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Abstract 

Stochastic production frontier models are used extensively in the agricultural and resource 
economics literature to estimate production functions and technical efficiency, as well as to guide 
policy.  Traditionally these models assume that each agent’s production can be specified as a 
representative, homogeneous function.  This paper proposes the synthesis of a latent class 
regression and an agricultural production frontier model to estimate technical efficiency while 
allowing for the possibility of production heterogeneity.  We use this model to estimate a latent 
class production function and efficiency measures for vessels in the Northeast Atlantic herring 
fishery.  Our results suggest that traditional measures of technical efficiency may be incorrect, if 
heterogeneity of agricultural production exists.  
 



Introduction 

Production function estimation is important to the development and analysis of a wide range of 

agricultural and environmental policies.  It can be used to identify areas of improvement in 

agricultural processes, to measure the value of production or input technology changes, or to 

assess producer response to new regulation or opportunities.  Recent studies have focused on the 

role of agricultural policy (Paul et al. 2000), the accessibility to credit markets, and the use of new 

agricultural practices in developing nations (Bayarsaihan and Coeilli 2003; Hazarika and Alwang 

2003; Kudaligama and Yanagida 2000; Liu and Zhuang 2000 to cite a few). In many applications, 

production function estimation is supplemented by producer-level technical efficiency estimates, 

which are used to identify the extent to which producers select inputs to make effective use of 

fixed resources.  In many agricultural applications, efficiency analyses help extension agents 

identify resources that might aid farmers and help policymakers target resources for subsidy 

(Khairo and Battese 2004).1   

 

When a production technology is used to exploit a common pool resource (such as a fishery) 

accurate characterization is particularly important.  In this case, production estimates are often 

used to guide management policies aimed as reducing pressure on the resource and ensuring its 

future viability.  For example, buyback programs are used in many over-exploited fisheries to 

reduce the amount of capital being applied to a dwindling stock.  Buybacks have also been 

utilized in rationalizing so-called "derby fisheries," where the fishing season is open only until a 

set quantity of fish is harvested, providing an incentive to overcapitalize and catch as much as 

possible before others catch the limit.  Therefore, an accurate picture of a fleet’s production 

profile aids in identifying likely participants in buyback programs and in developing estimates of 

reservation prices that may be used to establish budgets for a successful program (Guyader et al. 

2004).  

 

Other fisheries are managed by input restrictions, such as maximum days-at-sea, gear restrictions 

or limits on the quantity of fixed gear (e.g., traps).  However, experience shows that fishermen 

often respond to these restrictions by substituting unrestricted inputs, in some cases using more 

variable inputs (e.g., increasing crew size), or by investing in more fixed capital (e.g., purchasing 

a larger engine to reduce steam time or using a larger trawl device).  Estimating production input 

elasticities helps managers predict the extent to which new input restrictions are likely to result in 

decreased stock pressure, or simply a substitution of other unrestricted inputs (Kompas et al. 

2004).  With both types of management measures, policymakers can use production functions to 
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determine the technical efficiency of each operation.  Furthermore, measures of technical 

efficiency can be used to determine the efficiency gains of switching from input regulations to 

property right management regimes, such as individual transferable quotas (Kompas and Che 

2005; Weninger and Waters 2003). 

 

Technical efficiency indicates how well vessels perform relative to the optimal use of their inputs, 

and provides a measure of excess harvesting capacity resulting from inefficiently managed or 

underutilized capital (Kirkley et al. 2002).  This is of particular interest, because the excess 

capacity could be put into use in the event that part of the fleet were to be bought out, or it could 

reflect the potential for capital substitution in the event of new input restrictions.2  Although 

production function and technical efficiency estimates are critical to assessing the likely effect of 

new policy, the traditional approach to production analysis develops a representative 

(homogenous) producer model.  This approach is commonly employed even though there may be 

production heterogeneity among producers.  In fisheries, this heterogeneity is often explained by 

the "good captain" hypothesis, which states that some captains possess skills, usually not directly 

measurable, which allow them to consistently outperform other captains with similar capital in 

the same fishery. This has lead economists to estimate the degree of technical efficiency 

possessed by captains within a number of different fisheries in an effort to determine the captain 

specific factors which determine their relative rates of inefficiency (Kirkley et al. 1998; Pascoe 

and Coglan 2002; Sharma and Leung 1998; Squires and Kirkley 1999; Viswanathan et al. 2002).3

 

The presence of "good" captains introduces latent heterogeneity in the production capabilities 

possessed by fishermen within a fishery because the determinants of a "good" captain are often 

unobservable.  In addition, these differences may not be completely explained by differences in 

technical efficiency and the captain’s managerial skill.  For instance, Kirkley, Squires and Strand 

(1998) observed that two captains, using nearly identical vessels and possessing similar 

experience levels and backgrounds, possessed different measures of technical efficiency.  Perhaps 

these differences were due to latent heterogeneity in the vessels' production functions, which 

when controlled for generates similar measures of technical efficiency.  Recognizing this 

heterogeneity may not only improve the accuracy of production estimates, but it may also support 

more refined analysis and better-targeted policies.   

 

In this paper, we use a latent class stochastic production frontier estimator to investigate the 

presence of latent heterogeneity in fisheries.  The estimator is a statistical model that 
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simultaneously estimates a set of distinct production functions and selects which  producers use 

which function.  The model generates a set of estimated production functions, along with a 

likelihood-based assignment of producers to each function.  These different functions have the 

natural interpretation of reflecting different marginal productivities of both their fixed capital 

(e.g., vessel characteristics) and variable inputs (e.g., number of crew members and hours fished).   

These differences are not identified if we restrict the specification to a representative 

(homogenous) producer.  Therefore, we employ latent class modeling to separate vessel 

production via explicit differences in their elasticities of input utilization.4

 

This latent class methodology has been used to investigate inefficiency heterogeneity in Turkish 

banking (El-Gamal and Inanoglu 2005), but to the best of our knowledge this is the first known 

application of this model to agricultural and resource production modeling.  We demonstrate the 

value of latent class modeling in agricultural and resource production with an application to the 

Northeastern US Atlantic herring fleet.  We identify three economically and statistically different 

production functions within the fishery.  Technical efficiency analysis indicates that, within each 

production function, captains have a range of aptitude for selecting variable inputs to efficiently 

catch fish.  However, relative to the traditional homogeneous model, they suggest dramatically 

different technical efficiency measures and marginal products of input utilization.  These results 

highlight the importance of utilizing latent class modeling when heterogeneity is suspected. 

  

The next section of the paper presents the latent class stochastic production frontier model.  We 

then describe the data set, and present a three segment (heterogeneous) estimate of the fleet 

production function.  We use these production functions to generate technical efficiency 

estimates, and compare the results across homogenous and heterogeneous specifications.  These 

comparisons highlight the utility of estimating heterogeneous productions and provide some 

insight into the paired trawling practices within the Northeast Atlantic herring fishery.  Finally, 

we discuss the pitfalls and policy implications of using a homogeneous analysis to interpret 

production measures in a heterogeneous environment. 

 

Methodology 

Latent class models posit that the population consists of several distinct types of producers with 

similar production functions, based on unobserved characteristics of the producers.  The statistical 

task is to identify both which producers are of the same (unobserved) type and the parameters that 

represent each type’s production function.  Developing a latent class model requires two steps: 
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(1) specification of a parametric form for the production function of each type and (2) 

implementation of a method for determining the combination of parameters for each segment and 

assigning producers to each segment.  We specify each type as having a partial trans-log 

functional form estimated within a stochastic production frontier model.5  We then use El-Gamal 

and Grether’s (1995; 2000) estimation-classification (EC) algorithm to simultaneously group 

producers into types and to estimate parameter values for each segment.   

 

A stochastic frontier model has a composed error (Aigner et al. 1977; Meeusen and van den 

Broeck 1977), which is decomposed into an conventional random noise term and a random, firm-

specific technical inefficiency term.  The stochastic frontier model is specified as follows, 

 

}exp{);( ititit XfY εβ=         (1) 

 

where  is the production of producer itY Ni ,...,1= in period iTt ,...,1= . The  is the level of 

inputs used in the production process, 

itX

β  is a parameter vector, and itε  is a composed error term.  

The error term is linearly specified as 

 

iitit v ηε −=           (2) 
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vN σ iη  is a non-negative, 

vessel-specific error term, distributed as the truncation below zero of a  random 

variable.  Further, the random variables  and the 
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inputs and of each other.  For an unbalanced panel, the log-likelihood function is (Battese et al. 

1989; Battese and Coelli 1995), 
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iT  is the number of observations for each agent i and θ is the parameter vector to be estimated 

which consists of the coefficients for each segment, βi , γ = σμ2/ σS
2, μ and σS

2 = (σμ2 + σV
2). 

 

Using this stochastic production frontier model as the functional form for each type, El-Gamal 

and Grether’s estimation-classification (EC) algorithm performs the task of grouping producers 

into a pre-specified number of types, H, and estimating the unknown parameters, θh, for each 

segment.  Each producer’s contribution to the likelihood function is the maximum across the H 

segments of the joint log-likelihood of all their observations given Θ=(θ1,… θh) and may be 

expressed as6, 

 

ln[L(Yit;Zit |Θ,H)]= argmaxh ln(L(Yit;Zit |θh ))
t=1

Ti

∑
i=1

N

∑      (4) 

 

where  is the single-segment likelihood function.  This method can be applied with a 

different number of segments, H, and statistical tests can be performed to determine the number 

of segments in the population (e.g., El-Gamal and Grether 1995).  As mentioned earlier, El-

Gamal and Inanoglu (2005) have used this methodology to investigate inefficiency in Turkish 

banking.  This technique has also been used to analyze experimental data on individual and public 

good decision making problems (Anderson and Putterman 2006; El-Gamal and Grether 1995, 

2000; Schnier and Anderson in press). This research illustrates the benefits of using this 

methodology within the agricultural and natural resource economics literature. 

(.)L

 

Technical efficiency of each vessel within a fishery is defined by the vessel ability to generate the 

maximum level of output (harvest) possible given a fixed level of inputs, the present stock level, 

and all other exogenously determined production factors.  Measurements of technical efficiency 

are obtained from the vessel specific errors resulting from the stochastic frontier estimation.  

Since output is in logarithms, technical efficiency is expressed as }exp{ iη− for each vessel i.  

However, since iη  is unobserved, so we can only estimate its distribution (conditional on itε ) 
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and the mean of this distribution.  The latter serves as an estimate of vessel i's technical 

efficiency.  In particular (per Battese et. al, 1989; Battese and Coelli 1992,1993), 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−
−

Φ−

−Φ−

=−= 2*
2
1*exp

*

*
1

*

*
*1

]|}[exp{ ii

i

i

i

i
i

itiEiTE σμ

σ

μ

σ

μ
σ

εη    (5) 

 

where, 

 

22

22
*

UiV

iiUV
i T

ET
σσ

σμσμ
+
−

=          (6) 

 

∑
=

=
iT

t
it

i
i T

E
1

1 ε           (7) 

 

.
22

22
2*

UiV

VU
i Tσσ

σσσ
+

=          (8) 

 

These are the estimates used in the empirical section of the paper, but with the residual of the 

maximum likelihood estimation substituted for the composed error, itε , in the above formulae.  

The next section describes the data and provides a brief description of the Northeast Atlantic 

herring fleet. 

 

Data Description and Fishery Background 

We analyze production data from the Northeast Atlantic herring fishery.  The data set utilized for 

this study was obtained from the National Marine Fisheries Service and consists of 2894 logbook 

entries for 39 vessels participating in the herring fishery during the years 2000 through 2003.7  

Each entry represents a single trip made by a vessel, and is considered the best available data for 

analyzing this fishery.8 Each entry indicates the reporting vessel ID, tons of herring landed, the 

gear used, the crew size, the vessel characteristics (length, gross-tons, horsepower and hold 
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capacity), home port, the time and date of departure and return to port, and the statistical 

reporting area fished (see Table 3 for descriptive statistics).  

 

The Atlantic herring, Clupea herengus, is a pelagic species targeted by fishermen from Maine 

down to New Jersey along the New England seaboard. The primary products produced within the 

herring fishery are sardines (juvenile herring ranging from 1 to 3 years old), bait for the Maine 

lobster fishery, fishmeal used for livestock and aquaculture, smoked herring and a small market 

for large flavored and filleted "kippers."  While landings were as much as 470,000 metric tons in 

the late 1960s, due to both stock and demand effects, current annual landings range from 81,000 

to 124,000 metric tons.  While the fishery is not currently heavily managed, there is discussion of 

implementing new management measures which divide the fishery into inshore and offshore 

management areas.9  

 

The fishing fleet targeting Atlantic herring is relatively small, yet herring are captured in small 

quantities as bycatch by vessels targeting groundfish.   However, we focus solely on those trips 

which herring were directly targeted.  In addition, the fishery is primarily a single-species fishery 

with herring dominating the catch composition on those trips where fishing vessels are directly 

targeting herring.10  There are three primary methods used to capture herring: mid-water trawl, 

purse seine, and paired mid-water trawl.  Figure 1 contains a histogram of the landings for each of 

these gear types over the four years analyzed.11  Our production estimates include only the purse 

seiners and mid-water trawlers.  We do not investigate the production frontiers possessed by the 

paired-trawlers because we are interested in obtaining vessels specific measures of technical 

efficiency and paired-trawling involves two vessels towing a single trawl.  However, because we 

often observe mid-water trawlers fishing alone and with another mid-water trawler while paired-

trawling, we are able to determine with whom each vessel decides to pair up with and how this 

relates to the H production classes estimated.  This is discussed further in the sequel. 

 

There are five primary reasons why we suspect that heterogeneity may exist in the production 

technology of the Northeast Atlantic herring fishery: (i) purse seine and mid-water trawlers may 

possess different elasticities of input utilization, (ii) there exists a substantially large variance in 

the vessel characteristics, landings and trips conducted within the fleet targeting herring (see 

Table 3), (iii) landings are often pre-contracted before fishing and some vessels are predominately 

order filling vessels, (iv) herring is supplied to a number of different markets (e.g., bait and 

consumption markets) with vessels often pre-determining their intended market (v) the "good" 
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captain hypothesis may be present.  The later three forms of heterogeneity are truly unobserved 

within our data set.  Determining the amount of pre-contracted fishing and the target market for 

each vessel would require contract data, which we do not possess.  The "good captain" hypothesis 

could be investigated through inefficiency regressions but a rigorous investigation would require 

captain socioeconomic data (e.g., educational background, experience, see Kirkley et al., 1998) 

which we also do not possess.  However, given that we suspect heterogeneity in the data (some of 

which we can directly observe and some which we cannot), the herring fishery data are well-

suited to the investigation of  heterogeneous production using the EC algorithm.  

 

Estimation Procedure 

The stochastic frontier model estimated for each Hh ,...,1=  segment is specified as follows, 
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(10) 

Cit represents the catch for vessel i on trip t expressed in metric tons of herring harvested.  GRTi 

and HPi capture the fixed inputs of production for vessel i and represent the vessel’s gross-

registered tonnage and engine horsepower respectively.12 Crewit and Hoursit represent the number 

of crew members on board the vessel and the hours spent fishing on trip t respectively. We 

constructed the hours fished by calculating the difference in the departure and arrival time for 

each trip, and subtracting steam time.13  Steam time was calculated by determining the distance 

between port and the centroid of the reported area fished and assuming a typical speed of 12 

knots steaming to and from the fishing grounds.14  DumNoCrewit is a dummy variable indicating 

whether or not the number of crew members on board the vessel was observed on trip t.  In the 

case that no crew members were observed we substituted the mean number of crew members 

utilized by vessel i within the data set for the missing value.15  The other three remaining 

variables, DumSpWntInshoreit, DumSpWntOffshoreit, and DumSumFlOffshoreit are dummy 

variables indicating whether vessel i fished inshore during the Spring or Winter, offshore during 

the Spring or Winter or offshore during the Summer or Fall in time period t respectively.16  The 

peak seasons for the inshore fishery are Summer and Fall, while they are the Spring and Winter 

for the offshore fishery.  These peaks in the inshore and offshore activity correspond with the 
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seasonal migration of herring from the inshore northern latitudes to the offshore southern 

latitudes within the year.  Therefore, these dummy variables control not only for the respective 

inshore and offshore seasons but for the stock abundances present during these time periods.   

 

The production function was determined by specifying the full trans-log production specification 

and then removing variables which were highly collinear.  Any variable which possessed a linear 

correlation with GRT, HP, Crew or Hours greater then 0.90 was removed from the specification 

of the production function.  Although this is an arbitrary rule for determining the specification of 

the model, it facilitates the estimation of the H production classes by reducing the probability of 

within segment multicollinearity.17  For computational parsimony, we select the same number of 

production parameters for each segment.18  Therefore, there are eleven parameters for each of the 

H segments within the latent class model.  Denote each segment's )1( ×J  parameter vector as 

],...,,[ |11|1|0 hhhh βββλ =′ , then there are H*J+3 parameters, , to 

estimate.

],,,,...,[ 2
1 sH σμγλλ ′′=Θ′

19   

 

The production function estimated for each segment was carefully selected to control for within 

segment multicollinearity.  As mentioned earlier there exist two different fishing technologies in 

the North Atlantic herring fleet, purse seiners and mid-water trawlers.  One obvious way to 

control for these technological differences would be to construct a dummy variable for one of the 

technologies.  This dummy variable could also be interacted with the other variables within 

equation (10) to obtain two representative production functions within each of the H segments.  

This would imply that we would be (in essence) estimating 2*H segments within the fishery.  

However, the EC algorithm aggregates agents into the H segments based on latent similarities in 

their production technology and one of these latent similarities is the marginal products possessed 

by these different fishing technologies.  Therefore, this may increase the probability of within-

segment multicollinearity, which could produce highly variable parameter estimates.  Hence, we 

do not use a dummy variable to control for fishing technologies so as to obtain reliable parameter 

estimates and to investigate whether or not the EC algorithm is capable of partitioning the vessels 

according to their production similarities.20  This serves as an ex post justification for using the 

EC algorithm in future production modeling where latent heterogeneity is believed to exist but is 

truly unobserved by the researcher.  
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Model Selection and Empirical Results 

To select the appropriate number of segments, H, we appealed to  likelihood ratio tests, the 

Bayesian Information Criteria (BIC), and the Akiake Information Criteria (AIC) tests.  The 

likelihood ratio test in the context of the latent class regressions is LR = -2[ln(L|H-1)-ln(L|H)], 

where the degrees of freedom for the test statistic is equal to J.  The BIC and AIC tests are 

specified as follows, BIC = -2ln(L)+J(ln(N)) and AIC = -2ln(L)+J2 respectively, with lower 

values for the BIC and AIC supporting the further segmentation of the latent class model.  All 

three test statistics support the segmentation of the model and indicate that the preferred number 

of segments is H=3.21  Further segmentation of the data set was explored, H=4, however the log-

likelihood estimates produced ill-conditioned Hessians, suggesting a high degree of within-

segment multicollinearity.  We, therefore, focus on the H=3 segmentation results in what follows.  

Additionally, given the small number of vessels on the  data (39) and the estimated number of 

vessels within each of three segments, we believe that the four segment model is potentially 

asking too much of the data.  Therefore, we present results for the one and three segment models 

to compare the model results under homogeneous and heterogeneous production assumptions.  

 

In both the homogeneous and heterogeneous production models the variance parameter, γ, is 

close to one which indicates that the inefficiency effects are significant in our model (Battese and 

Coelli 1995).  This was confirmed using a likelihood-ratio test on the null hypothesis that the 

inefficiency effects were absent in the homogeneous model, γ =0.22  The magnitude of the 

variance parameter, γ, is reduced as we increase the number of segments in the model.  This 

suggests that the heterogeneous production profiles generated by the EC algorithm reduce the 

explanatory power of the inefficiency effects relative to the homogeneous production model.  

However, the significance of this parameter across all the models estimated indicates that the 

inefficiency effects prevail. 

 

The EC algorithm induces a small-sample classification bias in determining each vessel’s 

segment membership (El-Gamal and Grether 1995; El-Gamal and Inanoglu 2005).  To 

characterize the extent of this bias, El-Gamal and Grether (1995) introduce an "average 

normalized entropy" (ANE) statistic as a reliability measure of the segmentation algorithm.  The 

ANE is based on the posterior probabilities for each vessel and is expressed as, 
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The test statistic is bounded between zero and one, with lower values indicating a reliable 

segmentation of the data.  El-Gamal and Inanoglu cite ANE values of 0.065 and 0.09 within their 

study of the Turkish banking as reliable measures of segmentation (El-Gamal and Inanoglu 

2005).  The ANE(3) value obtained in our research was 0.226.  A four segment model could 

conceivably improve the statistic, but given the empirical intractability of the four segment 

model, this ANE value was the best we could obtain. 

 

The estimation results are contained in Table 2.  The first column of Table 2 shows the estimated 

homogeneous stochastic production frontier for the Northeast Atlantic herring fleet.  This model 

indicates that production is primarily determined by the vessel’s size and horsepower as well as 

the season and location.  In addition, the elasticities of input utilization are all positive and satisfy 

the traditional monotonicity assumptions. Columns two through four of Table 2 show the 

estimated parameters for the three segment stochastic production frontier model.  The results 

from the heterogeneous production frontier indicate that there exists substantial variation in input 

utilization across the segments (i.e., there are substantial differences in the elasticities across 

segments).  Not all variables significant in the homogeneous model are significant in each of the 

heterogeneous segments, and visa versa.  The most pronounced being the change in significance 

of Hours across the models. Additionally, there do exist a few statistically significant curvature 

violations (sign violations) within the heterogeneous model, which will be discussed in the next 

section. Fortunately, as we shall see, each segment possesses a set of unique features which may 

explain these violations once they are taken into consideration.   
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Before discussing how the three segment production functions differ, it is useful to characterize 

the producers in each of the three production segments.  Table 3 shows the mean, standard 

deviation, maximum, and minimum values of the key production variables for both the 

homogeneous and heterogeneous production models.  Vessels in segment 1 are predominately 

mid-water trawlers (% purse seiners = 7.69%); in fact, only one vessel is a purse seiner.  Vessels 

in segment 1 possess the highest average catch per trip (109.70 metric tons), utilize the smallest 

vessels (as measured by average GRT = 91.38 tons and HP = 949.80 h.p.), fish the fewest number 

of days (average Ti = 36.85 days), and they fish longer (average Hours = 21.40 hrs) and farther 

from port (Distance = 98.55 km) than the other vessels.  In addition, these vessels possess the 

greatest ratio of horsepower per a gross-registered tonnage (HP/GRT).  Their ratio is 10.394 

HP/GRT, while it is only 7.139 and 5.195 for segments 2 and 3, respectively, and 7.558 for the 

entire fleet.  The most important descriptive statistic is the high variance this segment possesses.  

All of the aforementioned characteristics have the highest standard deviations in segment 1  

except for the days fished.   

 

The high variance for segment 1 results from the heterogeneity of the vessels in the segment:  

There are 9 small vessels and 4 very large vessels within this segment.  The 9 small vessels 

possess an average catch per trip of 1.745 metric tons which is substantially lower than the 147.20 

average metric tons harvested by the 4 large vessels.  These size differences also manifest 

themselves as differences in vessel size and horsepower.  The average GRT and HP for the 9 

smaller vessels is 26.11 and 436.30 respectively, which is substantially different than the 

corresponding values of 238.30 and 2,105.00 for the 4 larger vessels.  Although these differences 

may suggest that the segment be split into two segments (potentially resulting in a four segment 

model), there is a fundamental characteristic which all of these vessels possess that may be used 

to define the segment.  These vessels are all opportunistic herring fishers.  The smaller boats are 

vessels supplying small amounts of herring to the bait market for lobster, and the larger vessels 

participate in other fisheries (i.e., groundfish) throughout the year.  Combined, these factors 

highlight two concerns in the estimation.  First, it may be difficult to obtain reliable estimates of 

technical efficiency if vessels are constrained to possess the same production technology as other 

vessels which actively participate in the herring fishery.  Two, the vessels in this segment may be 

thought as "fringe" participants in the fishery and not part of the "core" herring fleet from a policy 

perspective. (Not surprisingly, excluding these vessels from the analysis results in the exact two-

tier segmentation implied by the three segment model, with the added benefit that the elasticity 
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estimates for the two segments are very similar to the estimates obtain in the three segment 

model.) 

 

Vessels in segment 2 are predominately mid-water trawlers, except for one purse seine vessel.  

These vessels also use the fewest number of crew members on average, and are the oldest and 

largest vessels within the fleet.  These vessels also have the lowest average catch rates.  Segment 

3 contains the largest concentration of purse seiners, containing 90% of the entire purse seine 

fleet, which account for 64.29% of the vessels within segment 3 and 85.30% of the observations.  

Segment 3 also uses the largest and most stable work force, fish the largest number of days, Ti, 

and they possess the newest vessels.  The most significant factor is that this segment 

predominately participates in the summer and fall inshore fishery, which accounts for 82.60% of 

their days-at-sea.  This substantially exceeds the 49.70% and 48.80% for segments 1 and 2, 

respectively. 

 

Given these segmentation results, it is evident that the EC algorithm successfully partitioned the 

data set into three distinct segments.  The most remarkable segmentation result was the EC 

algorithms ability to group nearly all of the purse seiners within the data set into the third segment 

(table 3, segment 3, % purse seiners = 64.29%).  Although this is a factor which could 

presumably be controlled for in a homogeneous production model, it does suggest that, if there 

exists truly latent heterogeneity in the data (that which can not be directly observed), the EC 

algorithm is capable of accounting for its existence in the grouping of the segments.  In fact, 

conducting a chi-squared test of the frequency of vessel technologies within the three segments 

rejects the null hypothesis that the assignment of vessel technologies across the three segments is 

uniformly distributed.23  The improvement in fit and increase in statistical efficiency that comes 

from capturing this heterogeneity is of limited interest if modeling heterogeneity does not also 

yield a different profile of production in the fishery.  Examination of the production coefficients 

(table 2) indicates that the aggregate estimation does in fact mask differences in production 

functions, predominately identifying the season fished and vessel size as significant factors which 

are not always consistent with the results generated by the heterogeneous model.   

 

Table 4 contains the segment specific marginal products under both homogeneity and 

heterogeneity assumptions, as well as each segments implied returns-to-scale.24  Comparing the 

marginal products and returns-to-scale for each segment under the homogeneous and 

heterogeneous models it is clear that there exists a high degree of heterogeneity. In addition, the 
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increasing returns to scale observed under the homogeneous model appears to be driven by the 

exceptionally high returns-to-scale possessed by segment 1 in the heterogeneous model, which 

we have already labeled as the "fringe" segment within the herring fishery. When controlling for 

this segment of the fleet, one can conjecture that the herring fleet possesses decreasing returns-to-

scale.  This is an interesting discovery because increasing returns-to-scale has often been 

observed in many fisheries (Felthoven 2002; Felthoven and Paul 2004; Kirkley, Squires and 

Strand 1995; Sharma and Leung 2002 to cite a few), and the results from the EC algorithm 

suggest that this may be due to latent heterogeneity in the production functions.  Of course, this is 

something that would need to be empirically investigated on a case by case basis since the high 

degree of heterogeneity observed in the herring fishery may not exist in other fisheries. 

 

Continuing in table 4, the largest determinants of production for vessels in segment 1 are their 

size (HP = 0.1414 and GRT = -0.1638) and hours fished (Hours = 1.3888).  However, the 

negative and significant coefficient on GRT suggests a production theory curvature violation.  

Based on the production segmentation of the fishery, there are two potential explanations for this 

anomaly.  The linear correlation of HP and GRT within segment 1 is 0.9813, which is 

substantially larger than the 0.5768 and -0.1630 correlations for segments 2 and 3 respectively.  

This could presumably be controlled for by restricting this segments production function to 

contain only HP or GRT, however this is not something we explore since our standard errors are 

relatively small.  Alternatively, this phenomenon may be a result of the opportunistic nature of 

this segment.  Vessels in segment 1 fish the fewest number of days (about half the days fished by 

segment 2 and about one third the days fished by segment 3, in table 3).  This suggests that they 

participate in the herring fishery to "fill the season," when herring fishing is advantageous relative 

to the other fisheries in which they are geared to participate.  This would indicate that the fixed 

inputs these vessels select, HP and GRT, may be optimal for alternative fisheries.  Therefore, they 

may be using a vessel which has a substantially different returns-to-scale within an alternate 

fishery, which is more economically important for the bulk of the season.   

 

To further investigate whether or not vessels in segment 1 opportunistically participate in the 

herring fishery, we calculated the average annual percentage of their fishery-wide returns that 

consisted of herring for 11 of the 13 vessels in segment 1.25  Of these 11, 6 vessels possessed 

percentages below 10%, with 4 of them below 2%, indicating that these vessels predominately 

participate in other fisheries throughout the year.  Comparing this with a similar calculation for 12 

of the 14 vessels in segment 3, we found that 5 of the 12 possessed percentages greater than 95% 
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and 3 of these 5 received all of their revenues from the herring fishery.  Furthermore vessels in 

segment 1 are not as dramatically affected by the season in which they fish.  Combined, these 

results support the hypothesis that segment 1 contains vessels which opportunistically fish in the 

herring fishery and are "fringe" participants, whereas those in the other segments represent the 

stronger "core" of the herring fleet.  This may explain not only the high returns-to-scale possessed 

by this segment but also the curvature violation.   

 

In table 4, herring production for segment 2 is predominately determined by the size of their 

vessels (GRT = 0.00619), the number of crew members (Crew = 3.0050),  and the hours spent 

fishing (Hours = 0.1820).  This segment possesses two unique production attributes, a small 

marginal product for GRT and a very high marginal product for Crew, relative to the other 

segments. In addition, vessels in segment 2 have the lowest returns-to-scale.   The last segment 

within the fleet, segment 3, is primarily influenced by their mobility (HP = 0.0393) size (GRT = 

0.1761), the number of hours fished (Hours = -0.6649), and the season in which they fish.  This is 

reflected by the highly significant coefficient on HP, the marginally significant coefficient on 

GRT and the negative and statistically significant coefficient on Hours.26  Given that this 

segments HP/GRT, discussed earlier, is the lowest in the fleet, the empirical results indicate that 

this segment could enhance their catch by increasing their vessel’s horsepower.    

 

The curvature violation in the third segment for Hours results from the mixed technologies within 

the herring fleet.  Segment 1 and 2 are predominately mid-water trawlers, while vessels in 

segment 3 are both purse seiners and mid-water trawlers.    These two technologies possess 

substantially different returns to hours fished.  The average returns per an hour fished for a mid-

water trawler within segment 3 is 3.005 metric tons/hour fished.  This stands in stark contrast 

with the 6.781 metric tons/hour fished.  Therefore, from an empirical stand point the purse seine 

vessels within segment 3, which account for over 85% of the observations, are being controlled 

for via the negative coefficient on Hours.  Presumably, we could have corrected for this using a 

dummy variable for purse seiners but, as discussed earlier, we were unable to do so, given the 

high degree of within-segment multicollinearity which would result.  Alternatively, the negative 

coefficient on Hours may result from the fact that herring are a schooling pelagic species.  With a 

schooling pelagic species the most difficult factor is locating a school of fish, which when found 

are easily captured.  Presumably, a longer time spent fishing would indicate either a small school 

of herring resulting in increased fishing time spent to locate more fish nearby or an increase in 

search time.27  This negative impact of Hours will be greater for segment 3 because segment 2 
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contains more mid-water trawlers.   Mid-water trawlers require more time to catch herring as they 

must trawl through the herring school and therefore we observe a positive and significant 

coefficient on Hours within segment 2. 

 

Aside from the properties of the production function possessed by segment 3, these vessels also 

consistently fish the largest number of days within the fishery and predominately fish inshore 

during the summer and fall.  Although vessel characteristics do explain some of this segments 

production, the highly significant coefficients on DumSpWintInshore, DumSpWintOffshore and 

DumSumFallOffshore indicate that this segment of the fishery generates most of its output during 

the summer and fall inshore season, which corresponds to the seasonal migration patterns of the 

herring.   Given the recent proposed amendments to the Herring Fishery Management Plan, which 

may potentially restrict access of mid-water trawlers to the inshore fishery, the EC algorithm has 

determined which vessels are most likely to be adversely effected by this new policy; the mid-

water trawlers in segment 3. 

 

Since segment 1 represents an opportunistic and "fringe" segment of the herring fishery, it is 

possible that this segment should not be considered when conducting policy analysis.28  To 

further investigate this we eliminated vessels in segment 1 and re-estimated a two segment latent 

class model.  The results are in Table 5, hereafter denote Model 2.  Comparing these results with 

those in Table 2 (denoted Model 1), it is evident that the coefficients are similar and in many 

cases not statistically significant from one another.  In addition, the most remarkable result is that 

the segmentation in the data set is identical to that obtained in the three segment model.  The 

primary difference between model one and model two is that model two generates substantially 

different parameter estimates for γ and σ2
S.  This suggests that vessels in segment 1 were driving 

the higher variance, σ2
S, and the relative importance of σ2

μ (reflected by the higher value for γ).  

 

The comparison of these two models (Models 1 and 2) highlights an additional advantage of 

using the EC algorithm, it not only produces consistent latent segmentation but it generates 

reliable within segment parameter estimates.  Therefore, following estimation a policy maker can 

decide to focus on one or more of the segments obtained and ignore the vessels in other segments 

they deem to be "fringe" segments or irrelevant from a policy perspective.  This could be 

potentially advantageous from a policy perspective if one of the segments possess a substantially 

different marginal product for an input undergoing policy reform.  Presumably it is possible to 

obtain similar estimates using a prespecified data filter (i.e., focusing vessels which catch more 
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than a certain amount), but this would be an ad hoc way of segmenting the data and may ignore 

latent heterogeneity in the data.  Although the coefficients are similar, from a policy perspective it 

would still be important that the technical efficiency measures under the two models be similar 

because different estimates for γ and σ2
S may yield different technical efficiency measures.  This 

is investigated further when we analyze the technical efficiency measures generated using the 

homogeneous and heterogeneous production models (both Model 1 and Model 2).  

 

 

Implications of Heterogeneity for Technical Efficiency 

Stochastic production frontier models are often used to derive measures of technical efficiency to 

characterize industry capacity (Felthoven 2002; Kirkley et al. 2002).  These measures are used, in 

turn, to determine the nature and extent of effort reduction programs, such as the creation of 

fishing cooperatives in the Alaskan pollock fishery, following the inception of the American 

Fisheries Act (Felthoven 2002; Felthoven and Morrison Paul 2004). 29  Technical efficiency 

measures the degree to which a vessel obtains the maximum level of production implied by their 

production technology.  Table 6 shows the technical efficiency measures for vessels in each 

segment, calculated under the two different assumptions.  The left-most column of each segment 

shows the technical efficiency for each vessel in the sample based on the heterogeneous model, 

and the right-most column is based on the homogeneous model.  For segments 2 and 3, two 

heterogeneous technical efficiency measures are provided, corresponding with the Model 1 

(Table 2) and Model 2 (Table 5) estimates.  

 

The homogenous production model leads to substantially different measures of technical 

efficiency than the heterogeneous model.30  There are many sizable differences in estimated 

technical efficiencies between these models, especially for vessels in segment 1.  Therefore, 

assuming homogeneity in the production technology may yield substantially different results than 

if one allows for production heterogeneity, yet when one allows for production heterogeneity the 

distribution of technical efficiency measures becomes more homogeneous (within segments).   

The most profound difference in technical efficiency measures occurs in segment 1 were the 

efficiencies are abysmally low for the homogenous model.  This illustrates that failure to account 

for heterogeneity leads to a statistically and economically significant underestimation of the 

technical efficiency of these vessels.  In many cases, the homogeneous model underestimates 

technical efficiency by a factor of 10 or more.  This may lead policymakers to generate fallacious 

estimates of excess capacity for this segment, leading to improperly guided management 
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measures.31  However, given that this segment has been labeled our opportunistic "fringe" 

segment of the fleet, these results should be interpreted with caution.  Since these vessels 

primarily participate in other fisheries during the year, increasing there effort in the herring 

fishery may not be economical given their capital stock.  Another interesting result from the EC 

algorithm is illustrated in Table 6.  As mentioned earlier, 9 vessels in segment 1 possessed catch 

rates indicative of supplying herring to the bait market.  Using a production filter of average catch 

less than or equal to 3 metric-tons to indicate a "bait-market" vessel (indicated with BM in table 

6), the EC algorithm has grouped nearly all of them into segment 1.  Only one other "bait-market" 

boat exists and that is a mid-water trawler in segment 2.   This further highlights the EC 

algorithms ability to capture latent heterogeneity in the data set. 

 

Comparing the technical efficiency measures obtained using Models 1 and 2 for segments 2 and 3 

it is evident that these alternative specifications (Models 1 and 2) generate similar technical 

efficiency measures. However, the results from Model 2 are slightly lower than those obtained 

from Model 1, but they are both superior to the homogeneous model estimates (in the sense that 

they both result in higher efficiency measures than the homogenous production model).  In 

addition, the ordinal ranking of the technical efficiency measures do change for a few vessels in 

each segment, but they are otherwise consistent with the results generated using Model 1.  It is 

possible to determine whether or not this change in ordinal ranking is statistically significant 

using a minimal subset ranking approach (implied by Horrace 2005), but this is beyond the scope 

of this investigation.  Figure 2 illustrates the impact of heterogeneous modeling on the cumulative 

density of technical efficiency in the herring fishery.  For the homogeneous model (H=1) a 

substantial portion of the cumulative density lies below a technical efficiency measure of 0.50, 

which is not the case for the two-segment (H=2) and three-segment (H=3(Mod1) and 

H=3(Mod2)) models.  Increasing the number of segments in the model causes a rightward shift in 

the cumulative density of technical efficiency measures.   

 

Who Pairs with Whom? 

In addition to challenging accepted notions of homogeneous production frontiers, our latent class 

analysis can be used to provide some initial insight into a trend which has not been previously 

analyzed within the herring fishery.  Figure 1 illustrates that while mid-water trawling and purse 

seining are the most common gear types, they have steadily declined in recent years with the rise 

of paired-trawling.  This reflects vessels switching from individual fishing to paired-trawling, 

giving us the opportunity to identify the characteristics of vessels that pair with one-another. 
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Specifically we can determine whether vessels pair with other vessels in the same segment when 

they switch to paired-trawling or vessels in an alternate segment.  Although the logbook data does 

not contain precise information on which vessels paired up with each other, many pairings can be 

recovered by matching the port, date and time of return.  Vessels that returned to the same port 

within an hour of each other reporting a paired-trawl gear type were considered to have paired up.  

This resulted in 277 pairings for the 39 vessels analyzed.  Of these 277 only 7 pairing involved a 

vessel from segment 1.  Therefore, the opportunistic vessels in segment 1 rarely participate in 

paired-trawling activities. 

 

To determine with whom vessels in each segment pair up with, the 277 pairings were further 

analyzed to determine unique pairings between vessels in the data set.  A unique pairing is 

defined as a pairing between vessels that occurred at least once during the 277 pairings observed.  

Given this definition there were 11 unique vessel pairings with the pairing frequencies defined 

over segments illustrated in Figure 3.32  From the figure, it is apparent that vessels in segment 

2(three) and three predominantly pair up with vessels in segment 3(two), occasionally with a 

same-segment vessel, but almost never pair up with a vessel from segment 1.  

 

These pairing practices indicate that vessels which utilize different production function while 

fishing alone often pair up with each other while paired-trawling. The vessel characteristics for 

segments two and three may influence the pairing process.  Vessels in segment 2 are on average 

larger and more powerful than those in segment 3.   Focusing on the observed cross segment 

pairings indicates that often these pairings involve two vessels with substantially different 

measures of horsepower per a meter of vessel length.33  Perhaps these differences complement 

each other while paired-trawling.  Therefore, the pairing of these two segments is either driven by 

the fact that they possess similar levels of productivity, that there are returns-to-scale from using a 

less powerful and a more powerful vessel together in paired-trawling, or that there exist 

alternative social arrangements which determine paired-trawling in this fishery (e.g., family 

relationships).  The most remarkable result is the low frequency of pairings involving vessels in 

segment 1, further highlighting the opportunistic and "fringe" production segment they 

represent.34  

 

Conclusion 

The notion of heterogeneity in production is an obvious extension given the increasing concern of 

addressing heterogeneity in preferences and individual decision making within economics (Train 
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2003).  The latent stochastic production frontier model developed within this research illustrates 

how heterogeneity can be introduced and investigated.  Our results support the hypothesis that 

there exists production heterogeneity in the Northeast Atlantic herring fleet which is reflected in 

the different marginal products of input utilization.  In addition, our model illustrates that if one 

ignores the presence of heterogeneity it is quite possible that erroneous policy recommendations 

may be made.   

 

Although this model is applied to a fisheries production process it invariably may prove to be 

beneficial within the agricultural literature focusing on crop selection and policy response.  In 

essence the homogeneous model discussed within this paper straightjackets agents to follow the 

same production practices, which in turn may yield inaccurate measures of technical efficiency.  

This is well illustrated in the Northeast Atlantic herring fishery were we observe a substantial 

difference in a vessel’s technical efficiency measure assuming a homogeneous versus 

heterogeneous production technology.  Whereas if we allow for heterogeneity to exist, we obtain 

a flatter distribution of technical efficiency because inter vessel differences are better explained 

by alternative production functions not technical efficiency.  

 

Within the fisheries literature, the methods outlined within this paper may be extremely beneficial 

to researchers interested in fishery capacity or the ability of vessels to compensate for 

management instruments that effect their rate of efficiency (eg.. gear and area restrictions). 

Should heterogeneity exist within a fishery, any policy which restricts input utilization will yield 

asymmetric impacts due to the differences in the returns-to-scale and marginal product of input 

utilization within the fleet.   Therefore these methods have not only been able to segment a fleet 

into different latent groups, they have illustrated a potentially useful methodology to facilitate 

policy development.  This may be of increasing concern to resource managers who are now faced 

with more complex management goals, and the regimes to achieve these goals, within fisheries.

                                                 
1 For a more detailed review of applications in agriculture see the articles written by Battese (1992) and 

Coelli (1995b).  For applications in aquaculture see Irz and McKenzie (2003), Sharma and Leung (2003) 

and Dey et al. (2000) to cite a few. 

2 It should be noted that data envelop analysis (DEA) is often used to generate estimates of excess capacity 

and this paper utilizes a stochastic frontier model.  Both methods can be used to generate estimates of 
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excess capacity and there have been a number of papers which discuss the advantages and disadvantages of 

these methods. See Kirkley et al. (2002) for a more detailed discussion. 

3 The presence of a "good" captain has also been investigated by cultural anthropologists.  Acheson (1981) 

and Thorlindsson (1988) provide a more detailed discussion of the human dimensions influencing the 

presence of "good" captains within fisheries. 

4  We acknowledge that a fairly rich specification can be achieved (without latent class regression) by 

including sets of interacted dummy variables, which represent observed classes of heterogeneity.  An added 

benefit is that these specifications often imply traditional pooling tests for the vessels in the sample.  

However, the goal here is account for latent (unobserved) heterogeneity which, if ignored, may bias 

marginal product estimates in the production function.   

5 The rationale for the functional form is discussed in the estimation procedure section.   

6 All segments share common parameters for the distribution of the vessel-specific error term, a truncated 

N(μ, σ2
μ).  El-Gamal and Inanoglu (2005) claim that without common μ and σ2

μ  the econometric model is 

"ill-posed." A latent class production  model with an exponential distribution for efficiency could also be 

investigated. 

7 The complete data set contains 3004 observations.  However, we use a production filter of 0.10 metric 

tons of herring landed per a trip and eliminate observations for which vessel characteristics were not 

recorded.  In addition, two boats within the data set were sold during the time period analyzed and have 

been treated as separate distinct vessels due to the change in ownership. 

8The catch data contained in the logbook data set is provided by the captain of the vessel. It should be noted 

that any form of catch estimate may be subject to measurement error. 

9 For a more detailed discussion of the proposed management changes see NEFMC (2005). 

10 Given the technologies (mid-water trawl and purse seine),  there are two primary species caught within 

this fishery, herring and mackerel.  Vessels in the data set predominately caught herring with a small 

number of observations possessing positive amounts of mackerel.  In order to focus solely on herring catch 

we eliminate all observations for which the herring composition did not exceed 90% of the total catch. 

11 All other landings recorded by other gear accounted for between 0.02% and 0.05% of the total metric 

tons landed from 2000 through 2003.  Therefore, all other gears are not illustrated in Figure 1. 
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12 The vessel’s gross-registered tonnage and horsepower were selected to represent the vessel’s fixed inputs 

because they possessed the lowest degree of linear correlation (0.4809) of all the available fixed inputs. 

13 In the case that our steaming time calculations exceeded the hours spent on the trip we set the number of 

hours fished to one.  The total trip time consists not only of steaming time and fishing time but also search 

time, therefore the construction of this variable does introduce an estimation bias due to heterogeneous 

nature of the fleet’s technology. 

14 The distance measures were calculated using the earth model distance conversions developed by C.G. 

Carlson and D.E. Clay for site-specific management guidelines available at www.ppi-far.org/ssmg and 

programmed in MATLAB 7.  The average travel speed was provided by contacts at Woods Hole 

Oceanographic Institute.   

15 There were two vessels in the data for which we did not observe any crew data on and we set ln(Crewit) 

equal to zero for these boats. 

16 Initial investigations partitioned these dummy variables into the four seasons and inshore and offshore 

regions.  The results indicated a high degree of multicollinearity within the segments so we aggregated the 

Spring and Winter seasons as well as the Summer and Fall.   

17 Using a linear correlation filter of 0.95 was also investigated.  In models with H >1 the production 

estimates indicated a high degree of within segment multicollinearity. 

18 A likelihood ratio test was conducted on the homogeneous model restricting β5 = β6 = 0. The test statistic 

of 2.497 does not exceed the 95% level critical value of 5.99 for a .  This indicates that we could have 

used the Cobb-Douglas functional form of equation 10.  However, we elected not to because we suspected 

that these variables could be significant determinants for one segment and not another in the EC algorithm.  

Therefore, eliminating these variables from the model would further homogenize our results.  This 

suspicion was confirmed in our final results. 

2
2χ

19 Estimation of equation (10) does raise the question of endogenous explanatory variables.  However, if we 

assume that the choice of inputs used to maximize catch is subject to “human error” and that these errors 

are uncorrelated with the error specification in the stochastic frontier model the endogeneity concerns are 

addressed (Kirkley et al. 1998). 
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20 Initially we selected a dummy variable for the purse seine gear, Pseine, which was used as a intercept 

shifter as well as interacted with the other inputs in the production function.  However, this produced and 

ill-conditioned Hessian and explosive standard errors; a sign that multicollinearity may be a problem. 

21 Because the likelihood function may have many local maxima we used 500 different random starting 

points to obtain the maximum log-likelihood value using the Constrained Maximum Likelihood (CML) 

algorithm in GAUSS.  To obtain values for γ and σs we transformed them so that γ lied on the interval [0,1] 

and σs was non-negative. Following the 500 random starting points, the best estimates for γ and σs were 

transformed back and the model was re-estimated to obtain standard-errors. 

22 The likelihood ratio statistic was 1936.73 which is greater than the 95% critical value of 7.82. 

23 The chi-squared test statistic is 11.635, which is greater than the critical value of 5.99 for a chi-squared 

random variable with two degrees of freedom. 

= ∂24 The vessel elasticities of input utilization were calculated as follows, ε .  The marginal 

products were calculated as follows, )/( ||| hkhhkhk ZCMP ε= hC, where  is the average catch for segment 

h and hkZ | is the average level of the kth input for segment h.  

25 We thank Andrew Kitts at the National Marine Fisheries Service for providing us with this information.  

This data was unavailable for 2 of the boats in segment 1 and segment 3. 

26 The coefficient on GRT is significant at the 84% level and GrtCrew is significant at the 73% level. 

27 This does suggest and is consistent with the two-stage production process investigated in Campbell 

(1991) but we do not investigate this form of production. 

28 It is possible that this “fringe” segment possesses some latent capacity which would be utilized if current 

management policies changed, but we ignore this given the low percentage of revenues derived from 

herring.  However some caution should be used, given that in other fisheries latent capacity is a significant 

management issue.  

29 Felthoven and Morrison Paul (2004) do not utilize a stochastic production frontier model to estimate 

efficiency and capacity in the Alaskan pollock fishery.  They utilize a GLS estimation of a multi-output 
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production function.  However, there objective, measures of capacity, is motivated by the same concerns as 

researchers utilizing stochastic production frontier models. 

30  Since these are efficiencies measured in an absolute sense, the differences are not being driven by the 

fact that there are few boats for comparison in the heterogeneous models. 

31 In the fisheries literature inefficiency is usually removed before estimating excess capacity.  Therefore, 

the homogeneous model could either over-estimate or under-estimate the degree of excess capacity, relative 

to the heterogeneous production model.  What is important is that the homogeneous model generates an 

inaccurate production profile which if used to generate measures of excess capacity will be erroneous. 

32Segment 1 is omitted because only 2 unique pairings involved a vessel from segment 1 and they were 

evenly split between pairing up with a boat in segment 2 and three.  This pairings are implicitly realized in 

Figure 2. 

33 Looking at all 11 unique pairings this is true for 9 of them. 

34 It is important to note that we are not characterizing all paired-trawling activities in the herring fishery.  

We are only looking at those vessels for which we observe individual fishing activity as well as paired-

trawling.  We are not looking at all paired-trawling activities within the fleet; therefore, what we observe 

may not be true for all other vessel pairings. 
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Figures and Tables 

 

Figure 1: Metric tons landed by gear type and year. 
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Figure 2: Cumulative Density Estimates of the Technical Efficiency (H defines the segment 

assumptions). 
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Figure 3: Paired-trawling behavior by segment. 

0 0.1 0.2 0.3 0.4 0.5 0.6

Percentage

Segment 2

Segment 3

Se
gm

en
t P

ai
rin

gs

Segment 3
Segment 2
Segment 1

 
(**Segment 1 is not include in this figure because there existed only two paired-trawling observations, both of which 

were paired with a vessel in segment 2.) 
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Table 1: Model Selection Tests 
Classes Parameters Mean Ln(L) LR Test BIC AIC 

1 14 -1.00957 ------- 5894.68 5871.39 
2 25 -0.97883 177.92 5757.06 5715.47 
3 36 -0.96396 86.07 5711.29 5651.40 
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Table 2: Latent Class Regression - Stochastic Frontier Results(t-stats) 

Variable  No Segments  Segment 1  Segment 2  Segment 3 

Constant  -2.2913  -16.0335**  -10.1388**  1.8865* 

  (-1.62)  (-11.03)  (-3.88)  (1.67) 

GRT  0.2653*  -0.5028**  2.7700**  0.1658 

  (1.71)  (-3.26)  (6.91)  (1.42) 

HP  0.7781**  2.8326**  0.1254  0.3249** 

  (3.57)  (10.85)  (0.38)  (2.16) 

Crew  0.2679  0.4373  9.8811**  -0.4213 

  (0.62)  (1.06)  (4.06)  (-1.05) 

Hours  0.1130  0.4405**  -0.2826**  -0.3380** 

  (1.20)  (2.99)  (-2.28)  (-2.24) 

GRT*Crew  0.0184  -0.0146  -2.0462**  0.0845 

  (0.17)  (-0.13)  (-4.36)  (1.10) 

Crew*Hours  -0.0668  -0.1457  0.2823**  0.1414 

  (-1.04)  (-1.32)  (3.08)  (1.49) 

No-Crew  -0.1314**  0.0081  -0.1752**  -0.0605 

  (-2.95)  (0.08)  (-2.86)  (-0.79) 

Sp. Wint. Insh.  -0.3221**  -0.0486  -0.0183  -0.5759** 

  (-6.93)  (-0.53)  (-0.22)  (-9.25) 

Sp. Wint. Off.  0.3829**  0.6814**  0.3106**  -0.1518* 

  (7.70)  (7.24)  (3.94)  (-1.66) 

Sum. Fall Off.  0.2094**  -0.0314  0.3870**  -0.2274* 

  (4.51)  (-0.31)  (6.88)  (-1.83) 

γ  0.9597**  -------  -------  0.8807** 

  (25.19)      (13.88) 

σ2
S  10.3535 

(1.06) 

 -------  -------  3.2835* 

(1.88) 

μ  -3.9023  -------  -------  -6.9310 

  (-0.61)      (-1.34) 

Number of Vessels  39  13  12  14 

Mean 

Log-Likelihood 

  

-1.00957 

  

------- 

  

------- 

  

-0.96396 

** indicates significance at the 95% level; * indicates significance at the 90% level 
Segmentation determined by EC algorithm. 
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Table 3: Segment Characteristics 

Variable  Mean 
(st.dv.) 

Max. 
(Min.) 

 Mean 
(st.dv.) 

Max. 
(Min.) 

 Mean 
(st.dv.) 

Max. 
(Min.) 

 Mean 
(st.dv.) 

Max. 
(Min.) 

  Homog. Model  Hetero. Seg. 1  Hetero. Seg. 2  Hetero.  Seg. 3 
Catch 
 (tons) 

 

 67.59 
(59.62) 

447.10 
(0.12) 

 109.70 
(107.30) 

447.10 
(0.12) 

 53.91 
(43.61) 

311.60 
(0.23) 

 61.96 
(36.95) 

224.50 
(0.45) 

GRT 
(tons) 

 

 118.90 
(106.30) 

476.00 
(5.00) 

 91.38 
(130.40) 

476.00 
(7.00) 

 137.00 
(76.93) 

199.00 
(5.00) 

 128.90 
(105.70) 

394.00 
(5.00) 

Horse 
Power 

 

 898.70 
(678.50) 

2985.00 
(150.00) 

 949.80 
(937.30) 

2985.00 
(300.00) 

 1002.00 
(586.30) 

2100.00 
(150.00) 

 762.40 
(459.60) 

2000.00 
(333.00) 

Number 
of Crew 

 

 4.45 
(1.45) 

15.00 
(1.00) 

 3.86 
(1.91) 

15.00 
(1.00) 

 3.63 
(1.13) 

12.00 
(2.00) 

 5.04 
(1.13) 

12.00 
(2.00) 

Hours 
Fished 

 

 15.26 
(17.43) 

220.40 
(1.00) 

 21.40 
(24.38) 

214.60 
(1.00) 

 20.34 
(21.98) 

220.40 
(1.00) 

 20.84 
(9.08) 

101.40 
(1.00) 

Distance 
(km) 

 

 87.09 
(67.86) 

542.40 
(67.86) 

 98.55 
(93.08) 

329.80 
(4.64) 

 83.44 
(78.58) 

542.40 
(4.44) 

 85.52 
(50.51) 

494.90 
(5.56) 

Vessel 
Age  

 

 17.13 
(9.63) 

53.00 
(1.41) 

 17.31 
(12.76) 

53.00 
(1.41) 

 18.01 
(8.07) 

41.66 
(11.00) 

 16.21 
(7.98) 

27.39 
(2.00) 

Ti 

 

 

 74.21 
(119.70) 

499.00 
(1.00) 

 36.85 
(87.76) 

327.00 
(1.00) 

 67.92 
(142.90) 

499.00 
(1.00) 

 114.30 
(119.80) 

339.00 
(3.00) 

Obs. No 
Crew 

  
0.148 

 
------- 

  
0.079 

 
------- 

  
0.261 

 
------- 

  
0.063 

 
------- 

% Purse 
Seiners* 

  
28.21 

 
------- 

  
7.69 

 
------- 

  
8.33 

 
------- 

  
64.29 

 
------- 

% of All 
P.S. 

  
100.00 

 
------- 

  
9.09 

 
------- 

  
9.09 

 
------- 

  
81.82 

 
------- 

Obs. 
P.S. 

  
0.476 

 
------- 

  
0.021 

 
------- 

  
0.002 

 
------- 

  
0.853 

 
------- 

Sum/Fall 
Inshore 

  
0.675 

 
------- 

  
0.497 

 
------- 

  
0.488 

 
------- 

  
0.826 

 
------- 

Sp/Wint 
Inshore 

  
0.092 

 
------- 

  
0.167 

 
------- 

  
0.087 

 
------- 

  
0.071 

 
------- 

Sum/Fall 
Offshore 

  
0.085 

 
------- 

  
0.196 

 
------- 

  
0.119 

 
------- 

  
0.034 

 
------- 

Sp/Wint 
Offshore 

  
0.148 

 
------- 

  
0.140 

 
------- 

  
0.306 

 
------- 

  
0.069 

 
------- 

*The percentage of purse seine boats in each segment is not precise due to a small degree of gear switching 
over the four year time period analyzed occurring within each segment. 
Homog. Model = Homogenous production model. 
Hetero. Seg. 1 = Segment 1 results for the 3-segement heterogeneous production model. 
Hetero. Seg. 2 = Segment 2 results for the 3-segement heterogeneous production model. 
Hetero. Seg. 3 = Segment 3 results for the 3-segement heterogeneous production model. 
Segmentation determined by EC algorithm. 
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Table 4: Marginal Product (metric-tons) and Returns-to-Scale 

Variable  Homo. Model Heterog. Seg. 1 Heterog. Seg. 2 Heterog. Seg. 3 

GRT  0.1208** -0.1638** 0.0619** 0.1761 

Horse Power  0.0584** 0.1414** 0.0075 0.0393** 

Crew  2.9520 -0.7963 3.0050** 2.9910 

Hours  0.0714 1.3888** 0.1820** -0.6649** 

      

Returns-to-Scale  1.2807 2.5424 0.6210 0.7485 

** indicates that the marginal product is statistically significant. 
Homo. Model = homogenous production model 
Heterog. Seg. 1 = Segment 1 results for the 3-segement heterogeneous production model. 
Heterog. Seg. 2 = Segment 2 results for the 3-segement heterogeneous production model. 
Heterog. Seg. 3 = Segment 3 results for the 3-segement heterogeneous production model. 
Segmentation determined by EC algorithm. 
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Table 5: Latent Class Regression (Model 2) - Stochastic Frontier Results(t-stats) 

Variable 

(t-stat) 
 

Segment 2 

Model 2 
 

Segment 3 

Model 2 

Constant  -10.3427**  1.9373 

  (-3.80)  (1.62) 

GRT  2.7608**  0.1506 

  (6.40)  (1.15) 

HP  0.1710  0.3337** 

  (0.54)  (2.01) 

Crew  10.1429**  -0.4767 

  (3.86)  (-1.18) 

Hours  -0.2894**  -0.3424** 

  (-2.30)  (-2.21) 

GRT*Crew  -2.0994**  0.0948 

  (-4.15)  (1.25) 

Crew*Hours  0.2881**  0.1451 

  (3.08)  (1.49) 

No-Crew  -0.1751**  -0.0633 

  (-2.85)  (-0.83) 

Sp. Wint. Insh.  -0.0144  -0.5792** 

  (-0.19)  (-9.26) 

Sp. Wint. Off.  0.3081**  -0.1516* 

  (3.91)  (-1.65) 

Sum. Fall Off.  0.3889**  -0.2129* 

  (6.91)  (-1.71) 

γ  -------  0.3910** 

    (2.31) 

σ2
S  -------  

0.6496** 

(3.60) 

μ  -------  0.1836 

    (0.42) 

Number of Vessels  12  14 

Mean 

Log-Likelihood 
 

 

------- 
 

 

-0.96396 

** indicates significance at the 95% level 
* indicates significance at the 90% level 
Quantities in parenthesis are t-stats. 
Segmentation determined by EC algorithm. 
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Table 6: Measures of Technical Efficiency 
Rank in 

Segment 

 Segment1 

Model 1 

Segment1 

Homog. 

 Segment2 

Model 1 

Segment2 

Model 2 

Segment2 

Homog. 

 Segment3 

Model 1 

Segment3 

Model 2 

Segment3 

Homog. 

            

1  0.9281 0.2421  0.9074 0.8617 0.5126  0.9710PS 0.9582PS 0.9564PS

2  0.9049BM 0.0749BM  0.9028 0.8740 0.7455  0.9338PS 0.9075PS 0.9334PS

3  0.8810BM 0.0284BM  0.8638 0.8140 0.5092  0.9295 0.9033 0.4693 

4  0.8586BM 0.0739BM  0.8625 0.8115 0.7936  0.8250PS 0.8022 0.8642PS

5  0.8464BM 0.0157BM  0.8139 0.7462 0.2618  0.8174PS 0.7735PS 0.7950PS

6  0.8444 0.5859  0.7680BM 0.6586BM 0.0224BM  0.8080PS 0.7754PS 0.8086PS

7  0.8413 0.6595  0.7583 0.6610 0.6842  0.7827 0.7179 0.2898 

8  0.8167PS,BM 0.0210PS,BM  0.7434PS 0.6510PS 0.6481PS  0.6106PS 0.5959PS 0.7408PS

9  0.7806BM 0.0553BM  0.7054 0.6318 0.3335  0.6061PS 0.5828PS 0.5135PS

10  0.7308 0.1207  0.5008 0.4824 0.3813  0.5550 0.5030 0.1308 

11  0.7246BM 0.0633BM  0.3818 0.3710 0.2134  0.5495PS 0.5320PS 0.5514PS

12  0.6849BM 0.0518BM  0.3566 0.3368 0.1582  0.4349 0.4159 0.2119 

13  0.2979BM 0.0074BM      0.4032PS 0.3961PS 0.4641PS

14         0.2931 0.2881 0.2487 

            

Average 

TE 

 0.7800 0.1537  0.7137 0.6583 0.4387  0.6800 0.6537 0.5699 

PS indicates a purse seine vessel. 
BM indicates “bait market” vessels with average landings ≤ 3 metric tons. 
Homog. = homogenous production model 
Model 1 = three segment heterogeneous production model 
Model 2 = two segment heterogeneous production model (without segment 1 vessels from 3-segment model). 
Technical efficiencies lower in general in the homogenous model. 
Segmentation determined by EC algorithm. 
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