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ABSTRACT

The "best-match problem" is concerned with the com­

plexity of finding the best match between a randomly

chosen query word and the members of a randomly chosen

set of data words. Of principal interest is whether it is

possible to significantly reduce the search time required,

as compared to exhaustive comparison, bv use of memory

redundancv (file structure). Minskv and Papert con-

jecture that "the speed-ul? values of large memorv redund­

ancies is verv small, and for large data sets with long

word lengths there are no practical alternatives to

large searches that inspect large parts of memorv". In

this report we present two algorithms that do vield signif­

icant speed-up, although at the cost of large memory

redundancies. (Whether these algorithms constitute

counterexamples to the Minskv-Papert conjecture depends

on one's interpretation of their term "large memorv

redundancies".) The algorithms are subjected to statistical

analysis and time-rnemorv trade-off curves are given.
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SECTION 1

INTRODUCTION

In the program of the "Regional Conference on

Phenomena that need Basic Computational Theories" held

at Pennsylvania State University in September, 1970,

Professor Marvin Minsky of the Massachusetts Institute

of Technology wrote the following:

"Most work on the Theory of Computation has been

concerned with questions about what can, and what cannot,

be computed by various kinds of machines. The results

have been mainly of an all-or-none quality; little

attention was paid, in the development of the theories

of Automata and of Recursive Functions, to the problems

of computational effort, or amounts of memory, or other

aspects of complexity required to compute things that

can clearly be done in principle --- using unlimited

time and memory. Even in those few studies of relative

amounts of computation, the problems chosen for study have

usually been so abstract or combinatorial that we have not

often found them helpful for insight into real problems,

either in the traditional areas of mathematical algorithms,

the newer fields of symbolic mathematical computations, or

in our own specialties of automata, learning theories,

pattern recognition and other aspects of artificial

intelligence.
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"In the past few years, however, we have seen steps

that may be leading toward more realistic theories. The

trouble, as I see it, is that mathematics does not develop

in a healthy way, except in the context of very thorough

understanding of the fundamental phenomena involved in

non-trivial, but very simple, situations. As shown

dramatically by the discoveries in the past few years

on the complexity of simple arithmetic multiplication,

the field of computation has been distinctly backward

in respect to asking and answering simple but fundamental

questions. But we are on the threshold of acquiring

such a stock of elements of basic understanding,

I think..... •

"The results •.. are still rather fragmentary and

anecdotal. Nevertheless, we expect them to lead to some

unifications of scattered bits of knowledge, and

eventually to systematic theories of computation. Right

now, I feel that the most promising directions for work

lie in unravelling the prototypes of basic conservation

laws -- or laws of exchange -- between intuitively

important quantities. The most attractive of these are,

in our present stage of thinking, the exchanges between:

amounts of memory, amounts of computing hardware, and

amounts of time required for computation .... n
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Some interesting and provocative research along these

lines has been initiated bv Minskv and Seymour Papert.

Their findings are described in their excellent book,

Perceptrons, an Introduction to Computational Geometrv

(M.I.T. Press, Cambridge, Mass. 1969). Relevant to this

report are the sections on the "exact match problem"

and the "best match problem ll (pages 205-225) in which they

discuss the trade-off between time and memory for two

superficially similar computations that arise in information

retrieval and pattern classification systems. The invest­

igation described in this report was motivated bv Minskv

and Papert's work on the exact match and best match problems,

and in particular bv their coniecture on the gloomv prospects

for best matching algorithms.

In Section 2, we establish the framework within which

the time-memorv trade-off is considered and then describe

the exact match and best match problems together with the

Minskv-Papert conjecture on best matching algorithms. Then

in Sections 3 and 4 we present two algorithms which)under

our interpretation, constitute counterexamples to the

conjecture. Conclusions and suggestions for further

work are given in Section 5.



SECTION 2

THE PROBLEM

In this section, we establish the framework within

which the trade-off between time and memory for exact

matching and best matching is studied, and then describe

the exact match and best match problems. Finally we

state and interpret the Minskv-Papert conjecture on

best matching algorithms. The material in this section

is based on sections 12.6 and 12.7 of Perceptrons.

2.1 The exact match problem

Suppose that we are given a body of information--

we will call it a data set -- in the form of 2a binarv

words each b digits in length; one can think of them as

2a points chosen at random from a space of 2
b points.

~ollowing Minskv and Pa?ert, we will take a = 20, b = 100

(i.e. a data set consisting of roughlv a million words

of length 100) to be typical of the sorts of data sets

under consideration. We will suppose that the data set

is to be chosen at random from among all possible sets so

that one cannot expect to find much redundant structure

within it. The ordered data set requires about b·2 a bits

of binary information for complete description. We will

not, however, be interested in the order of the words in the

data set. This reduces the amount of information required

4 •



to store the set to about (b-a) ·2a bits.

We want a machine that, when given a random b-digit

word w, will answer

Question 1 (exact match): Is w in the data set?

and we want to formulate constraints upon how this machine

works in such a way that we can separate computational

aspects from memory aspects. To this end, we adopt the

following scheme.

We will allow our machine a memory of M separate

bits, that is, one-digit binarv words. We are required

to compose in advance, before we see the data set, two

algorithms Afi1e and A find that satisfv the following

conditions:

1. Afi1e is given the data set. Using this

as data, it fills the M bits of memory

with information. Neither the data set

nor A fi1e are used again, nor is Afind

allowed to get anv information about what

Afi1e did, except bv inspecting the

contents of M.

2. Afind is then given a random word, W,

and asked to answer Question 1, using the

information stored in the memory by Afi1e .

We are interested in how manv bits Aft d_1n

has to consult in the process.

5 •



3. The goal is to optimize the design of

Afi1e and Afind to minimize the number

of memory references in the question-

answering computation, averaged over all

possible words w.

Let N* (a,b,M) denote the number of bits referenced,

averaged over all possible words w, using the best possible

A
f

-
1

- A
f

- d pair for each value of a,b and M. Por given
1 e In-

fixed a and b, we would like to be able to plot a curve

of N* as a function of M. At our present state of

knowledge, however, the best we can hope to do is to find

some points that bound this curve and tell us something

about its general form.

As one might imagine, it is a very difficult matter

to say, for a given value of M, what Afile - Afind pair

is best. However, Minsky and Papert have identified

several values of M for which optimal or near-optimal

Af'l - Af , d pairs can be specified. The two simplest
1 e 1n -

cases are (1) when M is the minimum number of bits

required to answer the question, in which case there is no

memory redundancv and an exhaustive search is probablv

required, and (2) when M is large enough to allow the

ouestion to be answered bv table look-up. Let M - andm1n

M denote the number of bits in the memorv at these"max

extremes. It is intuitivelv clear that the maximum number

6.
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7 ..

of bit references N* occurs when M = M . , the minimummax m1n

number of bit references N*. occurs when M = M ,and
rn~n max

that N* is a monotonically nonincreasing function of M be-

tween these extremes. The region of interest is depicted

in Figure 1.

h1 /.:;" ;4-1 (, J.€ 'I) / N 13 I 7 S

Figure 1. Boundaries and endpoints of the time-memory curve ..

The minimum number of bits reauired to answer Question 1

is roughlv Mmin = (b-a)-2a and the corresponding number of

bit references is about N = 1/2 (b-a) ·2 a . In this case wemax
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use just enough memorv to store the unordered data set and

Afind is an exhaustive search algorithm.

At the other extreme, we have a one-digit word M forw

each_possible query word w, where Mw = 1 if w is in the data

set and Mw = 0 otherwise. For a given w, it is necessary

only to look up M which requires one bit reference. Hencew

Mmax = 2b and Nmin = 1.

In order to determine the general form of the N* vs. M

curve between these endpoints, Minskv and Papert identify

two other values of M for which verv efficient Afi1e - Afind

algorithms are known. The first is M ~ b_2a . Here the

Afi1e algorithm stores the data set in ascendino numerical

order and Afind performs a binarv search to see which half

of memory might contain w, then ~7hich 0uartile, etc. , i.e. a

binary logarithmic sort. The number of bit references in

this case is roughlY 1/2 a·b.

The other value is M = 2b·2 a which is twice the memory

required to store the ordered data set. Here Minsky and

Papert choose the Afi1e - Afind pair to be a hash coding

scheme and show that the number of bit references is roughlY

N = 4.

These results are summarized in table 1. Although only

four points that upper bound the time-memorv curve have been

identified, the general form of the curve is clearly that

depicted in Figure 2. A verv small amount of memorv redundancy

--roughlY a factor of two--reduced the number of bit references

from N*max almost to N*min
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memory size M I~o. of bit references N

Hmin=(b-a) ·2a
Nmax=1/2(b-a)2

a

A file-A find

exhaustive search

hash coding

log sort

table look-up

N=4

N=1/2 b·a

N . =1
mln

aM=b·2I

I
I M=2b· 2

a

~ =2b
I max
i
1, .0.-- ---'

Table 1. Some points that bound the time-memory curve for
exact matching.

I
-_.. - - -+-

I~

~ if
t-.. l\} tvr- - --4 - ,- -'- -- -- - - -- -

-~~----~-:l~-·--- -----.-------- --- ..... -.

~igure 2. General form of the tirne-memorv curve for exact
matching.
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2.2 The best match problem

We next consider
1\

Question 2 (best match): Given W, exhibit the word w closest

to w in the data set.

The ground rules for Afi1e and Afind are the same, and

"closeness" is measured bv Hanuning distance. If x1' ... 'Xb
~ A A

and x1, ... ,xb are the (binarv) coordinates of points wand w,

then the Hamming distance is defined to be

A_AI A
Jd (w,w) - ~ x. - x. ,

~l 1 1

i.e. d(w,Q) is the number of positions in which wand C
disagree. Then Question 2 asks that, given w, we find a C
in the data set that minimizes d(w,~).

As in the exact match problem, it is relatively easy to

identify the extremes. The minimum amount of memory required

to answer Question 2 is again roughlv M .mln
a= (b-a)·2

and the corresponding exhaustive search algorithm presumablv

reouires about N = (b-a)·2 a bit references. At the othermax

extreme, we have a b-digit word ~1 for each possible ouervw

word w, with M = 0 where C is a word in the data set closestw

to w. ~or a given w, it is necessarv onlv to look up M andw
A

read out w which requires b bit references. Hence M = b·2b
max

and Nmin = b. The boundaries and endpoints of the time­

memory curve for best matching are the same as for exact

matching as depicted in Figure 1. However, here the simil-

arity of the two problems ends. According to Minsky and



11.

aPapert, there are no useful results known for (b-a)·2 < M <

b·2b . However, it is clear that small amounts of memorv

redundancy are not going to cause a drastic reduction in

the number of bit references required to answer Question 2.

An extremelv pessimistic view is expressed in

The Minskv-Papert Conjecture: "Even for the best

possible A f - l - Af · d pairs, the speed-up value-. - 1 e 1n -

of large memorv redundancies is verv small, and for

large data sets with long word lengths, there are

no practical alternatives to large searches that

inspect large parts of the memorv." (Perceptrons,

page 223)

One of the problems faced bv anyone who tries to prove

or disprove this conjecture is how to interpret the term

"large memory redundancies". If we let M = M , then wemax

certainly obtain a large speed-up, so this much redundancy

is certainly too large. Rather than trY to establish a

measure of "largeness" directly, we have chosen to interpret

the conjecture in terms of the general form of the time-

memory trade-off curve. In particular, we will interpret

the conjecture to mean that the time-rnemorv curve is concave

on the interval (~ . ,M ) as illustrated in Figure 3. WeInln max

apologize to the authors of the conjecture if our interpretation

seems unreasonable to them, in the same spirit that thev

apologized to the readers of Perceptrons for not having a

more precise statement of the conjecture.



- ---
~--------~

-r--

~_._.-_. __ ...~_._._..~--~.
I

M,.,.t~

12.

Figure 3. Porm of the time-memorv curve for best matchino
based on our interpretation of the Minskv­
Pa~ert conjecture.

We will now show, bv means of counterexamples, that

(our interpretation of) the Minskv-Papert conjecture is

false.
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SECTION 3

ALGORITHM I

In this section, we present an Afile - Afind pair,

which we refer to as Algorithm I, that achieves a

significant reduction, as com?ared to an exhaustive search,

in the number of bit references reauired to answer

Question 2. The amount of memorv required is quite large

compared to M . , the minimum amount of memorv reauired
m1n

to answer Question 2, but is also quite small compared

to M ,the amount of memorv reauired to answer Questionmax

2 by table look-up. The reader will have to decide for

himself whether or not this algorithm constitutes a

counterexample to the Minskv-Papert conjecture. Under our

interpretation of the conjecture, it does.

3.1 Description

In Section 2.1, it was pointed out that one can think

of the data set as 2a points chosen at random from a space

f 2b .o p01nts. Distance in this space is measured accord-

ing to the Hamming metric. A (Hamming) sphere of radius

t and center c is the set of all points distance t or less

from c. There are l+b+(~)+... +(~) = .f- (~) such points.
1=0 '

Since there are 2b points in the space, it is. conceivable

that we Gould ?ack 2b / i fo (f) spheres into the space in

such a wav that each point is contained in one and onlv



one sphere, i.e. that the spheres fill up the space

without overlapping. For certain values of band t

this is possible (e.g. b = 23 and t = 3), but usually

the spheres do not fit together exactly and a perfect

packing can only be approximated. Since we are only

interested in (i.e. able to obtain) order-af-magnitude

results, however, we will pretend that a perfect pack-

ing is possible for all values of band t. So let us

assume that the space of 2
b points has been partitioned

b t (b'into 2 / L i) spheres of radius t, where c i is the
i=O th

f h · h h .th h ·center 0 tel sp ere. To tel Sp ere we asslgn

a memory location L.. The number of bits at L. is left
1 1

unspecified. The partition into spheres and assignment

of memory locations are of course done prior to seeing

the data set.

We can now give an informal description of the A
file

14.

algorithm. Let D. be the distance from c. to a nearest
1 1

word in the data set. Then in location L. store those
1

data words whose distance from c. is no greater than
1

D.+2t. After this has been accomplished for
~

b t b
i = 1,2, ••. ,2 / iIo(i)' the data set and Afi1e are never

used again.

The Afind algori thm ol?erates as follo\ys:, Given a

auerv word w, find the i such that w is contained in the

.th h
1 sp ere. Then determine, bv exhaustive comparison,



which data word at location L. is closest to w. The
].

/\
resulting data word is w.

That this Afile - Afind pair always gives a correct

result is guaranteed by the triangle inequality for the

Hamming metric. Suppose w is in sphere i, a is a data

word closest to c i and 8 is a data word closest to w.

15.

This situation is shown in Figure 4. Bv the triangle

~igure 4. ~eometric interpretation of the proof that
Algorithm I alwavs produces a data word
C that is closest to the auerv word w.
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inequality, we have

d(B,c.) < d(f3,w) + d{w,c.)
1 ~

d(w,a) < d(w,c.) + d(c.,a.) •- ~ ~

Since S is a word closest to w, we also have

d (S , w) < d (w , a.)

Combining these inequalities gives'

d(S,e.) < d(c.,a.) + 2d(w,c.)
1. - 1 1

But d(c. ,a.) = D. and d(w,c.) < t.
11.1

HencE?

d(S,c.) < D. + 2t
1. - 1

which means that S is one of the data words stored at

location L i bv Afi1e .

We remark here that we are attempting to exploit

the distribution of distances among ?oints in a high-

dimensional space. We know that if we pick an arbitrary

word c. in the space, the distance between c. and the words
1 1

in the data set is binomiallv distributed. Por large a and

h, this means that 'almost all' of the data words will

be close to distance b/2 from c.. However, the distance
1

D. to the nearest data word will, on the average, be con­
l.

siderablv less. The hope is that the expected number of data

words in a sphere of radius D.+2t centered at c. (the
1 1

points Afl
1

stores at location L.) will be small. We
1 e 1

will see shortlv that this is the case if we choose the

radius t to be small enough.
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3.2 Analysis

We now give exact and approximate formulas for the

expected memory size M and expected number of bit refer-

ences N as a function of a,b and t, time-memory curves

for b=lOO, and asymptotic results. Note that t is a

parameter that traces out a time-memorv curve for Algorithm

I as it varies over the range 0 ~ t < b. At t = 0, there

is a sphere of radius 0 centered at each of the 2b points

in the space, and we need store onlv one data point at

each location L .. At this extreme, Algorithm I becomes a
1

table look-up algorithm. At t = b, there is onlv one

sphere, containing all the data points, and we are

forced to compare w with everv point in the data set.

At this extreme, Algorithm I becomes an exhaustive search.

E(M), the expected size of the memory, and E(N), the

expected number of bit references, using Algorithm I are

given by

[ ~t~~)(~
2a

~) (~Y5:)~
'\

b2a b
2

a
( d O!2t(l?)E(M) = -t- LL(l?) I . 0 1dO=O =d +1 I ~ 1=. 1 o _I J1=0

t
E(N) = 2-b L (~) E(M)

i=O

These formulas are derived in the appendix, along with

approximations which were used for actual computations.
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Time-memorv curves using Algorithm I for b = 100

and selected values of a are shown in Figures 6 through

10 (at the end of the report).

One characteristic of these curves that is immediately

apparent is a sharp drop-off in the expected number of bit

references when E(M) exceeds a certain value. It is of

interest to see what happens to this threshold as the

length of the data word and the size of the data set are

increased without bound. In order to fix the relative

information storage capacities of the data set and the

space from which it is selected, we define the parameter

r = log2 (data set size)~ a

10g2 (space size) b

which we call the density of the data set. For purposes

of obtaining asymptotic results, it is also convenient to

define a second dimensionless auantitv

R = log2 [E(M)/Mminl

log2 [Mmax/Mminl

which we call the mernorv redundancv. It is shown in the

appendix that, for a given density r, the asvrnptotic time-

memory curve is a step function where the step, or threshold,

occurs at a memory redundancy of

R = (l-r) -1 [1-H{1/4 - 1/2H-1 (l-r)}].
c l

where H(x) = -xlog
2
x

entropy function.

(1-x)log2(1-x) is the binarY
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We call R the critical memorv redundancv for Algorithm I.
el

It is interesting to note here that the location of the

threshold relative to M. and M is asvrnptoticallv onlvm1n max

a function of the data set densitv.

The following auestion arises auite naturallv in a

studv of this sort. Suppose we don't insist that the

answer to the question be correct 100 per cent of the time,

but onlv, sav 99 per cent. Does this drastically reduce

the time and/or memory required? And in general, how

does the computational complexity vary as a function of

the allowed probability of error? An obvious way to mod-

ify Algorithm I to reduce memory redundancy at the cost of

an occasional error is to reduce the number of data points

stored at the various locations. This is most easily done

by storing at L. those data points whose distance from
1

c. is no more than D. + k, where k is a nonnegative
1 1

integer less than 2t. Because the distances are binomially

distributed, we would expect a significant reduction in

M at the cost of a verv small probabilitv of error when

k is slightlv smaller than 2t. Unfortunatelv, this is not

easy to verify bv analysis. The onlv case that we considered

is the extreme case where we let k=O and store at L. only
l

a single data word closest to c .. In this case
1



M = b2
b

/ f (~)
i==O

N = b.

The probabilitv of a correct answer to Question 2

when only a single data word is stored at each location

is shown in Figure 5 for b = 25, a = 5 and various values

20.

of t. (See the appendix for details of the analvsis.)

(-
\..J N
'iJ
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......

~ ~
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~ ~
t\ t..,
Qt ~
~ 'C

,.0

_o~ -+- +-- .__._. --+- >~

..,

Figure 5. Probability of correct answer vs. sphere radius
for modified Algorithm I.

Obviously, storing one data point at each location is not

sufficient. It appears that simulation will be required

to obtain results for intermediate values of k.
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3.3 Implementation

In this report we have ignored, as did Minskv and

Papert in their analysis of the exact match problem, the

computational complexitv of implementing Afile and Afind .

We believe this is justified on the following grounds.

~irst, the A
f

. l part of Algorithm I is an incremental1 e <-

rather than a global algorithm. It examines just one

member of the data set at a time, with no control over

which it will see next, and without anv subterfuge of

storing the data set internally. Second, the A find part

of Algorithm I requires a relatively small amount of time

and memory overhead to determine L. for a given query
1

word wand to carry out the search for the data word stored

at location L. that is closest to w. To justifY these
1

assertions, it will be necessarv to consider how Algorithm

I might be implemented.

The first problem is to specify the partition of the

space of 2b points into spheres of radius t, or eauiv-

alently, to specifY the sphere centers {cil. This

sphere-packing problem also occurs in the design of error-

correcting codes for the reliable transmission of information

through a noisy channel and manv efficient and easily

specified codes are known. In the coding context, the

sphere centers {el} are the code words and the set of all
1

centers is called a t-error-correcting code of block length b.



If the code words were chosen in an arbitrary fashion,

the odds are that there would be little or no redundant

structure, and the code could onlv be specified bv storing

all the code words. ~ortunatelv, it happens that very

good sphere-packings can be achieved by codes in which

the code words form a k-dimensional subspace of the space

of k-tuples over the field of two elements. In this

case, the code is called a (b,k) linear code over GF(2).

An advantage of a linear code 1S that it can be specified

by storing only k linearlY independent code words rather

than all 2k code words. A further simplification is

obtained bv choosing the (b,k) linear code to be cyclic.

In this ca~e, the entire code can be specified bv storing

onlv one code word. That good sphere-packings can be

achieved through the use of cvclic codes is illustrated

bv the fact that the b=23, t=3 perfect packing can be

obtained bv usinq the well known (23,12) trip1e-error-

22.

correcting Golav cyclic code. Hence, specifying the

partition of the space of 2b points into spheres of radius

t can be achieved with an insignificant amount of memory

overhead.

The second problem is to determine, given w, which

sphere w is in, or equivalentlv, which sphere center c.
1

is closest to w. This is just the decoding problem for

error-correcting codes in which we think of w as a code
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word plus an error vector and map (decode) w into the

nearest code word c .. If the sphere-~acking is perfect,
1

then the query word w falls in one and onlv one sphere,

and nearest-neighbor decoding yields a uniaue code word

c., and from c. a unique location L.. If the sphere­
111

packing is not perfect, however, and w does not fall within

one of the spheres of radius t, the decoding procedure

may yield more than one "nearest code word." In this

case, it would be necessary to search the contents of

more than one location.

While the encoding (specification) of a linear block

code is very simple, the decoding process, which is in-

herentlv nonlinear regardless of whether or not the code

is linear, is in general quite com~lex. ~ortunatelv, a

code with block length on the order of b = 100 is relatively

easy to decode, and even for much larger block lengths,

certain classes of codes are known that produce relativelv

good sphere-packings and are easy to decode. Thus, although

the decoding of linear block codes is a difficult problem

in general, we find that the decoding art has progressed

to the point where Afind algorithms for data sets of the

size considered here could be implemented with relatively

modest amounts of time and memory overhead.

In the course of studying the tirne-memorv trade-off

in the implementation of the A
find

part of Algorithm I,



and in conjunction with a separate study of the trade­

off between decoding time and hardware cost for linear

block codes, a new decoding algorithm was found that

trades a considerable amount of logical complexitv for

a small increase in decoding time. This new algorithm is

described in a separate report entitled "Decoding bv

Seauential Code ~eduction" bv L. D. Rudolph and C. ~. ~

Hartmann, Svstems and Information Science, Svracuse

University, 1972.

24.
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SECTION 4

ALGORITHM II

In this section, we present the other best-match

algorithm studied during the investigation. Algorithm

II is quite different from Algorithm I except for the

fact that both involve the use of spheres. (We suspect

that spheres will play a part in most best-match

algorithms.) Given a query word w, there are two

fundamental approaches to finding the nearest data

word. The first is to compute the distances between

wand the data words and then choose a data word that

is closest. Algorithm I is a variation of this approach.

The second approach is to test w to see if it is a

data word; if not, test all words distance one from w;

then distance two, etc., until a data word is found.

This requires that an exact-match algorithm be used to

test each word. Algorithm II is a variation of this

second approach.

4.1 Description

The Afile part is as follows. Given the data set of

2 a words, store, using the Minsky-Papert hash coding

scheme for exact matching, every word in the space of

2b points that is distance s or less from a data word.

Along with each of these words store the corresponding

closest data word.
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The A
find

part of Algorithm II, using "hash decoding"

and starting at the query word w, performs an ever-

expanding search for a word stored in the memory. When

it finds one, it reads out the associated data word.

4.2 Analysis

As in the case of Algorithm I, the sphere radius s

is a parameter that traces out a time-memory curve for

Algorithm II as it varies over the range 0 ~ s < b. At

the extreme 5 = b, Algorithm II becomes a (very inefficient)

table look-up procedure.

The following formulas for the memory size and

expected number of bit references and the approximations

used for actual calculations are derived in Appendix A.

M = b2
a +1 I (~)

· 0 11=

b w-s
E(N) = 4 I 2

w=s i=O

a a

(~)[[xlw (~) (})bJ2 [X=r+l (~) (})b] ~

Time-memory curves using Algorithm II for b=lOO and selected

values of a are shown in Figures 6 through 10 (at the end

of the report).

Comparison of Figures 6 through 10 shows that

Algorithm I is best suited for sparse data sets while

Algorithm II is best suited for dense data sets. Since

data sets in most applications are sparse, our interest in,

and analysis of, Algorithm II is rather limited.
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SECTION 5

DISCUSSION

The two best-match algorithms described in sections

3 and 4 of this report are admittedly crude. The reader

has probably thought of a number of improvements. For

instance, in Algorithm I why not iterate the sphere-

partition approach, i.e. use some "spheres-within-spheres"

scheme, to eliminate the exhaustive search required once

L. has been determined? Or, in Algorithm II, why not
1

conserve memorv bv storing pointers to words in the

data set rather than the data words themselves? We have

~resented these algorithms in their most primitive forms

because the point of the studv was to show that there

exist wavs to achieve a significant speed-up if sufficient

memorv redundancv is used, not to produce elegant algor-

ithms. At this writing, we have no idea how much memorv

redundancy is required to achieve a significant speed-up

for the best-match problem, but we are convinced that it

will be large. Exact-matching and best-matching correspond

to error-detection and error-correction respectively, and

any coding theorist will attest to the fact that error-

correction requires considerablY more redundancv than error-

detection. The memorv redundancies reouired bv the best-

match algorithms ?resented here are verv large. There

surelv exist best-match algorithms that vield the same

speed-up for less memorv redundancv , but how Much less?
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Is there an "algoritlun-free" , Shannon-like critical

memory redundancy for a given data set size and data

word length above which the number of bit references can

be made as close to N*, as desired bv sufficientlym1n

complicated Afi1e - Afind pairs, and below which it is not

possible to do much better than an exhaustive search?

This question is of fundamental importance and would

provide a natural focus for future research.

In spite of our lack of supporting evidence, we

believe that a large decrease in com~utational complexity

can be achieved at the cost of allowing a small probabilitv

of error. In real-life applications, the reliabilitv

of the data is rarelv such that it is reasonable or

consistent to reauire that a auestion-answering svstem

alwavs give the right answer--assuming that it is possible

to define exactlv what the "right" answer should be. In

our opinion, the reliability-complexity trade-off for

such problems as the best-match problem is another import-

ant area for future research.
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APPENDIX

In this appendix first a result is proved which is

applied later on several occasions.

A·l A Basic Result:

Suppose Amxn is a matrix whose rows are independent

random vectors. Elements of each row are mutually inde-

pendent and take value 0 or 1 each with probability 1/2.

Let x be the weight of the i th row i.e. the number of 1'5

. th . th L t W . X S . • •1n e 1 row. e = m1n .. uppo8e T 18 a pos1t1ve
1

integer and K is the number of rows of A of weight W + T

or less. E(Y) denotes the expected value of a random

variable Y.

Theorem A·l:

E(K) = m2-n Y Il-Y(~) (1/2) ri--li m
w=o x=w---- - .

n -1m)
\' (n) (1 /?) n i (
L. x --, - ; 5

x=w+l i_ --l

w+T
.rei)
1=0

Proof:

(A '1'1)

Since the elements of a row are statistically independent

random Bernoulli variables, each x. is a binomial variable
1

with parameters nand 1/2. If p(E) denotes probability of

the event E, then



p(X=x) = (~)1/2)n x = 0,1, 2, .•• ,n

30

Bv definition W = min
l<i<m

X .•
1

Then for W=O, 1, 2, .•. ,n

P (N=w) = p (min Xi = W)
i<i<m

= p Imin
~~i~m

Xi < w l- p [ min
_ l~i~m

X. < W
1

= {I - p [All X. 's > w]}. - {I - p(All X. 's > w-l)}.
1 1

Using the independence of X. IS, the above expression reduces to
1

p(W=w) = {p(X. > w-l)}m
1

= ( I (~)(1/2)n) m
~x=w )

{p (X. > w)}m
1

(A·l·2)

Next, the probabilitv that a randomlv chosen row will have
w+T

weight (w+T) or less is r (~) (1/2}n. Define
i=O

= (1 if the wt.u. J
1 ~ 0 oth~rwise

f
.tho 1 row < W+T

i = 1,2, •.. ,m.

then K =
m mr Ui' and E(K) = E r

i=l -1=1
U. '=

1

m

r
i=l

E (U .) = mE (VI). 1

(A ·1· 3)

by symmetrv. Also



E(UJ.') = p[U =1] =. 1

n
L P

w=O
[U l = l/w=w] - p(W=w)

31

n
= L

w=O C+T

/.
i=O

--;

I
(~)(1/2)ni p(W=w)_

~

SUbstituting this value of E(Ul ) in (A-1-3) and the value

of p(w) given by (A-1-2) the theorem is proved_

Recall that, conventionally(i) = 0 for i > n_ Set

a = (I (~) (1/2)nt m
w (x=w )

Clearlv a o = 1 and a n +l = 0_ Then

m-1 2n E ( )
n TA1+T

= L {a - a w+l } L (~)R
""Tw=O i=O

T n
(W~T)= a O L (i) + L a

i=O w=l w

T
e~)+

n-T

(W~T)= a o L L a
i=O

J.,
w=l w

SUbstituting the value of a w we obtain

T

L
i=O

n-T
L

w=l

=
T
L (i) +

i=O

n-T~L 1-
w=l_
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Now we are ready to find an a~proximation for E(K) •

Here, basicallY we emplov the following approximation

(1 - ~)m ~ e-x for large values of m.
m

To this end we write

w-l
w-l m L (~) (1/2) n

1 - I (~)(1/2)n = 1 - x=o
x=o m

and identify the numerator of the second term on the right

by Cl. Thus

w-l
exp {-m r (~)(1/2)n}.

x=o

,j n/4

t - n/2

(A ·1- 4)

Another approximation: If n is also large, the binomial

probability can be approximated bv a normal distribution, i.e.

! (~) (1/2) n ~ I (Y - n/2)
o 1 I n/4

Using the above,

+ nit -n( n ~ -mJ /~-l-n~
w=1 2 w+t. e 1V n/4 ~

In the following discussion we find that the first approx-

imation is more convenient to applv.
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A·2 Expected ~emorv and Bit ~eferences for Algorithm I:

We are now ready to obtain the results for the first

algorithm. Let S denote the space of 2b words from which

a data set D of 2a words is chosen at random. S is assumed

to be partitioned into 2
b

/ I (~\non-overlapPing spheres
· 0 ~J
~=

of Hamming radius t and centers {C.}. Let D. denote the
1 1

distance from Ci to a nearest data word. Then A
fi1e

stores

at location L. all data words tHat are distances D. + 2t or
1 1

less from c.. Our first problem is to find the expected
1

number of data words stored at L ..
1

Par a given data set D, let K. denote the number of
1

data words stored at location L., i=l, 2, ... ,rn. Because
1

a data set is selected randomlv from S, and because of

inherent syrnmetrv, all K. r s have identical distributions
1

and therefore identical expectations i.e. E(K
1

) = E(K 2 ) =

= E(K ).
m

Without loss of generality we can choose the dis-

tinguished sphere center to be CO' the all-O b-tuple.

The distance between Co and any data word is then the

Hamming wieght of (number of l's in) the data word. Let

dO be the distance Co to the nearest data word (i.e. dO

is the weight of the lowest-weight word in the data set).

Then we wish to evaluate the expected number of words

in the data set of weight dO + 2t or less. However, the
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result follows immediately by identifying dO =W, T =2t,

n ; b, m ~ 2a and applying Theorem A-I_ Thus

E [# of words in the data set of weight ~ do + 2t]

or bv (A-I-4)

The total memory given bv M = [(number of locations)

x(average number of words per location)x(bits per word)]

has the following expected value

E(M) =
t

I ~)
t=O (A - 2 - 3)

.....- b 2t
L

i=O
(
b) b;2t I b) ( _2a
i + dL=1 {d

o
+2t exp (

o

dO-I_(b) (l)bn
x=t x 2 )!

-'

(A - 2 - 4)

Further, the expected number of bit references E(N)

takes the value
•
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E (N) = b • E (K)

(A· 2 • 5)

exp f_2
a d~I~ (~)~) bIl

(A· 2 • 6)

A·3 Probabilitv of Error for ~1odified Algorithm I:

In this section we will be interested in the probabilitv

of answering question 2 correctlv under slightlY different

conditions than described earlier. The sphere packing

algorithm as stated above will alwavs find the best

match for given search word T in S. Suppose now that in

place of a search sphere of "Hamming radius" W + 2t we use

a search sphere of radius W, where W, as before, is the

random minimum distance of the center from the nearest

data word. In other words, at location L. we store
1

onlv one data word closest to C..
1

An error will be committed if an event of the follow-

ing nature occurs. See figure ~A·l below. Suppose C is

the center of a sphere of radius t and T is a given test

word distance L awav from C where L < t. Assume that



! /
. /
\ J~

.~

--_ .._---- ".--

l<'igure l<-A'l

the closest data word P is distance w from C. Clearly

w is a possible value of the random variable W. We

assume that the location corresponding to C in Afile will

contain only the point P. Suppose P is chosen as a best

match for T where P and Tare d l distance apart. Let Q

be another data point which is not in the sphere under

consideration and which is at a distance d 2 from T and

d 3 from Qf where d 2 < d l . Clearly, we should have chosen

Q as best match rather than P. For given W=w and L we

will find the probability of this event.

36



First we will evaluate the probability distribution

p(d1/L,W) of the random variable d 1 which is the distance

between the test word T and the nearest data word P

when it is given that T is distance L from C. By defini-

b
p(d1/L,W) = 1/2 (number of points T at a distance

d 1 from P/L,w) •

To find the number of points, without loss of

generality we can assume that the center C is the word

(0,0, •.. ,0) and P contains first w ones and remaining

(b-w) zeros. Assume that T contains L1 ones in the

first w positions and L2 ones in the remaining (b-w)

positions. Then, L1 and L2 satisfy

L1 + L2 = L

w - L + L2 = d 11

i.e. L = (1/2) (L + d 1 - w) and L = (1/2) (L - d 1 + w).2 1

Consequently, the number of such points T is

37

Next, given d
l

, Land w we consider the probability

that a point Q, d 3 distance away from C, will be distance



d 2 «dl ) from T. Again without loss of generality, C

38

may be chosen as the all zero word and T as having first

L lis and the rernianing (b-L) zeros. Let Q be an arbit-

rary point such that it has 'a' ones in the first L

positions and 'b' ones in the last (b-L) positions.

Then

a + b = d 3

w - a + b = d 2

or a = (1/2) (d 3 - d 2 + w) and b = (1/2) (d 2 + d 3 - w).

Thus the totality of such possible points Q 15

However, d 3 can take any value from w to d 2 + L, where the

upper limit on d 3 is obtained by the triangle inequality

and d 2 takes values from D to d l - 1. Thus, the set of
(~

all such points causing an error, denoted by ~ , contains

points.

Therefore, the probability that a given data point belongs

to &, given wand L, is
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Thus, the unconditional probability of a data point

causing an error is obtained bv multiplYing the above

probability bv the probability of d l , Land w, and summing

over all possible choices of d l , Land w. This probabil­

ity, denoted by e say, has the expression

t w+L
I I

L=O dl=O

d -1
~.

d =0
2

where

p (L) = (~)

ilo(~)

and p(w) is given bv (A-l·2)

(A·3 ·2)

The probability that a data point causes an error is

e, or does not cause an error is l-e_ Thus probability

of no error, which is the same as no data point causes an

error, is given bv

·a-l
~ro~ahilitv n~ cnrrect decodina = (I-e)?

where e is given bv (A·3-2).

(A-3-3)
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A·4 The Second Algorithm:

In this algorithm a sphere of radius t is constructed

around each data point. Thus the size of the memory, M,

equals [(number of sphere)x(two times the number of words

per sphere)x(number of bits per word)] or

M = b2 a +l 1 Ib)
i=O \i

(A· 4 '1)

Next we evaluate the expected number of bit references

E(N). Assume that the closest data word P is at a given

distance w from the test word T. Before a point of the

sphere with center P is encountered we will have to compare

T with all the points 1ving within a distance w-t from T.
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w-t
There are ,L (~)SUCh points. However, the minimum distance

~=O

w is a random variable and follows the distribution

obtained in section A·l. Thus

E(N) = 4
b
L

w=t

w-t
L (~) p (w)

. 0 ~
~=

where p(w) given below is obtained from (A·l·2) for m

replaced by 2a and n by b

p(w)
.~

= 2

A·S Asvmptotic Threshold for Algorithm I

In this section we consider the asymptotic behavior

of the expected memory as bits per word, b, approaches

infinitv. We assume that the collection of data words,

2a , also increases at a rate determined bv the relation

a = br, for some fixed r, O<r<l. 'Pirst we consider

the limiting distribution of W, defined in Section 1

for m = 2br , n = b as b+oo • This limiting distribution

plays a crucial role in the later developments:

Consider O<r<l. From (A·l·2)

w
p(w) = L p(W=x)

x=O
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r b ) 2
br

For any fixed w, as b .. co I 2 (b) 2 -b.~ -+ 0 implying that
O

XI :x= /
P(w) .. 1. Thus we confine our attention to the case

w = ba for O<n<l and we will be interested in that value

of a for which pew) changes from 0 to 1. Assume that
bn

for each b we can find a B = B(b) such that L (~)= 2bB .
x=o

Then, from (A·S·l) and the above eaualitv after replac-

ing w bv bn and taking the natural logarithm we obtain,

In[I-P(ba)] = 2br In {I _ 2-b (1-B)}.

Ex~andinq t~e rhs for 0<6<1.

lim
b .....oo

-2b(1-S) 2-3b(1-S)
In[I-P(ba)] = lim 2br {_2-b (1-B) - ~ - 3 ... }

b~oo

= lim {_2b [r+S-l]_ 1 2b [r+2S-2]_ 1 2b [r+3S-3] ... }
b+oo 2 3

>

= -1 if S = l-r.
t) <

Thus

= f~-l/e
'-F S < l-r1 ~

lim P(bn) S = l-r
b-+-oo i 1 a > l-rL

Hence,
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Theorem A·S·l: In the limit, the random variable(~)takes

value ~ with probabilitv 1 and all other values in the

interval [0,1] with probability 0 where a satisfies the

following equation.

baL (~)= 2 (l-r) b
x=O

(A· 5 • 2)

Remark 1: Let us observe that, in the special case when r=l,

l-r = 0 and therefore S > 0 and

b6t(b) O.bI = 2 = 1
x=O x

is satisfied only for a = 0, thus implying that W takes

value 0 with probability I and all other values with prob-

ability o.

At the other extreme r = 0, we have only one point in

the data set and the minimum weight in this set is the

weight of this one word. Consequently, the distribution

will continue to be binomial with increasing value of h,

with expected value b/2. Similar argument seems to hold

for a very small neighborhood consisting of 0 < r < lib.

In what follows, we will restrict r to the range lib < r < 1.

The sum of consecutive binomial coefficients can be

approximated bv the entrov function H, which is defined bv

the following relation,



baI (~)~ 2bH (a)
x=o

Thus, by (A-S-2)

or H(~) ~ (1-r)

(A-S-3)

44

or (A-S-4)

Remark: Function H-I is not well defined in the full range

because H(x) is a 2-1 function_ But, in case of the problem

under considerations a lies only in the interval (0,1/2).

Thus, in equation (A-S.3) that value of a is chosen which

lies in the above interval, giving the uniqueness of a_

By Theorem (A-S-l), an approximation of the type

(A-S-3) and using (A-S-4) in (A-2-3), the asymptotic ex-

pression for the expected memorv for Algorithm I is given

by

(A-S-S)

Similarly from (A-2-S)

t -1
E(N) ~ b 2b {H[25 + H (l-r)] + r-l}



45

From the above expression, it can easilv be seen that

for a fixed band r the maximum value of E(N) occurs at

t n
2 __ + H-1 (1-r) = }

h

or 1 1 -1to = b(4 - 2 H (l-r»,
(A· 5 • 6)

and a sharp decrease is observed in the value at t : to -1.

Using the above result, asymptoticallY, the expected

memorv at the threshold point is given bv

-1
E V1) ::: b2b [1+r-H{1/4 - 1/2 H (l-r) }]

(A· 5 • 7)

~ecall that the minimum and maximum possible memories are

res~ectivelv given bv

M. = (b-a) 2a = b(l-r) 2br
ml.n

and

M = b2b
max

Therefore, the "relative logarithmic memory redundancy"

is given by



=

def log2[E(M)/~ · ]lim m1n
R = b~oo

log2 [M 1M.]max mln

I , b[1-H{1/4 - 1/2 H-1 (1-r)]} - 1092 (l-r)J_m
b40-t:O -----------------

b[l-r] - log2(1-r)

(1-r)-1[1-H{1/4 - 1/2 H-1 (l-r)}]

(A • 5 • 8)
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FIGURE.' 9
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FIGURE 10
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