a K-projective resolution of X , and set

X ⊗L

R Y ≃ P ⊗R Y and RHomR(X,Y ) ≃ HomR(P, Y )

In particular, when Y is a complex of S-modules, so are P ⊗R Y and HomR(P, Y ).
In this way, −⊗L

R N and RHomR(−, N) define functors from D(R) to D(S).
For each integer n we set

TorRn (X,Y ) = Hn(X ⊗L

R Y ) and ExtnR(X,Y ) = H−n(RHomR(X,Y ))

When Y is a complex of S-modules, TorRn (X,Y ) and ExtnR(X,Y ) inherit S-module
structures from P ⊗R Y and HomR(P, Y ), respectively.

The rest of the section is a collection of basic tools used frequently in the paper.

1.2. Endomorphisms. Let X be a complex of S-modules. Let θ : X → X be a

morphism in D(S) and let X
θ−→ X → C → be a triangle in D(S).

The homology long exact sequence yields

1.2.1. For each integer n, there exists an exact sequence of S-modules

0 −→ CokerHn(θ) −→ Hn(C) −→ KerHn−1(θ) −→ 0

In particular, since S is noetherian, if Hn(X) is finite for each n ∈ Z (respectively,
if X is homologically finite), then C has the corresponding property.

The next statement is a slight extension of [17, (1.3)].

1.2.2. The following inequalities hold:

sup H(C) ≤ sup H(X) + 1 and inf H(X) ≤ inf H(C)

In addition, if ImH(θ) ⊆ n H(X), then

supH(X) ≤ sup H(C) and inf H(X) = inf H(C)

Indeed, the (in)equalities follow from the exact sequences above; under the ad-
ditional hypothesis, Nakayama’s Lemma has to be invoked as well.

The symbol ℓS denotes length over S.
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Lemma 1.2.3. If each ℓS Hn(X) is finite, and H(θ)v = 0 for some v ∈ N then for
each n ∈ Z there are inequalities

v−1
(
ℓS Hn(X) + ℓS Hn−1(X)

)
≤ ℓS Hn(C) ≤ ℓS Hn(X) + ℓS Hn−1(X)

Proof. Set αn = Hn(θ). A length count on the short exact sequence (1.2.1) yields

ℓS Hn(C) = ℓS Coker(αn) + ℓS Ker(αn−1)

Since α is nilpotent of degree v, each S-module Hn(X) has a filtration

0 = Im(αvn) ⊆ Im(αv−1
n ) ⊆ · · · ⊆ Im(αn) ⊆ Im(α0

n) = Hn(X)

by S-submodules. As αn induces for each i an epimorphism

Im(αi−1
n )

Im(αin)
−→ Im(αin)

Im(αi+1
n )

we get the inequality on the left hand side in the following formula

1

v
ℓS Hn(X) ≤ ℓS Coker(αn) = ℓS Ker(αn) ≤ ℓS Hn(X)

The inequality on the right is obvious. The equality comes from the exact sequence

0 −→ Ker(αn) −→ Hn(X)
αn−−−→ Hn(X) −→ Coker(αn) −→ 0

To get the desired inequalities put together the numerical relations above. �

1.3. Actions. Here is another way to describe the action of S on homology; see
(1.1). We let λXs : X → X denote multiplication with s ∈ S on a complex X .

1.3.1. Recall that Ext0S(N,N) is the set of homotopy classes of S-linear morphisms
G→ G, where G is a projective resolution of N over S. Compositions of morphisms
commute with the formation of homotopy classes, so Ext0S(N,N) is a ring. The
map assigning to each s ∈ S the morphism λs : G→ G defines a homomorphism of
rings ηS : S → Ext0S(N,N) whose image lies in the center of Ext0S(N,N), and

S
ηS

// Ext0S(N,N)

Ext0ϕ(N,N)

��

R

ϕ

OO

ηR
// Ext0R(N,N)

is a commutative diagram of homomorphisms of rings. If σ is any morphism in the
homotopy class Ext0ϕ(N,N)ηS(s), then the maps H(M ⊗L

R σ) and HRHomR(M,σ)

coincide with multiplication by s on TorR(M,N) and ExtR(M,N), respectively.

Lemma 1.3.2. If inf H(M) > −∞ and each R-module Hn(M) is finite, then all

S-modules TorRn (M,N) and ExtnR(M,N) are finite, and are trivial for all n≪ 0.

Proof. Since N is homologically finite over the noetherian ring S, it is isomorphic in
the derived category of S-modules to a finite complex of finite S-modules. Changing
notation if necessary, we may assume that N itself has these properties. On the
other hand, since R is noetherian, one may choose a K-projective resolution P
such that for each n, the R-module Pn is finite and projective and Pn = 0 for
n < inf H(M). The complexes P ⊗R N and HomR(P,N) then consist of finite
S-modules, so the desired assertion follows. �
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1.4. Annihilators. The annihilator of an S-module H is denoted AnnS(H).
The homotopy annihilator of N over S, introduced by Apassov [2], is the ideal

AnnD(S)(N) = Ker(ηS). With rad(I) denoting the radical of I, the first inclusion
below follows from (1.3.1) and the second is [2, Theorem, §2].

1.4.1. There are inclusions AnnD(S)(N) ⊆ AnnS(H(N)) ⊆ rad
(
AnnD(S)(N)

)
.

The first assertion below follows from (1.3.1), the second from (1.4.1).

1.4.2. The ideal AnnD(R)(M)S + AnnD(S)(N) is contained in the homotopy anni-

hilators of the complexes of S-modules M ⊗L

R N and RHomR(M,N), and hence

annihilates TorRn (M,N) and ExtnR(M,N) for each n ∈ Z.

1.4.3. If H(N)/m H(N) is artinian over S (in particular, if H(N) is finite over R,
or if the ring S/mS is artinian), then the ideal mS + AnnD(S)(N) is n-primary.

Indeed, it follows from (1.4.1) that the radical of mS + AnnD(S)(N) equals the
radical of mS + AnnS(H(N)), which is n in view of the hypothesis.

1.5. Koszul complexes. Let x be a finite set of elements in S. The Koszul com-
plex K[x;S] is the DG (= differential graded) algebra with underlying graded al-
gebra the exterior algebra on a basis {ex : |ex| = 1}x∈x and differential given by
∂(ex) = x for each x ∈ x. Let K[x;N ] be the DG module K[x;S]⊗SN over K[x;S].

1.5.1. In the derived category of S-modules there are isomorphisms

M ⊗L

R K[x;N ] ≃M ⊗L

R K[x;S]⊗L

S N ≃ K[x;M ⊗L

R N ]

RHomR(M,K[x;N ]) ≃ K[x;RHomR(M,N)]

because K[x;S] is a finite free complex over S.

1.5.2. There is an isomorphism of complexes of S-modules

HomS(K[x;S], N) ∼= Σ
− card(x)K[x;N ]

Indeed, the canonical morphism of complexes of S-modules

HomS(K[x;S], S)⊗S N → HomS(K[x;S], N)

is bijective, since K[x;S] is a finite free complex over S, and the self-duality of the
exterior algebra yields an isomorphism HomS(K[x;S], S) ∼= Σ

− card(x)K[x;S].

1.5.3. The homotopy annihilator of K[x;N ] contains xS + AnnD(S)(N).

Indeed, the Leibniz rule for the DG module K = K[x;N ] shows that left multi-
plication with ex ∈ K[x;S] on K is a homotopy between λKx and 0, so AnnD(S)(K)
contains x. If follows from the definitions that it also contains AnnD(S)(N).

It is known that Koszul complexes can be described as iterated mapping cones:

1.5.4. For each x ∈ x, the Koszul complex K[x;N ] is isomorphic to the mapping

cone of the morphism λ
K[x′;N ]
x , where x′ = x r {x}.

Lemma 1.5.5. The complex of S-modules K[x;N ] is homologically finite, and

SuppS H
(
K[x;N ]

)
= SuppS(S/xS) ∩ SuppS H(N)
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Proof. We may assume x = {x}. In view of the preceding observation, finiteness
follows from (1.2.1). By the same token, one gets the first equality below

SuppS H
(
K[x;N ]

)
= SuppS

(
H(N)/xH(N)

)
∪ SuppS

(
KerλH(N)

x

)

= SuppS(S/xS) ∩ SuppS H(N)

To get the second equality, remark that SuppS H(N) ∩ SuppS(S/xS) is equal to

the support of H(N)/xH(N) and contains that of Kerλ
H(N)
x . �

Lemma 1.5.6. For each n ∈ Z, both TorRn (M,K[x;N ]) and ExtnR(M,K[x;N ]) are
finite S-modules annihilated by xS + AnnD(R)(M)S + AnnD(S)(N)

Proof. The complex K[x;N ]) is homologically finite by (1.5.5), so the assertion
about finiteness follows from Lemma (1.3.2). The assertion about annihilation
comes from (1.5.3) and (1.4.2). �

2. Dimensions

We extend some well known theorems on modules of finite injective dimension,
namely, the Bass Equality, see [26, (18.9)], and the “Bass Conjecture” proved by
P. Roberts, see [30, §3.1] and [31, (13.4)]. The novelty is that finiteness over R is
relaxed to finiteness over S. Khatami and Yassemi [21, (3.5)], and Takahashi and
Yoshino [35, (5.2)] have independently obtained the first equality below.

Theorem 2.1. If L is a finite S-module and inj dimR L <∞, then

inj dimR L = depthR = dimR

This is proved at the end of the section, after we engineer a situation where the
original results apply. We recall how some classical concepts extend to complexes.

Let M be a homologically bounded complex of R-modules. Its flat dimension
and its injective dimension over R are, respectively, the numbers

flat dimRM = sup

{
n ∈ Z

∣∣∣∣
Yn 6= 0 for some bounded complex

of flat R-modules Y with Y ≃M

}
and

inj dimRM = − inf

{
n ∈ Z

∣∣∣∣
Yn 6= 0 for some bounded complex

of injective R-modules Y with Y ≃M

}

The nth Betti number βRn (M) and the nth Bass number µnR(M) are defined to be

βRn (M) = rankk TorRn (k,M) and µnR(M) = rankk ExtnR(k,M)

2.2. By [9, (5.5)], for the homologically finite complex N , one has

flat dimRN = sup{n ∈ Z | βRn (N) 6= 0}
inj dimRN = sup{n ∈ Z | µnR(N) 6= 0}

Next we present a construction of Avramov, Foxby, and B. Herzog [10], which is
used in proofs of many theorems throughout the paper.
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2.3. Cohen factorizations. Let ϕ̀ : R → Ŝ denote the composition of ϕ with

the completion map S → Ŝ. A Cohen factorization of ϕ̀ is a commutative diagram

R′

ϕ′

��
??

??
??

??
??

?

R
ϕ̀

//

ϕ̇

??�����������

Ŝ

of local homomorphisms such that the map ϕ̇ is flat, the ring R′ is complete, the
ring R′/mR′ is regular, and the map ϕ′ is surjective.

Clearly, the homomorphisms and rings in the diagram above satisfy

edimϕ ≤ edim ϕ̇ = dim(R′/mR′)

When equality holds the factorization is said to be minimal. It is proved in [10,
(1.5)] that the homomorphism ϕ̀ always has a minimal Cohen factorization.

For the rest of this subsection we fix a minimal Cohen factorization of ϕ̀. With
the next result we lay the groundwork for several proofs in this paper.

Proposition 2.4. For each minimal set x of generators of n modulo mS there are
isomorphisms in the derived category of S-modules, as follows:

k ⊗L

R

(
K[x;N ]

)
≃ K[x; k ⊗L

R N ] ≃ l ⊗L

R′ N̂

RHomR

(
k,K[x;N ]

)
≃ K[x;RHomR(k,N)] ≃ Σ

edimϕRHomR′(l, N̂)

Proof. We give the proof for homomorphisms and omit the other, similar, argument.

Considering S as a subset of Ŝ, lift x to a subset x′ of R′, containing edimϕ
elements. As the ring P = R′/mR′ is regular, the image of x′ in P is a regular
system of parameters. Thus, the Koszul complex K[x′;P ] is a free resolution of l,
that is, K[x′;P ] ≃ l. This accounts for the first isomorphism in the chain

RHomR′(l, N̂) ≃ RHomR′

(
K[x′;P ], N̂

)

≃ RHomR′

(
P,RHomR′(K[x′;R′], N̂)

)

≃ RHomR′

(
R′ ⊗R k,HomR′(K[x′;R′], N̂)

)

≃ RHomR

(
k,HomR′(K[x′;R′], N̂)

)

≃ RHomR

(
k,Hom

Ŝ
(K[x; Ŝ], N̂)

)

≃ RHomR

(
k,HomS(K[x;S], N̂)

)

The third isomorphism holds because K[x′;R′] is a finite complex of free R′-
modules, while the remaining ones are adjunctions.

The first isomorphism below holds because K[x;S] is a finite free complex:

RHomR

(
k,HomS(K[x;S], N̂)

)
≃ RHomR

(
k,HomS(K[x;S], N)⊗S Ŝ

)

≃ RHomR

(
k,HomS(K[x;S], N)

)
⊗S Ŝ

The second one does because Ŝ is a flat S-module, HomS(K[x;S], N) has bounded
homology, and k has a resolution by finite free R-modules.
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As Ŝ is flat over S, and each HnRHomR

(
k,HomS(K[x;S], N)

)
has finite length

over S by (1.5.6), the canonical morphism

RHomR

(
k,HomS(K[x;S], N)

)
⊗S Ŝ ←− RHomR

(
k,HomS(K[x;S], N)

)

is an isomorphism in D(S). Furthermore, we have isomorphisms

RHomR

(
k,HomS(K[x;S], N)

)
≃ RHomR(k,Σ− edimϕK[x;N ])

≃ Σ
− edimϕRHomR(k,K[x;N ])

≃ Σ
− edimϕK[x;RHomR(k,N)]

obtained from (1.5.2), the definition of Σ, and (1.5.1), respectively. Linking the
chains above we obtain the desired isomorphisms. �

Our first application of the proposition above is to homological dimensions. The

assertions on the flat dimension of N̂ over R′ are known, see [10, (3.2)].

Corollary 2.5. The following (in)equalities hold:

flat dimRN ≤ flat dimR′ N̂ ≤ flat dimRN + edimϕ

inj dimR′ N̂ = inj dimRN + edimϕ

Proof. Let x be a minimal generating set for n modulo mS. From the proposition
and the expressions for homological dimensions in (2.2), one gets

flat dimR′ N̂ = sup H
(
K[x; k ⊗L

R N ]
)

inj dimR′ N̂ = − inf H
(
K[x;RHomR(k,N)]

)
+ edimϕ

As edimϕ = card(x), and the S-modules Hn(k⊗L

RN) and RHomR(k,N) are finite
for each n by (1.3.2), Lemma (1.2.2) gives the desired (in)equalities. �

The interval for the flat dimension of N̂ over R′ cannot be narrowed, in general,
as the following special case demonstrates.

Example 2.6. If R is a field, the ring S is complete and regular, and N is an S-
module, then the statement above reduces to inequalities 0 ≤ flat dimS N ≤ dimS.

Proof of Theorem (2.1). Let R → R′ → Ŝ be a minimal Cohen factorization of ϕ̀.
Corollary (2.5) and the minimality of the factorization yield

inj dimR L = inj dimR′ L̂− edimϕ

= inj dimR′ L̂− edim(R′/mR′)

In particular, inj dimR′ L̂ is finite, so Bass’ Formula gives the first equality below.
The other two are due to the regularity of R′/mR′, and the flatness of R′ over R:

inj dimR′ L̂− edim(R′/mR′) = depthR′ − edim(R′/mR′)

= depthR′ − depth(R′/mR′)

= depthR

Roberts’ Theorem shows that R′ is Cohen-Macaulay; by flat descent, so is R. �
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3. Koszul invariants

Koszul complexes on minimal sets of generators of the maximal ideal n of S
appear systematically in our study. This section is devoted to establishing relevant
properties of such complexes. While several of them are known, in one form or
another, we have not been able to find in the literature statements presenting the
detail and generality needed below. It should be noted that the invariants discussed
in this section depend only on the action of S on N , while R plays no role.

Lemma 3.1. Set s = edimS, let w be a minimal set of generators of n, and let z

be a set of generators of n of cardinality u.
Let A be the Koszul complex of a set consisting of (u− s) zeros.

(1) There is an isomorphism of DG algebras K[z;S] ∼= K[w;S]⊗S A
(2) If z minimally generates n, then K[z;S] ∼= K[w;S].
(3) The complexes of S-modules K[z;N ] and K[w;N ]⊗S A are isomorphic.

Proof. (1) Since z ⊆ (w) we may write

zj =

s∑

i=1

aijwi with aij ∈ S for j = 1, . . . , u

Renumbering the elements of z if necessary, we may assume that the matrix
(aij)16i,j6s is invertible. Choose bases {e1, . . . , es} and {f1, . . . , fu} of the degree
1 components of K[w;S] and K[z;S], respectively, such that

∂(ei) = wi for 1 ≤ i ≤ s and ∂(fj) = zj for 1 ≤ j ≤ u

Let {es+1, . . . , eu} be a basis for the free module A1. The graded algebra underlying
K[z;S] is the exterior algebra on {f1, . . . , fu}, so there exists a unique morphism
κ : K[z;S]→ K[w;S]⊗S A of graded algebras over S, such that

κ(fj) =

{∑s
i=1 aij(ei ⊗ 1) for 1 ≤ j ≤ s∑s
i=1 aij(ei ⊗ 1)− (1⊗ ej) for s < j ≤ u

Note that κ is an isomorphism in degree 1. The graded algebra underlying
K[w;S]⊗SA is the exterior algebra on {e1⊗1, . . . , es⊗1, 1⊗es+1, . . . , 1⊗eu}, so κ
is an isomorphism of graded algebras. The formulas above yield ∂κ(fj) = κ∂(fj)
for j = 1, . . . , u. It follows that κ is a morphism of DG algebras.

The assertions in (2) and (3) are consequences of (1). �

3.2. We let KS [N ] denote the complex K[w;N ] on a minimal generating set of
n. There is little ambiguity in the notation because different choices of w yield
isomorphic complexes; see Lemma (3.1.2). We set KS = KS [S].

Lemma (1.5.6) shows that Hn(KS [N ]) is a finite l-vector space for each n ∈ Z,
which is trivial for all |n| ≫ 0. Thus, one can form a Laurent polynomial

KS
N (t) =

∑

n∈Z

κSn(N) tn where κSn(N) = rankl Hn(K
S [N ])

with non-negative coefficients. We call it the Koszul polynomial of N over S.

Some numbers canonically attached to N play a role in further considerations.



HOMOLOGY OVER LOCAL HOMOMORPHISMS 11

3.3. The depth and the type of N over S are defined, respectively, to be the number

depthS N = inf{n ∈ Z | ExtnS(l, N) 6= 0}
typeS N = rankl Ext

depthS N

S (l, N)

When N is an S-module the expressions above yield the familiar invariants. By
[19, (6.5)], depth can be computed from a Koszul complex, namely

depthS N = edimS − sup H
(
KS [N ]

)

3.4. A Cohen presentation of Ŝ is an isomorphism Ŝ ∼= T/b where (T, r, l) is a
regular local ring. Cohen’s Structure Theorem proves one always exists. It can be
taken to be minimal, in the sense that edimT = edimS: If not, pick x ∈ b r r2,

note the isomorphism Ŝ ∼= (T/xT )/(b/xT ) where T/xT is regular, and iterate.

In the next result, and on several occasions in the sequel, we use the theory of
dualizing complexes, for which we refer to Hartshorne [18, V.2].

3.5. Let Q be a local ring with residue field h. A normalized dualizing complex D
for Q is a homologically finite complex of Q-modules E, such that

RHomQ(h,E) ≃ h
These properties describe E uniquely up to isomorphism in D(Q). When E is a
normalized dualizing complex, for every complex of Q-modules X we set

X† = RHomQ

(
X,E

)

If X is homologically finite, then so is X†, and the canonical morphism X → X††

is an isomorphism in D(Q). When necessary, we write X†
Q instead of X†.

A local ring P is Gorenstein if and only if Σ
dimPP is a normalized dualizing

complex for P . If this is the case and P → Q is a surjective homomorphism,
then RHomP

(
Q,ΣdimPP

)
is a normalized dualizing complex for Q. Thus, Cohen’s

Structure Theorem implies that every complete local ring has a dualizing complex.

3.6. The complexes of S-modules KS [N †]† and Σ
− edimSKS [N ] are isomorphic.

Indeed, if D is a normalized dualizing complex for S, then one has

HomS(KS [N †], D) ∼= HomS(KS ⊗S N †, D)

∼= HomS(KS , N ††)

∼= HomS(KS , N)

∼= Σ
− edimSKS [N ]

We set codimS = edimS − dimS. If L is an S-module, then νSL denotes
the minimal number of generators of L. The following result collects most of the
arithmetic information required on the Koszul polynomial.

Theorem 3.7. Assume H(N) 6= 0, and set

s = edimS , c = codimS , i = inf H(N) , m = νS Hi(N) , g = depthS N .

The Koszul polynomial KS
N(t) has the following properties.

(1) ordKS
N (t) = i and κSi (N) = m.

(2) degKS
N(t) = (s− g) and κSs−g(N) = typeS N .

(3) KS
N (t) = K Ŝ

N̂
(t) = PT

N̂
(t), where Ŝ ∼= T/b is a minimal Cohen presentation.
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(4) K Ŝ

N̂†
(t) = tsKS

N (t−1).

If S is not regular, then the following also hold.

(5) κSi+1(N) ≥ κSi (N) + c− 1.

(6) κSs−g−1(N) ≥ κSs−g(N) + c− 1.

(7) KS
N (t) = (1 + t) · L(t) where L(t) is a Laurent polynomial of the form

L(t) = mti + higher order terms with non-negative coefficients

Proof. (1) The equality ordKS
N (t) = i comes from (1.2.2).

The equality κSi (N) = m results from the canonical isomorphisms

Hi(K
S [N ]) ∼= Hi(K

S ⊗S N) ∼= H0(K
S)⊗S Hi(N) = l ⊗S Hi(N)

(2) The equality degKS
N (t) = (s− g) comes from (3.3).

Because n annihilates each Hq(K
S), the standard spectral sequence with

E2
pq = Ext−pS (Hq(K

S), N) =⇒ Hp+q HomS(KS , N)

has E2
pq = 0 for p > −g. It has a corner, which yields the first isomorphism below

ExtgS(l, N) = E2
−g 0
∼= H−g HomS(KS , N) ∼= Hs−g(K

S [N ])

The second one is from (1.5.2). Thus, we get κSs−g(N) = typeS N .
(3) Any minimal generating set w of n minimally generates the maximal ideal

of Ŝ, and the canonical map K[w;N ]→ K[w; N̂ ] is an isomorphism in D(S).
Having proved the first equality, for the rest of the proof we may assume that S

is complete. We choose an isomorphism S ∼= T/b, where (T, r, l) is a regular local
ring with dimT = edimS, and a normalized dualizing D complex for S.

For the second equality in (3), note that a minimal generating set of r maps to
a minimal generating set of n. As T is regular, KT is a free resolution of l over T .
Now invoke the isomorphism KT ⊗T N ∼= KS [N ].

(4) By (3), we may assume S is complete. There is a spectral sequence with

E2
pq = Ext−pS (Hq(K

S [N †]), D) =⇒ Hp+q HomS(KS [N †], D)

As H(KS [N †]) is a finite dimensional graded l-vector space, the defining property
of D implies E2

pq = 0 for p 6= 0, and yields for all n isomorphisms

Homl(Hn(K
S [N †]), l) ∼= Hn HomS(KS [N †], D)

of l-vector spaces. On the other hand, (3.6) yields for all n isomorphisms

Hn HomS(KS [N †], D) ∼= Hs−n(K
S [N ])

of l-vector spaces. Comparison of ranks produces the desired equalities.
As N is homologically finite, it is isomorphic in D(T ) to a finite free complex of

T -modules G that satisfies ∂(G) ⊆ rG; see [30, (II.2.4)]. From (3) we get

rankT (Gn) = κSn(N) for all n ∈ Z

We use the complex G in the proofs of the remaining statements.
(5) As H(G) ∼= H(N) and inf H(N) = i, there is an exact sequence of T -modules.

Gi+1 −→ Gi −→ Hi(N) −→ 0
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The Generalized Principal Ideal Theorem gives the first inequality below:

κSi+1(N)− κSi (N) + 1 ≥ heightAnnT (Hi(N))

= dim T − dimT Hi(N)

≥ dim T − dimS

= edimS − dimS

see [26, (13.10)]. The first equality holds because T is regular, and hence catenary
and equidimensional, while the other relations are clear.

(6) In view of (4), the inequality (5) for the complex N † yields the desired
inequality, κSs−g−1(N) ≥ κSs−g(N) + c− 1.

(7) Let U be the field of fractions of T . As S is not regular, b is not zero, so
N⊗T U = 0. Also, G⊗T U ≃ N⊗T U holds in D(U), so G⊗T U is an exact complex
of finite U -vector spaces, and hence is the mapping cone of the identity map of a
complex W with trivial differential. For L(t) =

∑
n∈Z

rankU (Wn) t
n one gets

KS
N (t) = PTN (t) =

∑

n∈Z

rankT (Gn) tn

=
∑

n∈Z

rankU (G⊗T U)n t
n

=
∑

n∈Z

rankU (Wn) tn · (1 + t)

It follows that L(t) has order i and starts with mti. �

An important invariant of Koszul complexes is implicit in a result of Serre.

3.8. Let L be a finite S-module. Set K = K[w;L], where w = {w1, . . . , ws} mini-
mally generates n, and nj = S for j ≤ 0. As ∂(njKn) ⊆ nj+1Kn−1 for all j and n,
for each i ∈ Z one has a complex of S-modules

IiL = 0 −→ ni−sKs −→ ni−s+1Ks−1 −→ · · · −→ ni−1K1 −→ niK0 → 0

Lemma (3.1.2) shows that it does not depend on the choice of w, up to isomorphism.
We define the spread of N over S to be the number

spreadS L = inf{i ∈ Z | H(IjL) = 0 for all j ≥ i}
Serre [33, (IV.A.3)] proves that it is finite. We write spreadS in place of spreadS S.

In some cases the new invariant is easy to determine.

Example 3.9. If nvL = 0 6= nv−1L, then spreadS L = edimS + v.
Indeed, for s = edimS one has Is+vL = 0 and Hs(I

s+v−1
L ) ⊇ nv−1Ks 6= 0.

To deal with more involved situations we interpret spreadS N in terms of asso-
ciated graded modules and their Koszul complexes.

3.10. Given an S-module L we set niL = L for all i ≤ 0 and write grn(L) for the
graded abelian group associated to the n-adic filtration {niL}i∈Z; it is a graded
module over the graded ring grn(S). Note that w∗ = {wi + n2, . . . , ws + n2} ⊆
grn(S)1 minimally generates grn(S) as an algebra over grn(S)0 = l.

The Koszul complex K[w∗; grn(S)] becomes a complex of graded grn(S)-modules
by assigning bidegree (1, 1) to each generator of K[w∗; grn(S)]1. If w′ also is a
minimal generating set for n, then the complexes of S-modules K[w;S] and K[w′;S]
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are isomorphic, see Lemma (3.1.2); any such isomorphism induces an isomorphism
K[w′∗; grn(S)] ∼= K[w∗; grn(S)] of complexes of graded grn(S)-modules. We let
Kgr

n
(S) denote any such complex, and form the complex of graded grn(S)-modules

Kgrn(S)[grn(L)] = Kgrn(S) ⊗gr
n
(S) grn(L)

In the next proposition we refine Serre’s result (3.8). Rather than using the
result itself, we reinterpret some ideas of its proof in our argument.

Proposition 3.11. The following equality holds:

spreadS L = sup{i ∈ Z | Hn

(
Kgr

n
(S)[grn(L)]

)
i
6= 0 for some n ∈ Z}

Proof. Set I = IL. By construction, we have isomorphisms
⊕

i∈Z

Ii/Ii+1 ∼= K[w∗; grn(L)]

of complexes of graded ℓ-vector spaces. Thus, to prove the proposition it suffices
to show that the following claim holds for each integer a.

Claim. H(Ii) = 0 for i ≥ a if and only if H(Ii/Ii+1) = 0 for i ≥ a.
Indeed, the exact sequence of complexes 0 → Ii+1 → Ii → Ii/Ii+1 → 0 shows

that if H(Ii) vanishes for i ≥ a, then H(Ii/Ii+1) = 0 for i ≥ a. Conversely, assume
that the latter condition holds. Induction on j using the exact sequences

0→ Ia+j/Ia+j+1 → Ia/Ia+j+1 → Ia/Ia+j → 0

of complexes yields H(Ia/Ia+j) = 0. Since the inverse system of complexes

· · · → Ia/Ia+j+1 → Ia/Ia+j → · · · → Ia/Ia+2 → Ia/Ia+1 → 0

is surjective, one gets H
(
lim←−j I

a/Ia+j
)

= 0. Now (Ia+j)n = na+j−nKn for each n,

so lim←−j(I
a/Ia+j)n is the n-adic completion of the S-module na−nKn. This module

is finite, so its completion is isomorphic to (na−nKn)⊗S Ŝ. The upshot is that

lim←−j
(
Ia/Ia+j

) ∼= Ia ⊗S Ŝ

as complexes of S-modules. From here and the flatness of Ŝ over S one gets

H(Ia)⊗S Ŝ ∼= H(Ia ⊗S Ŝ) = H
(
lim←−j I

a/Ia+j
)

= 0

Since the S-module Ŝ is also faithful, we deduce H(Ia) = 0, as claimed. �

There is another interpretation of the numbers in the preceding proposition.

Remark 3.12. Let B = {Bj}i>0 be a graded ring with B0
∼= l, finitely generated

as a B0-algebra, and let M be a graded and finite B-module. The number

a∗B(M) = sup{i ∈ Z | Hn
b (M)i 6= 0 for some n ∈ Z}

where b is the irrelevant maximal ideal B>1 of B, and Hn
b(M) is the nth local

cohomology module of M , has been studied by Trung [36] and others. We claim:
if b is the minimal number of homogeneous generators of the l-algebra B, then

sup{i ∈ Z | Hn(K
B[M ])i 6= 0 for some n ∈ Z} = a∗B(M) + b

This preceding identity can be verified by using a spectral sequence with

Epq2 = Hp

(
KB[H−q

b (M)]
)

=⇒ Hp+q(K
B [M ])

that lies in the fourth quadrant and has differentials dpqr : Epqr → Ep−r,q+r−1
r .
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4. Sequences

The flat dimension and the injective dimension of N over R can be determined
from the number of non-vanishing groups TorRn (k,N) and ExtnR(k,N), as recalled
in (2.2). When this number is infinite, we propose to use the sizes of these groups
as a measure of the homological intricacy of the complex N over R. Each such
group carries a canonical structure of finite S-module, so its size is reflected in a
number of natural invariants, such as minimal number of generators, multiplicity,
rank, or length. Among these it is the length over S, denoted ℓS , that has the best
formal properties, but it is of little use unless some extra hypothesis (for instance,
that the ring S/mS is artinian) guarantees its finiteness.

To overcome this problem, we take a cue from Serre’s approach to multiplicities
and replace N by an appropriate Koszul complex. As there is no canonical choice of
such a complex, the question arises whether the new invariants are well defined. In
this section we prove that indeed they are, and describe them in alternative terms.

4.1. Betti numbers and Bass numbers. Let x be a minimal generating set for
n modulo mS. Lemma (1.5.6) shows that TorRn (k,K[x;N ]) and ExtnR(k,K[x;N ])
are finite S-modules annihilated by n, hence they are l-vector spaces of finite rank.

For each n ∈ Z we define the nth Betti number βϕn (N) of N over ϕ and the nth
Bass number µnϕ(N) of N over ϕ by the formulas

βϕn (N) = rankl TorRn (k,K[x;N ])

µnϕ(N) = rankl Extn−edimϕ
R (k,K[x;N ])

These numbers are invariants of N : pick a minimal Cohen factorization R→ R′ →
Ŝ of ϕ̀ and apply Proposition (2.4) to get isomorphisms of S-modules

(4.1.0)
TorRn (k,K[x;N ]) ∼= TorR

′

n (ℓ, N̂)

Extn−edimϕ
R (k,K[x;N ]) ∼= ExtnR′(ℓ, N̂)

The vector spaces on the right do not depend on x, so neither do their ranks. Such
an independence may not be taken for granted, because K[x;N ] is not defined
uniquely up to isomorphism in D(S); even its homology may depend on x.

Example 4.1.1. Let k be a field, set R = k[[u]] and S = k[[x, y]]/(xy), and let
ϕ : R→ S be the homomorphism of complete k-algebras defined by ϕ(u) = y. The
Koszul complexes on x = {x} and x′ = {x+ y} satisfy

Hn(K[x;S]) ∼=
{
S/(x) for n = 0, 1

0 otherwise
Hn(K[x′;S]) ∼=

{
S/(x+ y) for n = 0

0 otherwise

Next we show that Betti or Bass numbers over ϕ are occasionally equal to the
eponymous numbers over R, but may differ even when N is a finite R-module.

Remark 4.1.2. If the map k → S/mS induced by ϕ is bijective (for instance, if ϕ

is the inclusion of R into its m-adic completion R̂, or if ϕ is surjective), then

βϕn (N) = βRn (N) and µnϕ(N) = µnR(N)

Indeed, in this case the set x is empty, and ranks over l are equal to ranks over k.
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Example 4.1.3. Set S = R[[x]] and let ϕ : R→ S be the canonical inclusion. The
S-module N = S/xS is finite over R, and elementary computations yield

βϕn (N) =

{
βRn (N) + 1 for n = 1

βRn (N) for n 6= 1

µnϕ(N) = µn−1
R (R) + µnR(R) for each n ∈ Z

In general, it is possible to express invariants over ϕ in terms of corresponding
invariants over a ring, but a new ring is necessary:

Remark 4.1.4. If R
ϕ̇−→ R′ ϕ′

−→ Ŝ is a minimal Cohen factorization of ϕ̀, then for
each n ∈ Z the following equalities hold:

βϕn (N) = βϕ̀n (N̂) = βϕ̂n (N̂) = βR
′

n (N̂)

µnϕ(N) = µnϕ̀(N̂) = µnϕ̂(N̂) = µnR′(N̂)

Indeed, the isomorphisms of S-modules in (4.1.0) yield βϕn (N) = βR
′

n (N̂). The

same argument applied to ϕ̀ yields βϕ̀n (N̂) = βR
′

n (N̂), and applied to ϕ̂ gives

βϕ̂n (N̂) = βR
′

n (N̂). Bass numbers are treated in a similar fashion.

It is often possible to reduce the study of sequences of Betti numbers to that of
sequences of Bass numbers, and vice versa.

4.2. Duality. Let D be a dualizing complex for S, see (3.5), and set

N †
S = RHomS

(
N,D

)

Lemma 4.2.1. If S is complete and R′ → S is a surjective homomorphism, then
for each n ∈ Z there is an isomorphism of l-vector spaces

ExtnR′(l, N
†
S) ∼= Homl(TorR

′

n (l, N), l)

Proof. Let D be a normalized dualizing complex for S. The isomorphisms

RHomS((l ⊗L

R′ N), D) ≃ RHomR′(l,RHomS(N,D)) = RHomR′(l, N †
S)

yield a spectral sequence with

Epq2 = ExtpS(TorR
′

q (l, N), D) =⇒ Extp+qR′ (l, N †
S)

The S-module TorR
′

q (l, N) is a direct sum of copies of l, so Epq2 = 0 for p 6= 0 and

E0q ∼= Homl(TorR
′

q (l, N), l) by the defining property ofD; the assertion follows. �

Theorem 4.2.2. For each n ∈ Z the following equalities hold:

µnϕ(N) = βϕ̀n (N̂ †

Ŝ
) and βϕn (N) = µnϕ̀(N̂ †

Ŝ
)

Proof. By Remark (4.1.4) we may assume that S is complete. As N and N †
S
†
S are

isomorphic, it is enough to justify the second equality. If R→ R′ → S is a minimal
Cohen factorization of ϕ then the preceding lemma gives the middle equality below:

µnϕ(N †
S) = µnR′(N

†
S) = βR

′

n (N) = βϕn (N)

The equality at each end is given by Remark (4.1.4). �
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4.3. Poincaré series and Bass series. To study Betti numbers or Bass numbers
we often use their generating functions. We call the formal Laurent series

PϕN (t) =
∑

n∈Z

βϕn (N)tn and INϕ (t) =
∑

n∈Z

µnϕ(N)tn

the Poincaré series of N over ϕ and the Bass series of N over ϕ, respectively.
When ϕ = idR, we speak of the Poincaré series and the Bass series of the complex
N over the ring R, and write PRN (t) and INR (t), respectively.

It is often convenient to work with sets of generators of n modulo m that are not
necessarily minimal. The next results provides the necessary information.

Proposition 4.3.1. If y = {y1, . . . , yq} generates n modulo mS, then

PϕN (t) · (1 + t)q−edimϕ =
∑

n∈Z

rankl
(
TorRn (k,K[y;N ])

)
tn

INϕ (t) · (1 + t)q−edimϕ =
∑

n∈Z

rankl
(
ExtnR(k,K[y;N ])

)
tq+n

Proof. The two formulas admit similar proofs. We present the first one.
To simplify notation, for any finite subset z of n we set

F
z,N (t) =

∑

n∈Z

ℓS
(
TorRn (k,K[z;N ])

)
tn

Let v = {v1, . . . , vr} be a minimal set of generators of m. In D(S) one has

K[y ⊔ ϕ(v);N ] ≃ K[y;N ]⊗S K[v;S] ≃ K[y;N ]⊗L

R K[v;R]

These isomorphisms induce the first link in the chain

k ⊗L

R

(
K[y ⊔ ϕ(v);N ]

)
≃ k ⊗L

R

(
K[y;N ]⊗L

R K[v;R]
)

≃ K[y;N ]⊗L

R

(
k ⊗R K[v;R]

)

≃ K[y;N ]⊗L

R

(∧
kΣk

r
)

≃
(
k ⊗L

R K[y;N ]
)
⊗k

(∧
kΣk

r
)

The third one holds because v ⊆ m implies that k⊗RK[v;R] has trivial differential;
the other two are standard. Taking homology and counting ranks over l we get

F
y⊔ϕ(v),N (t) = F

y,N (t) · (1 + t)r

Let x = {x1, . . . , xe} be a minimal set of generators of n modulo mS; clearly,
one has e ≤ q. Let u be generating set of m consisting of v and q − e additional
elements, all equal to 0. The formula above then yields

F
x⊔ϕ(u),N (t) = F

x,N (t) · (1 + t)r+q−e

Applying Lemma (3.1.3) to z = y ⊔ ϕ(v) and to z = x ⊔ ϕ(u) one gets
K[y ⊔ ϕ(v);N ] ∼= K[x ⊔ ϕ(u);N ], so F

y⊔ϕ(v),N(t) = F
x⊔ϕ(u),N(t). �

Additional elbow room is provided by the use of arbitrary Cohen factorizations.

Proposition 4.3.2. If R
ϕ̇−→ R′ ϕ′

−→ Ŝ is any Cohen factorization of ϕ̀, then

PϕN (t) · (1 + t)edim ϕ̇−edimϕ = PR
′

N̂
(t)

INϕ (t) · (1 + t)edim ϕ̇−edimϕ = IN̂R′(t)
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Proof. By (4.1.4), we may assume that S is complete. In view of Theorem (4.2.2)
and Lemma (4.2.1), it suffices to prove the expression for Poincaré series.

Let m′ be the maximal ideal of R′. Choose a set y that minimally generates m′

modulo mR′, set q = cardy, and note that edim ϕ̇ = q. The ring P = R′/mR′ is
regular, so K[y;P ] is a resolution of l, hence K[y;P ] ≃ l. From this isomorphism
and the associativity of derived tensor products we get

l ⊗L

R′ N ≃ K[y;P ]⊗L

R′ N

≃ P ⊗L

R′ K[y;N ]

≃ (k ⊗L

R R
′)⊗L

R′ K[y;N ]

≃ k ⊗L

R K[y;N ]

Passing to homology, we obtain the first equality below:

PR
′

N (t) =
∑

n∈Z

rankl
(
TorRn (k,K[y;N ])

)
tn = PϕN (t) · (1 + t)q−edimϕ

The second equality comes from Proposition (4.3.1). �

5. Illustrations

Betti numbers or Bass numbers over the identity map of R are equal to the corre-
sponding numbers over the ring R, and decades of research have demonstrated that
“computing” the latter invariants is in general a very difficult task. Nonetheless,
drawing on techniques developed for the absolute case, or singling out interesting
special classes of maps, it is sometimes possible to express invariants over ϕ in
closed form, or to relate them to better understood entities. In this section we
present several such results, some of which are used later in the paper.

5.1. Trivial actions. We record a version of the Künneth formula.

Remark 5.1.1. If V is a complex of S-modules satisfying mV = 0, then there
exist isomorphisms of graded S-modules

TorR(k, V ) ∼= TorR(k, k)⊗k H(V )

Indeed, V is naturally a complex over S/mS. If F is a free resolution of k over
R, and F = F/mF , then there are isomorphisms of complexes of S-modules

F ⊗R V ∼= F ⊗k V

Expressing their homology via the Künneth formula, one gets the desired assertion.

Example 5.1.2. If mN = 0, then setting s = edimS one has

(1 + t)s−edimϕ · PϕN (t) = PRk (t) ·KS
N (t)

(1 + t)s−edimϕ · INϕ (t) = PRk (t) · tsKS
N (t−1)

where KS
N(t) is the polynomial defined in (3.2). Remark (5.1.1), applied to the

complex V = KS [N ] yields the expression for PϕN (t). It implies the one for INϕ (t),
via Theorems (4.2.2) and (3.7.4).
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5.2. Regular source rings. When one of the rings R or S is regular, homological
invariants over the other ring dominate the behavior of the Betti numbers of N
over ϕ and its Bass numbers over ϕ. Here we consider the case when the base ring
is regular; the case of a regular target is dealt with in Corollary (6.2.3).

Proposition 5.2.1. If the ring R is regular, then

PϕN (t) = KS
N(t) · (1 + t)m and INϕ (t) = KS

N(t−1) · ts (1 + t)m

where m = edimR− edimS + edimϕ and s = edimS.

Proof. The complex KR is a free resolution of k over R, so TorR(k,KS [N ]) ∼=
H(KR ⊗R KS [N ]). This isomorphism gives the second equality below:

PϕN (t) · (1 + t)edimS−edimϕ =
∑

n∈Z

ℓS
(
TorRn (k,KS [N ])

)
tn

=
∑

n∈Z

ℓS
(
H(KR ⊗R KS [N ])

)
tn

= KS
N (t) · (1 + t)edimR

The first one comes Proposition (4.3.1), the last from Lemma (3.1.3).
We have proved the expression for PϕN (t). The one for INϕ (t) is obtained from it,

by applying Theorems (4.2.2) and (3.7.4). �

Remark 5.2.2. Recall that Df(S) is the derived category of homologically finite
complexes of S-modules. If R is regular, then the proposition shows that PϕX(t)
and IXϕ (t) are Laurent polynomials for every X ∈ Df(S). Conversely, if PϕV (t) or

IVϕ (t) is a Laurent polynomial for some V ∈ Df(S) with H(V ) 6= 0 and mV = 0,

then Remark (5.1.2) implies that PRk (t) is a polynomial, hence that R is regular.

5.3. Complete intersection source rings. We start with some terminology.

5.3.1. The ring R is complete intersection if in some Cohen presentation R̂ ∼= Q/a,
see (3.4), the ideal a can be generated by a regular set. When this is the case, the

defining ideal in each (minimal) Cohen presentation of R̂ is generated by a regular
set (of cardinality codimR). Complete intersection rings of codimension at most 1
are also called hypersurface rings.

In the next result we use the convention 0! = 1.

Theorem 5.3.2. Assume R is complete intersection and set c = codimR.
When flat dimRN =∞ there exist polynomials b±(x) ∈ Q[x] of the form

b±(x) =
bN

2c(d− 1)!
· xd−1 + lower order terms

with an integer bN > 0 and 1 ≤ d ≤ c, such that

βϕn (N) =

{
b+(n) for all even n≫ 0 ;

b−(n) for all odd n≫ 0 .

In particular, if d = 1, then βϕn (N) = βϕn−1(N) for all n≫ 0.
If d ≥ 2, then there exist polynomials a±(x) ∈ Q[x] of degree d− 2 with positive

leading coefficients, such that

βϕn−1(N) + a+(n) ≥ βϕn (N) ≥ βϕn−1(N) + a−(n) for all n≫ 0

The corresponding assertions for the Bass numbers µnϕ(N) hold as well.
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Proof. Let R → R′ → Ŝ be a minimal Cohen factorization of ϕ̀. Choose an

isomorphism F ′ ≃ N̂ , where F ′ is a complex of finite free R′-modules with F ′
n = 0

for all n ≤ i, where i = inf H(N). Set L = ∂(Fs), where s = sup H(N). The
complex Fi>s is a free resolution of L over R′, hence the second equality below:

βϕj+s(N) = βR
′

j+s(N̂) = βR
′

j (L) for all j > 0

The first equality comes from Remark (4.1.4).
As R′ is flat over the complete intersection ring R, and the ring R′/mR′ is regular,

R′ is complete intersection with codimR′ = c. The properties of the Betti numbers
of L over R, which translate into the desired properties of the Betti numbers of N
over ϕ, are given by [11, (8.1)]. That the Bass numbers ofM have the corresponding
properties is now seen from Theorem (4.2.2). �

5.4. Weakly regular homomorphisms. Let ψ : (Q, l, h) → (R,m, k) be a local
homomorphism.

5.4.1. We say that ψ is weakly regular at m if the map ψ̀ has a Cohen factorization

Q→ (Q′, l′, k)
ψ′

−→ R̂ with Kerψ′ generated by a superficial regular set f ′, that is,
one whose image in l′/l′2 spans a k-subspace of rank cardf ′. If ψ is weakly regular

at m, then in each Cohen factorization of ψ̀ the kernel of the surjection is generated
by a superficial regular set: this follows from the Comparison Theorem [10, (1.2)].

Theorem 5.4.2. If ψ is weakly regular, then

PϕN (t) · (1 + t)dimQ−dimR = Pϕ◦ψN (t) · (1 + t)edimϕ−edim(ϕ◦ψ)

A similar equality holds for the Bass series of N .

One ingredient of the proof is the following lemma, which extends [6, (3.3.5)].

Lemma 5.4.3. If f ∈ l r l2 is a regular element and R = Q/(f), then

Pϕ◦ψN (t) = PϕN (t) · (1 + t)

where ψ : Q→ R is the canonical map.

Proof. We start by fixing some notation. Let x be a minimal set of generators of n

modulo mS; it also minimally generates n modulo lS, since ψ is surjective.
Let K[f ;Q] be the Koszul complex of f , and let E denote the underlying exterior

algebra. Since f 6∈ l2, one can extend K[f ;Q] to an acyclic closure Y of k overQ; see
[6, (6.3.1)]. Moreover, there exists a derivation θ on Y , compatible with its divided
powers structure, such that θ(ef ) = 1, see [6, (6.3.3)]. The induced derivation θ⊗R
on the DG algebra Y ⊗QR satisfies (θ⊗R)(ef ⊗ 1) = 1; in addition, ∂(ef ⊗ 1) = 0.
Under these conditions, André [1, Proposition 6] shows that there exists a complex
of R-modules X that appears in an isomorphism of complexes of R-modules

Y ⊗Q R ∼= X ⊕ ΣX

Note that H(Y ⊗Q R) ∼= TorQ(k,R) ∼= k ⊕ Σk, so H(X) ∼= k. In addition, since Y
is complex of free Q-modules, the complex of R-modules X is free. Thus, X is a
free resolution of k over R. Tensoring the isomorphism above with K[x;N ] yields

Y ⊗Q K[x;N ] = (Y ⊗Q R)⊗R K[x;N ]

∼=
(
X ⊗R K[x;N ]

)
⊕ Σ

(
X ⊗R K[x;N ]

)
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Taking homology one obtains an isomorphism of graded k-vector spaces

TorQ(k,K[x;N ]) ∼= TorR(k,K[x;N ])⊕ Σ TorR(k,K[x;N ])

which yields the desired equality of Poincaré series. �

Also needed for the theorem is a construction from [8, (4.4)], see also [20, (5.9)].

Construction 5.4.4. Assume that the rings R and S are complete.

Let Q
ψ̇−→ Q′ ψ′

−→ R and Q′ κ̈−→ Q′′ κ
′

−→ S be minimal Cohen factorizations of ψ
and ϕψ′, respectively. The ring R′ = R⊗Q′ Q′′ and the maps

ψ′′ = ψ′ ⊗Q′ Q′′ , ϕ̇ = R⊗Q′ κ̈ , κ̇ = κ̈ψ̇ ,

fit into a commutative diagram of local homomorphisms

Q′′

ψ′′

  
AA

AA
AA

AA
A

κ
′

��

Q′

ψ′

  
AA

AA
AA

AA
AA

κ̈

>>}}}}}}}}}

R′

ϕ′

��
??

??
??

??
??

Q
ψ

//

κ̇

00

ψ̇

??���������

R
ϕ

//

ϕ̇

>>}}}}}}}}}}

S

where ϕ′ is the induced map. It contains the following Cohen factorizations:

(1) R
ϕ̇−→ R′ ϕ′

−→ S of ϕ, which is minimal;

(2) Q
κ̇−→ Q′′ κ

′

−→ S of ϕψ, in which edim κ̇ = edimϕ+ edimψ.

Proof of Theorem (5.4.2). By Remark (4.1.4) we may assume R and S complete.
We form the diagram of the construction above and adopt its notation.

Since ψ is weakly regular at m, the kernel of ψ′ is generated by a superficial
regular set f ′, see (5.4.1). Since ψ′′ = Q′′ ⊗Q′ ψ′, and Q′′ is faithfully flat over Q′,
the image f ′′ of f ′ inQ′′ is a regular set of cardf ′ elements, and generates the kernel
of ψ′′. Let l′ and l′′ be the maximal ideals of Q′ and Q′′, respectively. As Q′′/l′Q′′

is regular, any minimal set of generators of the ideal l′Q′′ = Ker(Q′′ → Q′′/l′Q′′)
extends to a minimal set of generators of l′′. It follows that f ′′ is superficial.

The first equality below holds because κ′ is surjective, see (4.1.2), the second
from iterated applications of Lemma (5.4.3):

PQ
′′

N (t) = Pκ
′

N (t) = Pϕ
′

N (t) · (1 + t)dimQ−dimR+edimψ

Property (2) of Construction (5.4.4) shows that κ′κ̇ is a Cohen factorization of ϕψ,
with edim κ̇ = edimϕ+ edimψ. Thus, from Proposition (4.3.2) we get

PQ
′′

N (t) = PϕψN (t) · (1 + t)edim κ̇−edim(ϕψ)

= PϕψN (t) · (1 + t)edimϕ+edimψ−edim(ϕψ)

Comparison of the two expressions for PQ
′′

N (t) finishes the proof for Poincaré series.
The equality for Bass series is a formal consequence, due to Theorem (4.2.2). �
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6. Separation

This section introduces one of the main themes of the paper—the comparison of
homological invariants of N over ϕ with homological invariants of k over R.

We start by establishing upper bounds on the Poincaré series and on the Bass
series of N . The bounds involve series with specific structures: input from each of
the rings R and S and from the map ϕ appear as separate factors. We say that N
is (injectively) separated if the upper bound is reached, and we turn to the natural
problem of identifying cases when this happens. Several sufficient conditions are
obtained, in terms of the structure of N over R, the properties of the ring R, those
of the ring S, or the way that ϕ(m) sits inside n. Finally, we obtain detailed infor-
mation on Betti sequences and Bass sequences of (injectively) separated complexes.
To do this, we use the specific form of their Poincaré series or Bass series along
with extensive information on PRk (t), available from earlier investigations.

6.1. Upper bound. In the theorem below KS
N(t) denotes the Laurent polynomial

defined in (3.2). The first inequality and its proof are closely related to results of
Lescot in [24, §2]; see Remark (6.3.5).

The symbols 4 and < denote coefficientwise inequalities of formal Laurent series.

Theorem 6.1.1. Assume H(N) 6= 0, and set s = edimS and e = edimϕ.
There is an inequality of formal Laurent series

(1 + t)s−e · PϕN (t) 4 PRk (t) ·KS
N(t)

and on both sides the initial term is (νS Hi(N)) ti, where i = inf H(N).
There is an inequality of formal Laurent series

(1 + t)s−e · INϕ (t) 4 PRk (t) ·KS
N (t−1) ts

and on both sides the initial term is (typeS N) tg, where g = depthS N .

Proof. Let F be a free resolution of k over R. Filter the complex F ⊗R KS [N ] by

its subcomplexes F ⊗R
(
KS [N ]

6q

)
to get a spectral sequence

E2
pq = TorRp

(
k,Hq KS [N ]

)
=⇒ TorRp+q

(
k,KS [N ]

)
.

The R-module Hq KS [N ] is annihilated by m, so one has an isomorphism

TorRp
(
k,Hq KS [N ]

) ∼= TorRp (k, k)⊗k Hq KS [N ]

It is responsible for the last equality below

PϕN (t) · (1 + t)s−e =
∑

n∈Z

rankl TorRp+q
(
k,KS [N ]

)
tn

4
∑

n∈Z

( ∑

p+q=n

rankl E
2
p,q

)
tn

= PRk (t) ·KS
N (t)

while the first equality comes from Lemma (4.3.1). The convergence of the spectral
sequence yields the inequality.

To identify the leading terms, note that Theorem (3.7.1) yields Hq(N) = 0 for
q < i. Thus, in the spectral sequence above E2

pq = 0 when p < 0 or q < i, hence

TorRn
(
k,KS [N ]

) ∼=
{

0 for n < i

Hi(K
S [N ]) for n = i
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This shows that rankl Hi(K
S [N ]) ti is the initial term of both series under consid-

eration, and its coefficient is identified by Theorem (3.7.1).
The inequality concerning the Bass series of N and the equality of initial terms

follow from the corresponding statements about the Poincaré series of N †, in view
of the equalities INϕ (t) = Pϕ

N†(t) from Theorem (4.2.2), and KS
N†(t) = tsKS

N (t−1)
from Theorem (3.7.4). To obtain the leading term itself use Theorem (3.7.2). �

The theorem gives a reason to consider the following classes of complexes.

6.1.2. We say that N is separated over ϕ if

PϕN (t) = PRk (t) · KS
N(t)

(1 + t)edimS
· (1 + t)edimϕ

Separation is related to Lescot’s [24] notion of inertness, see Remark (6.3.5).
We say that N is injectively separated over ϕ if

INϕ (t) = PRk (t) · K
S
N (t−1) tedimS

(1 + t)edimS
· (1 + t)edimϕ

Comparing the formulas above with those in Remark (5.1.2) and Proposition
(5.2.1), we exhibit the first instances of separation.

Example 6.1.3. If mN = 0, or if the ring R is regular, then N is separated and
injectively separated over ϕ.

To obtain further examples we introduce a concept of independent interest.

6.2. Loewy lengths. Let X be a complex of S-modules. The number

ℓℓS(X) = inf{i ∈ N | ni ·X = 0}
is the Loewy length of X over S. To obtain an invariant in D(S), we introduce

ℓℓD(S)(X) = inf{ℓℓS(V ) | V ∈ D(S) with V ≃ X}
as the homotopical Loewy length of X over S. Evidently, there are inequalities

ℓℓS(H(X)) ≤ ℓℓD(S)(X) ≤ ℓℓS(X)

Equalities hold when X is an S-module, but not in general; see Corollary (6.2.3).

Lemma 6.2.1. If X and Y are complexes of S-modules, then

ℓℓD(S)(X ⊗L

S Y ) ≤ min{ℓℓD(S)(X), ℓℓD(S)(Y )}
ℓℓD(S)(RHomS(X,Y )) ≤ min{ℓℓD(S)(X), ℓℓD(S)(Y )}

Proof. We may assume ℓℓD(S)(X) = i <∞, hence X ≃ V and ni ·V = 0. Replace Y

with aK-projective resolution F to getX⊗L

SY ≃ V ⊗SF and ni·(V ⊗SF ) = 0. This
gives ℓℓD(S)(X ⊗L

S Y ) ≤ ℓℓD(S)(X). The inequality ℓℓD(S)(X ⊗L

S Y ) ≤ ℓℓD(S)(Y )
follows by symmetry. A similar argument yields the second set of inequalities. �

Our interest in homotopical Loewy lengths is due to the next result, which also
involves the invariant spreadS introduced in (3.8).

Theorem 6.2.2. The following inequalities hold:

ℓℓD(S)(K
S [N ]) ≤ ℓℓD(S)(K

S) ≤ spreadS

The complex N is separated and injectively separated over ϕ if

ϕ(m) ⊆ nq where q = ℓℓD(S)(K
S [N ])
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Proof. Lemma (6.2.1) gives the first one of the desired inequalites. On the other
hand, Proposition (3.11) shows that, for a = spreadS, the complex

Ia = 0 −→ na−sKS
s −→ na−s+1KS

s−1 −→ · · · −→ na−1KS
1 → naKS

0 → 0

is exact. Thus, KS ≃ KS/Ia; note that na · (KS/Ia) = 0, and so q ≤ a.
Assume now ϕ(m) ⊆ nq. Let V be a complex of S-modules with nqV = 0 and

V ≃ KS [N ] in D(S). This explains the first and the last isomorphisms below

TorR(k,KS [N ]) ∼= TorR(k, V )

∼= TorR(k, k)⊗k H(V )

∼= TorR(k, k)⊗k H(KS [N ])

The second is Remark (5.1.1). Computing ranks and using Proposition (4.3.1) one
gets separation over ϕ. A similar argument yields injective separation. �

As a corollary, we complement Proposition (5.2.1), see also Example (6.1.3).

Corollary 6.2.3. When S is regular N is separated and injectively separated over
ϕ. Also, S is regular if and only if ℓℓD(S)(K

S) ≤ 1, if and only if spreadS ≤ 1.

Proof. Assume first ℓℓD(S)(K
S) ≤ 1, that is, KS ≃ V for a complex of S-modules

V modules with n ·V = 0. Thus, V is a complex of l-vector spaces, hence H0(V ) = l
is isomorphic in D(S) to a direct summand of V . One sees that S is regular from:

flat dimS l ≤ flat dimS V = flat dimS K
S = edimS <∞

Assume next S is regular. In this case grn(S) is a polynomial algebra, so
H(Kgrn(S)) ∼= l, and hence spreadS ≤ 1 by Proposition (3.11). Now Theorem
(6.2.2) yields an inequality ℓℓD(S)(K

S) ≤ 1 and the assertions about N . �

6.3. Properties. The first non-zero Betti number and the first non-zero Bass num-
ber of N are computed in Theorem (6.1.1). For separated complexes detailed in-
formation is also available on subsequent numbers in each sequence.

Theorem 6.3.1. Assume H(N) 6= 0, and set i = inf H(N) and m = νS Hi(N).
If N is separated over ϕ, then its Betti numbers have the following properties.

(1) When R is not a hypersurface ring there are inequalities

βϕn (N) ≥
{
βϕi (N) for n = i+ 1

βϕn−1(N) +m for n ≥ i+ 2

If codimS ≥ 2 or edimR+ edimϕ > edimS, then also

βϕi+1(N) ≥ βϕi (N) +m

(2) When R is not complete intersection there is a real number b > 1 such that

βϕn (N) ≥ mbn−i for all n ≥ i+ 2

If N is injectively separated over ϕ, then its Bass numbers over ϕ satisfy similar
inequalities, obtained from those above by replacing βϕn (N) with µnϕ(N), the number
i = inf H(N) with depthS N , and m = νS Hi(N) with typeS N .

The theorem is proved at the end of this section.
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Remark 6.3.2. An inequality edimR + edimϕ ≥ edimS always holds, and there
is equality if and only if some (respectively, each) minimal Cohen factorization

R→ R′ → Ŝ of ϕ̀ satisfies edimR′ = edimS.
Indeed, if v minimally generates m and x minimally generates n modulo mS,

then ϕ(v) ∪ x generates n, hence the inequality. In a minimal Cohen factorization
edimR′ = edimR + edimϕ, so equality holds if and only if edimR′ = edimS.

Next we show that the results in the theorem are optimal.

Example 6.3.3. Let k be a field and set R = k[[x, y]]/(x2, xy). One then has

PRk (t) =
(1 + t)2

1− 2t2 − t3 =
1 + t

1− t− t2

see [6, (5.3.4)]. Set S = R and let N be the S-module S/(x). Set ϕ = idR, so
PϕN (t) = PRN (t). The exact sequence 0→ k → R→ N → 0 yields

PRN (t) = 1 + tPRk (t) =
1

1− t− t2

Furthermore, one has KS
N (t) = 1 + t, e.g. from Theorem (3.7.3) with T = k[[x, y]].

The computations above show that N is separated. However βϕ1 (N) = βϕ0 (N) =
1, so equality holds in (1), and the inequality in (2) fails for n = i+ 1.

Remark 6.3.4. If R
ϕ̇−→ R′ ϕ′

−→ Ŝ is a minimal Cohen factorization of Ŝ, then N is

separated over ϕ if and only if N̂ is separated over ϕ′.
Indeed, set e = edimϕ. As ϕ̇ is flat and R′/mR′ is regular, it is not hard to show

PR
′

l (t) = PRk (t)(1 + t)e. The equality PϕN (t) = Pϕ
′

N̂
(t) yields our assertion.

We are ready to compare separation with inertness, as defined by Lescot [24].

Remark 6.3.5. An S-module L is inert if (1+ t)edimS ·PSL (t) = PSk (t) ·KS
L(t), see

[24, (2.5)]. This is precisely the condition that L is separated over idS .
Suppose edimS = edimR+edimϕ. Remark (6.3.2) shows that ϕ̀ has a minimal

Cohen factorization with edimR′ = edimS, so KS
L(t) = KR′

L (t). By the preceding
remark, L is separated over ϕ if and only if it is inert over R′.

When ϕ induces the identity on k and the ring S/mS is artinian, Lescot says
that L is inert through ϕ if PSk (t) · PRL (t) = PSL (t) · PRk (t). This condition is very
different from separation over ϕ: it can be shown that L 6= 0 has both properties if
and only if it is inert over R, the map ϕ is flat, and n = mS.

Next we recall background information on the homology of k.

6.3.6. Set r = edimR, and let p denote minimal number of generators of the ideal

a in a minimal Cohen presentation R̂ ∼= Q/a. The series PRk (t) can be written as

PRk (t) =
(1 + t)r

(1− t2)p · F (t) where F (t) =

∏∞
i=1(1 + t2i+1)ε2i+1(R)

∏∞
i=1(1− t2i+2)ε2i+2(R)

for uniquely determined integers εn(R) ≥ 0 for n ≥ 3, see [6, (7.1.4)].

(1) The ring R is regular if and only p = 0; in this case F (t) = 1.
(2) The ring R is complete intersection if and only ε3(R) = 0, if and only if F (t)=1.
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(3) If R is not complete intersection, then there exists an integer s1 ≥ 2 and a
sequence of integers (ij)

∞
j=1 with 2 ≤ ij ≤ edimR+ 1 for all j, such that

sj+1 = ij(sj − 1) + 2 satisfy εsj
(R) ≥ asj

for some real number a > 1.
Of the assertions above (1) is clear, (2) is due to Assmus and Tate, see [6,

(7.3.3)], and (3) is due to Avramov, see [6, (8.2.3)].

To prove the next lemma we abstract an argument from the proof of [6, (8.2.1)].

Lemma 6.3.7. Assume R is not a complete intersection and let F (t) be as above.

(1) The following inequalities hold:

F (t)

(1− t2) <
1 + t3

(1− t2) = 1 +

∞∑

h=2

th

(2) There exists a real number b > 1, such that the following inequality holds:

F (t)

(1− t)(1 − t2) < 1 + t+
∞∑

h=2

bh th

Proof. (1) is clear from (6.3.6.2).
(2) Set

∑
h∈Z

aht
h = F (t)/(1− t2) and

∑
h∈Z

bht
h = F (t)/((1− t)(1 − t2)).

Since bh = ah + · · ·+ a0 for each h ≥ 0, we get b1 ≥ b0 ≥ 1 and

bh+1 =

( h+1∑

j=0

aj

)
>

( h∑

j=0

aj

)
= bh for all h ≥ 1

Let s1, s2, . . . be the numbers from (6.3.6.3) and set r = edimR. The number

b = min

{
r+1
√
a ,

√
b2 , . . . ,

s1
√
bs1

}

satisfies bh ≥ bh > 1 for s1 ≥ h ≥ 2. If sj+1 ≥ h > sj with j ≥ 1, then

bh > bsj
≥ εsj

(R) ≥ asj ≥ b(r+1)sj > bsj+1 > bh

so we see that bh ≥ bh holds for all h ≥ 2. This is the desired inequality. �

Proof of Theorem (6.3.1). We adopt the notation of Lemma (6.3.7), set

d = edimR− edimS + edimϕ

Remark (6.3.2) and the hypothesis that R is not a hypersurface yield

(∗) d ≥ 0 and p ≥ 2

Theorem (3.7.7) provides a Laurent polynomial L(t) < mti, such that

(†) KS
N(t)(1 + t)d = L(t)(1 + t)d+1

(1) From the discussion above we obtain the relation
∞∑

n=i

(
βϕn (N)− βϕn−1(N)

)
tn = (1− t) · PϕN (t) =

L(t)(1 + t)d

(1− t2)p−1
· F (t)

If codimS ≥ 2, then Theorem (3.7.5) yields L(t) < mti (1 + t), in particular,

L(t)(1 + t)d < mti (1 + t)
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The same inequality holds when d ≥ 1. Thus, in these cases we get

∞∑

n=i

(
βϕn (N)− βϕn−1(N)

)
tn =

L(t)(1 + t)d

(1− t2) · F (t)

(1− t2)p−2

<
mti (1 + t)

(1− t2)

= m

∞∑

n=i

tn

This implies βϕn (N) ≥ βϕn−1(N) +m for all n ≥ i+ 1, as desired.
Now we assume codimS = 1 and d = 0. By Remark (6.3.2), ϕ̀ has a minimal

Cohen factorization R→ R′ → Ŝ with edimR′ = edimS, hence

codimR = codimR′ = edimR′ − dimR′ ≤ edimS − dimS = codimS = 1

Since R is not a hypersurface by hypothesis, the inequality above bars it from being
complete intersection. Using Theorem (3.7.1) and Lemma (6.3.7.1) we obtain

∞∑

n=i

(βϕn (N)− βϕn−1(N)) tn =
L(t)

(1− t2)p−2
· F (t)

(1− t2) < mti · (1 +

∞∑

h=2

th)

This yields βϕi+1(N) ≥ βϕi (N) and βϕn (N) > βϕn−1(N)) +m for all n ≥ i+ 2.
(2) Formula (†) gives the equality below:

PϕN (t) = L(t) · (1 + t)d

(1− t2)p−2
· F (t)

(1− t)(1 − t2)

< mti ·
(

1 + t+
∞∑

h=2

bh th
)

The inequality, involving a real number b > 1, comes from Theorem (3.7.7), formula
(∗), and Lemma (6.3.7.2). Thus, βϕn (N) ≥ mbn−i holds for all n ≥ i+ 2. �

7. Asymptotes

The data encoded in the sequences of Betti numbers and of Bass numbers of N
are often too detailed to decipher. Many results suggest that it is the asymptotic
behavior of these sequence that carries an understandable algebraic significance. In
this section we introduce and initiate the study of a pair of numerical invariants
that evaluate the (co)homological nature of N over R by measuring the asymptotic
growth of the sequences of its Betti numbers and of its Bass numbers over ϕ.

We use two scales to measure the rate at which these numbers grow: a polynomial
one, leading to the notion of complexity, and an exponential one, yielding that of
curvature. One reason for restricting to these scales is that these numbers grow
at most exponentially, and there is no example with rate of growth intermediate
between polynomial and exponential. A second reason comes from Theorem (6.1.1):
it is natural to compare the homological sequences of N over ϕ to (βRn (k))n>0, and
this sequence is known to have either polynomial or exponential growth.
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7.1. Complexities and curvatures. The complexity of N over ϕ is the number

cxϕN = inf

{
d ∈ N

∣∣∣∣∣
there exists a number c ∈ R such that

βϕn (N) ≤ cnd−1 for all n≫ 0

}

The curvature of N over ϕ is the number

curvϕN = lim sup
n

n

√
βϕn (N)

Similar formulas, in which Betti numbers are replaced by Bass numbers, define the
injective complexity inj cxϕN and the injective curvature inj curvϕN of N over ϕ.

When ϕ = idR one speaks of complexities and curvatures of N over R, modifying
the notation accordingly to cxR(N), etc., see [5]. From Proposition (4.3.2) one gets:

Remark 7.1.1. If R
ϕ̇−→ R′ ϕ′

−→ Ŝ is any Cohen factorization of ϕ′, then

cxϕN = cxϕ̀ N̂ = cxϕ̂ N̂ = cxR′(N̂)

curvϕN = curvϕ̀ N̂ = curvϕ̂ N̂ = curvR′(N̂ )

The corresponding injective invariants satisfy analogous relations.

The equalities below often allow one to restrict proofs to projective invariants.

Remark 7.1.2. If D is a dualizing complex of Ŝ and N̂ † = RHom
Ŝ

(
N̂,D

)
, then

inj cxϕN = cxϕ̀ N̂
† and inj curvϕN = curvϕ̀ N̂

†

Indeed, this is an immediate consequence of Theorem (4.2.2).

We list some basic dependencies among homological invariants of N .

Proposition 7.1.3. The numbers cxϕN and curvϕN satisfy the relations below.

(1) flat dimRN <∞ if and only if cxϕN = 0, if and only if curvϕN = 0.
(2) If flat dimRN =∞, then cxϕN ≥ 1 and curvϕN ≥ 1.
(3) If 1 ≤ cxϕN <∞, then curvϕN = 1.
(4) If curvϕN > 1, then there exist an infinite sequence n1 < n2 < . . . of integers

and a real number b > 1, such that βϕni
(N) ≥ bni holds for all i ≥ 1.

(5) curvϕN ≤ curvR k <∞.

The corresponding injective invariants satisfy analogous relations.

Remark. Part (5) shows, in particular, that there exists a positive real number c,
such that βϕn (N) ≤ cn and µnϕ(N) ≤ cn hold for all n ≥ 1.

Proof. By Remark (7.1.2) we may restrict to projective invariants. Part (1) comes
from Remark (4.1.4) and Corollary (2.5). Parts (2), (3), and (4) are clear. In (5)
the first inequality comes from Theorem (6.1.1), see (7.1.6). The second inequality
is known, see e.g. [6, (4.2.3)]; a self-contained proof is given in Corollary (9.2.2). �

Complexity may be infinite, even when ϕ is the identity map.

Example 7.1.4. For the local ring R = k[x, y]/(x2, xy, y2) and the R-module
N = R/(x, y) one has βRn (N) = 2n, so cxRN =∞.

We determine when all homologically finite complexes have finite complexity.
Recall that Df(S) denotes the derived category of homologically finite complexes.
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Theorem 7.1.5. Set c = codimR. The following conditions are equivalent.

(i) R is a local complete intersection ring.
(ii) cxϕX ≤ c for each X ∈ Df(S).
(iii) cxϕ l = c
(iv) curvϕ l ≤ 1

They are also equivalent to those obtained by replacing Poincaré series, complexity,
curvature with Bass series, injective complexity, injective curvature, respectively.

Proof. As l is separated over ϕ by Example (6.1.3), from (7.1.6) one gets

cxϕ l = cxR k and curvϕ l = curvR k

(i) =⇒ (iii). As PRk (t) = (1+ t)edimR/(1− t2)c, see (6.3.6.2), one has cxR k = c
by (7.1.6.4), so the equalities above yield cxϕ l = c.

(iii) =⇒ (ii) holds by Theorem (6.1.1).
(ii) =⇒ (iii) =⇒ (iv) hold by definition.
(iv) =⇒ (i) is a consequence of the formulas above and (6.3.6.3). �

Our results on complexities and curvatures are often deduced from coefficientwise
inequalities of formal Laurent series. We collect some simple rules of operation.

7.1.6. Let a(t) =
∑
ant

n be a formal Laurent series with non-negative integer
coefficients. Extending notation, let cx(a(t)) denote the least integer d such that
an ≤ cnd−1 holds for some c ∈ R and all n≫ 0, and set curv(a(t)) = lim supn n

√
an.

Let b(t) be a formal Laurent series with non-negative integer coefficients.

(1) If a(t) 4 b(t), then

cx(a(t)) ≤ cx(b(t)) and curv(a(t)) ≤ curv(b(t))

(2) The following inequalities hold:

min{cx(a(t)) , cx(b(t))} ≤ cx(a(t) · b(t)) ≤ cx(a(t)) + cx(b(t))

min{curv(a(t)) , curv(b(t))} ≤ curv(a(t) · b(t))
≤ max{curv(a(t)) , curv(b(t))}

When a(t) represents a rational function the following hold as well.

(3) curv(a(t)) is finite.
(4) cx(a(t)) is finite if and only if a(t) converges in the unit circle; when this is

the case cx(a(t)) is equal to the order of the pole of a(t) at t = 1;
(5) If b(t) represents a rational function, and cx(a(t)), cx(b(t)) are finite, then

cx(a(t) · b(t)) = cx(a(t)) + cx(b(t))

Indeed, (1) and the first three inequalities in (2) follow from the definitions.
Since curv(a(t)) is the inverse of the radius of convergence of the series a(t), the
last inequality in (2) is a reformulation of a well known property of power series,
and (3) is clear. For (4), see e.g. [4, (2.4)]; (5) follows from (4).

7.2. Reductions. The determination of complexity or curvature can sometimes be
simplified using Koszul complexes. The following result is a step in that direction.

Proposition 7.2.1. If v is a finite subset of n, then

cxϕN = cxϕ(K[v;N ]) and curvϕN = curvϕ(K[v;N ])

Similar equalities hold for the corresponding injective invariants.
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Proof. In view of the isomorphism of complexes K[x; K[v;N ]] ∼= K[x,v;N ], Propo-
sition (4.3.1) applied to the set y = x ⊔ v yields

PϕK[v;N ](t) = PϕN (t) · (1 + t)card v

The equalities for complexity and curvature now result from (7.1.6), and those for
their injective counterparts follow via (3.6) and Theorem (4.2.2). �

Corollary 7.2.2. If L is an S-module and v is an L-regular subset of S, then

cxϕ(L/vL) = cxϕ L and curvϕ(L/vL) = curvϕ L

Similar equalities hold for the corresponding injective invariants.

Proof. In this case L/vL is isomorphic to K[v;L] in the derived category of S. �

As a special case of the next theorem, the Koszul complex on any system of pa-
rameters for the S-module H(N)/m H(N) can be used to determine the complexity
or the curvature of N over ϕ.

Theorem 7.2.3. Let v be a finite subset of n. If the S-module

H(N)

v H(N) + m H(N)

has finite length, then

cxϕN = cx

( ∑

n∈Z

ℓS TorRn (k,K[v;N ]) tn
)

curvϕN = lim sup
n

n

√
ℓS TorRn (k,K[v;N ])

Similar equalities involving ℓS ExtnR(k,K[v;N ]) express inj cxϕN and inj curvϕN .

Remark 7.2.4. When ℓS
(
H(N)/m H(N)

)
is finite one may choose v = ∅, so that

K[v;N ] = N ; this applies, in particular, when the ring S/mS is artinian.

Proof of Theorem (7.2.3). The proofs of the formulas for complexity and curvature
are similar to those for their injective counterparts; for once, we verify the latter.

Set K = K[v;N ]. By Proposition (7.2.1), it suffices to prove that the expres-
sions on the right hand sides of the desired equalities are equal to inj cxϕK and
inj curvϕK, respectively. Note the equalities of supports of S-modules

SuppS

(
H(N)

v H(N) + m H(N)

)
= SuppS(S/mS) ∩ SuppS(S/vS) ∩ SuppS H(N)

= SuppS(S/mS) ∩ SuppS H(K)

= SuppS
(
H(K)/m H(K)

)

where the middle one comes from Lemma (1.5.5) and the other two are standard.
Therefore, the length of the S-module H(K)/m H(K) is finite.

We claim that there exists a positive integer v for which there are inequalities:

IKϕ (t)tedimϕ
4

∑

n∈Z

ℓS
(
ExtnR(k,K)

)
tn · (1 + t)edimϕ

4 IKϕ (t) · (vt)edimϕ

Indeed, let x = {x1, . . . , xe} be a minimal generating set of n modulo mS. Set
K(j) = K[x1, . . . , xj ;K] for j = 0, . . . , e, and note that K(j+1) is the mapping cone

of the morphism λ(j) : K(j) → K(j) given by multiplication with xj+1, cf. (1.5.4).
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By (1.4.3), our hypothesis implies that there is an integer v ≥ 1 such that nv is
contained in mS+AnnD(S)(K). This ideal is contained in mS+AnnD(S)(K

(j)) for

each j, so by Lemma (1.5.6) each S-module H(k ⊗L

R K
(j)) is finite and annihilated

by nv. Furthermore, there is a triangle

k ⊗L

R K
(j) k⊗L

Rλ
(j)

−−−−−→ k ⊗L

R K
(j) −→ k ⊗L

R K
(j+1) −→

In view of Lemma (1.2.3), the formal Laurent series

I(j)(t) =
∑

n∈Z

ℓS(ExtnR(k,K(j))
)
tn

satisfy coefficientwise inequalities

I(j+1)(t) 4 I(j)(t) · (1 + t) 4 I(j+1)(t) · v
It remains to note that I(e)(t) = IKϕ (t) · tedimϕ. �

8. Comparisons

The source ring R and the target ring S of the homomorphism ϕ play different
roles in the definitions of Betti numbers and Bass numbers, and hence in the char-
acteristics of N introduced above: The impact of the R-module structure of N is
through the entire resolution of k, while that of its S-module structure is limited
to the Koszul complex KS [N ]. We take a closer look at the role of S.

For the rest of the section we fix a second local homomorphism

ϕ̃ : (R,m, k)→ (S̃, ñ, l̃)

and we assume that N also has a structure of a homologically finite complex of

S̃-modules, and that the action of R through ϕ̃ coincides with that through ϕ.

Our main conclusion is that if the actions of S and S̃ on N commute, then the
(injective) complexity or curvature of N over ϕ is equal to that over ϕ̃. This may
be surprising, as it is in general impossible to express the Betti numbers or the Bass
numbers over one of the maps in terms of those over the other. As an application,
we show that in the presence of commuting actions important invariants of N over

S, such as depth and Krull dimension, are equal to those over S̃.

8.1. Asymptotic invariants. We consider the following natural questions.

Question 8.1.1. Do the equalities below always hold:

cxϕN = cxϕ̃N and curvϕN = curvϕ̃N ?

Question 8.1.2. What about the corresponding injective invariants?

The next result settles an important special case. While we do not know the
answer in general, Example (8.2.3) raises the possibility of a negative answer.

Theorem 8.1.3. If the actions of S and S̃ on N commute, then

cxϕN = cxϕ̃N and curvϕN = curvϕ̃N

Similar equalities also hold for the injective invariants of N .

The special case where ϕ′ = idR is of independent interest.
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Corollary 8.1.4. If H(N) is finite over R, then

cxϕN = cxRN and curvϕN = curvRN

Similar equalities for inj cxN and inj curvN also hold. �

The theorem is a consequence of the relations of formal Laurent series established
in the proposition below. Indeed, (7.1.6) yields cxϕN ≤ cxϕ̃N and curvϕN ≤
curvϕ̃N , and the converse inequalities follow by symmetry.

Proposition 8.1.5. If the actions of S and S̃ commute, then there exists a positive
integer w, such that

PϕN (t) · (1 + t)edim ϕ̃ 4 P ϕ̃N (t) · w (1 + t)edimϕ

INϕ (t) · (1 + t)edim ϕ̃ 4 INϕ̃ (t) · w (1 + t)edimϕ

The proposition is proved at the end of the section. Next we use it to compare
patterns of vanishing of Betti numbers and Bass numbers over ϕ and over ϕ̃.

8.2. Homological dimensions. We define the projective dimension of N over ϕ
and the injective dimension of N over ϕ, respectively, to be the numbers

proj dimϕN = sup{n ∈ Z | βϕn (N) 6= 0} − edimϕ

inj dimϕN = sup{n ∈ Z | µnϕ(N) 6= 0} − edimϕ

These expressions have been chosen in view of the characterizations of homological
dimensions over R recalled in (2.2). The shifts by edimϕ appear because the
modified invariants appear to carry a more transparent algebraic meaning.

The equalities below come from Remark (4.1.4), and reconcile our notion of
projective dimension over ϕ with that defined in [20, (3.5)] via Cohen factorizations.

8.2.1. Let ϕ̀ : R → Ŝ be the composition of ϕ with the completion S → Ŝ. If

R→ R′ → Ŝ is a minimal Cohen factorization of ϕ̀, then

proj dimϕN = proj dimϕ̀ N̂ = proj dimϕ̂ N̂ = flat dimR′ N̂ − edimϕ

inj dimϕN = inj dimϕ̀ N̂ = inj dimϕ̂ N̂ = inj dimR′ N̂ − edimϕ

Combining these equalities with Corollary (2.5), we obtain

Corollary 8.2.2. The following (in)equalities hold:

flat dimRN − edimϕ ≤ proj dimϕN ≤ flat dimRN

inj dimϕN = inj dimRN �

Corollary (8.2.2), applied to ϕ and ϕ̃, implies that N has finite projective di-
mension over ϕ if and only if it does over ϕ̃. However, unlike injective dimension,
the value of proj dimϕN may depend on the map.

Example 8.2.3. Let R be a field. Set S = R[x](x) and let ϕ : R → S be the

canonical injection. Set S̃ = R(x) and let ϕ̃ : R → S̃ be the canonical injection.

Decomposition into partial fractions shows that S and S̃ have the same rank as
vector spaces over R, namely, c = max{ℵ0, card(R)}. Pick an R-vector space N

of rank c. Choosing R-linear isomorphisms S ∼= N and S̃ ∼= N , endow N with
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structures of free module of rank 1 over S and over S̃; both actions restrict to the
original action of R on N . Directly, or from (8.2.1), one gets

proj dimϕN = − edimS = −1 6= 0 = − edim S̃ = proj dimϕ̃N

The module in the example is not an S-S̃-bimodule. There is a reason:

Theorem 8.2.4. If the actions of S and S̃ on N commute, then

proj dimϕN = proj dimϕ̃N

Proof. Comparing the degrees of the Laurent series in Proposition (8.1.5), one gets

(proj dimϕN + edimϕ) + edim ϕ̃ ≤ (proj dimϕ̃N + edim ϕ̃) + edimϕ

Thus, proj dimϕN ≤ proj dimϕ̃N ; the converse inequality holds by symmetry. �

8.3. Depth and Krull dimension. The definition of depth of N over S is re-
called in (3.3). When proj dimϕN is finite, it appears in the following equality of
Auslander-Buchsbaum type, proved in [20, (4.3)]:

depthS N = depthR− proj dimϕN

Foxby [16, (3.5)] defines the (Krull) dimension of N over S to be

dimS N = sup{dimS Hn(N)− n | n ∈ Z}
Clearly, this number specializes to the usual concept when N is an S-module.

The module N in Example (8.2.3) has dimS N = depthS N = 1 and dim
S̃
N =

depth
S̃
N = 0. This explains the interest of the following theorem. Unlike most

results in this paper, it is not about invariants over a homomorphism; in particular,
we are not assuming that Q is an R-algebra.

Theorem 8.3.1. Let Q be a local ring such that N has a structure of homologically
finite complex of Q-modules. If the actions of Q and S on N commute, then

dimQN = dimS N and depthQN = depthS N

Proof. We may assume Hn(N) = H 6= 0 for some n ∈ Z. Let q be the characteristic
of the residue field of Q, and p be that of l. We claim q = p. There is nothing to
prove unless p or q is positive, and then we may assume q > 0. As V = H/nH is a
finite Q-module, and q is contained in the maximal ideal of Q, Nakayama’s Lemma
yields qV 6= V . Since V is a l-vector space, this implies qV = 0, hence q = p.

Set P = Z(p) and let η : P → Q and η′ : P → S be the canonical maps.
First, we verify the assertion on depths: since the actions of P on N through η

and through η′ coincide, proj dimηN = proj dimη′ N by Theorem (8.2.4). The local
ring P is regular, so flat dimP N is finite, and hence, by (8.2.2), both proj dimη N
and proj dimη′ N are finite. The Auslander-Buchsbaum formula, see above, yields

depthQN = depthR− proj dimηN = depthR− proj dimη′ N = depthS N

Now we turn to dimensions. It suffices to check that dimQHn(N) = dimS Hn(N)
for each n ∈ Z, so we may assume that N is a module, concentrated in degree zero.
The actions of Q and S on N commute, so one obtains a homomorphism of rings

τ : Q⊗P S −→ HomP (N,N) where (q ⊗ s) 7−→
(
n 7→ qsn

)
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Set U = Im(τ): This is a commutative subring of HomP (N,N), so N has a natural
U -module structure. The actions of U and Q commute, so we have inclusions

U ⊆ HomQ(N,N) ⊆ HomP (N,N)

where the first one is Q-linear. Since N is a finite Q-module, the same is true of
HomQ(N,N), and hence of U . Therefore, the composed homomorphism of rings
Q→ Q⊗P S → U is module finite. Thus, U is noetherian and dimQN = dimU N .
By symmetry, dimS N = dimU N , hence dimQN = dimS N , as desired. �

The preceding theorem allows us to complement a result in [20]. In that paper
a notion of Gorenstein dimension of N over ϕ, denoted G-dimϕN , is defined and
studied. In particular, it is proved in [20, (7.1)] that G-dimϕN and G-dimϕ̃N are
simultaneously finite. However, they can differ, as shown by an example in [20,

(7.2)]; there, as in Example (8.2.3), the actions of S and S̃ do not commute.

Remark 8.3.2. If the actions of S and S̃ on N commute, then

G-dimϕN = G-dimϕ̃N

Indeed, it is clear from the preceding discussion that we may assume both Goren-
stein dimensions are finite. In that case, we have

G-dimϕN = depthR− depthS N = depthR− depth
S̃
N = G-dimϕ̃N

where the equalities on both ends are given by [20, (3.5)], and the one in the middle
comes from Theorem (8.3.1).

8.4. Poincaré series. Now we turn to the proof of Proposition (8.1.5). The argu-
ment hinges on the following construction.

Construction 8.4.1. Each complex Y of modules over the ring T = S⊗R S̃ defines
a commutative diagram of homomorphisms of rings

Ext0T (Y, Y ) //

��

Ext0S(Y, Y )

��

T

ηT

bbEEEEEEEEEEEE

S

ηS

<<xxxxxxxxxxxx
oo

S̃

OO

η
S̃

||zz
zz

zz
zz

zz
zz

z
R

ϕ

OO

ϕ̃
oo

ηR

""
EE

EE
EE

EE
EE

EE
E

Ext0
S̃
(Y, Y ) // Ext0R(Y, Y )

where the slanted arrows land into central subrings.
It is assembled is follows. The inner square is the canonical commutative diagram

associated with a tensor product of R-algebras. The outer square is obtained from it
by functoriality, hence it commutes. The slanted arrows refer to the maps described
in (1.4), so they are central and the trapezoids commute.
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Let τ : T → Ext0R(Y, Y ) be the homomorphism of provided by the diagram above.
Setting U = Im(τ), one obtains a commutative diagram

R
ϕ̃

//

ϕ

��

S̃

σ′

��

S σ
// U

of homomorphisms of commutative rings.

Lemma 8.4.2. With the notation of Construction (8.4.1), let r denote the Jacobson

radical of the ring U , set Vn = TorRn (k, Y ), respectively, Vn = Ext−nR (k, Y ) for all

n ∈ Z, and assume that Y is homologically finite over S and over S̃.

(1) The ring U is finite as an S-module, r = rad(nU), and

inf{j ∈ N |rj ⊆ nU} = v <∞
(2) For u = ℓS(U/r) the following inequalities hold:

ℓT (Vn) ≤ ℓS(Vn) ≤ uℓT (Vn)

(3) If ℓS(Vj) is finite for all j ∈ Z, then for each x̃ ∈ ñ the S-modules Ṽn =

TorRn (k,K[x̃;Y ]), respectively, Ṽn = Ext−nR (k,K[x̃;Y ]), satisfy

1

v

(
ℓS(Vn) + ℓS(Vn−1)

)
≤ ℓS(Ṽn) ≤ ℓS(Vn) + ℓS(Vn−1)

Proof. (1) The commutative diagram in Construction (8.4.1) shows that the maps

T → Ext0S(Y, Y )→ Ext0R(Y, Y )

are S-linear. Thus, U is an S-submodule of the image of Ext0S(Y, Y ). The last
S-module is finite by (1.3.2), hence so is U . The Going-up Theorem now implies
r = rad(nU). Since U/nU is a finite l-algebra, its Jacobson radical r/nU is nilpotent,
hence rv ⊆ n for some v.

(2) It follows from (1.3.1) that T acts on Vn through the surjective map τ . Since
for every U -module V one has ℓT (V ) = ℓU (V ), it suffices to prove the inequalities

ℓS(U/r) <∞ and ℓU (V ) ≤ ℓS(V ) ≤ ℓU (V ) · ℓS(U/r)

The first one is an immediate consequence of (1). When V is simple rV = 0 and
ℓU (V ) = 1, so the last two inequalities are clear in this case. The general case
follows by computing lengths of subquotients of the filtration {riV }i≥0.

(3) For this argument we identify K[x̃;Y ] with the mapping cone of λYx̃ , see

(1.5.4), and set W = k ⊗L

R Y . This leads to an equality of morphisms

k ⊗L

R λ
Y
x̃ = λWx̃ : W −→W

and to an identification of the complex k⊗L

RK[x̃;Y ] with the mapping cone of λWx̃ .
For y = σ′(x̃) ∈ U we now obtain

H(λWx̃ ) = λ
H(W )
x̃ = λH(W )

y

Applied first with S̃ in place of S, Part (1) yields r = rad(ñU), hence y ∈ r; applied
then to S, it gives yv ∈ nU . By (1.5.6), the ideal n annihilates Vn, so the equalities
above yield H(λWx̃ )v = 0. The desired result now follows from Lemma (1.2.3). �
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Proof of Proposition (8.1.5). We only give the proof for Poincaré series.
Let x = {x1, . . . , xe} and x̃ = {x̃1, . . . , x̃g} be minimal sets of generators of n

modulo mS and ñ modulo mS̃, respectively. For any finite set y in T , set

FS
y

(t) =
∑

n∈Z

ℓS
(
TorRn (k,K[y;N ])

)
tn

By definition, one has FS
x

(t) = PϕN (t) and F S̃
x̃

(t) = P ϕ̃N (t), so the desired formula
follows from the chain of inequalites

FS
x

(t) · (1 + t)g 4 FS
x⊔{x̃1}

(t) · (1 + t)g−1 v1 4 · · ·
4 FS

x⊔x̃
(t) · v1 · · · vg

4 FT
x⊔x̃

(t) · v1 · · · vg · u

4 F S̃
x⊔x̃

(t) · v1 · · · vg · u

4 F S̃
xr{xe}⊔x̃

(t) · (1 + t) v1 · · · vg · u 4 · · ·

4 F S̃
x̃

(t) · (1 + t)ev1 · · · vg · u
obtained as follows. The inequalities in the first two rows come from the left hand
side of the sandwich in Lemma (8.4.2.3), applied successively to the complexes of
S-modules K[x ⊔ {x̃1, . . . , x̃j};N ] for j = 0, . . . , g− 1. The next pair of inequalities
are provided by Lemma (8.4.2.2), applied to the complex K[x ⊔ x̃;N ] considered

first over S, then over S̃. The final string of e inequalities is obtained from the
right hand side of the sandwich in Lemma (8.4.2.3), applied successively to the

complexes of S̃-modules K[{x1, . . . , xe−j} ⊔ x̃;N ] for j = 1, . . . , e. �

9. Composition

In this section we study how the sequences of Betti numbers and Bass numbers
over ϕ react to various changes of rings. Most of the results take the form of
coefficientwise equalities and inequalities involving their generating functions. This
format is well adopted to study the finiteness and the asymptotic behavior of the
Betti numbers and the Bass numbers. In particular, it does not depend on the choice
of scale used to measure asymptotic growth: this fact might acquire importance
should future investigations discover modules or complexes whose Betti numbers
have superpolynomial, but subexponential rates of growth.

Throughout the section we fix a local homomorphism

ψ : (Q, l, h)→ (R,m, k)

9.1. Upper bounds for compositions. We bound (injective) complexities and
curvatures over ϕ ◦ ψ in terms of invariants over the maps ψ and ϕ.

Theorem 9.1.1. The following relations hold.

(1) The following inequalities hold.

cxϕ◦ψ N ≤ cxϕN + cxψ R

curvϕ◦ψ N ≤ max{curvϕN, curvψ R}
(2) If H(N) is finite over R, then

cxϕ◦ψ N = cxψ N and curvϕ◦ψ N = curvψ N
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In addition, the relations obtained by replacing complexities and curvatures of N
with their injective counterparts also hold.

Proof. In view of (7.1.6), Part (1) is a consequence of Proposition (9.1.3) below.
Part (2) follows from Theorem (8.1.3), applied to ψ and ϕ ◦ ψ. �

We introduce notation that will be used in several arguments.

9.1.2. Let u be a minimal generating set of m modulo lR and x a minimal generating
set of n modulo mS, and set y = ϕ(u) ⊔ x. The following number is non-negative:

d = edimψ + edimϕ− edim(ϕ ◦ ψ)

Indeed, the isomorphism n/mS ∼= (n/lS)/(mS/lS) implies that the set y generates
n/lS. Thus, edim(ϕ ◦ ψ) ≤ edimϕ+ edimψ; that is to say, d ≥ 0.

Proposition 9.1.3. The Poincaré series of ψ, ϕ, and ϕ ◦ ψ satisfy

Pϕ◦ψN (t) · (1 + t)d 4 PϕN (t) · PψR (t)

Proof. In the derived category of S, the isomorphism

K[y;N ] ≃ K[u;R]⊗R K[x;N ]

combined with the associativity formula for derived tensor products yields
(
h⊗L

Q K[u;R]
)
⊗L

R K[x;N ] ≃ h⊗L

Q K[y;N ]

Thus, one has a standard spectral sequence

E2
pq = TorRp

(
TorQq (h,K[u;R]),K[x;N ]

)
=⇒ TorQp+q (h,K[y;N ]) .

As the R-module TorQ(h,K[w;R]) is annihilated by m, one has an isomorphism

TorRp
(
TorQq (h,K[u;R]),K[x;N ]

) ∼= TorRp (k,K[x;N ])⊗k TorQq (h,K[u;R])

The desired inequality is a formal consequence of this isomorphism and the conver-
gence of the spectral sequence; see the proof of Theorem (6.1.1). �

9.2. Upper bound for right factors. When ψ is surjective and ϕ = idR the
following theorem specializes to a known result for PRN (t), see [6, (3.3.2)].

Proposition 9.2.1. If ψ : Q→ R is a local homomorphism, then

PϕN (t) 4 Pϕ◦ψN (t) · 1

1− t
(
PψR (t)− 1

) · (1 + t)edimR+edimϕ−edimS

A similar inequality also holds for Bass series: it is obtained from the one above by

replacing PϕN (t) and Pϕ◦ψN (t) with INϕ (t) and INϕ◦ψ(t), respectively.

Remark. As PψR (t) is a formal power series, the formal power series 1− t
(
PψR (t)−1

)

has an inverse, which is itself a formal power series. It is given by the formula

1

1− t
(
PψR (t)− 1

) =

∞∑

i=0

ti
(
PψR (t)− 1

)i

which shows that it has nonnegative integer coefficients and constant term 1.
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Proof. In view of Theorem (4.2.2), it suffices to deal with Poincaré series.
Let E be a DG algebra resolution of h over Q, see [6, (2.1.10)]. Form the

DG algebra A = E ⊗Q K[u;R] and the DG A-module Y = A ⊗R K[x;N ]. The
augmentations E → h and K[u;R] → k are morphisms of DG algebras, where h
and k are concentrated in degree 0. They yield a morphism of DG algebras A→ k.

Note the standard isomorphisms in the derived category of S-modules:

k ⊗L

A Y ≃ k ⊗L

A

(
A⊗L

R K[x;N ]
)
≃ k ⊗L

R K[x;N ].

For each n they induce l-linear isomorphisms TorAn (k, Y ) ∼= TorRn (k,K[x;N ]), hence
∑

n∈Z

rankl TorAn (k, Y ) tn = PϕN (t)

By the choice of E, there is an isomorphism Hn(A) ∼= TorQn (h,K[u;R]) and hence
∑

n∈Z

rankk Hn(A) tn = PψR (t)

Likewise, Hn(Y ) ∼= TorQn (h,K[y;N ]), as Y ∼= E ⊗Q K[y;N ], so we get
∑

n∈Z

rankl Hn(Y ) tn = Pϕ◦ψN (t) · (1 + t)e

from Proposition (4.3.1). Thus, the inequality we seek translates to

(∗)
∑

n∈Z

rankl TorAn (k, Y ) tn 4

∑
n∈Z

rankl Hn(Y ) tn

1− t
( ∑

n∈Z
rankk Hn(A) tn − 1

)

Now, as Hn(A) = 0 for n < 0 and Hn(Y ) = 0 for n ≪ 0, there exists a strongly
convergent Eilenberg-Moore spectral sequence

E2
pq = TorH(A)

p (k,H(Y ))q =⇒ TorAp+q(k, Y )

see [27, Chapter 7]. In the light of this, there are (in)equalities

rankl TorAn (k, Y ) ≤
∑

p+q=n

ranklE
2
pq =

∑

p+q=n

rankl TorH(A)
p (k,H(Y ))q

They can be rewritten as an inequality of formal power series

∑

n∈Z

rankl TorAn (k, Y ) tn 4
∑

n∈Z

( ∑

p+q=n

rankl TorH(A)
p (k,H(Y ))q

)
tn

By using a standard resolution of k over H(A), one can compute the graded l-vector

space TorH(A)
p (k,H(Y )) as the pth homology of a complex of the form

· · · −→ H>1(A)⊗n ⊗k H(Y ) −→ · · · −→ H>1(A) ⊗k H(Y ) −→ H(Y ) −→ 0

There is thus an inequality of formal Laurent series

∑

n∈Z

( ∑

p+q=n

rankl TorH(A)
p (k,H(Y ))q

)
tn 4

∑
n∈Z

rankl Hn(Y ) tn

1− t
( ∑

n∈Z
rankk Hn(A) tn − 1

)

The desired inequality (∗) is obtained by combining the inequalities above. �

Corollary 9.2.2. The curvature and the injective curvature of N over ϕ are finite.
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Proof. By Remark (7.1.2) it suffices to deal with curvϕN . Let p denote the char-
acteristic of k, set Q = Z(p) and let ψ : Q → R be the structure map. Since Q

is regular, both PψN (t) and Pϕ◦ψN (t) are Laurent polynomials, see (2.5). Thus, the
coefficientwise upper bound for PϕN (t) in Proposition (9.2.1) is a formal Laurent
series that represents a rational function. Now apply (7.1.6.1) and (7.1.6.3). �

9.3. Complete intersection homomorphisms. When ψ has a ‘nice’ property
the invariants of N over ϕ ◦ ψ do not differ much from those over ϕ.

9.3.1. As in [7], we say that ψ is complete intersection at m if in some Cohen

factorization Q → (Q′, l′, k)
ψ′

−→ R of ψ̀ the ideal Kerψ′ is generated by a regular
set f ′. When this is the case, the Comparison Theorem [10, (1.2)] shows that

Kerψ′′ is generated by a regular set whenever ψ′′ψ̈ is a Cohen factorization of ψ̀.
If ψ is weakly regular at m, see (5.4.1), then it is complete intersection at m.

Theorem 9.3.2. If ψ is complete intersection at m, then

cxϕ◦ψN ≤ cxϕN ≤ cxϕ◦ψ N + dimQ− dimR+ edimψ

curvϕ◦ψ N ≤ curvϕN ≤ max{curvϕ◦ψN, 1}

Analogous inequalities also hold for inj cx and inj curv.

The next result complements Lemma (5.4.3).

Lemma 9.3.3. If f ∈ Q is a regular element and R = Q/Qf , then

Pϕ◦ψN (t) 4 PϕN (t) · (1 + t) and PϕN (t) 4 Pϕ◦ψN (t) · 1

(1− t2)

where ψ : Q→ R is the canonical map. If, moreover, f is in lKer(ϕ ◦ ψ), then

PϕN (t) = Pϕ◦ψN (t) · 1

(1− t2)

Proof. Since PψR (t) = 1 + t, the inequality on the left follows from Proposition
(9.1.3) and the one on the right from Theorem (9.2.1). The proof of [6, (3.3.5.2)]
applies verbatim to yield the equality. �

Proof of Theorem (9.3.2). By Theorem (4.2.2) we restrict to projective invariants.
In view of (7.1.1) we may assume that R and S are complete. We use Construc-

tion (5.4.4) and adopt the notation introduced there. By (9.3.1) the kernel of the
homomorphism ψ′ is generated by a regular set f ′; clearly, one has

cardf ′ = dimQ′ − dimR = (dimQ+ edimψ)− dimR

Since ψ′′ = Q′′ ⊗Q′ ψ′, and Q′′ is faithfully flat over Q′, the image f ′′ of f ′ in Q′′

is a regular set of cardf ′ elements, and generates the kernel of ψ′′.
The complexity and the curvature of N over ϕ ◦ ψ equal those over ϕ ◦ ψ′ by

Theorem (5.4.2). Thus, to prove the theorem we may assume that ψ is surjective
with kernel generated by a regular set. In this case the desired assertions result
from repeated applications of the preceding lemma through (7.1.6). �
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9.4. Flat base change. We consider complexes of S-modules induced from R.

Theorem 9.4.1. If ϕ is flat and S/mS is artinian, then for every homologically
finite complex of R-modules M the following equalities hold:

cxϕ◦ψ(S ⊗RM) = cxψM and curvϕ◦ψ(S ⊗RM) = curvψM

As usual, this follows from more precise relations involving Poincaré series.

Proposition 9.4.2. Let M be a homologically finite complex of R-modules.
If ϕ is flat and nv ⊆ mS for some integer v, then

PψM (t) · v−e(1 + t)e 4 Pϕ◦ψM⊗RS
(t) · u−1(1 + t)d 4 PψM (t) · (1 + t)e

where u = ℓ(S/mS), e = edimϕ, and d = edimR+ e− edimS.

Proof. Let u be a minimal set of generators of m modulo lR and set

X = h⊗L

Q K[ϕ(u);S ⊗RM ]

The isomorphism K[ϕ(u); (S ⊗RM)] ≃ K[u;M ] ⊗R S of complexes of S-modules
and the flatness of S over R yield isomorphisms

H(X) ∼= TorQ(h,K[u;M ])⊗R S ∼= TorQ(h,K[u;M ])⊗k (S/mS)

They produce the following equality of Poincaré series

PψM (t) · u =
∑

n∈Z

ℓSHn(X) tn

Let x be a minimal set of generators of n modulo m, and note that the set y =
ϕ(u) ⊔ x generates n modulo lS. From our hypothesis and (1.5.3) we get

nv ⊆ mS = lS + uS ⊆ AnnD(S)(X)

Iterated applications of Lemma (1.2.3) now give
∑

n∈Z

ℓSHn(X) tn · v−e(1 + t)e 4
∑

n∈Z

ℓS Hn(K[x;X ]) tn 4
∑

n∈Z

ℓSHn(X) tn · (1 + t)e

The isomorphism K[x;X ] ≃ h⊗L

Q K[y;S ⊗RM ] and Proposition (4.3.1) now yield

∑

n∈Z

ℓS Hn(K[x;X ]) tn = Pϕ◦ψS⊗RM
(t)(1 + t)d

Putting together the formulas above we obtain the desired inequalities. �

10. Localization

A basic and elementary result asserts that Betti numbers of finite modules over
local rings do not go up under localization: If M is a finite R-module and p is a

prime ideal of R, then for each n ∈ Z there is an inequality β
Rp

n (Mp) ≤ βRn (M).
A notion of localization is also available, and has been systematically used, for

complexes over local homomorphisms. Namely, for each prime ideal q of S the
complex Nq is homologically finite over the induced local homomorphism ϕq : Rp →
Sq, where p = q ∩R. However, β

ϕq

n (Nq) may exceed βϕn (N), even when ϕ is flat.
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Example 10.1. Let R be a one-dimensional local domain R whose completion R̂

has a minimal prime ideal q, such R̂q is not a field; see Ferrand and Raynaud [15,

(3.1)]. Set S = R̂, let ϕ : R→ S be the completion map, and note that q∩R = (0);
thus, R(0) is a field. For the S-module N = S Proposition (5.2.1) then yields

β
ϕq

1 (Nq) = κ
Sq

1 (Nq) > 0 = βϕ1 (N)

Nor is there an analog over maps of the inequality flat dimRp
Mp ≤ flat dimRM .

Example 10.2. Let R be a field, let S be a Cohen-Macaulay ring of positive
dimension, and let q be a non-maximal prime of S. In view of (3.3), one then has

proj dimϕq
Sq = − depthSq > − depthS = proj dimϕ S

Thus, it is noteworthy that asymptotic invariants over homomorphisms localize
as expected. Unlike the corresponding result for complexity and curvature over
rings, the theorem below needs a fairly involved argument.

Theorem 10.3. For every prime ideal q in S there are inequalities

cxϕq
Nq ≤ cxϕN and curvϕq

Nq ≤ curvϕN

In particular, if proj dimϕN is finite, then so is proj dimϕq
Nq.

Remark. If D is a normalized dualizing complex for S, then an appropriate shift
of Dq is a normalized dualizing complex for Sq. Using this fact together with
Theorem (4.2.2), one sees that the preceding theorem has a counterpart for injective
complexities and curvatures, provided S has a dualizing complex. We do not know
whether the last condition is necessary.

Once again, the theorem follows from a more precise result on Poincaré series.

Proposition 10.4. For every prime ideal q in S there exists a polynomial q(t) ∈
Z[t] with non-negative coefficients such that the following inequality holds

P
ϕq

Nq
(t) 4 q(t) · PϕN (t)

Proof. Form a commutative diagram of local homomorphisms

R
ϕ̇

//

ϕ

��

ϕ̀

��
??

??
??

??
??

? R′

ϕ′

��

S σ
// Ŝ

where σ is the completion map of S in the n-adic topology and the upper triangle

is a minimal Cohen factorization of ϕ̀. By faithful flatness, choose q̃ in Spec Ŝ so

that q̃ ∩ S = q and ℓ
(
Ŝq̃/qSq̃

)
= u < ∞. Setting p̃ = q̃ ∩ R′ and p = q̃ ∩ R and

localizing, one gets a commutative diagram of local homomorphisms

Rp

ϕ̇p̃
//

ϕq

��

ϕ̀q̃

��
??

??
??

??
??

?
R′

p̃

ϕ′
q̃

��

Sq σq̃

// Ŝq̃

that we redraw as

P
π̇

//

κ

��

π

��
@@

@@
@@

@@
@@

@ P ′

π′

��

Q
τ

// T
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The homomorphism τ is flat with artinian closed fiber. Indeed, τ is a localization

of the flat homomorphism σ, and its closed fiber is the ring Ŝq̃/qSq̃.
Set L = Nq. Proposition (9.4.2) yields the inequality

Pκ

L (t) · (1 + t)s 4 P τ◦κ

L⊗QT
(t) · (1 + t)e(vs/u)

where s, e, u, and v are non-negative integers. As τ ◦ κ = π = π′ ◦ π̇, one has

P τ◦κ

L⊗QT
(t) = P π

′◦π̇
L⊗QT

(t)

Set p(t) = P π̇P ′(t). Since π̇ is flat, p(t) is a polynomial: see, for example, (8.2.2).
Thus, Proposition (9.1.3) provides a non-negative integer g such that

P π
′π̇

L⊗QT
(t) · (1 + t)g 4 P π

′

L⊗QT
(t) · p(t)

Next we note that over the ring T = Ŝq̃ there are isomorphisms of complexes

L⊗Q T ∼= (N ⊗S Q)⊗Q T ∼= N ⊗S T ∼= (N ⊗S Ŝ)⊗
Ŝ
T = N̂ ⊗

Ŝ
T ∼= N̂q̃

They give the first equality in the sequence below, where the second one comes
from (4.1.2), the last from Remark (4.1.4), and the inequality is classical:

P π
′

L⊗QT
(t) = P π

′

N̂q̃

(t) = P
Rp̃

N̂q̃

(t) 4 PR
′

N̂
(t) = PϕN (t)

Putting together the comparisons above, one obtains that

Pκ

L (t) · (1 + t)(s+g) 4 PϕN (t) · p(t)(vs/u)
The inequality we seek is contained in the one above, because 1 4 (1 + t)(s+g). �

11. Extremality

A recurrent theme in local algebra is that the homological properties of the
R-module k carry a lot of information on the structure of R. Thus, modules or
complexes ‘homologically similar’ to k provide test objects for properties of R. We
focus on rates of growth of Betti numbers, which controls regularity and the com-
plete intersection property. As in [5], we say that a finite R-module is (injectively)
extremal if its (injective) complexity and curvature are equal to those of k.

Proposition (7.1.3) shows that these same numbers are also upper bounds for
(injective) complexities and curvatures over ϕ. This leads to obvious extensions of
the notions of extremality. One reason to study them may not be obvious a priori:
it provides many new classes of extremal modules over R, see Remark (11.4).

We say that the complex N is extremal over ϕ if

cxϕN = cxR k and curvϕN = curvR k

It is injectively extremal over ϕ if

inj cxϕN = cxR k and inj curvϕN = curvR k

Using inj cxR k and inj curvR k to define injective extremality yields the same result:
computing with a minimal free resolution of k, one gets µnR(k) = βRn (k).

The homological characterization of complete intersections in Theorem (7.1.5)
shows that the notion of extremality has two distinct aspects.

Remark 11.1. If R is complete intersection, then N is (injectively) extremal over
ϕ if and only if its (injective) complexity is equal to codimR.

If R is not complete intersection, then N is (injectively) extremal over ϕ if and
only if its (injective) curvature is equal to curvR k.
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Remark 11.2. The definition of separation and (7.1.6) yield: If N is (injectively)
separated over ϕ and H(N) 6= 0, then it is (injectively) extremal over ϕ.

Separation is a much stronger condition than extremality:

Example 11.3. Assume that R is not regular and set ϕ = idR.
(1) If R is complete intersection of codimension ≥ 2, and Mn is the nth syzygy

of an extremal R-module M , then it is clear that each Mn is extremal; however, it
follows from [11, (6.2)] that Mn can be separated for at most one value of n.

(2) Remark (11.5) below shows that k ⊕R is extremal, but not separated.

Remark 11.4. When N is homologically finite over R, its Betti numbers and
Bass numbers may be easier to compute over ϕ than over R. On the other hand,
Theorem (7.2.3) shows that the corresponding asymptotic invariants over R and
over ϕ coincide. This can be used to identify new classes of extremal complexes over
R. For example, Remark (11.2) shows that if the local homomorphism ϕ : R → S
is module finite, the ring S is regular, and H(N) 6= 0, then N is extremal over R.

Remark 11.5. Let X be a homologically finite complex of S-modules. The com-
plex of S-modules N ⊕ X is separated over ϕ if and only if both N and X are
separated, while it is extremal over ϕ if and only if one of N or X is extremal.

Indeed, the claim on extremality is clear. The claim on separation is verified by
using Proposition (6.1.1) along with the equalities

KS
N⊕X(t) = KS

N (t) +KS
X(t) and PϕN⊕X(t) = PϕN (t) + PϕX(t)

The main result in this section quantifies and significantly generalizes a theorem
of Koh and Lee, see [22, (2.6.i)]. The idea to use socles to locate nonzero homology
classes is inspired by an argument in their proof of [22, (1.2.i)].

Let L be an S-module. Recall that its socle is the S-submodule

SocS(L) = {a ∈ L | na = 0}

Note that SocR(L) is also defined; it is an S-submodule of L and contains SocS(L).

Theorem 11.6. Let L be a module. If v is an L-regular set in S such that

(a) SocS(L/vL) * m(L/vL), or
(b) SocR(L/vL) * m(L/vL) and the ring S/mS is artinian,

then L is extremal and injectively extremal over ϕ.

The proof is based on a simple sufficient condition for extremality.

Lemma 11.7. If X is a homologically finite complex of S-modules such that

0 < ℓS
(
H(X)/m H(X)

)
<∞ and SocR

(
Ker(∂Xj )

)
6⊆ mXj + ∂(Xj+1)

for some j ∈ Z, then for all n ∈ Z the following inequalities hold

ℓS
(
TorRn (k,X)

)
≥ βRn−j(k) and ℓS

(
ExtnR(k,X)

)
≥ βRn+j(k)

In particular, the complex X is extremal and injectively extremal over φi.
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Proof. Set X ′
n = Xn for all n 6= j and X ′

j = mXj + ∂(Xj+1). It is easy to see that

X ′ is a subcomplex of X . We form a commutative diagram

Σ
j SocR

(
Ker(∂Xj )

)
V

ζ

��

π
// W

ι

��

V

V ∩X ′

X
ρ

// Y
X

X ′

of complexes of S-modules, where V , W , and Y are concentrated in degree j. The
ring R acts on them through k, so TorR(k,−) applied to the diagram above yields
a commutative diagram of graded S-modules

TorR(k, k)⊗k V

TorR(k,ζ)

��

TorR(k,k)⊗kπ
// TorR(k, k)⊗k W

TorR(k,k)⊗kι

��

TorR(k,X)
TorR(k,ρ)

// TorR(k, k)⊗k Y
By construction, the map π is surjective and the map ι is injective, so the image of
TorR(k, ρ) contains an isomorphic copy of TorR(k, k)⊗k W . Thus,

ℓS
(
TorRn (k,X)

)
≥ βRn−j(k) · ℓS(W )

for all n ∈ Z. Since W 6= 0, by hypothesis, extremality follows from Remark (7.2.4).
Similar arguments yield the statements concerning injective invariants. �

Proof of Theorem (11.6). Corollary (7.2.2) shows that L and L/vL are extremal
simultaneously, so replacing L with L/vL, we assume one of the conditions:

(a) SocS(L) 6⊆ mL, or
(b) SocR(L) 6⊆ mL and S/mS is artinian.

(a) Let y be a finite set of s generators of n, and set X = K[y;L]. Note that
rankl H(X) is finite, that Ker(∂Xs ) = SocS(L), and that Xs+1 = 0. Thus, Lemma
(11.7) shows that X is extremal and Proposition (7.2.1) completes the proof.

(b) Apply Lemma (11.7) to the complex X = L. �

We wish to compare the hypotheses of various theorems yielding extremality.

Example 11.8. Let R = S = k[x]/(x3) where k is a field of characteristic 2, let
φR be the Frobenius endomorphism of R, and set L = S. One then has

SocR(L) = (x) , SocS(L) = (x2) = mL and spreadS L = 4 ,

see Remark (3.9). Thus, Theorem (11.6.b) shows that S is extremal over ϕ, but
neither Theorem (11.6.a) nor Theorem (6.2.2) can be applied.

Remark 11.9. The conditions ‘extremal’ and ‘injectively extremal’ are indepen-
dent in general, even over ϕ = idR. For instance, Example (7.1.4) yields

cxR k = cxRE = inj cxR R =∞
curvR k = curvRE = inj curvRR = 2
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for R = k[x, y]/(x2, xy, y2) and the injective hull E of k over R. Thus, E is extremal
but not injectively extremal, while R is injectively extremal, but not extremal.

12. Endomorphisms

Let φ be a local endomorphism, that is, a local homomorphism

φ : (R,m, k)→ (R,m, k)

and let N be a homologically finite complex of R-modules.

12.1. Contractions. We say that the homomorphism φ is contracting, or that φ
is a contraction, if for each element x in m the sequence (φi(x))i>1 converges to 0
in the m-adic topology. Observe that φ is contracting if φj is contracting for some
integer j ≥ 1, and only if φj is contracting for every integer j ≥ 1.

One motivation for considering contracting homomorphisms comes from

Example 12.1.1. The archetypal contraction is the Frobenius endomorphism φR
of a ring R of prime characteristic p, defined by φR(x) = xp for all x ∈ R.

Interesting contractions are found in every characteristic:

Example 12.1.2. Let k be a field, let G be an additive semigroup without torsion,
let k[G] denote the semigroup ring of G over k, and let p denote the maximal
ideal of k[G] generated by the elements of G. For each non-negative integer s, the
endomorphism σ of the semigroupG, given by σ(g) = s·g, defines an endomorphism
k[σ] of the ring k[G]. It satisfies k[σ](p) ⊆ p, and so it induces an endomorphism φ
of the local ring R = k[G]p. The endomorphism φ is contracting when s ≥ 2.

Many complexes are separated over contractions. Theorem (6.2.2) implies the
next result, which uses the homotopy Loewy length ℓℓD(S)(N) defined in (6.2).

Theorem 12.1.3. Assume φ is a contraction and H(N) 6= 0. If j ≥ 1 and q ≥ 2
satisfy φj(m) ⊆ mq, then N is separated and injectively separated over φi for all

i ≥ j logq(ℓℓD(S)(K
S [N ]))

In particular, N is extremal and injectively extremal over φi. �

The following alternative description of contractions shows that the numbers j
and q in the hypothesis of the theorem always exist, and gives bounds for them.
Example (12.1.6) shows that these bounds cannot be improved in general.

Lemma 12.1.4. The map φ is contracting if and only if φedimR(m) ⊆ m2.

Proof. The ‘if’ part is clear, so we assume φ is contracting.
Let δ : m/m2 → m/m2 be the map induced by φ. It is a homomorphism of abelian

groups, which defines on m/m2 a filtration

0 = Ker(δ0) ⊆ Ker(δ1) ⊆ · · · ⊆ Ker(δi) ⊆ Ker(δi+1) ⊆ · · ·
We need to prove that for r = edimR one has Ker(δr) = m/m2, that is, δr = 0.

Each subgroup Ker(δi) is a k-vector subspace of m/m2, by a direct verification.
We show next that if Ker(δi) = Ker(δi+1) for some i ≥ 1, then Ker(δi) = Ker(δj)
for all j ≥ i. By induction, it suffices to do it for j = i+ 2. If δi+2(x) = 0, then

δi+2(x) = δi+1
(
δ(x)

)
= 0

implies δ(x) ∈ Ker(δi+1) = Ker(δi). Therefore, δi+1(x) = 0, as desired.
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Since rankk m/m2 = r, the properties of Ker(δi) that we have established imply
equalities Ker(δj) = Ker(δr) for all j ≥ r, that is,

Ker(δr) =
∞⋃

i=0

Ker(δi)

Our hypothesis means that the union above is all of m/m2. �

We can do better than Theorem (12.1.3) when N = R, at least for curvature.

Theorem 12.1.5. If φ : R→ R is a contracting endomorphism, then

curvφR = curvR k

If, in addition, the ring R is Gorenstein, then

inj curvφR = curvR k

Proof. By the preceding theorem, there is an integer j giving the equality below:

curvR k = curvφj R ≤ curvφR ≤ curvR k

The inequalities come from Theorem (9.1.1.1) and from Proposition (7.1.3.5).
If R is Gorenstein, then R† ≃ R, see (3.5), hence the middle equality below:

inj curvφR = curvφR
† = curvφR = curvR k

The other two are given by Remark (7.1.2) and the first part of the theorem. �

Theorem (12.1.5) has no counterpart for complexities.

Example 12.1.6. Let k be a field, set R = k[[x1, . . . , xr]]/(x
2
1, . . . , x

2
r), and let

φ : R→ R be the k-algebra homomorphism given by

φ(x1) = 0 and φ(xi) = xi−1 for 2 ≤ i ≤ r

Then cxφj R = min{j, r} for each integer j ≥ 0.
Indeed, fix an integer j ≥ 1 and form the ring

S = k[[xj+1, . . . , xr]]/(x
2
j+1, . . . , x

2
r)

The map φj factors as R
π−→ S

ι−→ R, where π is the canonical surjection with kernel
(x1, . . . , xj) and ι is the k-algebra homomorphism with ι(xi) = xi−j for j < i ≤ r.
As ι is flat and R is artinian, Theorem (9.4.1) yields cxφj R = cxπ S. Set

Q = k[[x1, . . . , xr]]/(x
2
j+1, . . . , x

2
r)

and let ψ : Q → R be the canonical surjection with kernel (x2
1, . . . , x

2
j). With

m = min{j, r}, repeated application of Lemma (9.3.3) yields the first equality in
the sequence

P πS (t) =
P π◦ψS (t)

(1− t2)m =
PQS (t)

(1− t2)m =
(1 + t)m

(1− t2)m =
1

(1− t)m

The second equality by Remark (4.1.2); the third holds because K[{x1, . . . , xm};Q]
is a minimal resolution of S over Q. Now invoke (7.1.6).
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12.2. Frobenius endomorphisms. In this subsection R has prime characteristic
p and φR : R → R is its Frobenius endomorphism. This is a contracting endo-
morphism, so the results from the preceding subsection apply. One noteworthy
additional feature is that they can be interpreted entirely in terms of classically
defined invariants. Indeed, Theorem (7.2.3) validates the following

Remark 12.2.1. Let iN denote N as anR-R-bimodule with the left action through
φiR and the right action the usual one. Each TorRn (k, iN) is an R-module where the
action of R is induced from the right action of R on iN ; by (1.4.2) and Lemma
(1.3.2) it has finite length.

For each integer i ≥ 1 the following equalities hold:

cxφi
R
N = inf

{
d ∈ N

∣∣∣∣∣
there exists a number c ∈ R such that

ℓR TorRn (k, iN) ≤ cnd−1 for all n≫ 0

}

curvφi
R
N = lim sup

n

n

√
ℓRTorRn (k, iN)

This subsection is organized around the

Question 12.2.2. Is N separated (respectively, extremal) over φiR for all i ≥ 1?

A lot of evidence points to a positive answer.

Remark 12.2.3. When R is not complete intersection, Theorem (12.1.3) shows
that N is separated and injectively separated over φiR for all i ≥ logp(ℓℓD(R)(N)).

When R is complete intersection PRk (t) = (1 + t)d/(1− t)c, see (6.3.6.2), so the
next theorem asserts that N is separated and injectively separated over φiR.

Theorem 12.2.4. If R is complete intersection, d = dimR, and c = codimR,
then for each i ≥ 1 the following equalities hold:

P
φi

R

N (t) = KR
N(t) · (1 + t)d

(1− t)c and INφi
R
(t) = KR

N(t) · (1 + t)dtc

(1− t)c

In particular, N is extremal and injectively extremal over φiR.

Corollary 12.2.5. For every ring R of positive characteristic, the module R is
extremal over φiR for each integer i ≥ 1.

Proof. In view of Remark (11.1), Theorem (12.1.5) establishes the assertion when
R is not complete intersection. When it is, Theorem (12.2.4) applies. �

The proof of the theorem is given at the end of this section. We approach it
through an explicit description of minimal Cohen factorizations of powers of the
Frobenius endomorphisms of complete rings.

Construction 12.2.6. Let v = {v1, . . . , vr} be a minimal set of generators for m.

Identifying R with its image in R̂ under the completion map, note that v minimally

generates the maximal ideal of R̂.
Let x = {x1, . . . , xr} be a set of formal indeterminates and set Q = k[[x]]. With

the standard abbreviation xJ = xj11 · · ·xjrr for J = (j1, . . . , jr), each g ∈ Q has a
unique expression g =

∑
J∈Nr aJxJ with aJ ∈ k. For each positive integer q set

g[q] =
∑

J∈Nr

aqJxJ
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Choose, by Cohen’s Structure theorem, a surjective homomorphism ψ : Q→ R̂,
such that ψ(xj) = vj for j = 1, . . . , r. Let f = {f1, . . . , fc} be a minimal generating
set of Kerψ. The choices made so far imply f ⊆ (x)2. Set

f
q = {f q1 , . . . , f qc } and f

[q] = {f [q]
1 , . . . , f [q]

c }
Fix an integer i ≥ 1, set q = pi and φ = φi

R̂
. Let y = {y1, . . . , yr} denote a

second family of formal indeterminates. With the data above, form the diagram

k[[x]] Q
φi

Q
//

ψ

��

Q

ψ′

��

k[[x]]

k[[x]]

(f [q])
[[y]] R′

φ′

  
@@

@@
@@

@@
@@

@@
@@

@@
@

ρ
// R′′

φ′′

��

k[[x]]

(f q)

k[[x]]

(f ) R̂
φ

//

φ̇

;;wwwwwwwwwwwwwwwwwwww

R̂
k[[x]]

(f)

of local homomorphisms, where the new objects are defined as follows.
The rings R′ and R′′ are described by the respective equalities.
The maps ψ′ and φ′′ are the canonical surjections.
The maps φiQ and φ̇ are given by the formulas

φiQ(g) = gq and φ̇
(
g + (f)

)
= g[q] + (f [q])

The map ρ is the unique homomorphism of complete k-algebras satisfying

ρ
(
xi + (f [q])) = xqi + (fq) and ρ(yi) = xi + (f q)

for i = 1, . . . , r; note that ρ is surjective.
The map φ′ is the composition φ′′ ◦ ρ.
The definitions above show that the diagram commutes.

Proposition 12.2.7. The maps in Construction (12.2.6) have the properties below.

(1) φ′φ̇ is a minimal Cohen factorization of φ.
(2) There is an equality of formal Laurent series

PφN (t) = Pφ
′′

N̂
(t) · (1 + t)r

Proof. (1) Since φ̇(xi) = xi for i = 1, . . . , r, the ring R′/mR′ is isomorphic to the

regular ring k[[y]]. To prove that φ̇ is flat, consider the composition

Q = k[[x]]
φi

Q−−→ k[[x]]
ι−→ k[[x,y]] = Q′

where ι is the natural inclusion. Thus, ι ◦ φiQ maps the Q-regular set x to the

Q′-regular set xq. Computing TorQ(k,Q′) from the resolution K[x;Q] of k over Q,

one gets βQn (Q′) = 0 for n > 0. It follows that Q′ is flat over Q, see (2.2). As φ̇ is

obtained from ι ◦φiQ by base change along ψ, we conclude that φ̇ is flat, as desired.

As φ′ is surjective, φ = φ′φ̇ is a Cohen factorization.
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(2) The kernel of ρ is generated by the set {x1−yq1, . . . , xr−yqr}, which is regular
and superficial. Remark (4.1.4) and Theorem (5.4.3) yield

PφN (t) = Pφ
′

N̂
(t) = Pφ

′′

N̂
(t) · (1 + t)r �

Proof of Theorem 12.2.4. We use Construction (12.2.6). As R is complete inter-
section, the set f is regular, see (5.3.1). It follows that so is f

q; note that f
q is

contained in l(fQ), where l is the maximal ideal of Q. Lemma (12.2.7.2), Proposi-
tion (9.3.3), and Example (6.1.3) provide the equalities below

PφN (t) = Pφ
′′

N̂
(t) · (1 + t)r

= Pφ
′′◦ψ′

N̂
(t) · 1

(1− t2)c · (1 + t)r

= PQk (t) · K
R
N(t)

(1 + t)r
· (1 + t)d

(1 − t)c

= KR
N (t) · (1 + t)d

(1 − t)c

Theorem (4.2.2) yields the desired expression for INϕ (t). �

13. Local homomorphisms

In this section we use the techniques and results developed earlier in the paper
to study relations between the ring theoretical properties of R and S and the
homological properties of the R-module S. First we look at descent problems.

Theorem 13.1. Let ϕ : R→ S be a local homomorphism and let N be a homolog-
ically finite complex of S-modules with H(N) 6= 0.

(1) If flat dimRN <∞ and S is regular, then so is R.
(2) If curvϕ S ≤ 1 and S is complete intersection, then so is R.

Remark. Part (1) of the theorem is due to Apassov [3, Theorem R]. Part (2) signif-
icantly generalizes [7, (5.10)], where it is proved that maps of finite flat dimension
descend the complete intersection property. Dwyer, Greenlees, and Iyengar [14]
show that this property descends even under the weaker hypothesis curvϕN ≤ 1.

Proof. (1) One has βϕn (N) = 0 for n ≫ 0, see (1.2.2). As N is separated by
Corollary (6.2.3), the equality in (6.1.2) implies βRn (k) = 0 for all n≫ 0.

(2) Applying Theorem (9.1.1.1) to the composition R → S
=−→ S and the S-

module l, we obtain the first inequality below:

curvϕ l ≤ max{curvϕ S, curvidS l} ≤ max{curvϕ S, 1} ≤ 1

The second one comes from Theorem (7.1.5), the third from our hypothesis. We
conclude that R is complete intersection by referring once more to (7.1.5). �

Next we extend to arbitrary local homomorphisms a characterization of Goren-
stein rings, due to Peskine and Szpiro in the case of surjective maps.

Theorem 13.2. For a local homomorphism ϕ : R→ S the condition inj dimR S <
∞ holds if and only if flat dimR S <∞ and the ring R is Gorenstein.
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Proof. Over a Gorenstein ring the flat dimension of a module is finite if and only if
its injective dimension is, see [25, (2.2)], so we have to prove that inj dimR S < ∞
implies R is Gorenstein. Let R → R′ → Ŝ be a minimal Cohen factorization of ϕ̀.

Corollary (2.5) gives inj dimR′ Ŝ < ∞. As R′ → Ŝ is surjective, R′ is Gorenstein
by Peskine and Szpiro [29, (II.5.5)]. By flat descent, see [26, (23.4)], so is R. �

Finally, we turn to properties of a local ring R equipped with a contracting
endomorphism φ, for instance, a ring of prime characteristic with its Frobenius
endomorphism. Some of our theorems are stated in terms of homological properties

of the R-module φi

R, that is, R viewed as a module over itself through φi.
The prototype of such results is a famous theorem of Kunz, [23, (2.1)]: A ring

R of prime characteristic is regular if φ
i

R is flat for some i ≥ 1, only if φ
i

R is flat

for all i. Later, Rodicio [32, Theorem 2] showed that the flatness hypothesis on φi

R
can be replaced by one of finite flat dimension. Our first criterion extends these
results to all contracting endomorphisms and provides tests for regularity by finite
injective dimension, which are new even for the Frobenius endomorphism

Theorem 13.3. For a contraction φ : R→ R the following are equivalent.

(i) R is regular.

(ii) flat dimR
φi

R = dimR/(φi(m)R) for all integers i ≥ 1.

(iii) flat dimR
φi

R <∞ for some integer i ≥ 1.

(iv) inj dimR
φi

R = dimR for all integers i ≥ 1.

(v) inj dimR
φi

R <∞ for some integer i ≥ 1.

Proof. The implication (i) =⇒ (iv) holds by Theorem (2.1), the implication
(iv) =⇒ (v) is clear, while (v) =⇒ (iii) comes from Theorem (13.2).

(iii) =⇒ (i). Since φi is a contraction, from Theorem (12.1.5) one gets
curvR k = curvφi R = 0. This means proj dimR k is finite, that is, R is regular.

(i) =⇒ (ii). Let v be a minimal set of generators of m. The Koszul complex
K[v;R] is a free resolution of k over R, hence we get

TorRn (k, φ
i

R) = Hn(K[v; φ
i

R]) = Hn(K[φi(v);R])

The largest n, such that TorRn (k, φ
i

R) 6= 0, is equal to flat dimR(φ
i

R), see (2.2).
The largest n, such that Hn(K[φi(v);R]) 6= 0, is equal to dimR− g, where g is the
maximal length of an R-regular sequence in the ideal φi(m)R, see [26, (16.8)]. The
ring R, being regular, is Cohen-Macaulay, so referring to [26, (17.4.i)] we conclude

dimR− g = dimR− height(φi(m)R) = dimR/(φi(m)R)

The implication (ii) =⇒ (iii) is clear. �

Next we show that the complete intersection property of R can also be read off
of conditions on a contracting endomorphism φ. They are encoded in the growth
of the Betti numbers of the module R over φi. Indeed, the following result is
abstracted from Theorem (7.1.5), Theorem (12.1.5), and Corollary (12.2.5).

Theorem 13.4. For a contraction φ : R→ R the following are equivalent.

(i) R is complete intersection.
(ii) cxφi R ≤ codimR for all integers i ≥ 1.
(iii) cxφi R <∞ some integer i ≥ 1.
(iv) curvφi R ≤ 1 for some integer i ≥ 1.
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When R has prime characteristic and φ is its Frobenius map they are equivalent to

(ii)′ cxφi R = codimR for all integers i ≥ 1. �

As R is regular if and only if codimR = 0, and the flat dimension of φ
i

R over
R is finite if and only if cxφi R = 0, the equivalence of conditions (i), (ii)′, and
(iii) above constitutes another broad generalization of the theorems of Kunz and
Rodicio. The theorem also contains a characterization of complete intersections in
terms of Frobenius endomorphisms due to Blanco and Majadas [13, Proposition 1]:

Remark 13.5. Let φ be a contraction, such that for some i and some Cohen

factorization R̂ → R′ → R̂ of φ̂i the R′-module R̂ has finite CI-dimension in the

sense of [11]. By [11, (5.3)] one then has cxR′ R̂ <∞, so cx
φ̂i R̂ is finite by (7.1.1).

Theorem (13.4) now shows that R̂ is complete intersection, and hence so is R.
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