Syracuse University
SURFACE

10-1-2005

Ranking Inequality: Applications of Multivariate Subset Selection

William C. Horrace

Syracuse University and National Bureau of Economic Research
Joseph T. Marchand
University of Alberta
Timothy M. Smeeding
University of Wisconsin - Madison

Follow this and additional works at: https://surface.syr.edu/ecn
Part of the Economics Commons

Recommended Citation

Horrace, William C.; Marchand, Joseph T.; and Smeeding, Timothy M., "Ranking Inequality: Applications of Multivariate Subset Selection" (2005). Economics - Faculty Scholarship. 131.
https://surface.syr.edu/ecn/131

This Article is brought to you for free and open access by the Maxwell School of Citizenship and Public Affairs at SURFACE. It has been accepted for inclusion in Economics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

Center for Policy Research
 Working Paper No. 70

Ranking inequality: Applications of Multivariate Subset Selection

William C. Horrace,* Joseph T. Marchand Timothy M. Smeeding

Center for Policy Research
Maxwell School of Citizenship and Public Affairs
Syracuse University
426 Eggers Hall
Syracuse, New York 13244-1020
(315) 443-3114 | Fax (315) 443-1081
e-mail: ctrpol@syr.edu

October 2005
$\$ 5.00$

Up-to-date information about CPR's research projects and other activities is available from our World Wide Web site at www-cpr.maxwell.syr.edu. All recent working papers and Policy Briefs can be read and/or printed from there as well.

CENTER FOR POLICY RESEARCH - Fall 2005

Timothy Smeeding, Director
 Professor of Economics \& Public Administration

Associate Directors

Margaret Austin
Associate Director, Budget and Administration

Douglas Wolf
Professor of Public Administration
Associate Director, Aging Studies Program

Douglas Holtz-Eakin
Professor of Economics
Associate Director, Center for Policy Research

John Yinger
Professor of Economics and Public Administration Associate Director, Metropolitan Studies Program

SENIOR RESEARCH ASSOCIATES

Badi Baltagi.......................................Economics	Jeff Kubik ..Economics
Pablo Beramendi.........................Political Science	Andrew London Sociology
Dan Black...Economics	Len Lopoo Public Administration
Lloyd Blanchard Public Administration	Jerry Miner ...Economics
William Duncombe Public Administration	John Moran .. Economics
Gary EngelhardtEconomics	Jan Ondrich.......................................Economics
Deborah FreundPublic Administration	John Palmer Public Administration
Madonna Harrington MeyerSociology	Lori Ploutz-Snyder.... Health and Physical Education
Christine Himes...................................Sociology	Grant ReeherPolitical Science
William C. HorraceEconomics	Stuart Rosenthal Economics
Bernard JumpPublic Administration	Ross Rubenstein................... Public Administration
Duke Kao ...Economics	Margaret Usdansky............................Sociology
Eric KingsonSocial Work	Michael Wasylenko Economics
Thomas KniesnerEconomics	Janet Wilmoth Sociology
Tom Krebs .. Economi	

GRADUATE ASSOCIATES

s	
Sonali Ballal..................... Public Administration	Yue Hu .. Economics
Dana BalterPublic Administration	Becky Lafrancois................................ Economics
Jason BladenEconomics	Joseph Marchand................................ Economics
Jesse BrickerEconomics	Larry Miller Public Administration
Maria BrownSocial Science	Wendy Parker Sociology
Yong ChenEconomics	Emily Pas .. Economics
Ginnie CroninSocial Science	Shawn Rohlin..................................... Economics
Ana Dammert....................................Economics	Cynthia Searcy...................... Public Administration
Mike EriksenEconomics	Talisha Searcy Public Administration
Katie Fitzpatrick.................................Economics	Jeff Thompson Economics
Alexandre GenestPublic Administration	Wen Wang .. Economics
Julie Anna GolebiewskiEconomics	Yoshikun Yamamoto Public Administra

STAFF

Kelly Bogart	Administrative Secretary	Kati Foley	Administrative Assistant, LIS
Martha Bonne	Publications/Events Coordinator	Kitty Nasto	Administrative Secretary
Karen Cimilluc	... Librarian/Office Coordinator	Candi Pat	Computer Consultant
Kim Desmond	Administrative Secretary	Mary Sant	Se

Abstract

Inequality measures are often presented in the form of a rank ordering to highlight their relative magnitudes. However, a rank ordering may produce misleading inference, because the inequality measures themselves are statistical estimators with different standard errors, and because a rank ordering necessarily implies multiple comparisons across all measures. Within this setting, if differences between several inequality measures are simultaneously and statistically insignificant, the interpretation of the ranking is changed. This study uses a multivariate subset selection procedure to make simultaneous distinctions across inequality measures at a pre-specified confidence level. Three applications of this procedure are explored using country-level data from the Luxembourg Income Study. The findings show that simultaneous precision plays an important role in relative inequality comparisons and should not be ignored.

Key Words: Income distribution, Inference, Poverty, Subset Selection

Introduction

Comparisons of income distributions are often used to understand how different groups of agents distribute their resources. These comparisons are often made across several countries in one period of time or in one country across several periods of time. From this, researchers draw conclusions on how equal or unequal the resources of a group are distributed, relative to their comparison groups. Consequently, the subject of inequality is necessarily one of relative measure. One cannot typically draw strong conclusions on a group's inequality, unless it is in comparison to the inequality of another group. By itself, an inequality measure of particular value or an income distribution of a certain shape may mean little to the observer. Rather, inequality becomes meaningful through comparison of these measures to those of other groups. ${ }^{1}$

This study introduces a ranking-and-selection procedure known as multivariate subset selection to the inequality literature. ${ }^{2}$ The selection procedure allows us to make multivariate inferential statements such as: "with a pre-specified probability, some subset of countries (from a larger universe) is best (most equal) in terms of inequality, and some subset of countries is worst (most unequal), relative to the other countries in the sample." By taking into account multivariate sampling variability, there can be multiple ties (in a probabilistic sense) for best and worst when ranking inequality estimates. This is in stark contrast to the deterministic outcome that the countries at the extreme ends of the rank ordering are best and worst. This is also an improvement over a series of univariate statistical inferences where one might simply identify pairs of countries as statistically distinguishable in terms of inequality. ${ }^{3}$ For example, the country at the top of the ranking may be no different than the next three countries in the ranking, given a certain level of confidence. Multivariate subset selection allows the researcher to use information that has previously been ignored or determined by arbitrary magnitude cutoff rules ${ }^{4}$. This study demonstrates that precision matters in the rank ordering of inequality measures, and
that ignoring it can lead to erroneous conclusions. As such, the technique represents a substantial contribution to the inequality literature.

The multivariate subset selection procedure is described and then applied to the latest data from the Luxembourg Income Study (LIS) in three different ways. First, there is a single period analysis, where the magnitudes and precision of the Gini coefficient, the Theil index, and the Varlog index are compared across a cross-section of countries. The subsets that are created are the first-best, second-best, first-worst, and second-worst in terms of inequality using a predetermined 90 percent confidence level. The different measures of inequality are compared based on the inferences that they imply. The differences show that interpretation of the ranked estimators can change once precision is taken into account, and that certain estimators may be better than others in a rank order setting.

Second, a panel of twelve countries is followed across four LIS waves (periods) to track how relative inequality changes over time. This is done for the Gini coefficient only. Again, the subset selection procedure determines the first-best, second-best, first-worst, and second-worst countries. Two different levels of confidence are selected for analysis, 90 and 95 percent, to demonstrate how confidence level affects inference on order statistics and cardinality of the best and worst subsets. This analysis also demonstrates that a country's relative position in a rank ordering may change over time but that its rank is not changing in a statistical sense.

Third, in an extension to second exercise, this same panel is followed over the same four LIS waves to see how relative poverty changes over time. The relative poverty measure used is 50 percent of the median income of the total population. The purpose is to determine whether subset selections based on bootstrapped standard errors are different for the poverty measures than for the inequality measures, since Davidson and Flachaire (2005) have argued that bootstrapped standard errors have different levels of accuracy when applied to the different measures.

The findings of this study suggest that the precision of inequality estimators matters for both the measurement and interpretation of relative inequality rankings. For the single period analysis, the ranking differences on the cross-section of countries result from using different measures and the differences in sample sizes between countries. For example, a country that ranks third using one measure and sixth using another measure, may still be contained in the same subset with a given level of confidence. For the panel analysis, the ranking differences are based on relative country movements of inequality and the differences in sample sizes between countries. This setting is extremely relevant for policy makers ${ }^{5}$. For example, a country with a rank of ten in one year and nine in the next year may be meaningless in a statistical sense, as it could be that neighboring countries in the rankings are getting worse rather than the country in question getting better in a relative sense. Multivariate subset selection helps make these distinctions with statements of confidence. Also, the subset section technique is a more precise alternative to using arbitrary magnitude cutoff rules in rankings.

The paper is organized as follows. Section I provides a brief review of the previous literature. The data are described in Section II. Section III details the methodology of the study. The methodology section consists of the construction of the inequality estimators and their bootstrap standard errors, the ranking of these estimates, and the subset selection technique which is applied to the ranking. The empirical results are presented in Section IV. Section V extends the analysis to poverty. Concluding remarks are offered in Section VI.

I. Literature Review

This research adds to the economics literature on inference for rank statistics and stochastic dominance, especially those using the Lorenz curve. Various procedures have been developed to assess the usefulness of rankings and to determine "ties" when specific estimates appear to be the same (eg. Bishop, Formby, and Smith 1991; Bishop, Formby, and Zheng 1998;

Duclos and Makdissi 2004, 2005; Davidson and Duclos 2000; Ryu and Slottje 1996, 1999; Sarabia, Castillo, and Slottje 1999). The issue of consistent and careful ranking is important in other domains, as well. Rankings are made for measures of equality opportunity (Peragine 2004); in cases where information is incomplete, censored, or unavailable (eg. Cowell and Victoria-Feser 2003); where only one or another attribute of economic status is used in the ranking (Mosler 2004); and where differential weights based on entropy measures are employed (Bandyopadhyay, Cowell, and Flachaire 2005). Axiomatic approaches to ranking have also been applied to test for equality using the Gini and methods for weighting and extending the Gini (eg. Weymark 2003, Chateeauneuf and Moyes 2004, Farina, Peluso, and Savaglio 2004); and for ranking opportunity sets more generally (Schechtman and Yitzhaki 2003), and for measures of poverty as well as measures of inequality (Davidson and Duclos 2000). The inference implied by the subset ranking procedure described in the next section may have implications for a wide range of decision rules and procedures for accessing rank statistics in the income and poverty literature.

Given the ease of computation, scalar inequality indices are often computed, with various measures to choose from (for a review, see Cowell 2000). These indices are often ranked using only the magnitudes of the estimators (ex. Buhmann et al 1988) ${ }^{6}$. The strength of ranking these scalar measures is that it produces a linear, complete, and transitive order. This makes the ranking easy to interpret. There are also no ties between coefficients if taken to the last decimal, so there is a sole best and worst measure unless the magnitudes of the estimates alone are exactly the same, which is highly unlikely ${ }^{7}$.

The problem with previous studies that rank inequality measures is that they tend to ignore the precision of the measures (notably their standard errors). Applying the techniques in the current literature, researchers can estimate the standard errors of each of these indices using resampling methods, such as the bootstrap (Mills and Zandvakil 1997, Xu 2000, Biewen 2002,

Moran 2005). These standard errors can be used for hypothesis testing when ranking indices by their relative magnitudes, but typically only single comparisons (between two countries, say) are made at a time ${ }^{8}$. Rank statistics imply simultaneous, multiple (multivariate) inference procedures, which are typically not employed. Moreover, when multiple single comparisons across countries are made, the overall confidence level of the inferential procedure becomes eroded (i.e., 10 tests at the 95 percent level, have an overall confidence level of less than 95 percent). Subset selection procedures are both simultaneous and multivariate, so overall confidence levels are preserved.

There is also a debate in the literature about these inference procedures: bootstrapping is the commonly accepted and most preferred procedure (Bishop, Formby, and Smith 1991; Bishop, Formby, and Zheng 1998; Davidson and Duclos 2000; Mills and Zandvakil 1997; Ryu and Slottje 1996, 1999; Zandvakil 2001). But other asymptotic approaches have also be used (e.g., Andres and Calogne 2005; Bishop, Chow, and Zeager 2005). Finally, bootstrapping of standard errors may perform differently for inequality measures than for poverty measures (Davidson and Flachaire 2005). Since subset selection is based on estimates of standard errors (as we shall see), the accuracy of the procedure may be limited by the accuracy of the standard errors.

II. Data

The data used in this study come from the Luxembourg Income Study (LIS). The LIS database is a collection of household income surveys from various countries. These surveys provide demographic, income, and expenditure information on three different levels: household, person, and child.

This study uses the widely accepted data transformations used in the LIS literature. That is, the data are truncated at the top and bottom of the distribution, equivalence scales are implemented, and weights are used. The bottom coding is at one percent of the equivalized mean
and the top coding is at ten times the unequivalized median. The equivalence scale used is the square root of the number of persons. The person weight used is the household weight times the number of persons. Double counting of observations is also avoided, as well as missing disposable income and missing weights. Therefore, the observation is the disposable equivalized income of the individual with truncation at the top and bottom of the distribution.

Table 1 displays the countries with their respective years and the sample sizes that are used for the cross-sectional single period analysis. This country list is compiled from the latest LIS Social Distance and Social Exclusion publication. The comparison of inequality measures is based on the latest sample of LIS countries. The latest observation is used for each of the twentynine countries in the sample. These country observations range in years from 1990 to 2002. Their sample sizes range from 2,013 to 49,251 observations.

Table 2 displays the countries, years, and sample sizes for the panel analysis on inequality. The panel analysis follows the same set of twelve countries through the four latest LIS waves, which are labeled Waves II through V. This particular set of countries was chosen due to certain criteria, most important of which is that these twelve countries had at least one set of observations in each of the latest four LIS waves ${ }^{9}$. These countries include Australia, Austria, Belgium, Canada, Finland, France, Germany, Ireland, Israel, Italy, Luxembourg, Mexico, Norway, Sweden, Taiwan, United Kingdom, and United States ${ }^{10}$. The country observations range from 1984 to 1987 in Wave II, 1989 to 1992 in Wave III, 1994 to 1998 in Wave IV, and 1999 to 2000 in Wave V.

III. Methology

A. INEQUALITY ESTIMATION

For the measurement and panel analyses, the magnitudes and bootstrap standard errors for three inequality indices are calculated by the authors according to the specifications laid out in the

Technical Appendix. For the single period analysis, the Gini coefficient, Theil index, and Varlog index are used. The Gini coefficient represents the commonly used inequality measure, the Theil index represents the dispersion measures, and Varlog index is used as an example of a relatively imprecise inequality measure. Note that these analyses need not be limited to these measures. For the panel analysis, only the Gini coefficient is used.

Suppose there is a country with a given sample of incomes, X, that forms a set of incomes, $X=x_{1}, \ldots, x_{n}$, where x_{j} is the income of an individual and n is the sample size of individuals within the country. In order to calculate the inequality within this sample, an index can be calculated. In this study, the inequality index will be denoted with a g, for the Gini coefficient, but will representative for all of the indices throughout the methodology. The notation can be simplified to $g=g(X)$, where g is now the inequality index as a function of a sample of incomes, X. This inequality calculation can then be applied to more than one sample of incomes, with each sample representing a different country. This yields a set of inequality estimates:

$$
\begin{equation*}
g_{1}, \ldots, g_{k} \tag{1}
\end{equation*}
$$

where g_{i} is the inequality estimate of an individual country, and k is the number of countries. Let $G=\{1, \ldots, k\}$ be the set of indices for all countries in the sample.

The standard errors for these estimates are then calculated using the bootstrap technique with 100 replications. Let the bootstrap standard error of g_{i} be ω_{i}. Due to the truncation of the data, it is has been pointed out by Davidson and Flachaire (2004) that the standard bootstrap standard errors are acceptable. If we were to use the full distribution without the truncation, Davidson and Flachaire offer a better bootstrapping method, which can be applied to empirical studies that examine the full distribution.

B. MAGNITUDE RANKING

The inequality estimates can now be ranked by country according to their respective magnitudes. This is done to gauge the relative ordering of inequality between countries in a given time period. These estimates then form the rank statistic:

$$
\begin{equation*}
g_{[1]} \leq \ldots \leq g_{[k-1]} \leq g_{[k]} \tag{2}
\end{equation*}
$$

where the bracketed subscripts represent the rank ordering of inequality estimates. Note that the lowest estimate is at the top of the ranking (most equal) and the largest is at the bottom of the ranking (least equal). Also, this rank ordering will always be linear, complete, and transitive. Linearity means that that the relationships between inequality estimates can always be represented linearly ${ }^{11}$. Completeness means that all of the relationships between the estimates are defined. Transitivity means that if x is better than y , and y is better than z , then x is better than z .

Table 3 presents the magnitude ranking results of the Gini, Theil, and Varlog measures for comparison. The Spearman's rank relation coefficient is calculated for the ranking relationship between each measure. Using the magnitude ranking, the Gini and Theil rankings have a 0.976 correlation measure, which means they are 97.6 percent correlated in ranking. The Gini and Varlog measures have a 83.1 percent correlation between magnitude rankings and the Theil and Varlog measure have a 82.3 percent correlation.

Table 4 shows the magnitude ranking results of the panel for all four waves using the Gini index. The correlation coefficient, Spearman's rank relation coefficient, has been calculated for the magnitude ranking between each of the waves. Moving from Wave II to III, there is a 95.1 percent rank relation. Moving from Wave III to IV, it is a 98.6 percent rank relation, and moving from Wave IV to Wave V, we have a 97.2 percent rank relation. So, the magnitude rankings are not that different mainly because the same measure is used over waves, rather than different measures in one time period as in the single period analysis.

C. MULTIVARIATE SUBSET SELECTION

Given a pre-specified inferential error rate, $\alpha \in(0,0.5)$, define the following non-empty subsets: $S_{1 B}^{\alpha} \subset G$ and $S_{1 W}^{\alpha} \subset G$, where $S_{1 B}^{\alpha}$ is "the subset of the first-best at confidence level $1-\alpha$ " and $S_{1 W}^{\alpha}$ is "the subset of the first-worst at confidence level $1-\alpha$ ". That is:

$$
\begin{align*}
& \operatorname{Pr}\left\{[k] \in S_{1 W}^{\alpha}\right\} \geq 1-\alpha \tag{3a}\\
& \operatorname{Pr}\left\{[1] \in S_{1 B}^{\alpha}\right\} \geq 1-\alpha \tag{3b}
\end{align*}
$$

Equivalently:

- with probability at least 1- α, the subset $S_{1 W}^{\alpha}$ contains the indices of the first-worst inequality measures, which means that countries in $S_{1 W}^{\alpha}$ are the least equal, or most unequal countries, in terms of income in G,
- with probability at least 1- α, the subset $S_{1 B}^{\alpha}$ contains the indices of the first-best inequality measures, which means that the countries in $S_{1 B}^{\alpha}$ are the most equal, in terms of income in G.

Now, the countries in $S_{1 B}^{\alpha}$ and $S_{1 W}^{\alpha}$ are removed from the sample, so that we are left with the subset:

$$
\begin{equation*}
G^{*}=G-\left(S_{1 B}^{\alpha} \cup S_{1 W}^{\alpha}\right) \tag{4}
\end{equation*}
$$

so that $G^{*} \subset G$ contains indices of all counties that were neither first-best nor first-worst in terms of inequality. Let us assume that G^{*} is non-empty (this has no effect on what follows). Let the cardinality of G^{*} be $k^{*}<k$ so that $G^{*}=\left\{1^{*}, \ldots, k^{*}\right\}$, and the ranked inequality measures of the countries in G^{*} are:

$$
\begin{equation*}
g_{\left[1^{*}\right]} \leq \ldots \leq g_{\left[k^{*}-1\right]} \leq g_{\left[k^{*}\right]} \tag{5}
\end{equation*}
$$

Define non-empty subsets $S_{2 B}^{\alpha} \subset G^{*}$ and $S_{2 W}^{\alpha} \subset G^{*}$, where $S_{2 B}^{\alpha}$ is "the subset of the second-best at confidence level $1-\alpha$ " and $S_{2 W}^{\alpha}$ is "the subset of the second-worst at confidence level $1-\alpha$ ". That is:

$$
\begin{align*}
& \operatorname{Pr}\left\{\left[k^{*}\right] \in S_{2 W}^{\alpha}\right\} \geq 1-\alpha \tag{6a}\\
& \operatorname{Pr}\left\{\left[1^{*}\right] \in S_{2 B}^{\alpha}\right\} \geq 1-\alpha \tag{6b}
\end{align*}
$$

Equivalently:

- with probability at least 1- α, the subset $S_{2 W}^{\alpha}$ contains the indices of the second-worst inequality measures, which means that countries in $S_{2 W}^{\alpha}$ are the least equal, or most unequal countries, in terms of income in G,
- with probability at least 1- α, the subset $S_{2 B}^{\alpha}$ contains the indices of the second-best inequality measures, which means that the countries in $S_{2 B}^{\alpha}$ are the most equal, in terms of income in G.

If we are willing to assume normality of the income inequality measures g_{i} (or at least asymptotic normality of the usual functions of g_{i}), and if we are willing to assume independence of the g_{i}, then the subsets can be defined as follows:

$$
\begin{align*}
& S_{1 W}^{\alpha}=\left\{s: g_{s}-g_{j}+t_{v_{1}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2} \geq 0 ; \forall j \neq s\right\} \tag{7a}\\
& S_{1 B}^{\alpha}=\left\{s: g_{j}-g_{s}+t_{v_{1}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2} \geq 0 ; \forall j \neq s\right\} \tag{7b}
\end{align*}
$$

for j and s in G, and

$$
\begin{align*}
& S_{2 W}^{\alpha}=\left\{s: g_{s}-g_{j}+t_{v_{2}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2} \geq 0 ; \forall j \neq s\right\} \tag{8a}\\
& S_{2 B}^{\alpha}=\left\{s: g_{j}-g_{s}+t_{v_{2}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2} \geq 0 ; \forall j \neq s\right\} \tag{8b}
\end{align*}
$$

for j and s in G^{*}. The $t_{v_{1}}^{\alpha}$ is a critical value from ($k-1$)-dimensional, independent t distribution with v_{1} degrees of freedom and diagonal variance matrix with typical elements $\left(\omega_{s}^{2}+\omega_{j}^{2}\right)$ for $j \neq s$, such that $\operatorname{Pr}\left\{\max _{j} t_{j} \leq t_{v_{1}}^{\alpha}\right\}=1-\alpha$. Similarly, the $t_{v_{2}}^{\alpha}$ is a critical value from $\left(k^{*}-1\right)-$ dimensional, independent t distribution with v_{2} degrees of freedom and diagonal variance matrix with typical elements $\left(\omega_{s}^{2}+\omega_{j}^{2}\right)$ for $j \neq s$, such that $\operatorname{Pr}\left\{\max _{j} t_{j} \leq t_{v_{2}}^{\alpha}\right\}=1-\alpha$. Discussions of
these probability integrals can be found in Horrace and Schmidt (2000), Horrace and Keane (2004), and Horrace (2005). Under an independence assumption, the multi-dimensional probability integrals reduce to one-dimensional integrals that are readily calculable in the GAUSS programming language or in Mathematica (see Horrace and Schmidt 2000, for details).

Consider the statement in equation (7a). This equation says to: select country s from G to be in contention for the first-worst (in $S_{1 W}^{\alpha}$), if the difference $g_{s}-g_{j}$ is non-negative (≥ 0) for all $j \neq s$ after adjusting by the statistical tolerance $t_{v_{1}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2}$. That is, designate country s as having high income inequality if its income inequality is consistently larger than all other countries in a statistical sense (after adjustment for sampling variability). Similarly, equation (7b) says to: select country s from G to be in contention for the first-best (in $S_{1 B}^{\alpha}$), if the difference $g_{j}-g_{s}$ is non-negative (≥ 0) for all $j \neq s$ after adjusting by the statistical tolerance. Similar statements are forthcoming for membership in the subset of second-worst ($S_{2 W}^{\alpha}$) and second best ($S_{2 W}^{\alpha}$) when selection is from G^{*} and the degrees of freedom are v_{2}.

The probability statements in (3a,b) and (6a,b) are extremely powerful. They allow a better understanding of the significance of the ranking for each of the inequality measures, while accounting for sampling variability captured in the bootstrapped standard errors. Notice that the probability statement $\operatorname{Pr}\left\{\max _{j} t_{j} \leq t_{v_{1}}^{\alpha}\right\}=1-\alpha$ implies that $t_{v_{1}}^{\alpha}$ is decreasing in α. That is, $t_{v_{1}}^{.05}$ is greater than $t_{v_{1}}^{10}$. Therefore, as our inferential confidence level gets larger (α get smaller), the statistical tolerance of the probability statements, $t_{v_{1}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2}$, gets larger (as one would expect). Consequently, as the confidence level increases, $g_{s}-g_{j}+t_{v_{1}}^{\alpha}\left(\omega_{s}^{2}+\omega_{j}^{2}\right)^{1 / 2}$ is more likely to be positive for each s, and, therefore, the cardinality of $S_{1 W}^{\alpha}$ will increase; there will be more countries in contention for the first-worst at higher confidence levels. Therefore, at higher confidence levels the inference will be "less sharp" in the sense that we cannot differentiate bad
countries from good countries with a high probability. At a low enough confidence level, $S_{1 W}^{\alpha}$ will reduce to a singleton, so that a single country can be designated as first-worst in income inequality at the $1-\alpha$ level (a lower probability). A similarly relationship holds for subset of the first-best; as the confidence level increases more countries will be in contention for the first-best, and as the confidence level decreases $S_{1 B}^{\alpha}$ will reduce to a singleton, so that a single country can be designated as first-best in income inequality at the $1-\alpha$ level.

IV. EMPIRICAL RESULTS

A. SINGLE PERIOD ANALYSIS

The subset selection results for each measure are shown in Table 5a through Table 5c and then summarized in Table 6. Table 5a shows the results for the Gini index. The Gini coefficients range from the most equal with a Gini of 0.23647 (Denmark) to the least equal of 0.49094 (Mexico), while the bootstrap standard errors range from the most precise of 0.00183 (United States) to the least precise of 0.01082 (Ireland). The first subset selection produces a first-best subset of two countries (Denmark and Slovak Republic, denoted "1B" in the table) and a firstworst subset of one country (Mexico, denoted "1W" in the table). These three countries are then dropped and the second subset selection procedure is performed. The second subset selection procedure produces a large second-best subset of seven countries (denoted "2B" in the table) and a sole country in the second-worst subset (Russia denoted " 2 W " in the table).

The salient feature of the selection procedure is that the first-best and second-best subsets contain more than one country, because the differences in magnitudes of the coefficients are relatively small. When precision of the estimators is taken into account, these small differences become indistinguishable. Also, at the bottom of the ranking, the first-worst and second-worst subsets only contain one country due to the large differences in magnitudes at the bottom of the rank order. Another interesting point is that the second-best subset includes Luxembourg but
does not include the Czech Republic, even though Luxembourg (ranked tenth) is lower in the ranking than the Czech Republic (ranked ninth). This is due to relative precision of the Czech Republic coefficient, shown by its smaller bootstrap standard error (0.00267), as compared with its ranking neighbors of the Netherlands (0.00413) and Luxembourg (0.00493). Therefore, with 90 percent probability, we can say that the Czech Republic is not in the second-best subset while Luxembourg is.

Table 5b shows the single period analysis for the Theil index. The coefficients range from the most equal of 0.10318 (Denmark) to the least equal of 0.43442 (Mexico), while the bootstrap standard errors range from most precise of 0.00284 (Poland) to least precise of 0.01848 (Ireland). The first subset selection procedure produces a first-best subset of seven countries with no breaks and a first-worst subset of one country. A 'break’ is defined as a country that is excluded from a subset of its nearest neighbors in the rank order. After discarding those subsets, the second subset selection procedure finds five countries in the second-best subset and one country in the second-worst subset. Again, the top of the rank order is much closer in magnitudes than the bottom of the rank order.

Table 5c shows the results for the Varlog measure. Note that the Varlog index is the least precise measure of inequality used in this study. It is included to show how the subset selection method produces vastly different results depending on the characteristics of the measure. The Varlog coefficients range from the most equal of 0.20895 (Finland) to the least equal of 0.89161 (Switzerland). The bootstrap standard errors range from 0.00377 (Romania) to the least precise at 0.05603 (Switzerland). The first subset selection procedure produces three countries in the first-best subset and also three in the first-worst subset. The second subset selection procedure produces nine countries in the second-best and three countries in the second-worst. Note that with the Varlog measure, ties are produced at the bottom of the ranking, unlike the other two measures. The second subset is most interesting. According to the magnitude ranking, both

France and Poland should be included in the second-best subset, but they are not. This is due to the relative precision of their estimates compared with their neighbors in the ranking. So, it can be said, that with 90 percent confidence, these two countries do not belong in the second-best subset, whereas that cannot be said for Germany, Austria, and Hungary.

Table 6 summarizes the countries in the first-best, second-best, first-worst, and secondworst subsets for each of the three inequality measures. Note that Denmark is in the first-best subset for both the Gini and Theil, but not in either the first-best or second-best for the Varlog. Note that Finland is in the first-best subset for both the Theil and Varlog, but is only in the second-best subset using the Gini. Also, examining the subsets of the worst, Russia is in the second-worst subset for the Gini and Theil, but moves into the subset of the first-worst using the Varlog, along with Mexico and Switzerland.

To conclude the single period analysis, the subset selection procedure shows that different inequality measures produce differing magnitude rankings as shown by the Spearman’s rank relation coefficient. In addition, when the precision of these estimates is taken into consideration, as given by the bootstrap standard error, we can say with high probability which countries are no different from one another at the top and bottom of the rankings. And sometimes, this allows some countries to be excluded in the best and worst subsets ('breaks'), even though they may look similar given the magnitude of their coefficients.

B. PANEL ANALYSIS

The subset selection results are shown for the Gini measure for each LIS Wave in Table 7a through Table 7d. Table 7a presents the Gini subset selection results for Wave II of the LIS data. The magnitudes range from 0.20856 (Finland) to 0.44773 (Mexico). The standard errors range from 0.00173 (Finland) to 0.00753 (Mexico). The first-best is Finland, with the second-best being Sweden. The first-worst is Mexico, with the second-worst being Italy and the United

States. The rest of the countries are contained in the middle subset. Note that using the critical values at the 90 and 95 percent yield the same subset results.

Table 7b presents the Gini subset results for Wave III. The magnitudes range from 0.20964 (Finland) to 0.048523 (Mexico). The standard errors range from 0.00158 (Finland) to 0.00613 (Luxembourg). The first-best is again Finland, with the second-best being Sweden, Norway, and Luxembourg. The first-worst is again Mexico, with the second-worst being the United States and United Kingdom. These results are the same using either level of confidence (0.90 or 0.95).

Table 7c presents the Gini results for Wave IV. The magnitudes range from 0.21671 (Finland) to 0.49364 (Mexico). The standard errors range from the most precise 0.00203 (United States) to least precise 0.00523 (Italy). The first-best is Finland and Sweden, with the secondbest being Norway. The first-worst is Mexico, with the second-worst being the United States. Again, the results for both critical values are the same.

Table 7d presents the Gini subset selection results for Wave V. The magnitudes range from 0.24742 (Finland) to 0.49094 (Mexico). The standard errors range from 0.00183 (United States) to 0.00604 (Mexico). The first-worst is Mexico and second-worst is the United States at both critical values (0.90 and 0.95). However, the first-best and second-best subsets differ by critical value. At the 90 percent level, the first-best is Finland, Norway, and Sweden, while the second-best is Luxembourg and Germany. At the 95 percent level, the first-best is Finland, Norway, Sweden, and Luxembourg, with the second-best being Germany, with Luxembourg moving between subsets according to the level of confidence.

Table 8 brings the subset selection results for the four waves of Gini measures together in one table, in order to compare which countries are moving in and out of the subsets over time. In this table, Finland is shown to always be in the subset of the first-best and Mexico is always in the subset of the first-worst. However, Finland is joined in the subset of the first-best by more
countries over time, which would lead one to conclude that countries are catching up to Finland in equality (in a relative sense). It could also be that Finland is moving down, however. For instance, Sweden is contained in the second-best subset for the first two waves, but moves up to the first-best subset in the last two waves. At the bottom, the United States is consistently contained in the second-worst subset over the four waves, but it only stands alone in the last two waves. In the first two waves it is joined with Italy, and then the United Kingdom.

To conclude, the panel analysis for inequality shows that looking at magnitude alone tells us only a partial story, especially in movements across waves. Because the concept of relative inequality is important, we can say with high probability which countries are in the top and bottom of the ranking, and also which are the 'runners-up' to those top and bottom subsets. This gives researchers of inequality a first look at how cutoffs in relative movements can be established by the precision of the estimators rather than by arbitrary magnitude cutoff rules.

V. Extension to Poverty

For the relative poverty panel analysis, the relative poverty measure is 50 percent of the median for the total population. The magnitudes of this estimator come directly from LIS Key Figures, along with their respective bootstrap standard errors. It is best to use these widely accepted measures, in order to compare our results to previous LIS studies that use similar measures. There is an issue here of whether poverty is relative or absolute in nature, though this mainly depends on how you are viewing it. In this study, international comparisons of poverty are used, so poverty is relative in nature.

Table 9 presents the magnitude ranking results for the twelve countries over the four waves according to the relative poverty measure. The Spearman's rank relation coefficient is again calculated. The relative poverty rankings are shown to change a lot more from wave to wave than the inequality results for the panel. From Wave II to III, the Spearman's rank relation
coefficient is 0.839 . From Wave III to IV, it is 0.888 . From Wave IV to V, it is 0.986 . We can see that the rankings differ more in the first waves than in the latter waves.

The subset selection technique is again applied to the panel data. The results for relative poverty are contained in Table 10a through Table 10d. Table 10a shows the subset results for Wave II. The magnitudes range from 5.2 (Taiwan) to 20.8 (Mexico). The standard errors range from 0.20 (Taiwan) to 0.89 (Mexico). The first-best subset contains three countries: Taiwan, Luxembourg, and Finland. The second-best subset contains Norway, Sweden, and Germany. The first-worst subset contains Mexico, with the second-worst being the United States. These results are the same at both the 90 and 95 percent level.

Table 10b contains the relative poverty results for Wave III. The magnitudes range from 4.7 (Luxembourg) to 20.6 (Mexico). The standard errors range from the most precise 0.22 (Taiwan) to the least precise 0.71 (Luxembourg). The subset of the first-worst contains Mexico, with the second-worst contains the United States. This is true at either the 90 or 95 percent confidence level. However, the subsets of the first-best differ at the two confidence levels. At the 90 percent level, the first-best subset contains Luxembourg, Finland, Germany, and Norway, whereas at the 95 percent level, Taiwan is also included among the first-best. Taiwan's poverty measure is estimates with high precision (standard error of 0.22). At the 90 percent level the smaller critical value (2.298) combines with the small standard error to allow us to infer that Taiwan is not best with at least 90 percent probability. However, the larger critical value (2.571) at the 95 percent confidence level, makes Taiwan statistically indistinguishable from the other countries in the first-best subset, even though its measure is estimated with very high precision. This is an interesting result.

Table 10c shows the analysis on Wave IV of the LIS panel data. The magnitudes range from 4.2 (Finland) to 22.1 (Mexico). The standard errors range from 0.19 (United States) to 0.61
(Luxembourg). The first-best is Finland. The second-best subset contains Luxembourg, Sweden, and Norway. The first-worst is Mexico and the second-worst is the United States.

Table 10d shows the subset selection results for Wave V. The magnitudes range from 5.4 (Finland) to 21.6 (Mexico). The standard errors range from 0.22 (Sweden) to 0.78 (Luxembourg). At 90 percent confidence, Finland and Luxembourg are contained in the first-best subset, whereas at 95 confidence, Norway is also included with Finland and Luxembourg. At the 90 percent confidence level, Norway and Sweden are included in the second-best subset, whereas at 95 percent confidence, only Sweden is in the second-best subset. The first-worst is Mexico, with the second-worst being the United States, and this is true at both confidence levels.

Table 11 displays all subset results for the relative poverty panel analysis. It is useful to compare the poverty results in Table 11 to the Gini results in Table 8. It can be seen the countries that tend to be the worst in terms of inequality (Gini) also tend to be the worst in terms of poverty, and these results are fairly consistent over time (i.e. Mexico and the U.S. are always first-worst and second-worst, respectively, and they are almost always the sole-possessors of this distinction over time). Finland is always in the subset of first-best. For inequality (Gini in Table 8), the cardinality of the first-best in monotonically non-decreasing in time. Moreover, once a country enters the first-best subset, it stays there over time. The results are less consistent for the poverty measure in Table 11. While Finland is always in the first-best subset of poverty, it is only in sole-possession of this distinction in Wave IV. In preceding and successive waves it is not alone. In particular, Luxembourg is in the first-best subset for relative poverty in all waves except Wave IV. Why does this inconsistency exist in the first-best poverty rankings over time, but not in the first-best inequality rankings? This is not a simple question to answer. Because there are many features of the inference that are simultaneously changing over waves, over counties, and over measures, exact ceteris paribus comparisons are not possible. That being said, it does appear that the critical values at any particular confidence level remain relatively constant
across countries, waves, and measures. For example, compare the values in the " 1 st Crit Val 90\%" column in Tables 7a-d and Tables 10a-d; they are all approximately the same. Therefore, most of the difference in the dynamics of the measures is probably due to either differences in the magnitudes of each measure across countries or differences in the bootstrapped standard errors of each measure across countries. This later possibility may be linked to the arguments made by Davidson and Flachaire (2005) who suggest that bootstrapped standard errors have different levels of accuracy for inequality measures than for poverty measures. Perhaps this is what is driving the different results across the Gini and the relative poverty measures.

VI. Conclusions

This study has applied a subset selection procedure to the analysis of rank statistics in an income and poverty study. For the single period analysis, we have shown that precision matters when ranking different estimators and that estimators differ in their ranking interpretation under the selection procedures. For the panel analysis, using a subset selection procedure improves our understanding of the relative movements of countries in and out of various inequality ranks at a given level of confidence. If lowering inequality or poverty is of interest to policy makers, then understanding which set of countries are performing the best (in a statistical sense) is obviously important. New policies can be fashioned after countries that are performing particularly well.

There may be other unexplored applications of subset selection procedures in the inequality literature. For example, subset selection may be applied to a single country in the LIS data that has multiple observations across the waves. Subset selection would be applied here to the set of years of a given country, in order to see which years were best and worst and how the inequality situation of the country has changed or not changed over time. Because inequality does not change much over time in a given country, however, there may not be enough variation to produce interesting results (i.e., the years are simultaneously indistinguishable in a statistical
sense). Another potential problem is that the estimate of inequality in one year may be correlated with the same measure in subsequent years. The selection procedure described herein assumes zero correlation across measures, this would need to be incorporated into the procedure. This is not necessarily difficult to do as long as consistent estimates of the correlations are available. How one would estimate these correlations remains to be seen.

Another potential application is to compare the subsets of this procedure with the subsets produced by the techniques of stochastic or Lorenz dominance. The ranking of the scalar measures produces a linear ranking that leaves one country at the top of the rank ordering and one country at the bottom (when the coefficients are not rounded). When precision is accounted for with a subset selection procedure, it produces a subset at the top (all countries at the top that cannot be distinguished from one another) and a subset at the bottom (all countries at the bottom that cannot be distinguished from one another). The stochastic and Lorenz dominance procedures also produce a subset at the top (all countries that are not dominated by any other country) and bottom (all countries that are dominated by all other countries). One may think that the subsets created by these different techniques might be related somehow. However, there is no mathematical reason for these subsets to be the same. While this issue is not addressed in this research, it may be an area worth exploring in greater detail.

Endnotes

* The authors would like to thank John Bishop, Jeff Thompson, and Beyza Ural for their helpful comments on the first draft and to Mary Santy for excellent editorial assistance. The authors would also like to thank Russell Davidson for an early conversation regarding this study.
**(C) 2005 by William C. Horrace, Joseph T. Marchand, and Timothy M. Smeeding. All rights reserved. The authors are responsible for any errors.

1. Indeed, in economics absolute measures are not often identified; typically only relative measures are. For a more detailed discussion of these issues, see Horrace (2005), Atkinson and Bourguignon (2000), and Atkinson, Rainwater, and Smeeding (1995).
2. Subset selection has also been applied in the analysis of productive efficiency and labor market wage differentials.
3. Such inference is called "per comparison" inference and ignores the multiplicity implicit in the rank ordering. It is not just that country A is bigger than B; it is that A is bigger than B and bigger than C but, perhaps, smaller than D; a multiple inferential statement.
4. For instance, the 1 percentage point difference in centile shares used by Atkinson, Rainwater and Smeeding (1995) as a rule of thumb.
5. For interpretation, it is worthwhile to point out that part of this discussion is the issue of point estimation versus interval estimation. This is an issue for policy makers, as they usually want a point estimate rather than an interval. The subset selection allows the policy maker to 'have their cake and eat it too.' That is, they get point estimates along with the precision of an interval. Subset selection is an intuitive way to incorporate the precision of the point estimates in a ranking setting. Also, policy makers tend to make too
much of a relative ranking without viewing the ranking in contexts of statements of confidence.
6. See also Shorrocks (2004) who argues for using constant scale factors in assessing rankings of nominal and adjusted income.
7. Stochastic or Lorenz dominance techniques can also be used to obtain a ranking of measures for inequality, by directly comparing their curves, either the cumulative distribution function (cdf) or Lorenz respectively. Using these techniques, there is more of a chance of a tie at the top or bottom of the ranking as one country may not stochastically or Lorenz dominate the one below it. These techniques also expose ties that can exist in the middle of ranking. A Hasse diagram can be drawn to visualize these relationships (see Atkinson, Rainwater, and Smeeding 1995, Figure 4.4 on p45). These techniques may not, however, produce a linear, complete, and transitive rank ordering.
8. For example, see the bootstrap standard errors for LIS key inequality and poverty rate figures at http://www.lisproject.org/keyfigures.htm.
9. Belgium could be added to this panel as soon as the 2000 is finished LISifying. Mexico Wave V also has a 2002 observation available. Sweden 2000 is for real Households. UK may or may not be the FES dataset. US has an observable jump in inequality from 1991 to 1997 due to a definition change in 1993.
10. Note the countries that turn out to be the best and worst in a ranking of countries are a function of exactly which countries were included in that ranking. Adding a country or subtracting a country from the set may change the best and worst of the ranking of that set.
11. A Hasse diagram represents an example of a set of relationships which are not necessarily linear.

Technical Appendix

The Gini, Theil, and Varlog indices and their respective bootstrap standard errors were calculated using a Stata program called ineqerr from Jolliffe and Krushelnytskyy (1999). The definitions used are as follows.

The weighted Gini coefficient used in this study follows the formula:

$$
\begin{equation*}
G=1+\frac{1}{N}-\frac{2}{N^{2} \mu_{w}} \sum_{h=1}^{H} w_{h} \bar{\rho}_{h} M_{h} \tag{A1}
\end{equation*}
$$

where N is the weighted sample size (or the number of individuals in the sample when the weight is household size), μ_{w} is the weighted average value of M, w_{h} is the weight that adjusts the measure to reflect inequality of individuals and not households, $\bar{\rho}_{h}$ is the average rank of all the individuals in household h ranging from 1 to H , and M_{h} is the measure of welfare which is sorted in descending order so that M_{1} is the richest individual and M_{H} is the poorest individual.

The Theil entropy measure used in this study follows the formula:

$$
\begin{equation*}
T=(1 / H) S_{h}\left(M_{h} / \bar{M}\right) \log \left(M_{h} / \bar{M}\right) \tag{A2}
\end{equation*}
$$

where H is the sample size, S_{h} is the income share, M_{h} is income, and \bar{M} is mean income.
The Variance of Logs (Varlog) formula is:

$$
\begin{equation*}
V=\frac{1}{H} \Sigma_{h}\left[\ln M_{h}-\overline{\ln M}\right]^{2} \tag{A3}
\end{equation*}
$$

where the terms are defined as above, except the mean is now of the log of incomes.
This study also the uses the Spearman's rank relation coefficient. It is calculated with the formula:

$$
\begin{equation*}
\left(R^{2}\right)=1-\frac{6 \sum d^{2}}{n^{3}-n} \tag{A4}
\end{equation*}
$$

where d is the difference between the two rankings and n is the size of the sample.

Table 1. Countries, Years, and Sample Sizes for the Single Period Analysis (1990-2002)

Country	Code	Year	n
Australia	AS	1994	6,464
Austria	AT	1997	2,676
Belgium	BE	1997	4,619
Canada	CA	2000	28,970
Czech Rep.	CZ	1996	28,131
Denmark	DK	1992	12,829
Estonia	EE	2000	6,062
Finland	FI	2000	10,421
France	FR	1994	11,289
Germany	GE	2000	10,982
Hungary	HU	1999	2,013
Ireland	IE	2000	2,447
Israel	IL	2001	5,787
Italy	IT	2000	7,925
Luxembourg	LX	2000	2,418
Mexico	MX	2002	17,121
Netherlands	NL	1999	4,971
Norway	NW	2000	12,904
Poland	PL	1999	31,375
Romania	RO	1997	32,187
Russia	RL	2000	3,055
Slovak Rep.	SK	1996	16,197
Slovenia	SI	1999	3,858
Spain	SP	1990	21,102
Sweden	SW	2000	14,491
Switzerland	CH	1992	6,277
Taiwan	TW	2000	13,801
United Kingdom	UK	1999	24,976
United States	US	2000	49,351
SousAar			

Source: Authors' estimates of LIS data
Note: $\mathrm{n}=$ sample size

Table 2. Countries, Years, and Sample Sizes for the Panel Analysis by Wave

Country	Code	Wave II	n	Wave III	n	Wave IV	n	Wave V
Canada	CA	1987	10,987	1991	20,003	1998	31,217	2000
Finland	FI	1987	11,863	1991	11,748	1995	9,261	2000
Germany	GE	1984	5,186	1989	4,407	1994	6,374	2000
Israel	IL	1986	4,997	1992	5,212	1997	5,230	2001
Italy	IT	1987	8,009	1991	8,175	1995	8,120	2000
Luxembourg	LX	1985	2,008	1991	1,957	1997	2,514	2000
Mexico	MX	1984	4,714	1992	10,489	1998	10,889	2000
Norway	NW	1986	4,969	1991	8,059	1995	10,114	2000
Sweden	SW	1987	9,516	1992	12,483	1995	16,256	2000
Taiwan	TW	1986	16,434	1991	16,434	1997	13,701	2000
United Kingdom	UK	1986	7,174	1991	7,056	1995	6,794	1999
United States	US	1986	11,577	1991	14,655	1997	50,069	2000

Source: Authors' estimates of LIS data
Note: $\mathrm{n}=$ sample size

Table 3. Magnitudes, Standard Errors, and Rank for Single Period Analysis

Country	Code	Gini			Theil			Varlog		
		coef	(s.e.)	rank	coef	(s.e.)	rank	coef	(s.e.)	rank
Denmark	DK	0.23647	(0.00267)	1	0.10318	(0.00364)	1	0.32406	(0.01319)	16
Slovak Republic	SK	0.24073	(0.00403)	2	0.10455	(0.00510)	3	0.25540	(0.01074)	5
Finland	FI	0.24742	(0.00268)	3	0.11409	(0.00381)	6	0.20895	(0.00525)	1
Slovenia	SI	0.24942	(0.00417)	4	0.10542	(0.00398)	4	0.24909	(0.00987)	4
Belgium	BE	0.25018	(0.00360)	5	0.10392	(0.00335)	2	0.28164	(0.01803)	9
Norway	NW	0.25077	(0.00338)	6	0.12981	(0.00550)	12	0.27802	(0.00983)	8
Sweden	SW	0.25151	(0.00273)	7	0.11608	(0.00350)	8	0.26779	(0.00903)	7
Netherlands	NL	0.25618	(0.00413)	8	0.11517	(0.00458)	7	0.36694	(0.02009)	18
Czech Republic	CZ	0.25884	(0.00267)	9	0.12050	(0.00356)	9	0.21676	(0.00413)	3
Luxembourg	LX	0.25964	(0.00493)	10	0.11248	(0.00475)	5	0.21387	(0.00782)	2
Germany	GE	0.26360	(0.00299)	11	0.12058	(0.00376)	10	0.28403	(0.01357)	11
Austria	AT	0.26597	(0.00518)	12	0.12228	(0.00619)	11	0.29679	(0.01986)	13
Romania	RO	0.27721	(0.00244)	13	0.14107	(0.00388)	13	0.26018	(0.00377)	6
France	FR	0.28832	(0.00319)	14	0.14849	(0.00474)	14	0.28343	(0.00687)	10
Poland	PL	0.29306	(0.00203)	15	0.15645	(0.00284)	17	0.29299	(0.00463)	12
Hungary	HU	0.29496	(0.00727)	16	0.15496	(0.00897)	16	0.30049	(0.02218)	14
Taiwan	TW	0.29628	(0.00234)	17	0.15138	(0.00308)	15	0.30346	(0.00532)	15
Canada	CA	0.30175	(0.00299)	18	0.16017	(0.00422)	19	0.41126	(0.01167)	20
Spain	SP	0.30308	(0.00265)	19	0.15698	(0.00371)	18	0.34488	(0.00714)	17
Switzerland	CH	0.30705	(0.00472)	20	0.17942	(0.00691)	21	0.89161	(0.05603)	29
Australia	AS	0.31085	(0.00422)	21	0.16289	(0.00515)	20	0.58140	(0.02933)	26
Ireland	IE	0.32326	(0.01082)	22	0.19014	(0.01848)	22	0.38067	(0.02558)	19
Italy	IT	0.33295	(0.00501)	23	0.19635	(0.00721)	23	0.44915	(0.01710)	21
United Kingdom	UK	0.34489	(0.00212)	24	0.21059	(0.00343)	25	0.50051	(0.01022)	23
Israel	IL	0.34641	(0.00407)	25	0.20672	(0.00617)	24	0.46314	(0.02014)	22
Estonia	EE	0.36074	(0.00524)	26	0.22842	(0.00851)	26	0.55423	(0.02082)	24
United States	US	0.36809	(0.00183)	27	0.24350	(0.00297)	27	0.57112	(0.00863)	25
Russia	RL	0.43436	(0.00652)	28	0.33226	(0.01092)	28	0.80985	(0.03334)	27
Mexico	MX	0.49094	(0.00604)	29	0.43442	(0.01192)	29	0.87020	(0.02119)	28

Source: Authors' estimates of LIS data
Note: for formulas of Gini, Theil, and Varlog, see Technical Appendix

Table 4. Magnitudes, Standard Errors, and Rank for Gini Panel Analysis

Country	Code	Wave II			Wave III			Wave IV			Wave V		
		Gini	s.e.	rank									
Finland	FI	0.20856	(0.00173)	1	0.20964	(0.00158)	1	0.21671	(0.00268)	1	0.24742	(0.00268)	1
Sweden	SW	0.21771	(0.00202)	2	0.22912	(0.00230)	2	0.22133	(0.00224)	2	0.25151	(0.00273)	3
Norway	NW	0.23287	(0.00330)	3	0.23124	(0.00388)	3	0.23766	(0.00343)	3	0.25077	(0.00338)	2
Luxembourg	LX	0.23658	(0.00405)	4	0.23895	(0.00613)	4	0.25994	(0.00498)	4	0.25964	(0.00493)	4
Germany	GE	0.26826	(0.00579)	5	0.25739	(0.00576)	5	0.27251	(0.00504)	5	0.26360	(0.00299)	5
Taiwan	TW	0.26850	(0.00209)	6	0.27129	(0.00187)	6	0.29561	(0.00238)	6	0.29628	(0.00234)	6
Canada	CA	0.28286	(0.00363)	7	0.28118	(0.00277)	7	0.30486	(0.00260)	7	0.30175	(0.00299)	7
United Kingdom	UK	0.30321	(0.00316)	8	0.33612	(0.00362)	11	0.34424	(0.00375)	10	0.34489	(0.00212)	9
Israel	IL	0.30762	(0.00325)	9	0.30546	(0.00389)	9	0.33565	(0.00418)	8	0.34641	(0.00407)	10
Italy	IT	0.33193	(0.00504)	10	0.29024	(0.00412)	8	0.33791	(0.00523)	9	0.33295	(0.00501)	8
United States	US	0.33506	(0.00300)	11	0.33581	(0.00256)	10	0.37237	(0.00203)	11	0.36809	(0.00183)	11
Mexico	MX	0.44773	(0.00753)	12	0.48523	(0.00542)	12	0.49364	(0.00503)	12	0.49094	(0.00604)	12

Source: Authors' estimates of LIS data

Table 5a. Subset Selection for Gini in Single Period Analysis

Country	Code	coef	Gini (s.e.)	rank	$\begin{gathered} \text { 1st Crit Val } \\ 90 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 1st Subsets } \\ 90 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd Crit Val } \\ 90 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd Subsets } \\ 90 \% \\ \hline \end{gathered}$
Denmark	DK	0.23647	(0.00267)	1	2.5440	1B	*	*
Slovak Republic	SK	0.24073	(0.00403)	2	2.4160	1B	*	*
Finland	FI	0.24742	(0.00268)	3	2.5430		2.506	2B
Slovenia	SI	0.24942	(0.00417)	4	2.4020		2.367	2B
Belgium	BE	0.25018	(0.00360)	5	2.4560		2.42	2B
Norway	NW	0.25077	(0.00338)	6	2.4770		2.441	2B
Sweden	SW	0.25151	(0.00273)	7	2.5380		2.501	2B
Netherlands	NL	0.25618	(0.00413)	8	2.4060		2.371	2B
Czech Republic	CZ	0.25884	(0.00267)	9	2.5440		2.507	
Luxembourg	LX	0.25964	(0.00493)	10	2.3340		2.299	2B
Germany	GE	0.26360	(0.00299)	11	2.5140		2.477	
Austria	AT	0.26597	(0.00518)	12	2.3120		2.278	
Romania	RO	0.27721	(0.00244)	13	2.5650		2.528	
France	FR	0.28832	(0.00319)	14	2.4950		2.459	
Poland	PL	0.29306	(0.00203)	15	2.5990		2.562	
Hungary	HU	0.29496	(0.00727)	16	2.1500		2.119	
Taiwan	TW	0.29628	(0.00234)	17	2.5740		2.537	
Canada	CA	0.30175	(0.00299)	18	2.5140		2.478	
Spain	SP	0.30308	(0.00265)	19	2.5460		2.509	
Switzerland	CH	0.30705	(0.00472)	20	2.3520		2.318	
Australia	AS	0.31085	(0.00422)	21	2.3980		2.362	
Ireland	IE	0.32326	(0.01082)	22	1.9400		1.914	
Italy	IT	0.33295	(0.00501)	23	2.3260		2.292	
United Kingdom	UK	0.34489	(0.00212)	24	2.5930		2.555	
Israel	IL	0.34641	(0.00407)	25	2.4110		2.376	
Estonia	EE	0.36074	(0.00524)	26	2.3070		2.273	
United States	US	0.36809	(0.00183)	27	2.6150		2.577	
Russia	RL	0.43436	(0.00652)	28	2.2040		2.172	2W
Mexico	MX	0.49094	(0.00604)	29	2.2410	1W	*	*

Source: Authors' estimates of LIS data
Note: 1B = country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 5b. Subset Selection for Theil in Single Period Analysis

Country	Code	coef	Theil (s.e.)	rank	$\begin{gathered} \text { 1st Crit Val } \\ 90 \% \end{gathered}$	1st Subsets 90\%	$\begin{gathered} \text { 2nd Crit Val } \\ 90 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd Subsets } \\ 90 \% \end{gathered}$
Denmark	DK	0.10318	(0.00364)	1	2.5420	1B	*	*
Belgium	BE	0.10392	(0.00335)	2	2.5620	1B	*	*
Slovak Republic	SK	0.10455	(0.00510)	3	2.4400	1B	*	*
Slovenia	SI	0.10542	(0.00398)	4	2.5190	1B	*	*
Luxembourg	LX	0.11248	(0.00475)	5	2.4650	1B	*	*
Finland	FI	0.11409	(0.00381)	6	2.5300	1B	*	*
Netherlands	NL	0.11517	(0.00458)	7	2.4770	1B	*	*
Sweden	SW	0.11608	(0.00350)	8	2.5510		2.4530	2B
Czech Republic	CZ	0.12050	(0.00356)	9	2.5470		2.4500	2B
Germany	GE	0.12058	(0.00376)	10	2.5330		2.4370	2B
Austria	AT	0.12228	(0.00619)	11	2.3680		2.2890	2B
Norway	NW	0.12981	(0.00550)	12	2.4140		2.3300	2B
Romania	RO	0.14107	(0.00388)	13	2.5250		2.4300	
France	FR	0.14849	(0.00474)	14	2.4650		2.3770	
Taiwan	TW	0.15138	(0.00308)	15	2.5790		2.4770	
Hungary	HU	0.15496	(0.00897)	16	2.2090		2.1400	
Poland	PL	0.15645	(0.00284)	17	2.5940		2.4900	
Spain	SP	0.15698	(0.00371)	18	2.5370		2.4410	
Canada	CA	0.16017	(0.00422)	19	2.5020		2.4090	
Australia	AS	0.16289	(0.00515)	20	2.4370		2.3510	
Switzerland	CH	0.17942	(0.00691)	21	2.3230		2.2470	
Ireland	IE	0.19014	(0.01848)	22	1.8560		1.8030	
Italy	IT	0.19635	(0.00721)	23	2.3050		2.2300	
Israel	IL	0.20672	(0.00617)	24	2.3690		2.2890	
United Kingdom	UK	0.21059	(0.00343)	25	2.5560		2.4580	
Estonia	EE	0.22842	(0.00851)	26	2.2330		2.1630	
United States	US	0.24350	(0.00297)	27	2.5860		2.4830	
Russia	RL	0.33226	(0.01092)	28	2.1170		2.0530	2W
Mexico	MX	0.43442	(0.01192)	29	2.0740	1W	*	*

Source: Authors' estimates of LIS data
Note: 1B = country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 5c. Subset Selection for Varlog in Single Period Analysis

Country	Code	coef	Varlog (s.e.)	rank	$\begin{gathered} \text { 1st Crit Val } \\ 90 \% \end{gathered}$	1st Subsets 90\%	$\begin{gathered} \text { 2nd Crit Val } \\ 90 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd Subsets } \\ 90 \% \end{gathered}$
Finland	FI	0.20895	(0.00525)	1	2.622	1B	*	*
Luxembourg	LX	0.21387	(0.00782)	2	2.566	1B	*	*
Czech Republic	CZ	0.21676	(0.00413)	3	2.643	1B	*	*
Slovenia	SI	0.24909	(0.00987)	4	2.518		2.443	2B
Slovak Republic	SK	0.25540	(0.01074)	5	2.498		2.422	2B
Romania	RO	0.26018	(0.00377)	6	2.649		2.571	2B
Sweden	SW	0.26779	(0.00903)	7	2.538		2.464	2B
Norway	NW	0.27802	(0.00983)	8	2.519		2.445	2B
Belgium	BE	0.28164	(0.01803)	9	2.342		2.251	2B
France	FR	0.28343	(0.00687)	10	2.587		2.514	
Germany	GE	0.28403	(0.01357)	11	2.435		2.354	2B
Poland	PL	0.29299	(0.00463)	12	2.634		2.558	
Austria	AT	0.29679	(0.01986)	13	2.307		2.212	2B
Hungary	HU	0.30049	(0.02218)	14	2.264		2.164	2B
Taiwan	TW	0.30346	(0.00532)	15	2.621		2.546	
Denmark	DK	0.32406	(0.01319)	16	2.443		2.363	
Spain	SP	0.34488	(0.00714)	17	2.581		2.508	
Netherlands	NL	0.36694	(0.02009)	18	2.303		2.207	
Ireland	IE	0.38067	(0.02558)	19	2.205		2.098	
Canada	CA	0.41126	(0.01167)	20	2.477		2.4	
Italy	IT	0.44915	(0.01710)	21	2.361		2.272	
Israel	IL	0.46314	(0.02014)	22	2.302		2.206	
United Kingdom	UK	0.50051	(0.01022)	23	2.51		2.435	
Estonia	EE	0.55423	(0.02082)	24	2.289		2.192	2W
United States	US	0.57112	(0.00863)	25	2.547		2.473	2W
Australia	AS	0.58140	(0.02933)	26	2.145		2.031	2W
Russia	RL	0.80985	(0.03334)	27	2.086	1W	*	*
Mexico	MX	0.87020	(0.02119)	28	2.282	1W	*	*
Switzerland	CH	0.89161	(0.05603)	29	1.834	1W	*	*

Source: Authors' estimates of LIS data
Note: 1B = country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 6. Subsets of the 1st Best, 2nd Best, 2nd Worst, and 1st Worst for Measures at 90 percent Confidence Level

	Gini	Theil	Varlog
1st Best	Denmark		
(1B)	Slovak Republic	Belgium Denmark Finland Luxembourg Netherlands Slovak Republic Slovenia	Czech Republic
		Finland	
Luxembourg			

Source: Authors' estimates of LIS data
Note: This table is a summary of the results of Tables 5a to 5 c .
If a country does not appear, it is contained between the 2nd best and 2nd worst subsets..
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 B=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 7a. Subset Selection Results of Gini Rankings for Wave II

country	code	coef	Gini s.e.	rank	1st Crit Val 1 st SS 90% 90%	$\begin{gathered} \text { 2nd Crit Val } \\ 90 \% \end{gathered}$	$\begin{gathered} \text { 2nd SS } \\ 90 \% \end{gathered}$	$\begin{gathered} \text { 1st Crit Val } \\ 95 \% \end{gathered}$	$\begin{gathered} 1 s t ~ S S \\ 95 \% \end{gathered}$	$\begin{gathered} \text { 2nd Crit Val } \\ 95 \% \end{gathered}$	$\begin{gathered} \text { 2nd SS } \\ 95 \% \end{gathered}$
Finland	FI	0.20856	(0.00173)	1	2.3020 1B	*	*	2.574	1B	*	*
Sweden	SW	0.21771	(0.00202)	2	2.2830	2.215	2B	2.561		2.497	2B
Norway	NW	0.23287	(0.00330)	3	2.1830	2.116		2.482		2.421	
Luxembourg	LX	0.23658	(0.00405)	4	2.1200	2.052		2.429		2.367	
Germany	GE	0.26826	(0.00579)	5	1.9850	1.912		2.312		2.246	
Taiwan	TW	0.26850	(0.00209)	6	2.2780	2.21		2.557		2.493	
Canada	CA	0.28286	(0.00363)	7	2.1550	2.088		2.459		2.398	
United Kingdom	UK	0.30321	(0.00316)	8	2.1940	2.128		2.491		2.43	
Israel	IL	0.30762	(0.00325)	9	2.1870	2.12		2.485		2.424	
Italy	IT	0.33193	(0.00504)	10	2.0410	1.97	2W	2.361		2.297	2W
United States	US	0.33506	(0.00300)	11	2.2080	2.142	2W	2.502		2.441	2W
Mexico	MX	0.44773	(0.00753)	12	1.8690 1W	*	*	2.209	1W	*	*

Source: Authors' estimates of LIS data
Note: SS = subset
Crit Val = critical value
$1 B=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 7b. Subset Selection Results of Gini Rankings for Wave III

country	code	coef	$\begin{gathered} \text { Gini } \\ \text { s.e. } \end{gathered}$	rank	$\begin{array}{cc\|} \hline \text { 1st Crit Val } & 1 \text { st } S S \\ 90 \% & 90 \% \\ \hline \end{array}$	$\begin{gathered} \hline \text { 2nd Crit Val } \\ 90 \% \\ \hline \end{gathered}$	2nd SS 90\%	$\begin{gathered} \hline \text { 1st Crit Val } \\ 95 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \text { st SS } \\ 95 \% \end{gathered}$	$\begin{gathered} \text { 2nd Crit Val } \\ 95 \% \end{gathered}$	$\begin{gathered} \hline \text { 2nd SS } \\ 95 \% \end{gathered}$
Finland	FI	0.20964	(0.00158)	1	2.309 1B	*	*	2.579	1B	*	*
Sweden	SW	0.22912	(0.00230)	2	2.262	2.199	2B	2.545		2.485	2B
Norway	NW	0.23124	(0.00388)	3	2.133	2.077	2B	2.44		2.388	2B
Luxembourg	LX	0.23895	(0.00613)	4	1.958	1.906	2B	2.289		2.241	2B
Germany	GE	0.25739	(0.00576)	5	1.985	1.933		2.313		2.264	
Taiwan	TW	0.27129	(0.00187)	6	2.292	2.226		2.567		2.504	
Canada	CA	0.28118	(0.00277)	7	2.225	2.165		2.516		2.459	
Italy	IT	0.29024	(0.00412)	8	2.113	2.058		2.424		2.372	
Israel	IL	0.30546	(0.00389)	9	2.133	2.077		2.44		2.387	
United States	US	0.33581	(0.00256)	10	2.242	2.181	2W	2.529		2.471	2W
United Kingdom	UK	0.33612	(0.00362)	11	2.155	2.098	2W	2.459		2.405	2W
Mexico	MX	0.48523	(0.00542)	12	2.01 1W	*	*	2.335	1W	*	*

Source: Authors' estimates of LIS data
Note: SS = subset
Crit Val = critical value
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 7c. Subset Selection Results of Gini Rankings for Wave IV

country	code	coef	Gini s.e.	rank	$\begin{array}{\|cc\|} \hline \text { 1st Crit Val } & 1 \text { st SS } \\ 90 \% & 90 \% \\ \hline \end{array}$	2nd Crit Val 2nd SS 90% 90%	$\begin{array}{cc} \hline \text { 1st Crit Val } & 1 \text { st } S S \\ 95 \% & 95 \% \\ \hline \end{array}$	$\begin{gathered} \text { 2nd Crit Val } \\ 95 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd SS } \\ 95 \% \end{gathered}$
Finland	FI	0.21671	(0.00268)	1	2.238 1B	* *	2.527 1B	*	*
Sweden	SW	0.22133	(0.00224)	2	2.272 1B	* *	2.553 1B	*	*
Norway	NW	0.23766	(0.00343)	3	2.175	2.084 2B	2.476	2.389	2B
Luxembourg	LX	0.25994	(0.00498)	4	2.043	1.999	2.365	2.289	
Germany	GE	0.27251	(0.00504)	5	2.038	1.999	2.361	2.286	
Taiwan	TW	0.29561	(0.00238)	6	2.261	2.158	2.545	2.446	
Canada	CA	0.30486	(0.00260)	7	2.244	2.144	2.532	2.436	
Israel	IL	0.33565	(0.00418)	8	2.11	2.025	2.422	2.341	
Italy	IT	0.33791	(0.00523)	9	2.023	1.999	2.347	2.273	
United Kingdom	UK	0.34424	(0.00375)	10	2.147	2.059	2.453	2.369	
United States	US	0.37237	(0.00203)	11	2.286	2.179 2W	2.563	2.461	2W
Mexico	MX	0.49364	(0.00503)	12	2.039 1W	* *	2.361 1W	*	*

Source: Authors' estimates of LIS data
Note: SS = subset
Crit Val = critical value
$1 B=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 7d. Subset Selection Results of Gini Rankings for Wave V

country	code	coef	Gini s.e.	rank	$\begin{array}{\|cc\|} \hline \text { 1st Crit Val } & 1 \text { st SS } \\ 90 \% & 90 \% \\ \hline \end{array}$	$\begin{gathered} \hline \text { 2nd Crit Val } \\ 90 \% \\ \hline \end{gathered}$	2nd SS 90\%	$\begin{gathered} \hline \text { 1st Crit Val } \\ 95 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 1st SS } \\ 95 \% \end{gathered}$	$\begin{gathered} \hline \text { 2nd Crit Val } \\ 95 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 2nd SS } \\ 95 \% \end{gathered}$
Finland	FI	0.24742	(0.00268)	1	2.222 1B	*	*	2.514	1B	*	*
Norway	NW	0.25077	(0.00338)	2	2.158 1B	*	*	2.462	1B	*	*
Sweden	SW	0.25151	(0.00273)	3	2.217 1B	*	*	2.51	1B	*	*
Luxembourg	LX	0.25964	(0.00493)	4	2.02	1.878	2B	2.344	1B	*	*
Germany	GE	0.26360	(0.00299)	5	2.194	2.038	2B	2.492		2.283	2B
Taiwan	TW	0.29628	(0.00234)	6	2.251	2.09		2.537		2.327	
Canada	CA	0.30175	(0.00299)	7	2.194	2.038		2.492		2.283	
Italy	IT	0.33295	(0.00501)	8	2.013	1.871		2.338		2.138	
United Kingdom	UK	0.34489	(0.00212)	9	2.269	2.106		2.551		2.34	
Israel	IL	0.34641	(0.00407)	10	2.095	1.947		2.409		2.204	
United States	US	0.36809	(0.00183)	11	2.291	2.125	2W	2.566		2.355	2W
Mexico	MX	0.49094	(0.00604)	12	1.932 1W	*	*	2.266	1W	*	*

Source: Authors' estimates of LIS data
Note: SS = subset
Crit Val = critical value
$1 B=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 8. Subsets of the 1st Best, 2nd Best, 2nd Worst, and 1st Worst for Gini at 90 percent Confidence Level

	Wave II	Wave III	Wave IV	Wave V	
		Finland	Finland percent)	(at 95 percent)	
1st Best	Fit	Finland Sweden	Finland Norway Sweden	Finland Luxembourg Norway Sweden	
2nd Best	Sweden	Luxembourg Norway Sweden	Norway	Germany Luxembourg	Germany

Source: Authors' estimates of LIS data
Note: This table is a summary of the results of Tables 7a to 7d.
If a country does not appear, it is contained between the 2nd best and 2nd worst subsets..
Different critical values only reported when the 90 percent and 95 percent differ.
$1 B=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 9. Magnitudes, Standard Errors, and Rank for Relative Poverty Panel Analysis

Country	Code	Wave II			Wave III			Wave IV			Wave V		
		RelPov	s.e.	rank									
Taiwan	TW	5.2	(0.20)	1	6.5	(0.22)	5	9.1	(0.26)	6	9.1	(0.27)	6
Luxembourg	LX	5.3	(0.55)	2	4.7	(0.71)	1	6.2	(0.61)	2	6.0	(0.78)	2
Finland	FI	5.4	(0.23)	3	5.7	(0.23)	2	4.2	(0.23)	1	5.4	(0.35)	1
Norway	NW	7.2	(0.37)	4	6.4	(0.43)	4	6.9	(0.30)	4	6.4	(0.24)	3
Sweden	SW	7.5	(0.33)	5	6.7	(0.27)	6	6.6	(0.21)	3	6.5	(0.22)	4
Germany	GE	7.9	(0.47)	6	5.8	(0.45)	3	8.2	(0.43)	5	8.3	(0.35)	5
United Kingdom	UK	9.1	(0.46)	7	14.6	(0.59)	10	13.4	(0.53)	8	12.5	(0.29)	8
Italy	IT	11.2	(0.61)	8	10.4	(0.47)	8	14.1	(0.60)	10	12.7	(0.59)	9
Canada	CA	11.4	(0.45)	9	11.0	(0.34)	9	12.8	(0.29)	7	11.4	(0.29)	7
Israel	IL	11.7	(0.59)	10	10.2	(0.57)	7	13.5	(0.61)	9	15.6	(0.63)	10
United States	US	17.8	(0.43)	11	17.5	(0.36)	11	16.9	(0.19)	11	17.0	(0.22)	11
Mexico	MX	20.8	(0.89)	12	20.6	(0.64)	12	22.1	(0.49)	12	21.6	(0.63)	12

Source: Authors' estimates of LIS data
Note: Relative Poverty Rate is 50% of median of the total population for all LIS Waves.

Table 10a. Subset Selection Results of Relative Poverty Rankings for Wave II

country	code	Rel Pov			1 st Crit Val 1 st SS 90% 90%		2nd Crit Val $2 n d$ SS 90% 90%		$\begin{array}{cc} \hline \text { 1st Crit Val } & 1 \text { st SS } \\ 95 \% & 95 \% \\ \hline \end{array}$		$\begin{gathered} \hline \text { 2nd Crit Val } \\ 95 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd SS } \\ 95 \% \\ \hline \end{gathered}$
		coef	s.e.	rank								
Taiwan	TW	5.2	(0.20)	1	2.311	1B	*	*	2.58	1B	*	*
Luxembourg	LX	5.3	(0.55)	2	2.097	1B	*	*	2.411	1B	*	*
Finland	FI	5.4	(0.23)	3	2.298	1B	*	*	2.571	1B	*	*
Norway	NW	7.2	(0.37)	4	2.217		2.079	2B	2.51		2.379	2B
Sweden	SW	7.5	(0.33)	5	2.242		2.1	2B	2.53		2.395	2B
Germany	GE	7.9	(0.47)	6	2.151		2.02	2B	2.456		2.332	2B
United Kingdom	UK	9.1	(0.46)	7	2.157		2.026		2.461		2.337	
Italy	IT	11.2	(0.61)	8	2.059		1.933		2.378		2.26	
Canada	CA	11.4	(0.45)	9	2.164		2.032		2.467		2.342	
Israel	IL	11.7	(0.59)	10	2.071		1.946		2.389		2.271	
United States	US	17.8	(0.43)	11	2.177		2.044	2W	2.478		2.352	2W
Mexico	MX	20.8	(0.89)	12	1.896	1W	*	*	2.235	1W	*	*

Source: Authors' estimates of LIS data
Note: Relative Poverty Rate is 50% of median of the total population for all LIS Waves.
SS = subset
Crit Val = critical value
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 10b. Subset Selection Results of Relative Poverty Rankings for Wave III

| | | Rel Pov | | | 1st Crit Val | 1st SS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | code | coef | s.e. | rank Crit Val | 2nd SS | |
| 90% | 1st Crit Val | 1st SS | | | | |
| 2nd Crit Val | 2nd SS | | | | | |
| 2n | | | | | | |$)$

Source: Authors' estimates of LIS data
Note: Relative Poverty Rate is 50% of median of the total population for all LIS Waves.
SS = subset
Crit Val = critical value
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 10c. Subset Selection Results of Relative Poverty Rankings for Wave IV

country	code	Rel Pov			$\begin{array}{cc} \hline \text { 1st Crit Val } & 1 \text { st SS } \\ 90 \% & 90 \% \\ \hline \end{array}$		2nd Crit Val $2 n d$ SS 90% 90%		$\begin{array}{cc} \hline 1 \text { st Crit Val } & 1 \text { st SS } \\ 95 \% & 95 \% \\ \hline \end{array}$		2nd Crit Val 2nd SS 95% 95%	
		coef	s.e.	rank								
Finland	FI	4.2	(0.23)	1	2.273	1B	*	*	2.553	1B	*	*
Luxembourg	LX	6.2	(0.61)	2	1.994		1.946	2B	2.32		2.274	2B
Sweden	SW	6.6	(0.21)	3	2.286		2.218	2B	2.563		2.499	2B
Norway	NW	6.9	(0.30)	4	2.223		2.161	2B	2.514		2.455	2B
Germany	GE	8.2	(0.43)	5	2.124		2.069		2.433		2.379	
Taiwan	TW	9.1	(0.26)	6	2.253		2.188		2.537		2.476	
Canada	CA	12.8	(0.29)	7	2.231		2.168		2.52		2.46	
United Kingdom	UK	13.4	(0.53)	8	2.05		1.999		2.369		2.32	
Israel	IL	13.5	(0.61)	9	1.994		1.946		2.32		2.274	
Italy	IT	14.1	(0.60)	10	2.001		1.952		2.326		2.28	
United States	US	16.9	(0.19)	11	2.298		2.229	2W	2.571		2.506	2W
Mexico	MX	22.1	(0.49)	12	2.079	1W	*	*	2.394	1W	*	*

Source: Authors' estimates of LIS data
Note: Relative Poverty Rate is 50% of median of the total population for all LIS Waves.
SS = subset
Crit Val = critical value
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 10d. Subset Selection results of Relative Poverty Rankings for Wave V

country	code	Rel Pov			$\begin{gathered} \text { 1st Crit Val } \\ 90 \% \end{gathered}$	$\begin{gathered} 1 s t \text { SS } \\ 90 \% \end{gathered}$	$\begin{gathered} \text { 2nd Crit Val } \\ 90 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd SS } \\ 90 \% \end{gathered}$	$\begin{array}{cc\|} \hline 1 \text { st Crit Val } & 1 \text { st SS } \\ 95 \% & 95 \% \\ \hline \end{array}$		$\begin{gathered} \text { 2nd Crit Val } \\ 95 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd SS } \\ 95 \% \end{gathered}$
		coef	s.e.	rank								
Finland	FI	5.4	(0.35)	1	2.185	1B	*	*	2.483	1B	*	*
Luxembourg	LX	6.0	(0.78)	2	1.894	1B	*	*	2.23	1B	*	*
Norway	NW	6.4	(0.24)	3	2.267		2.136	2B	2.548	1B	*	*
Sweden	SW	6.5	(0.22)	4	2.28		2.151	2B	2.558		2.401	2B
Germany	GE	8.3	(0.35)	5	2.185		2.044		2.483		2.324	
Taiwan	TW	9.1	(0.27)	6	2.246		2.112		2.532		2.374	
Canada	CA	11.4	(0.29)	7	2.231		2.095		2.52		2.362	
United Kingdom	UK	12.5	(0.29)	8	2.231		2.095		2.52		2.362	
Italy	IT	12.7	(0.59)	9	2.01		1.856		2.334		2.172	
Israel	IL	15.6	(0.63)	10	1.984		1.829		2.311		2.149	2W
United States	US	17.0	(0.22)	11	2.28		2.151	2W	2.558		2.401	2W
Mexico	MX	21.6	(0.63)	12	1.984	1W	*	*	2.311	1W	*	*

Source: Authors' estimates of LIS data
Note: Relative Poverty Rate is 50% of median of the total population for all LIS Waves.
SS = subset
Crit Val = critical value
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 \mathrm{~B}=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

Table 11. Subsets of the 1st Best, 2nd Best, 2nd Worst, and 1st Worst for Relative Poverty at $\mathbf{9 0}$ percent Confidence Level

	Wave II	Wave III		Wave IV	Wave V	
		(at 90\%)	(at 95\%)		(at 90\%)	(at 95\%)
1st Best	Finland Luxembourg Taiwan	Finland Germany Luxembourg Norway	Finland Germany Luxembourg Norway Taiwan	Finland	Finland Luxembourg	Finland Luxembourg Norway
2nd Best	Germany Norway Sweden	Sweden Taiwan	Sweden	Luxembourg Norway Sweden	Norway Sweden	Sweden
2nd Worst	United States	Israel United States				
1st Worst	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico

Source: Authors' estimates of LIS data
Note: This table is a summary of the results of Tables 10a to 10d.
If a country does not appear, it is contained between the 2nd best and 2nd worst subsets.
Different critical values only reported when the 90% and 95% differ.
$1 \mathrm{~B}=$ country is in the first-best subset of equation (3b)
$1 \mathrm{~W}=$ country is in the first-worst subset of equation (3a)
$2 B=$ country is in the second-best subset of equation (6b)
$2 \mathrm{~W}=$ country is in the second-best subset of equation (6a)

References

Andres, R. and S. Calonge. 2005. "Inference on Income Inequality and Tax Progressivity Indices: U-Statistics and Bootstrap Methods." Working paper presented at the First Meeting of the Society for the Study of Economic Inequality, Palma de Mallorca, Spain, July 20-22, 2005.

Atkinson, A.B., and F. Bourguignon. 2000. "Income Distribution and Economics." In A.B. Atkinson and F. Bourguignon (eds.) Handbook of Income Distribution Volume 1: New York: Elsevier-North Holland.

Atkinson, A.B., Rainwater, L., and T.M. Smeeding. 1995. Income Distribution in OECD Countries: Evidence from the Luxembourg Income Study. Paris: OECD.

Bandyopadhyay, S., Cowell, F., and E. Flachaire. 2005. "Inequality Measurement and Goodness-of-Fit." Working paper. Presented at the First Meeting of the Society for the Study of Economic Inequality, Palma de Mallorca, Spain, July 20-22, 2005.

Biewen, M. 2002. "Bootstrap Inference for Inequality, Mobility, and Poverty Measurement." Journal of Econometrics 108:317-42.

Bishop, J., Chow, K.V., and L. Zeager. 2005. "Statistical Inference for Interdistributional Lorenz Curves." Working paper. Presented at the First Meeting of the Society for the Study of Economic Inequality, Palma de Mallorca, Spain, July 20-22, 2005.

Bishop, J., Formby, J. and W. Smith. 1991. "Tests for Lorenz Dominance: A Study of Inequality in Nine Countries." Economica (November).

Bishop, J., Formby, J., and B. Zheng. 1998. "Inference Tests of Gini-Based Tax Progressivity Indices." Journal of Business and Economic Statistics (July).

Buhmann, B., Rainwater, L., Schmaus, G., and T.M. Smeeding. 1988. "Equivalence Scales, Well-Being, Inequality and Poverty: Sensitivity Estimates Across Ten Countries Using the Luxembourg Income Study (LIS) Database." Review of Income and Wealth. 34, pp. 115-142.

Chateauneuf, A. and P. Moyes. 2004. "Lorenz Non-Consistent Welfare and Inequality Measurement." Journal of Economic Inequality 2(2) (August).

Cowell, F.A. 2000. "Measurement of Inequality." In A.B. Atkinson and F. Bourguignon (eds.) Handbook of Income Distribution Volume 1: New York: Elsevier-North Holland.

Cowell, F.A. and M.-P. Victoria-Feser. 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information." Journal of Economic Inequality 1(3): (December).

Davidson, R. and J.-Y. Duclos. 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality." Econometrica 68(6) (November): 1435-1465.

Davidson, R. and E. Flachaire. 2005. "Asymptotic and Bootstrap Inference for Inequality and Poverty Measures." Working paper. Presented at the First Meeting of the Society for the Study of Economic Inequality, Palma de Mallorca, Spain, July 20-22, 2005.

Duclos, J.-Y. and P. Makdissi. 2004. "Restricted and Unrestricted Dominance for Welfare, Inequality, and Poverty Orderings." Journal of Public Economic Theory 6(1) (February): 145-164.

Duclos, J.-Y. and P. Makdissi. 2005. "Sequential Stochastic Dominance and the Robustness of Poverty Orderings." Review of Income and Wealth 51(1) (March): 63-87.

Farina, F., Peluso, E., and E. Savaglio. 2004. "Ranking Opportunity Sets in the Space of Functions." Journal of Economic Inequality 2(2) (August).

Gottschalk, P., and T.M. Smeeding. 2000. "Empirical Evidence on Income Inequality in Industrializing Countries." In A.B. Atkinson and F. Bourguignon (eds.) Handbook of Income Distribution Vol. 1. New York: Elsevier-North Holland.

Horrace, W.C. and P. Schmidt 2000. "Multiple Comparisons with the Best, with Economic Applications." Journal of Applied Econometrics 15: 1-26

Horrace, W.C. and T.P. Keane. 2004. "Ranking and Selection of Motor Carrier Safety Performance by Commodity." Accident Analysis and Prevention 36: 953-960.

Horrace, WC. 2005 On the Ranking Uncertainty of Labor Market Wage Gaps. Journal of Population Economics 18: 181-187.

Jolliffe, D. and B. Krushelnytskyy. 1999. "Bootstrap Standard Errors for Indices of Inequality: INEQERR." Stata Technical Bulletin. STB-51.

Mills, J. and S. Zandvakil. 1997. "Statistical Inference via Bootstrapping for Measures of Inequality". Journal of Applied Econometrics 12: 133-150.

Moran, T.P. 2005. "Bootstrapping the LIS: Statistical Inference and Patterns of Inequality in the Global North." Luxembourg Income Study Working Paper, No. 378, (February).

Mosler, K. 2004. "Restricted Lorenz Dominance of Economic Inequality in One and Many Dimensions." Journal of Economic Inequality 2(2) (August).

Peragine, V. 2004. "Ranking Income Distributions According to Equality of Opportunity." Journal of Economic Inequality 2(1) (April).

Ryu, H. and D. Slottje. 1996. "Two Flexible Form Approaches for Approximating the Lorenz Curve." Journal of Econometrics 72: 251-274.

Ryu, H. and D. Slottje. 1999. "Parametric Approximations of the Lorenz Curve." Handbook of Economic Inequality Measurement Theory to Practice, Jacques Silber (ed.), Amsterdam: Kluwer, 291-314.

Sarabia, J., Castillo, E., and D. Slottje 1999. "An Ordered Family of Lorenz Curves." Journal of Econometrics 91: 43-60.

Schechtman, E. and S. Yitzhaki. 2003. "A Family of Correlation Coefficeints Based on the Extended Gini Index." Journal of Economic Inequality 1(2) (August).

Shorrocks, A. 2004. "Inequality and Welfare Evaluation of Heterogenous Income Distributions." Journal of Economic Inequality 2(3) (December).

Weymark, J.A. 2003. "Generalized Gini Indices of Equality of Opportunity." Journal of Economic Inequality 1(1) (April).

Xu, K. 2000. "Inference for Generalized Gini Indices Using the Iterated-Bootstrap Method." Journal of Business and Economic Statistics. 18:223-227.

Zandvakili, S. 2001. "Analysis of Sex-Based Inequality: Use of Axiomatic Approach in Measurement and Statistical Inference via Bootstrapping." Research in Middle East Economics. The Economics of Women and Work in the Middle East and North Africa, M. Cinar (ed.). 4: 75-91.

