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The Hausman-Taylor Panel Data Model with Serial Correlation

Badi H. Baltagi�, Long Liuy

March 11, 2012

Abstract

This paper modi�es the Hausman and Taylor (1981) panel data estimator to allow for serial correlation
in the remainder disturbances. It demonstrates the gains in e¢ ciency of this estimator versus the standard
panel data estimators that ignore serial correlation using Monte Carlo experiments.

Key Words: Panel Data; Fixed E¤ects; Random E¤ects; Instrumental Variables; Serial Correlation.

1 Introduction

The random e¤ects (RE) panel data model assumes that all the explanatory variables are uncorrelated with
the random individual e¤ects, while the �xed e¤ects (FE) panel data model assumes that all the explanatory
variables are correlated with the random individual e¤ects. Instead of this "all" or "nothing" assumption, the
Hausman and Taylor (1981) panel data estimator allows some of the explanatory variables to be correlated
with the individual e¤ects. One of the main disadvatages of the �xed e¤ects estimator is that it wipes out
the e¤ects of time-invariant variables. In contrast the Hausman and Taylor (HT) estimator recaptures the
estimates of these time-invariant variables which are important in empirical applications, see Cornwell and
Rupert (1988), Egger and Pfa¤ermayr (2004) and Serelenga and Shin (2007) to mention three applications
of this estimator. This paper extends the Hausman and Taylor (HT) estimator to allow for serial correlation
in the remainder disturbances of the AR(1) type. The standard �xed e¤ects (FE) and random e¤ects (RE)
panel data models with serial correlation in the remainder disturbances have been considered by Bhargava,
Franzini and Narendranathan (1982) and Baltagi and Li (1991) to mention a few. While the �xed e¤ects
AR(1) estimator (FE-AR(1)) considered by Bhargava, Franzini and Narendranathan (1982) is consistent for
the HT model, it does not provide an estimator of the time-invariant variables coe¢ cients which are usually
of interest in most economic applications. The Baltagi and Li (1991) random e¤ects AR(1) (RE-AR(1))
estimator provides estimates of the time-invariant variables coe¢ cients, but these will be consistent only
if the individual e¤ects are uncorrelated with all the regressors. The modi�ed HT estimator allowing for
AR(1) disturbances (denoted by HT-AR(1)) is more e¢ cient than the HT estimator that ignores this serial
correlation. Unlike the FE-AR(1) estimator, it captures the e¤ects of time-invariant variables, and unlike
the Baltagi and Li (1991) RE-AR(1) estimator it allows for possible correlation between the regressors and
the individual e¤ects. The paper performs Monte Carlo experiments that demonstrate the gains in e¢ ciency
of this HT-AR(1) estimator over the standard HT estimator in the presence of serial correlation.

�Address correspondence to: Badi H. Baltagi, Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse,
NY 13244-1020; e-mail: bbaltagi@maxwell.syr.edu.

yLong Liu: Department of Economics, College of Business, University of Texas at San Antonio, One UTSA Circle, TX
78249-0633; e-mail: long.liu@utsa.edu.
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2 The Model and Assumptions

Consider the following Hausman and Taylor (1981) panel data model:

yit = X
0
it� + Z

0
i
 + uit; i = 1; : : : ; N; t = 1; : : : ; T (1)

where uit = �i + �it; and � and 
 are unknown vectors. The Xit�s are time varying regressors, while the
Zi�s are time-invariant. This Hausman-Taylor (HT) model is allowed to have �rst order serial correlation in
f�itg of the AR(1) type:

�it = ��it�1 + "it; j�j < 1 (2)

where "it is a white noise process with variance �2". The �i�s are independent of the �it�s for all i and t. In
vector form, Equation (1) can be written as

yi =Wi� + ui; i = 1; : : : ; N (3)

with
ui = �i�T + �i;

where yi = (yi1; � � � ; yiT )0, Wi = (Xi; �TZ
0
i), Xi = (Xi1; � � � ; XiT )

0, �0 =
�
�0; 
0

�
, ui = (ui1; � � � ; uiT )0 and �T

is a vector of ones of dimension T . Equation (3) can be also written as

y =W� + u; (4)

with
u = (IN 
 �T )�+ v;

where y = (y01; � � � ; y0N )
0, W = (X;Z) with X = (X 0

1; � � � ; X 0
N )

0, Z = (Z 01; � � � ; Z 0N )
0 
 �T , u = (u01; � � � ; u0N )

0,
� = (�1; � � � ; �N )

0and v = (v1; � � � ; vN )0,

3 The GLS Estimator

Assuming that the individual e¤ects �i are random with �i � iid(0; �2�) and E (�ijX 0
it; Z

0
i) = 0 for all i and

t, the resulting random e¤ects (RE ) GLS type estimator correcting for AR(1) remainder disturbances will
be the best linear unbiased estimator (BLUE), see Baltagi and Li (1991). In fact, this estimator applies the
Prais-Winsten (PW) transformation in the �rst step to transform the remainder AR(1) disturbances into
serially uncorrelated classical errors. More speci�cally, one premultiplies equation (4) by

C =

2666664

p
1� �2 0 0 � � � 0 0
�� 1 0 � � � 0 0
...

...
...

. . .
...

...
0 0 0 �� 1 0
0 0 0 0 �� 1

3777775
to get

y� =W �� + u�; (5)

where y� = (IN 
 C) y, W � = (IN 
 C)W and u� = (IN 
 C)u. Using the fact that C�T = (1� �) ��T ,
where ��

0

T =
�
�; �0T�1

�
and � =

p
(1 + �) = (1� �). The transformed regression disturbances are given by

u� = (IN 
 C)u = (IN 
 C�T )�+ (IN 
 C) v = (1� �) (IN 
 ��T )�+ v�; (6)
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where v� = (IN 
 C) v. As shown in Baltagi and Li (1991), the variance-covariance matrix of the transformed
disturbances is given by


� = E (u�u�0) = �2� (1� �)
2
(IN 
 ��T ��0T ) + �2" (IN 
 IT ) ; (7)

and
�"


��1=2 = (IN 
 IT )� ��
�
IN 
 �J�T

�
;

where E�T = IT � �J�T , �J
�
T = ��T �

�0
T =d

2, d2 = �2 + T � 1, �� = 1 � �"
��

and �2� = �2" + d
2 (1� �)2 �2�.

Premultiplying the PW transformed observations by �"
��1=2, one gets

�"

��1=2y� = �"


��1=2W �� + �"

��1=2u�: (8)

The least squares estimator of the resulting equation gives us

�̂GLS =
�
W �0
��1W ���1W �0
��1y� (9)

The best quadratic unbiased BQU estimators of the variance components are given by:

�̂2" = u
�0 (IN 
 E�T )u�=N (T � 1) (10)

and
�̂2� = u

�0 �IN 
 �J�T
�
u�=N: (11)

As suggested by Baltagi and Li (1991), one can estimate � by

b� = NX
i=1

TX
t=2

b�itb�it�1= NX
i=1

TX
t=2

b�2i;t�1; (12)

where b�it is the within residual. Then �̂2" and �̂2� can be estimated from equation (10) and (11) by substituting
the residuals û� from the PW transformed equation using b�.
4 The Within-GLS Estimator

A critical assumption for the GLS estimator is that E (�ijX 0
it; Z

0
i) = 0. Otherwise �̂GLS would be biased and

inconsistent. In fact, the classic paper by Mundlak (1978) assumes that the �i�s are explicitly formulated as a
function of the means of all the regressors over time, in this case

�
Xi:

�
. The result is that under this Mundlak

model, GLS su¤ers from omitted variable bias, i.e., the omission of Xi:, while the within transformation
wipes out this source of endogeneity and remains consistent. However for the AR(1) remainder disturbances,
the within estimator will not be best linear unbiased estimator (BLUE). This can be easily recti�ed using
a within-GLS estimator that uses the Prais-Winsten transformation to correct for serial correlation in the
remainder error in the �rst step, then applying a quasi-within transformation to wipe out the transformed
�;is in the second step. Premultiplying equation (5) by (IN 
 E�T ), one gets

(IN 
 E�T ) y� = (IN 
 E�T )X�� + (IN 
 E�T ) v�; (13)

using E�T �
�
T = 0. Applying the least squares estimator to the resulting equation gives us the FE-PW GLS

estimator

�̂FE�PW = [X�0 (IN 
 E�T )X�]
�1
X�0 (IN 
 E�T ) y� (14)

= [X 0 (IN 
 C 0E�TC)X]
�1
X 0 (IN 
 C 0E�TC) y: (15)
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One can easily verify that this estimator is equivalent to the one suggested in Bhargava, Franzini and
Narendranathan (1982). When there is no serial correlation, i.e., � = 0, the FE-GLS estimator in equation
(14) reduces to the usual FE estimator �̂FE = [x

0 (IN 
 ET )x]�1 x0 (IN 
 ET ) y, where ET = IT � �JT and
�JT is a T � T matrix with all elements equal to 1=T . In fact, when � = 0; C = IT , � = 1, ��T = �T and
E�T = ET .
Despite several warnings not to omit the �rst observation when correcting for serial correlation, see Parks

and Mitchell (1980), researchers still use the FE estimator using the Cochrane-Orcutt (CO) transformation to
correct for serial correlation in the remainder error. The Monte Carlo experiments in Section 6 demonstrate
the loss in e¢ ciency in using this FE-Cochrane-Orcutt rather than FE-PW.

5 The Hausman-Taylor Estimator

Hausman and Taylor (1981) split the time varying X�s and the time invariant Z�s into two sets of variables:
X = (X1; X2) and Z = (Z1; Z2) where X1 and Z1 are assumed exogenous in that they are not correlated
with �i and "it, while X2 and Z2 are endogenous because they are correlated with �i, but not "it. The
Within transformation would sweep the �i�s and remove the bias, but in the process it would also remove
the Zi�s and hence the Within estimator will not give an estimate of 
 which in most empirical economic
applications is important for policy purposes. In this section, we modify the Hausman and Taylor (1981)
estimator to allow for AR(1) remainder errors. This can be done as follows:

Step 1: From the assumptions of our model, one can estimate � consistently using the FE-PW GLS esti-
mator in equation (14) rather than the usual FE estimator used by Hausman and Taylor (1981) in the
absence of serial correlation. Averaging the residuals from this regression over time as in HT but now
weighting the initial period di¤erently from the rest as in Baltagi and Li (1991), one gets

d̂ � �y� � �X��̂FE�GLS :

where �y� =
�
IN 
 �J�T

�
y� and �X� =

�
IN 
 �J�T

�
X�.

Step 2: Run 2SLS of d̂ on Z� with the set of instruments A� = (X�
1 ; Z

�
2 ). This yields


̂2SLS = (Z
�0PA�Z�)

�1
Z�0PA� d̂;

where the projection matrix PA� = A� (A�0A�)
�1
A�0.

Step 3: Estimate ~�2" and ~�
2
� from equation (10) and (11) by substituting ~u

� = y��X��̂FE�PW �Z�
̂2SLS .

Step 4: Once the variance components estimates are obtained, the model in Equation (8) is transformed
using 
̂��1=2 as follows:


̂��1=2y� = 
̂��1=2W �� + 
̂��1=2u�: (16)

The Hausman-Taylor estimator is a 2SLS estimator of Equation (16) using AHT =
�
~X�; �X�

1 ; Z
�
1

�
as

instruments, where ~X� = (IN 
 E�T )X� and �X�
1 =

�
IN 
 �J�T

�
X�
1 . More speci�cally,

�̂HT�AR(1) =
�
W �0
̂��1=2PA�
̂��1=2W �

��1
W �0
̂��1=2PA�
̂��1=2y�: (17)
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6 Monte Carlo Simulation

Following Im et al. (1999), we consider the following HT panel data model:

yit = �11X11;it + �12X12;it + �2X2;it + 
1Z1;i + 
2Z2;i + uit; i = 1; : : : ; N; t = 1; : : : ; T (18)

where uit = �i + �it and �it = ��it�1 + "it. We let �11 = �12 = �2 = 
1 = 
2 = 1. �i
iid� N (0; 1:5)

and �it
iid� N (0; 1:5). � varies over the range (0; 0:2; 0:4; 0:6; 0:8; 0:9). The variables X11;it and X12;it are

generated by:

X11;it = 0:7X11;i;t�1 + �i + �it;

X12;it = 0:7X12;i;t�1 + �i + !it;

where �i, �it, �i and !it are uniform on [�2; 2]. The variable Z1;i is a constant, i.e., Z1;i = 1. We focus on
the following two designs considered by Baltagi, Bresson and Pirotte (2003):

1. Case 1� A Hausman�Taylor world, where Z2;i and X2;it are correlated with �i by construction:

Z2;i = �i + �i + �i + �i;

X2;it = 0:7X2;i;t�1 + �i + � it;

where �i and � it are uniform on [�2; 2]. It is clear that the Z2;i variable is also correlated with X11;it
(by the term �i) with X12;it (by the term �i) and with X2;it (by the term �i).

2. Case 2� A Random E¤ects world, where Z2;i and X2;it are not correlated with �i by construction:

Z2;i = �i + �i + �i;

X2;it = 0:7X2;i;t�1 + �i + � it;

where �i and � it are the same de�ned as in case 1. It is clear that the Z2;i variable is still correlated with
X11;it (by the term �i) with X12;it (by the term �i).
The sample sizes (N;T ) are (100; 5) and (500; 10). For each experiment, we perform 1,000 replications.

For each replication we estimate the model using FE, RE and HT with and without serial correlation in the
disturbances. Table 1 and 2 report the root mean square error (RMSE) of �2 and 
2, the coe¢ cients of the
endogenous time-varying and time-invariant variables, respectively. This is done for various values of � over
the range (0; 0:2; 0:4; 0:6; 0:8; 0:9). Following Baltagi, Bresson and Pirotte (2003), we focus on the coe¢ cients
of the endogenous regressors X2;it and Z2;i, i.e. �2 and 
2, respectively.
In case 1, the Hausman�Taylor world, as shown in Table 1, the RE estimator su¤ers from endogeneity

bias and hence has a much larger RMSE than the FE and HT estimators. This is true for both sample sizes
(N;T ) = (100; 5) and (500; 10). The FE estimator performs well as it wipes out the endogeneity caused by
correlation of the regressors with the individual e¤ects. However, it does not yield an estimator of 
2. Note
that the FE estimator with Cochrane-Orcutt transformation performs worse than the FE estimator ignoring
the autocorrelation in the error term for both sample sizes (N;T ) = (100; 5) and (500; 10). The FE-PW
estimator yields a lower RMSE than FE-CO and emphasizes the gains from not dropping the N observations
of the initial time period. A practice still in use in standard econometrics software today. The HT estimator
yields an estimator of 
2, and this has lower RMSE than the RE estimator. Comparing FE, HT with their
AR(1) counterparts, we note that the RMSE improves as long as � > 0:2.
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In case 2, the Random E¤ects world, as shown in Table 2, the RE estimator controlling the autocorrelation
in the error term is the e¢ cient estimator by construction. FE and HT have larger RMSE than RE. The FE
estimator with Cochrane-Orcutt transformation has larger RMSE than the FE estimator with Prais-Winsten
transformation. Comparing RE, FE, HT with their AR(1) counterparts, we note that the RMSE improves
as long as � > 0:4.

7 Conclusion

This paper shows how to modify the HT estimator to allow for AR(1) disturbances. Monte Carlo experiments
show that this estimator works well in terms of RMSE.
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Table 1: RMSE of Panel Data Estimators in Case 1

RE RE-AR(1) FE FE-CO FE-PW HT HT-AR(1)
N = 100, T = 5
�2 0 0.2456 0.2536 0.0614 0.0838 0.0610 0.0614 0.0652

0.2 0.2236 0.2357 0.0613 0.0846 0.0584 0.0614 0.0621
0.4 0.1957 0.2121 0.0615 0.0851 0.0582 0.0615 0.0619
0.6 0.1610 0.1792 0.0615 0.0832 0.0573 0.0615 0.0609
0.8 0.1250 0.1405 0.0624 0.0793 0.0567 0.0624 0.0602
0.9 0.1113 0.1226 0.0646 0.0770 0.0574 0.0646 0.0609


2 0 0.1970 0.1933 0.1663 0.1694
0.2 0.2085 0.2032 0.1683 0.1688
0.4 0.2221 0.2158 0.1723 0.1717
0.6 0.2380 0.2315 0.1790 0.1765
0.8 0.2548 0.2493 0.1913 0.1867
0.9 0.2629 0.2583 0.2014 0.1957

N = 500, T = 10
�2 0 0.2142 0.2133 0.0161 0.0185 0.0159 0.0161 0.0165

0.2 0.1962 0.2043 0.0168 0.0203 0.0168 0.0168 0.0173
0.4 0.1728 0.1863 0.0180 0.0217 0.0177 0.0181 0.0183
0.6 0.1389 0.1529 0.0198 0.0224 0.0182 0.0198 0.0188
0.8 0.0922 0.1003 0.0224 0.0221 0.0185 0.0224 0.0191
0.9 0.0688 0.0704 0.0248 0.0216 0.0189 0.0248 0.0195


2 0 0.1788 0.1796 0.0607 0.0611
0.2 0.1908 0.1865 0.0625 0.0627
0.4 0.2050 0.1988 0.0655 0.0649
0.6 0.2229 0.2180 0.0706 0.0681
0.8 0.2439 0.2424 0.0804 0.0754
0.9 0.2536 0.2545 0.0897 0.0843

Notes: 1,000 replications.
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Table 2: RMSE of Panel Data Estimators in Case 2

RE RE-AR(1) FE FE-CO FE-PW HT HT-AR(1)
N = 100, T = 5
�2 0 0.0462 0.0464 0.0617 0.0836 0.0593 0.0616 0.0632

0.2 0.0469 0.0471 0.0615 0.0840 0.0586 0.0614 0.0623
0.4 0.0483 0.0483 0.0616 0.0841 0.0584 0.0615 0.0621
0.6 0.0505 0.0500 0.0617 0.0822 0.0577 0.0617 0.0613
0.8 0.0548 0.0531 0.0631 0.0786 0.0574 0.0631 0.0610
0.9 0.0588 0.0557 0.0658 0.0765 0.0584 0.0658 0.0620


2 0 0.1071 0.1060 0.1679 0.1703
0.2 0.1101 0.1091 0.1707 0.1710
0.4 0.1150 0.1134 0.1754 0.1745
0.6 0.1228 0.1201 0.1828 0.1798
0.8 0.1355 0.1316 0.1951 0.1903
0.9 0.1447 0.1402 0.2049 0.1991

N = 500, T = 10
�2 0 0.0137 0.0137 0.0163 0.0191 0.0159 0.0163 0.0164

0.2 0.0142 0.0145 0.0170 0.0209 0.0170 0.0170 0.0175
0.4 0.0152 0.0153 0.0182 0.0224 0.0180 0.0182 0.0185
0.6 0.0169 0.0161 0.0201 0.0230 0.0186 0.0201 0.0191
0.8 0.0200 0.0174 0.0228 0.0226 0.0188 0.0228 0.0194
0.9 0.0228 0.0183 0.0250 0.0219 0.0190 0.0250 0.0196


2 0 0.0437 0.0436 0.0611 0.0613
0.2 0.0447 0.0447 0.0626 0.0631
0.4 0.0467 0.0464 0.0654 0.0653
0.6 0.0505 0.0493 0.0703 0.0685
0.8 0.0592 0.0563 0.0803 0.0759
0.9 0.0679 0.0643 0.0900 0.0848

Notes: 1,000 replications.
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