
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics College of Arts and Sciences 

12-15-2010 

Chaos and Universality in Two-Dimensional Ising Spin Glasses Chaos and Universality in Two-Dimensional Ising Spin Glasses 

Alan Middleton 
Syracuse University 

Creighton K. Thomas 
Texas A & M University - College Station 

David A. Huse 
Princeton University and Institute for Advanced Study 

Follow this and additional works at: https://surface.syr.edu/phy 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Middleton, Alan; Thomas, Creighton K.; and Huse, David A., "Chaos and Universality in Two-Dimensional 
Ising Spin Glasses" (2010). Physics. 176. 
https://surface.syr.edu/phy/176 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215692837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy/176?utm_source=surface.syr.edu%2Fphy%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Chaos and universality in two-dimensional Ising spin glasses

Creighton K. Thomas,1 David A. Huse,2, 3 and A. Alan Middleton4

1Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA
2Department of Physics, Princeton University, Princeton, NJ 08544, USA

3Institute for Advanced Study, Princeton, NJ 08540, USA
4Department of Physics, Syracuse University, Syracuse, NY 13244, USA

Recently extended precise numerical methods and droplet scaling arguments allow for a coherent
picture of the glassy states of two-dimensional Ising spin glasses to be assembled. The length scale
at which entropy becomes important and produces “chaos”, the extreme sensitivity of the state to
temperature, is found to depend on the type of randomness. For the ±J model this length scale
dominates the low-temperature specific heat. Although there is a type of universality, some critical
exponents do depend on the distribution of disorder.

PACS numbers: 75.10.Nr, 75.40.-s

Glassy systems, characterized by extremely slow re-
laxation and resultant complex hysteresis and memory
effects, are difficult to study because their dynamics en-
compass a great range of time scales [1]. Glassy materi-
als include those without intrinsic disorder, such as sil-
ica glass, and those where quenched disorder influences
the active degrees of freedom. An example of a model
of the latter is the Edwards-Anderson spin glass model
[2], which includes the disorder and frustration neces-
sary to capture many of the complex behaviors seen in
disordered magnetic materials. Though this prototypi-
cal model of glassy behavior was originally proposed well
over 30 years ago, many aspects of it remain poorly un-
derstood. The droplet and replica-symmetry-breaking
pictures of spin glasses provide distinct views of spin glass
behavior [3]. Analytical results are rare, so numerical ap-
proaches are invaluable for both testing and motivating
new ideas. But the numerics are also exceedingly dif-
ficult: computing spin glass ground states is in general
a NP-hard problem [4]. It is believed that these classes
of problems require exponential computational time to
solve exactly [5].

A fortunate special case which is not prone to this com-
putational intractability is the two-dimensional Ising spin
glass (2DISG). The Hamiltonian is H =

∑
〈ij〉 Jijsisj ,

where the couplings J = {Jij} are independent random
variables coupling classical spins s = ±1 at sites i,j on
a square toroidal grid with L2 sites. The randomness of
the sign of Jij leads to competing interactions, not all
of which can be satisfied. In general, such models have
complex (free) energy landscapes and very slow dynam-
ics. The most commonly-used distributions for the Jij
are the ±J distribution where each bond value is ±1 with
equal probability, or the Gaussian distribution where the
Jij are chosen from a univariate Gaussian distribution
with zero mean. One apparent difficulty in using the
2DISG as a model system is that truly long-range spin-
glass order only occurs at zero temperature. However, at
low enough temperature such that the correlation length
ξ exceeds L one can study a regime of glassy behavior.

In this glassy regime, the dominant spin configurations
are very sensitive at large length scales to small changes
in temperature or other global perturbations: this sensi-
tivity is referred to as “chaos”.

Highly developed numerical algorithms [4, 6–9] can ef-
ficiently circumvent the complexity due to disorder and
frustration: ground states and finite-temperature parti-
tion functions of the 2DISG may be computed in time
polynomial in L. Still, this model is difficult to study
numerically due to strong finite-size effects. Prior to the
present work, the combination of scaling ideas and exact
and Monte Carlo numerical evidence had been unable
to develop a full understanding of the low-temperature
glassy regimes [10].

In this Letter, we deduce results for the thermody-
namics and droplet scaling in the glassy regime and the
accompanying chaos by carrying out precise calculations
at low temperatures and analyzing a variety of quanti-
ties, including the sensitivity of the entropy and energy
to boundary conditions. These results give a much more
consistent and detailed picture of this important model
system and also have applications to other models for
disorder in all dimensions. We extend fast algorithms
[7, 8] to study general disorder distributions. By em-
ploying arbitrary precision arithmetic, we have derived
reliable numerical results to very low temperatures and
large L (beyond those attained with Monte Carlo simula-
tions). The ground states for ±J vs. Gaussian couplings
are known to have very different properties [11, 12], but
it has been shown [13] that there is in a certain sense uni-
versal behavior, independent of disorder distribution, at
finite temperatures. The critical behavior is universal at
large length scales where the effective couplings are con-
tinuously distributed [13], but we argue that this scaling
and universal chaos applies only above a temperature-
dependent crossover length scale `x(T ) that itself scales
differently for ±J vs. continuously-distributed bare cou-
plings. We thereby deduce related but different critical
exponents for Gaussian and ±J disorder; Ref. 13 had in-
stead suggested the exponents are the same. We use
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numerical results to support these conclusions for the
2DISG. These insights into chaos and thermodynamics
will help the exploration of glassy dynamics [14] and ex-
tend the utility of this model as a standard for studying
spin glasses in general.

Ordering in the glassy regime is subtle, as spin corre-
lations have sample- and location-dependent signs. How-
ever, the magnitude of 〈sisj〉2 decays slowly for |i−j| < ξ.
This ordering is evident in the effect of boundary condi-
tions on thermodynamic quantities. We start by com-
puting the partition function ZP(J ) in a sample with
periodic boundary conditions. Without additional com-
putational effort, we then also have ZAP for antiperiodic
boundary conditions, where the horizontal bonds along a
vertical column have Jij negated, as both are signed sums
of four Pfaffians [9]. The sample-dependent difference in
free energy F is δF (J ) = −kT ln[ZP(J )/ZAP (J )]. We
use finite differences over T to compute the heat capacity
C, the average energy E, and the entropy S. The sample
variances Var(δX) of δX ≡ XP − XAP for X = F , E,
S, or C help characterize the δX distributions. In the
glassy regime L < ξ, these differences arise from scale-L
relative domain walls that cross the sample: the magni-
tudes of δX for these walls are taken to scale as would
general droplet excitations at scale L in an infinite-size
system [15]. We study from about 500 to 104 samples
at each temperature. The computation of Z for a 5122

sample at T = 0.1 requires 1.6 GB of memory and 4.4 h
on a 2.6 GHz Opteron core. Error bars in all plots in this
paper represent ±1σ statistical errors.

Temperature chaos One of the most notable fea-
tures of such a disordered magnet is “chaos”: a great
sensitivity of the dominant spin configurations to small
perturbations of the temperature [15, 16]. This sensi-
tivity results from the delicate balance between entropy
and energy in the glassy state: small temperature shifts
can flip the sign of the free energy of large-scale droplets.
We define a crossover length `x(T ) to be the scale where
the entropy of a droplet or domain wall becomes impor-
tant: For scales ` with ξ(T ) > ` > `x(T ), the entropy
change |δS| is typically larger than |δF |/T . A temper-
ature change of size δT < T can then reverse the sign
of the free energy δF = δE − TδS of the droplet or do-
main wall, so this is the chaotic glassy regime. Here
δS is continuously distributed, so even if the distribu-
tion of δE is discrete, as in the ±J model, the effective
couplings δF (`) are continuously distributed for scales
` > `x. The natural assumption we make and verify is
that when ` > `x the exponents for the scaling with `
are independent of the bare disorder distribution. In a
region of size `, for ξ(T ) > ` > `x(T ) the lowest free
energy droplet of size of order ` has a typical free energy
δF (`) ∼ (`/`x)θδF (`x), where θ < 0 is the usual stiffness
exponent. The boundary of this droplet is a fractal do-
main wall with dimension df , and the typical δS scales
as δS(`) ∼ (`/`x)df/2δS(`x). In verifying this picture,
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FIG. 1: [color online] Chaos is evident in plots of δF ≡
FP − FAP, the change in free energy with boundary condi-
tions, vs. temperature T for both Gaussian and ±J disorder.
Each panel shows curves for 50 samples of size L2. Randomly
chosen curves are highlighted to improve visibility. The num-
ber of zero crossings of δF increases with L, even over the
diminishing temperature range where δF is appreciable.

we will use accepted values θ ∼= −0.28 and df ∼= 1.274
[11, 12, 18] computed in ground state simulations with
Gaussian couplings, rather than fitting our data to rede-
termine these values.

Chaos can be seen in zero crossings of δF (T ), which
imply a reordering of the values of F for P and AP bound-
aries at scale L. A subset of the data for δF (T ) is dis-
played in Fig. 1: each curve indicates δF (T ) for a single
sample (also see [17]). Note that in the region of ap-
preciable δF , the number of crossings increases as L in-
creases. This helps justify the study of the 2DISG as a
chaotic glassy model since a large sample will go through
a large number of very different states as the temperature
is lowered.

Non-universal scaling and the crossover length
We argue that the dependence of the crossover length
`x on temperature T is non-universal, so that some of
the critical exponents for different disorders are distinct,
though related. At short length scales, ` < `x(T ),
TδS < δF , so that the thermodynamics at these scales is
determined primarily by energetics and the T = 0 fixed
point sets the scaling behavior. In a system of size L
where `x(T ) > L, chaos is frozen out (there are typically
no zero crossings in δF ). This small-` or low-T non-
chaotic regime is what is seen in T = 0 simulations. It is
characterized by marked differences in behavior between
the ±J and Gaussian disorder distributions [11, 12].

For Gaussian disorder, the entropy of a droplet at scale
` < ξ is concentrated on the fractal domain wall with a
typical total length `df . The entropy difference is due
to the difference in the local excitations that are affected
by the introduction of this domain wall. Presuming that
the local excitations at length scale ∼ 1 have a gapless
spectrum with a constant width, the fraction of the do-
main wall that is thermally active and contributes to the
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entropy difference is proportional to T . The entropy of
the droplet, δS is then a sum of ∼ T`df terms of ran-
dom sign so that Var(δS) ≈ T`dfσ(T`−θ) with the scal-
ing function σ(x) → const. as x → 0. The non-chaotic

regime breaks down when TδS ∼ T 3/2`
df/2
x ∼ `θx ∼ δF ,

giving `x ∼ T−3/(df−2θ) for Gaussian disorder.

For ±J disorder and low T , the entropy of a scale-
` droplet with ` < `x(T ) is found to scale as δS ∼ `θS .
The value of θS is fixed by the T = 0 domain wall entropy
due to zero-energy spin rearrangements, and estimated
numerically to be θS ∼= 0.5 [20]. Additionally, the typical
(free) energy of excitations at zero temperature has been
found to be O(1), independent of L [11, 12], which we
have verified: fitting δF (T = 0) to a simple power law
over L = 32 → 256 gives an exponent with magnitude
less than 0.015. The crossover scale `x therefore occurs
when δE ∼ δF ∼ TδS ∼ O(1), giving `x ∼ T−1/θS , so
that Gaussian and ±J distributions have distinct scaling.
Crucially, this also means δF (`x) ∼ O(1), in contrast
with δF (`x) ∼ `θx for the Gaussian case; this introduces
an additional source of nonuniversality.

For Gaussian disorder, the free energy magnitude
scales as Var(δF ) ≈ `2θφ(T`−θ) with scaling function
φ(x) → const. as x → 0 [15, 16]. The correlation length
ξ(T ) is set by the scaling argument x = O(1), which
gives ξ ∼ T−νG with νG = −1/θ ∼= 3.5. For ±J disorder,
low T and ` > `x(T ) in the universal, chaotic regime,
Var(δF ) ≈ (`/`x)2θφ[T (`/`x)−θ] with the same univer-
sal scaling function φ(x). But here the argument of the
scaling function has different T -dependence from what it
has with continuously-distributed disorder. As a result
the correlation length scales with a different exponent,
ξ ∼ T−ν± , with ν± = 1/θS − 1/θ ∼= 5.5.

We computed Var(δF ) for samples chosen indepen-
dently at each temperature. We directly test the scal-
ing forms expected for δF by a finite-size scaling collapse
of this data with no free parameters. For the Gaussian
data, shown in Fig. 2(a), we find agreement with the ex-
pected exponents and thus a good estimate of the scal-
ing function φ(x). We plot the data for the ±J model
using its expected scaling in Fig. 2(b), where the same
scaling function φ(x) with only constant rescaling should
appear. Although the expected deviations are apparent
at low temperature and small L where L < `x(T ) and
at T = O(1), we see a trend towards good collapse of
the data for larger L, consistent with the proposed new
scaling, and similar curves for the φ(x). It appears that
for ±J disorder the universal regime of L > `x(T ) and
T < O(1) does not emerge until L ? 100.

The chaos exponent The rate of change of δF with T
in an individual sample is given by the entropy difference,
δS = −∂ δF∂T . Thus, in the chaotic regime, the tempera-
ture change needed to change the sign of δF is typically
∆T ∼ δF/δS. Using the above expressions for δF and
δS, the rate of sign changes in δF as T is varied for Gaus-
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FIG. 2: [color online] (a) Scaling collapse for the variance
of the twist free energy, Var(δF ), for Gaussian disorder, with
Var(δF )L−2θ plotted vs. TL−θ. (b) Scaling collapse for ±J
disorder that accounts for the crossover-length `x(T ) so that
convergence to the same universal scaling function is expected
(up to overall scales for T and L). There are no fitted expo-
nents in these plots: accepted values θ = −0.28 and θS = 0.50
are used.

sian disorder is given by |δS|/|δF | ∼ Lζ
′
GκG(TL1/νG)

with chaos exponent ζ ′G = (df + 1/νG)/2 and scaling
function κ(x) ∝ x1/2 at small argument. For ±J disor-
der, TδS(`x) ∼ O(1), so that in the chaotic regime δS ∼
(`/`x)df/2/T and the rate of sign changes is |δS|/|δF | ∼
(L/`x)df/2−θT−1κ±(TL1/ν±), with κ± constant for small
arguments. This gives ζ ′± = (df/2 − 2θ)[θS/(θS − θ)].
Though these two expressions for ζ ′ are quite different,
they are predicted to have similar values: ζ ′G = 0.78(1)
and ζ ′± = 0.77(2) (Fig. 3).
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FIG. 3: [color online] A plot of the scaled crossing rate

L−ζ
′
N (T1, T2)/(T2 − T1), where the average number of zero

crossings for δF in the interval T1 < T < T2 is N (T1, T2)

[19], using (T1, T2) = (0.75L−1/ν , 1.5L−1/ν). The rate is

expected to scale with L as ∝ Lζ
′
, with ζ′G = 0.78(1) and

ζ′± = 0.77(2). The expected nearly constant scaled rate is
seen for both Gaussian and bimodal disorder.

Specific heat The behavior of the specific heat C for
T → 0 in a 2DISG is dominated by the smallest thermally
active droplets that have nonzero energy [15]. If the dis-
order distribution is continuous, these are the smallest
droplets of size O(1) and energy of order T . They have
a density proportional to T and contribute a linear term
in the low T specific heat: C ∼ T .
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For ±J disorder, on the other hand, the droplets
with the lowest nonzero energy have δE = O(1). Such
droplets with size ` < `x(T ) have δF > T at low T and
are not thermally active. Thus at low temperature T the
smallest active droplets with nonzero energy are of size
`x(T ). These active droplets each contribute ∼ 1/T 2 to
the specific heat and have density T/`2x(T ) so the spe-
cific heat scales as C ∼ T 2/θS−1. In an a average over
finite-sized samples this power-law specific heat is cut off
at the lowest temperatures when the size `x(T ) of these
active droplets exceeds L. This produces the low-T finite-
size scaling form C ≈ T 2/θS−1c(TLθS ), where c(x) is a
scaling function that goes to a constant for large argu-
ment (for temperatures where `x(T )� L� ξ(T )). Our
±J specific heat data are shown in this scaling form in
Fig. 4. The intermediate temperature regime that cor-
responds to the power-law specific heat only appears for
L > 100. In fact, our data for intermediate tempera-
tures, T ≈ 0.35, are entirely consistent with previously
published work [10], which saw an effective exponent
α ≈ −4.2, with C ∼ T−α, but the effective exponent
crosses over to lower values as T decreases.
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FIG. 4: [color online] A scaling plot for the heat capacity
C for the ±J spin glass. The scaled heat capacity per spin,
CT 1−2/θS is plotted as a function of the scaled temperature
TLθS for samples of size L with the value of θS = 0.50 con-
sistent with the zero temperature scaling of the entropy of
domain walls, δS ∼ LθS [20]. This collapse is consistent with
the “bulk” heat capacity being due to excitations of minimal
size `x ∼ T−1/θS .

In addition to the leading terms that we discuss above
and detect in our numerical results, there are weaker sin-
gular contributions to C that result from the diverging
ξ(T ) as T → 0 that are also there in principle, although
they will be extremely difficult to detect. Standard hy-
perscaling at T = 0 predicts a contribution that scales
as C ∼ T−α ∼ T 2ν [13], but the chaos changes this,
making this contribution larger at low T . The contribu-
tion to the specific heat from droplets of scale ` ≤ ξ(T )
is the product of their density ∼ 1/`2, the fraction that
are thermally active ∼ T/δF (`) and the average con-
tribution of such an active droplet to the heat capac-
ity ∼ (δEact(`)/T )2. For standard hyperscaling, the last

two factors are of order one for ` = ξ(T ), but the chaos
instead makes the last term larger. The subdominant
contribution to C for Gaussian disorder from scale ξ is
Csing ∼ T 2νG(1−ζ′−θ), since δEact/T ∼ δSact ∼ `ζ

′+θ.
However, the first factor always wins, keeping the small-
est thermally active droplets with δE > 0 dominant in
the specific heat.

Discussion Precise numerical calculations have al-
lowed us to test new scaling relations for the thermo-
dynamics of the 2DISG in detail and to clearly demon-
strate non-universality and study its origin. The large
values of ν (and long crossover lengths for ±J disorder)
necessitate using large systems to see the scaling behav-
ior. Even though we assumed that scaling in the chaotic
regime is weakly universal with the same values of θ and
df at any given T , our results show that the critical ex-
ponents are nevertheless different for Gaussian and ±J
disorder, due to temperature- and disorder- dependent
crossover length scales. We predict a violation of hyper-
scaling due to chaos, which is a general phenomenon that
is present in higher dimensions as well. These results will
lead to further work on the thermodynamics and glassy
dynamics of this glassy model at low temperature.
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of otherwise idle time on the Syracuse University Grav-
itation and Relativity computing cluster, supported in
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and the Brutus cluster of ETH Zurich. We thank Helmut
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