
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1994

The Design and Evolution of Zipcode The Design and Evolution of Zipcode

Anthony Skjellum
Mississippi State University

Steven G. Smith
Lawrence Livermore National Laboratory, Numerical Mathematics Group

Nathan E. Doss
Mississippi State University

Alvin Leung
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Skjellum, Anthony; Smith, Steven G.; Doss, Nathan E.; and Leung, Alvin, "The Design and Evolution of
Zipcode" (1994). Northeast Parallel Architecture Center. 26.
https://surface.syr.edu/npac/26

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science
at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215691449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/26?utm_source=surface.syr.edu%2Fnpac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

The Design and Evolution of Zipcode�Anthony SkjellumComputer Science Department &NSF Engineering Research Center for Computational Field SimulationMississippi State UniversitySteven G. SmithNumerical Mathematics GroupLawrence Livermore National LaboratoryNathan E. DossNSF Engineering Research Center for Computational Field SimulationMississippi State UniversityAlvin P. LeungNortheast Parallel Architectures CenterSyracuse UniversityManfred MorariChemical EngineeringCalifornia Institute of TechnologyMarch 8, 1994AbstractZipcode is a message-passing and process-management system that was designed for multicomputersand homogeneous networks of computers in order to support libraries and large-scale multicomputersoftware. The system has evolved signi�cantly over the last �ve years, based on our experiences andidenti�ed needs. Features of Zipcode that were originally unique to it, were its simultaneous supportof static process groups, communication contexts, and virtual topologies, forming the \mailer" datastructure. Point-to-point and collective operations reference the underlying group, and use contexts toavoid mixing up messages. Recently, we have added \gather-send" and \receive-scatter" semantics, basedon persistent Zipcode \invoices," both as a means to simplify message passing, and as a means to revealmore potential runtime optimizations. Key features in Zipcode appear in the forthcoming MPI standard.Keywords: Static Process Groups, Contexts, Virtual Topologies, Point-to-Point Communication, Collec-tive Communication, Data Types, Parallel Libraries, Large-Scale Software, Portability, Zipcode, MPI�Work performed, in part, under the auspices of the U. S. Department of Energy by the Lawrence Livermore NationalLaboratory under contract No. W-7405-ENG-48. Work supported, in part, by the NSF Engineering Research Center forComputational Field Simulation, Mississippi State University. 1

1 IntroductionZipcode was developed in 1988 at the California Institute of Technology by the �rst author, and was developedfurther at Lawrence Livermore National Laboratory, with additions and support continuing to this date atMississippi State University [29]. This message-passing system was strongly in
uenced by the point-to-pointsemantics of the Reactive Kernel primitives [23, 24, 25], by the collective primitives of CrOS [15, Chapter 14],and by the process-management features of the Cosmic Environment [23] (all developed at Caltech). Zipcodeincludes features that were not found in then-existing vendor systems (like NX-2 [22]) and portability systems(like PICL [18]). Many of the features of Zipcode, particularly those that set it apart from other systems,are those that support parallel libraries. Zipcode is currently the e�ective basis for a collection of parallellibraries, called the \Multicomputer Toolbox," which we describe elsewhere [13, 26, 27, 30]. Its developmentalso commenced in 1988, and its requirements largely drove the evolution of Zipcode.Because key features in Zipcode that are needed to support libraries will also appear in the new MPIstandard, we foresee further, rapid evolution in our emphasis for future message-passing research and de-velopment [14]. The purpose of this paper is, however, to describe the design and evolution of Zipcode, aswell as to explain in part how we implemented the system. These features are salient now, as they werewhen we started. In some cases, our design strategies have di�ered signi�cantly from what MPI has evolved,while in other areas only details are di�erent. As MPI is the product of many minds, while Zipcode is theproduct of three main developers, with several other less-active participants, Zipcode is naturally less sub-stantial in some areas than MPI. However, a discussion of Zipcode remains important because this systemhas demonstrated with working code what remains to this date hypothetical in the MPI draft standard. Infact, four of the �ve key contributions: contexts of communication, static process group support, mailers(called communicators in MPI), and virtual topology support were all completed (and put in practice) in1988 and early 1989. Collective operations were supported over user-speci�ed groups of processes from thebeginning. Contexts, which provide separate, safe \universes" of message passing, were one of the �rstfeatures implemented during August, 1988. In mid-1992, we added the concept of persistent gather/scatterspeci�cations (invoices); this corresponds to MPI user-de�ned data types for gather/scatter message-passing[14, Section 3].1.1 Related WorkIn order to provide a fair perspective of work on multicomputer and cluster message passing, we wish toacknowledge related work in the �eld. This should also give readers a better perspective of how Zipcode �tsin with the many other systems that are currently or were previously discussed in the literature.When we started, there were already a number of portability systems actively being built, or in place.The Reactive Kernel / Cosmic Environment was supported on homogeneous workstation networks, on Intelhypercubes, and as the native message-passing system of the Symult S2010 mesh multicomputer [24]. PICL(Oak Ridge National Laboratory) was quite popular at the time, providing point-to-point communication(send/receive), modest collective communication, and excellent tracing support [17, 18]. PICL representedthe \lowest common denominator" of Intel and nCUBE calls, and ran principally on the early machinesof these two vendors. Express, from Parasoft, was the commercial version of the CrOS system (CrOSin
uenced the syntax and semantics of Zipcode collective operations) [21]. At that time, or soon after,a number of other e�orts were brought forth, such as P4 [9], and later PARMACS [6, 10]. It is notablethat PARMACS included the notion of virtual topology about the same time as Zipcode, but with di�erentdetails in how such topologies are implemented. Notably, none of these systems except Zipcode providedcontexts of communication. The Reactive Kernel is the only system that provided message-passing withsystem allocation of messages, preferred because we wished to create a layered set of increasing functionalityin our system, rather than user-managed bu�ers as the other systems dictated.Process-group management involves deciding who participates in collective operations (and their relativeranks), as well as how point-to-pointmessage passing names the source and destination addressees. Collectiveoperations are message-passing operations involving process-group participants. For both of these areas,there was but limited support in vendor systems and portability systems alike except over the scope of \allprocesses." Related work has appeared in the last eighteen months from IBM T. J. Watson research center2

corroborating the value of process groups to specify the scope of collective operations without includingprocesses that are disinterested (Venus, EUI systems [2, 3, 16]). It is our understanding that the ELANwidget library from Meiko, supported on the Computing Surface-2 system, also includes the notion ofprocess group when considering collective operations [37]. Express also has a limited notion of groups andtopologies [21].PVM (University of Tennessee, and elsewhere), a portable interface to sockets and XDR [35], whichbecame the most widely used cluster message-passing system during 1992, currently supports the notion ofdynamic process groups, but not static groups; furthermore, it does not have signi�cant support for collectiveoperations [4, 5]. P4 added heterogeneity during this period, but remained less used than PVM, despite P4'sperceived performance advantages (somewhat higher speed message passing).In mid-1992, we turned our attention to improving the ability to formulate message-passing operationsin Fortran-77 (where structured data types are absent), and to supporting data conversion. In the area ofgather/scatter communicaton, Zipcode was in
uenced at �rst by the support provided by PVM. Particularly,we set out to hide the e�ort associated with calls to data conversion and incremental packing functions thatwe had seen in PVM 2.4, and which remains in PVM 3.x. Later, we realized that this notation wouldalso be a useful mechanism to support higher performance message-passing, especially given the emphasesof ELROS [7, 8], which strove for vectorization of message conversion on Cray platforms. (MPI, however,provides the most powerful speci�cation through its data types [14, Section 3], motivated both for notationaland performance reasons.)Contexts of communication are distinct universes of message passing. In Zipcode, they are implementedby bringing context ids, static process groups, and virtual topology information together in a mailer datastructure. To our knowledge, Zipcode is the only system to this date actually to implement contexts forsafe message passing. This long-term experience with contexts was a motivating force for the inclusion ofcontexts, groups, and communicators in the MPI speci�cation.Most systems (except the Reactive Kernel) provided a means to select messages at least on user-speci�edtags. The Reactive Kernel (RK) omitted this feature because of layerability design principles. NX, PICL,Intel NX provided tag-based selectivity. Some of these systems also supported selectivity based on the sourceprocess of the message (such as nCUBE's Vertex). We wanted the Zipcode naming approach to be relatedto the virtual topologies of processes or at least to a one-dimensional rank-naming of processes in a processgroup. To do this, we chose to support a generalized receipt selectivity scheme, based on a \mailer class,"and include a variable-length matching �eld (\PO Box") with each letter sent by the system. Each MPIimplementation speci�es the number of bits in its tag; an early MPI implementation has chosen 31 bits forits tags [12].At the outset in 1988, and even more so after new discussions during the MPI Forum, we were convincedthat source selectivity is a clear requirement for making collective message passing operations (based onsend/receive) work reliably. Source selectivity was consequently included in the primitives used to buildcollective communication in Zipcode, while tags were provided in but a subset of messaging strategies withinZipcode. MPI provides source-based selectivity in point-to-point messages (in addition to tags); point-to-point is based on rank naming, and virtual topology functions act as auxiliaries to support other namingschemes.2 MotivationsThe primary motivations for Zipcode were and remain as follows: to support parallel libraries and to supportthe creation of large-scale multicomputer software. Even in the sequential world, reusable, portable softwareis essential to most cost-e�ective, large-scale software.2.1 The Need for Parallel LibrariesParallel libraries are needed to hide the cloying details and technical complexities associated with parallelimplementations of important algorithms (such as linear algebra, FFT). Libraries help ensure consistency inprogram correctness and quality of implementation, while o�ering a higher level of portability than a message3

passing system like Zipcode or MPI can provide alone. Libraries consequently prevent programmers fromrepetitive e�ort or haphazard results. Furthermore, since poly-algorithms (collections of algorithms thatsolve the same problem but that are more or less appropriate over di�erent problem sizes and concurrencies)are commonly needed for scalability, parallel libraries have to hide such technical software complexities fromthe everyday user [27].2.2 Common De�ciencies of Message Passing SystemsIn the sequential Fortran and C environment, it is reasonably easy to create libraries, because the stack-oriented procedural programming model has well-de�ned conditions about reasonable versus erroneous pro-grams. However, in the distributed-memory, message-passing environment, it is di�cult to write librarieswith either vendor or portability systems. This seemingly strong indictment is backed up as follows: Thereis no way for libraries to isolate themselves from the on-going point-to-point message passing present ina running application. Message tags, the sole means for designating restrictions on message delivery, areinsu�cient for this purpose. For instance, more than one library (or invocation of the same library) coulduse the same tags. Vendor libraries (that lack source selectivity) have to use tags to create deterministiccollective operations (e.g., NX-2 [22]); in such a situation, collective and point-to-point messages can bemisqueued unless the system reserves tags for this purpose (as NX-2 fortunately does). Finally, wildcardreceipt-selectivity on tags destroys any promise of real protection that tags could otherwise a�ord.Beyond the protection issue just mentioned, library writers don't want to describe point-to-point com-munication in terms of hardware-related names; in fact, many algorithms are more natural if described interms of point-to-point calls relative to a virtual-topology naming scheme. Virtual-topology naming mightre
ect row or column parallelism in matrix operations, for instance [27, 28]. Furthermore, libraries need afull suite of collective operations, including broadcast (one-to-all communication), combine (all-to-all, asso-ciative, commutative operator), and collapse (all-to-one communication, associative, commutative operator)[15] (many additional collective operations are speci�ed by MPI [14, Section 4]). In most vendor systems, col-lective operations are either absent, or must be called over all processes (or processors) of a user's allocation.To build real libraries, it is necessary for the library to stipulate those processes that should participate in acollective operation; those processes that don't want to participate should not have to synchronize arti�ciallybecause of a programming-model requirement.2.3 Zipcode Features Addressing these De�cienciesThe above arguments can be summarized as follows:� A safe communication space guarantees that a library can send and receive point-to-point messageswithout interference from other point-to-point messages generated in the system,� Collective operations take a static process group as the set of participants, allowing processes that donot participate to continue without an arti�cial synchronization,� Abstract names for processes are based on virtual topologies, or at least rank-in-group names, therebyavoiding hardware dependencies, and ideally making application code more intuitive.In Zipcode, the features that implement these important concepts are as follows:� Process Groups de�ne an ordered collection of processes, each with a rank. Process groups de�ne thelow-level names for inter-process communication (ranks are used for sending and receiving in certaintypes of Zipcode's messages). We don't usually reveal the internal representations of process names atthe application level (except in some Zipcode primitives), though the Zipcode implementation currentlymakes speci�c assumptions about a 64-bit naming convention based on a \node" and \pid" pair ofintegers [29].Thus, groups de�ne a rank-naming for processes in point-to-point communication relative to the group.In addition, groups de�ne the scope of collective operations. This scope allows us to make strong4

statements about the non-interference of sequential collective operations in the same context (see [31]).In Zipcode, groups are static objects, not shared dynamic objects as they are in PVM [5].� Contexts provide the ability to have separate safe \universes" of message-passing in Zipcode. Acontext is conceptually implemented via a secondary or \hyper" tag, that di�erentiates messages fromone another. Unlike user-manipulated tags, the message passing system manages contexts. In Zipcode,a \zipcode" is an integer that implements a single context of communication; we will refer to such aninteger as a context id. Users don't work directly with context ids, they work with static processgroups, and mailers.� Mailers encapsulate contexts, groups, and virtual topologies in an object that provides the appropriatescope for all communication operations in Zipcode. Mailers bind process groups and context idstogether to form a safe communication space within the group. Usually, we talk about mailers ascommunication contexts, in the same spirit that the MPI draft refers to its communicators as contexts.Unlike MPI, Zipcode does not currently specify any way to communicate between communicationcontexts (inter-communication) [14, Section 5]. Zipcode (resp, an initial MPI implementation [12])currently protects point-to-point and collective messages in a single mailer (resp, communicator) byusing two context ids.The use of separate communication contexts by distinct libraries (or distinct library invocations) willinsulate communication internal to the library execution from external communication (group safety).This allows the invocation of the library even if there are pending communications, and avoids theneed to synchronize each entry into and exit from library code.3 De�nitionsTo simplify the exposition, we include needed de�nitions at this point.De�nition 1 (Receipt Selectivity) Receipt selectivity represents the quali�cations that the user can puton the receive call (i.e., how picky the user can be about the message he/she is willing to accept from thesystem). Typical selectivity includes some notion of where the message came from, and some sort of tagginginformation (a tag or more complicated ID).The RK system provides no receipt selectivity at all { the next available message is returned. The Vertexand Thinking Machines CMMD systems both provide the ability to choose based on both source and messagetag, where tag is a positive integer (31 bits only). PICL and (until recently) NX permitted selectivity basedonly on tag matching.Zipcode provides selectivity that depends on the class of mail being used. In section 4.4.1, we de�ne anumber of di�erent classes (L, Y, Z, G1, G2, G3).1 Zipcode emphasizes source selectivity more than taggedsource selectivity in its prede�ned classes. Source selectivity helps to achieve \safe" collective operationsbased upon point-to-point message passing. In summary, the prede�ned classes work with the followingselectivity:� Y-class: receipt of a message based on a short integer tag,� L-class: receipt of a message based on a source fnode,pidg and an integer tag,� Z-class: receipt of a message based on a rank in a process group,� G1-class: receipt of a message based on a rank in a 1-dimensional mapping of a group,� G2-class: receipt of a message based on a rank in a 2-dimensional mapping of a group,1Zipcode supports multiple notations for message passing, and each is a complete point-to-point message-passing notation,plus a set of collective operations, for those classes that support collective operations.5

� G3-class: receipt of a message based on a rank in a 3-dimensional mapping of a group.De�nition 2 (Untagged and Source-Untagged Message System) An untagged message system usesno tagging to help with receipt selectivity. A source-untagged system does selectivity based on message sourcewithout a tag.RK is an untagged message system. The Zipcode Z, G1, G2, and G3 classes to be de�ned in section 4.4.1are all source-untagged.De�nition 3 (Tagged and Source-Tagged Message System) A tagged message passing system doesreceipt selectivity exclusively with a single integer tag attached to each message in the system. Systems thatalso allow selectivity on source are said to be Source-Tagged Systems.NX and PICL are tagged message systems. Vertex, Express, MPI, and CMMD are source-tagged messagesystems. Zipcode has a class of messages (Y-class) that is tagged, and another class (L-class) that is source-tagged (see section 4.4.1 for the L- and Y-class de�nitions).De�nition 4 (Naming Abstraction/Virtual Topologies) A naming abstraction is an application-relevant means to refer to the members of a process group; virtual topologies implement the naming ab-stractions. For example, if there are L members of a process group, one could assign a bijection (two indices)to describe the list: (0 � p < P; 0 � q < Q). (p; q) becomes that abstract name of a process; P � Q = L.In this case, we are viewing a process group as an e�ective two-dimensional collection of processes. Theprogram does not refer to the hardware-style fnode,pidg-pairs, nor to the original rank in the process group,but rather to machine-independent pairs of integers that describe a grid position.Express provides a simple notion of two-dimensional grid mapping. Zipcode's G2 class creates exactly theabstraction suggested in the above de�nition. Zipcode also provides other abstractions, as well as the abilityto de�ne additional abstractions with new message classes. Other possible abstractions include a ring orbinary tree of processes. While we have not implemented these particular abstractions in actual Zipcodeclasses as yet, users are free to add such classes and recompile, thereby augmenting Zipcode with new classesof mail.
Alignment Padding

A
A
A
A
A

A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAAAA
AAAAAA

A
A
A
A
A

A
A
A
A
A

A
A
A
A
A

AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA

Zipcode

Class

Stamp

PO Box

AAAAAAA
AAAAAAA

AA
AA
AA
AA

AA
AA
AA
AA

......

...

...

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

...

...

AA
AA
AA
AA

Return
Postage Letter Body

AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA

Figure 1: A schematic of the Zipcode letter, including the variable-length header (the \envelope") thatpermits di�erent Zipcode mail classes to base receipt selectivity on di�ering amounts of class-speci�c infor-mation (stored in the \PO Box"). Each �eld has a speci�c function, as described in the de�nition of a letterbelow. 6

De�nition 5 (Letter) A letter is the Zipcode data structure that carries point-to-point messages. Lettersare dynamically allocated as needed by the user, �lled in, and deallocated upon \send." A \receive" has theside-e�ect of providing a letter on completion. This storage-management scheme means that users neverhave to know how large a letter is to be before actually receiving it2.A letter consists of two main parts: the variable-length header (the \envelope"), and user's data (the\letter body"). Items contained in the envelope allow Zipcode to implement several important features of thesystem.� Zipcode is a short-integer �eld containing the context of communication identi�er for this letter,� Class is a short-integer �eld describing the kind of message envelope, and speci�cally, the length andsemantic contents of the \PO Box,"� Stamp is a short-integer �eld that indicates the aligned length of the envelope, a quantity needed to�nd the beginning of the letter body,� PO Box is the class-speci�c, variable-length receipt selectivity information. For instance, in Z-classmail, this is a process source identi�cation,� Alignment Padding is the variable-length padding that assures that the letter body begins with amaximally aligned address,� Return Postage is a short-integer, with the same value as the \stamp" �eld, that allows a mappingfrom the beginning of the letter body back to the beginning of the envelope. This is needed because theuser works with pointers to the letter body, whereas Zipcode works with pointers to the envelope.See Figure 1.De�nition 6 (Message Layering) The structure of a layered Zipcode message is illustrated in Figure 1.Since messages in Zipcode are allocated like objects (forming the letter data structure), it is possible for eachlayer of software interface to add headers that are invisible to the layers above. This technique is used byZipcode to attach class, context, and receipt selectivity information to messages, as well as length (througha lower level in the layering architecture, not shown in Figure 1.).4 Programming ModelIn this section, we describe how the Zipcode implementation addresses such issues as safe communication,virtual topologies, and heterogeneity. We also compare current practice in Zipcode to standardization e�ortsunderway in MPI.We assume a multiple-instruction, multiple-data programming model. Multiple program texts are ad-missable within the system. Libraries typically operate in a loosely synchronous fashion. However, multipleindependent instances of library invocations (as well as process groups that share common processes) are per-mitted. Support for asynchronous operations is included (for instance, users could de�ne their own librariesfor asynchronous collective operations).4.1 Initialization / TerminationZipcode was created during a time when the host-node model of parallel computation was more popularthan it is currently. Though Zipcode does not work solely with the host-node model, most experience withZipcode-baed programs is accomplished with that model. A host program (where appropriate) and eachnode program must call the appropriate initialization function to start Zipcode correctly:2Letter length is supported by the RK semantics upon which Zipcode letters are built. Hence, no explicit length �eld appearsin the envelope at present, though this would likely change as Zipcode is based on other message-passing systems, such as MPI.7

int error = Zip_init(void); /* assume default mode for initialization */error = Zip_global_init(void); /* assume a simpler host+SPMD model */error = Zip_nohost_init(void); /* no host model. MPMD */error = Zip_nohost_global_init(void); /* no host model, SPMD */void zip_exit(void); /* terminate Zipcode session */The �rst call is used most generally; those with \global" in their name are used for a host+SPMD model,and omit the \Postmaster General" (context server) process (see Section 4.3, Figure 2). Those calls with\nohost" in their name assume a host-free model. Though supported, we have yet to write substantialprograms under these assumptions.4.2 Process Naming and Process GroupsA static process group (colloquially, an \addressee list" in Zipcode) is a basic abstraction that has been foundto be useful in a number of message-passing systems. A static process group is used to describe participantsin point-to-point operations, and the rank naming of processes in Z-class mailers (and the order of processesin more complicated naming strategies). A static process group has the following properties:� It is a logical, ordered collection of fnode,pidg pairs,� It has a size (number of members),� It is a purely local object,� Communication cannot be expressed solely in terms of static process groups,� A static process group cannot be transmitted between processes by the user.In all Zipcode versions up to now, we have utilized the Reactive Kernel's fnode,pidg-pairs to describeprocesses in a pool, whether in a single multicomputer, or in clustered workstations [25]. For a givenimplementation, fnode,pidg-pairs will be mapped to hardware names. This naming remains visible duringthe initialization process during which processes are created (spawning). This notation is seen as extremelyunattractive for programming by the user, but is rarely used because of automatically generated processgroups and virtual topologies. Once message-passing has been set up, most Zipcode programs choose towork with logical addressing based on the virtual topologies, hiding the details of the process group structurefrom the bulk (if not all) of user code.Originally, users assembled process groups, but they are now to be considered opaque; a standard con-structor is provided as follows:ZIP_ADDRESSEES *addressees = zip_new_cohort(int N, int node_bias,int cohort_pid, int pm_flag);where� N is the number of processes involved, or one less than the number of processes involved if pm flag istrue,� node bias is the suggested node-number o�set to start with when spanning the user's logical allocationof processors,� cohort pid is the suggested, constant process ID of the entire collection of processes,� pm flag
ags whether the process calling zip_new_cohort() is introduced as its zeroth entry, andhence the \Postmaster" (group leader) for communication based on this process group (see Section 4.3,Figure 2). 8

This call builds a sensible set of process names over the range of logical nodes available in the user's alloca-tion. The system may choose to override the cohort pid suggestion never, immediately, or when processesare spawned using the process group. The system may choose to override the node bias naming never,immediately, or when processes are spawned using the process group. These relaxations retain the opaquenature of the underlying process group, which is important to future generalizations of process naming. Onsome systems, giving the user the ability to specify the node placement and/or process names could be ahelp with optimization, but it is mainly a throw-back to an older programming style.Since user manipulation of process groups is denigrated practice, process groups can be generalized infuture Zipcode releases without breaking conforming code. In particular, Zipcode may provide additionalportable ways to construct and modify process groups (similar to the MPI functionality [14, Section 5]),and particular environments could provide non-portable calls to provide additional process groups withappropriate opaque structure. Within the Zipcode system itself, there remains the need for non-enumerativerepresentation of process groups, and more general process naming (e.g., PVM task ids).For completeness, Zipcode provides the following process management support, for which there is noanalog planned in MPI; the PVM systems also provides this capability, but with di�erent semantics (i.e.,after creation, processes join named groups that are cached by d�mons, with possible race conditions):int result = Zip_spawn(char *prog_name, ZIP_ADDRESSEES *addressees);where� prog_name is the ASCII name of the program to spawn, local to the spawner's �le system,� addressees is the process group upon which to spawn the program,and where result is non-zero on failure. Most ports require that this spawning function be e�ected in thehost process, though this restriction is less likely in a distributed setting.A valid host-node spawning procedure would be:#define FALSE 0#define TRUE ~FALSEint N = 256, try_pid = 33;addressees = zip_new_cohort(N, COHORT_FIRST_NODE, try_pid, TRUE);result = zip_spawn("./testprog", addressees);A comparable zip kill() call is also de�ned. Although this function is de�ned for all implementations, insome environments this function may have no e�ect.int result = zip_kill(ZIP_ADDRESSEES *addressees);With the inclusion of these functions, Zipcode speci�es an entire programming environment; codes need notexplicitly reference vendor process management.4.3 Contexts of Communciation and MailersIn order to write practical, \safe" distributed-memory and/or distributed-computing libraries, communica-tion contexts are needed to restrict the scope of messages. This is done to prevent messages from beingselected improperly by processes when they do message passing. We described contexts previously in severalpapers on Zipcode [29, 31, 32, 33]. Without this type of scope restriction, it quickly becomes intractableto build up code without globalizing the details of how each portion of a code utilizes the message-passing9

resource. Communication contexts are therefore central to creating reusable library code, and to maintainingmodularity in large-scale distributed application codes, with or without third-party libraries.A context of communication has the following properties:� A context of communication is based on a process group, the members of which are the participantsin the communication,� A context of communication has one or more system-de�ned labelings of message passing for its processgroup in the system, each of which is non-interfering,� It provides a logical partitioning of receipt selectivity into user-de�ned, and system-managed compo-nents.� If used correctly, contexts guarantee that messages will not be misdirected (group safety).To enforce safe programming, the following strictures are placed on message-passing in Zipcode:� Send/receive (point-to-point) and collective communication work only within context ids,� A context id is a globally managed quantity that may be reused by disjoint groups,� No wildcarding of context ids is permitted.A mailer implements contexts of communication in Zipcode, with the following features:� A mailer contains a process group,� A mailer contains safe communication space for the process group's point-to-point and collective mes-sage passing (realized with context id's),� A mailer contains a set of methods3 implementing point-to-point message passing (particularly appro-priate to that process group's hardware),� depending on the topology, a mailer may reference speci�c \child mailers," each recursively specifyingfurther subsets of the parent group.4.4 Mail ClassesAll communication operations take a mailer as an argument to specify group and context properties ofthe communication operations, as well as to specify the methods implementing these operations (see Sec-tion 4.4.6). Virtual topology information and multiple contexts of communication are combined when cre-ating \mailers" for the grid classes of mail.The creation of a context synchronizes the participants in the participating group, while promulgatingthe process group and issuing valid context ids (see Figure 2). Only the \Postmaster" is required to knowthe process group initially (it is always the rank-zero process of that group). All processes named in thatgroup need to invoke the collective operation for mailer creation; the non-Postmasters receive the processgroup as part of the synchronization procedure. The context server process (Postmaster General) providesthe needed context ids and promulgates them with the process group information to all participants. A tokenissued by the Postmaster General is held by the Postmaster to ensure that the process completes withoutthe chance that mailers fail because of race conditions on overlapped groups with distinct Postmasters. (Arelated, server-free model is implemented in MPI.)The following is an example of a mailer creation call, in the 3D virtual topology (of shape P � Q�R).3Methods are pointers to functions, plus extra state data. 10

Postmaster General (PMG)

(Zipcodes and Synchronization Support)

PM

0,0
1,3
5,7
1,1
2,0
3,0
4,1

2,0

5,7

1,1

4,1

1,3

3,0

Figure 2: Schematic representation of information
ow during a mailer creation. First, the \Postmaster"(PM) process transmits its process group to the \Postmaster General" (PMG). Then, the PMG broadcaststhe process group to all members of that group; in addition, needed context ids are transmitted simultane-ously. The pairwise-ordering property of messages helps guarantee that this procedure completes reliably.int P, Q, R;ZIP_ADDRESSEES *addressees;ZIP_MAILER *mailer = g3_grid_open(&P, &Q, &R, addressees);The Postmaster for the mailer-open calls the g3_grid_open() procedure with a valid process group andvalid values for the grid shape. All other participants call with unde�ned values for the grid shape andNULL for the process group. A seldom-used variant exists that permits the context ids to be speci�ed byeach participant. In that case, if all participants know their process group and context ids, then mailercreation is communication-free (and otherwise erroneous). However, this latter feature allows for e�cientcreation of hierarchical mailers.A Postmaster for a logical grid need not be part of the logical grid (e.g., creation by the host or anotherleader node, but participation by nodes excluding this leader). Whenever there are P �Q�R+ 1 processesin the process group, the Postmaster is excluded from the actual grid, and children thereof, but gains theability to communicate with the parent grid. In e�ect, it gets access to the context of communicationwithoutbeing a member of that context of communication. We support this non-member-access in only this timidway at present, but recognize that such non-member access is needed for more general \server" scenarios,which we would like to support better in the future (this is related to \inter-communication" in MPI, [14,Section 5]).4.4.1 Prede�ned Mail ClassesThe following are the prede�ned classes:Y-Class mail is used mainly for Zipcode internal mechanisms. The receipt selectivity information is asingle short integer tag. No collective operations are de�ned.11

Z-Class mail is a general purpose class. Process names are abstracted to a single integer rank (based onrank in the underlying group); receipt-selectivity is based on that source name. This is a class of mail thatis also used mainly by the system to implement higher-level functions, but is also usable by applications.Originally, each class of mail that was su�ciently expressive could implement its own collective com-munication, working with a second context id (to separate such messages from point-to-point operations).However, this was regarded as unwieldy. It also incurred additional overhead for those classes of mail withelaborate receipt selectivity. Now, regardless of the virtual topology, all collective communications for amailer are implemented using an isomorphic Z-class mailer, with its own context ids. This simpli�es im-plementation, reduces the amount of repetitive code, and, generally, enhances the opportunities for runtimeoptimizations on a speci�c system.L-Class mail provides for receipt selectivity based on message source in unabstracted fnode,pidg-notation,and on a long-integer tag. It can be used to support emulation of tagged message notations such as Intel'sNX or PICL [18].We have been able to classify a number of message-passing systems in [31], though speci�c di�erences insending and receiving strategies exist between common tagged-message-passing systems. L-class calls canbe used to generate wrappers for all the major tagged-message-passing systems. We have implemented aZipcode-based emulation for the Livermore Message Passing System (LMPS) [39].For each context a user declares, he/she is guaranteed that the L-class messages will not be mixed up,so that if vendor-style calls are used in di�erent libraries, then these will not interfere with other parts of aprogram. This allows several existing tag-oriented subroutines or programs to be brought together and face-lifted easily to work together, without changing tags or seeing when/where the message passing resourcesmight con
ict. In short, this provides a general means to ensure tagged-message registry as contemplated in[20].Grid Classes of mail are supported in three forms, for one-, two-, and three-dimensional virtual topologies;higher dimensions can easily be added. G1 class is a 1D-grid-abstraction class, similar to Z-Class mail. Forbrevity, we omit the calls supported by this class, which are simpli�ed notations of the G2 and G3 classes.As one might expect, G2 (resp, G3) class mail is a 2D-grid-abstraction (resp, 3D-grid-abstraction) class. AP �Q grid naming abstraction is attached to the mailer for G2, and a P � Q�R grid naming abstractionis attached to the mailer for G3. For G2, each process is speci�ed by a (p; q) pair; for G3, this is replacedby the analogous (p; q; r) triplet. When a G3 mailer is de�ned, three plane children (PQ-, PR-, QR-planemailers) are automatically de�ned as G2-grid mailers. Recursively, through a further subgridding process,row and column (G1) mailers are de�ned in each process as the appropriate subsets for each G2 grid. Herea single mailer is in fact a pointer to a family of contexts de�ned through a single \open" of a process gridtopology.Shorthands provide access to the PQ-plane, QR-plane, and PR-plane children of G3-class mailers, towhich G2 grid operations may be applied, as above.ZIP_MAILER *g3_mailer; /* 3D grid mailer */ZIP_MAILER *plane_mailer; /* 2D grid mailer */plane_mailer = g3_PQ_plane(g3_mailer);plane_mailer = g3_QR_plane(g3_mailer);plane_mailer = g3_PR_plane(g3_mailer);Furthermore, shorthands for row/column access of G2 mailers are supported, to which G1 operations maybe applied:ZIP_MAILER *g2_mailer; /* 2D grid mailer */ZIP_MAILER *row_mailer /* 1D */, *col_mailer; /* 1D */row_mailer = g2_row(g2_mailer);col_mailer = g2_col(g2_mailer); 12

It is often necessary to determine the grid shape as well as the current process' location on the gridwhen using logical grids. Often this information is housed only in the mailer (though some applications maychoose to duplicate this information). The following C macros provide simple access to these quantities:int p, q, r, P, Q, R; ZIP_MAILER *mailer;/* set variables specified to grid shape: */void g1_P(ZIP_MAILER *mailer, int P);void g2_PQ(ZIP_MAILER *mailer, int P, Q);void g3_PQR(ZIP_MAILER *mailer, int P, Q, R);/* set variables to current processes' grid position: */void g1_p(ZIP_MAILER *mailer, int p);void g2_pq(ZIP_MAILER *mailer, int p, int q);void g3_pqr(ZIP_MAILER *mailer, int p, q, r);For historical purposes, we note that G2 was the main class used originally by Zipcode-based libraries, butboth G1 and G3 are fully supported at present. G2 received the most extensive use because of the naturalapplication to single-instance parallel linear algebra and related computations; multiple instance linear al-gebra problems and problems de�ned on three-dimensional spatial topologies �nd use for G3 abstractions.(This technology is somewhat related to, but predates the Basic Linear Algebra Communication Subprogram(BLACS) approach to providing grid-oriented communication for parallel libraries [1, 11].)4.4.2 LettersThe Zipcode \letter" contains a user's message data, plus opaque (hidden) descriptive information in its\envelope"; the variable-length envelope includes its zipcode (context id), PO Box (receipt selectivity infor-mation), and other needed structural data (as introduced in section 3). The postal analogy in Zipcode carriesquite far because a process creates and mails a letter, �rst by grabbing and �lling out a blank message, thenby addressing its envelope, and �nally, by posting the entire object. Letters may be created (freed) by usingthe class-independent zip malloc (zip free) function or by using class-speci�c letter management functions.char *letter = zip_malloc (ZIP_MAILER *mailer, int length);letter = l_new_letter (ZIP_MAILER *mailer, int length);letter = z_new_letter (ZIP_MAILER *mailer, int length);letter = g1_new_letter (ZIP_MAILER *mailer, int length);letter = g2_new_letter (ZIP_MAILER *mailer, int length);letter = g3_new_letter (ZIP_MAILER *mailer, int length);void zip_free (ZIP_MAILER *mailer, char *letter);l_free_letter (ZIP_MAILER *mailer, char *letter);z_free_letter (ZIP_MAILER *mailer, char *letter);g1_free_letter (ZIP_MAILER *mailer, char *letter);g2_free_letter (ZIP_MAILER *mailer, char *letter);g3_free_letter (ZIP_MAILER *mailer, char *letter);4.4.3 Point-to-Point CommunicationClass-speci�c send and receive primitives are provided for the each prede�ned class of mail. Receive primitivesfor the G1-, G2-, and G3-Classes are as follows: 13

char *letter = g1_recv(ZIP_MAILER *mailer, int p); /* unblocked: */letter = g1_recvb(ZIP_MAILER *mailer, int p); /* blocked: */letter = g2_recv(ZIP_MAILER *mailer, int p, q); /* unblocked: */letter = g2_recvb(ZIP_MAILER *mailer, int p, q); /* blocked: */letter = g3_recv(ZIP_MAILER *mailer, int p, q, r); /* unblocked: */letter = g3_recvb(ZIP_MAILER *mailer, int p, q, r); /* blocked: */Send primitives are as follows:void g1_send(ZIP_MAILER *mailer, char *letter, int p);void g2_send(ZIP_MAILER *mailer, char *letter, int p, q);void g3_send(ZIP_MAILER *mailer, char *letter, int p, q, r);Sends are presumed asynchronous in Zipcode.4.4.4 Collective CommunicationZipcode provides several types of collective communication operations that are performed over the membersof a mailer's group. The basic types of collective communication calls are the combine, broadcast (fanout),collapse (fanin), parallel pre�x, and sync (barrier synchronization). Broadcasts share data of arbitrarylength, assuming all participants know the source. Collapses combine information assuming all participantsknow the destination.The combine, fanin, fanout exec (a PICL-like variant of fanout), and parallel pre�x collective operationsuse an associative-commutative \method" to perform an operation on the given data. The applicationprogrammer must provide an associative-commutative function, which is then encapsulated in a Methodstructure using a simple procedure (all Zipcode function pointers are so encapsulated, for symmetry). Weillustrate several collective G2 calls (and a G1 and G3 call) to exemplify all the classes, which di�er only inthe description of the origin or destination process:int error = g{1,2,3}_combine(ZIP_MAILER *mailer, /* 1D,2D, or 3D grid mailer */void *buffer, /* where result is accumulated */Method *comb_method, /* operator for combine */int size, /* size of buffer items in bytes */int items); /* number of buffer items */error = g2_fanout(ZIP_MAILER *g2_mailer,void **data, /* data/result */int *length, /* data length */int orig_p, int orig_q); /* grid origin of data */error = g2_fanin(ZIP_MAILER *g2_mailer,int dest_p, int dest_q, /* destination on grid */void *buffer, Method *comb_method, int size, int nitems);Shorthands provide direct access to row and column children mailers:g2_row_combine(g2_mailer, buffer, comb_method, size, items);g2_col_combine(g2_mailer, buffer, comb_method, size, items);g2_row_fanout(g2_mailer, &data, &length, orig_q);g2_col_fanout(g2_mailer, &data, &length, orig_p);14

andg2_row_fanin(g2_mailer, dest_q, buffer, comb_method, size, items);g2_col_fanin(g2_mailer, dest_p, buffer, comb_method, size, items);g3_fanin(PQ_plane(g3_mailer), dest_p, dest_q, buffer, comb_method, size, items);Since planes of G3-mailers are implemented via G2-mailers, plane macros map G3-mailers into speci�cG2-mailers. Similarly, the row/column macros above map to G1-grid calls, since rows and columns ofG2-mailers are realized via G1-mailers.4.4.5 SubgridsOnce a grid mailer has been established, it is possible to derive subgrid mailers by a cooperative call betweenall the participants in the original gf1,2,3g grid open(). In normal applications, this will result in a set ofadditional mailers in the Postmaster process, and one additional grid mailer (of the same dimensionality asits parent mailer) in each non-Postmaster process. This call allows subgrids to be aligned to the original gridin reasonably general ways, but requires a basic cartesian subgridding, in that each subgrid de�ned must bea rectangular collection of processes.The Postmaster of the original mailer (often the host process, in current practice), initiates the subgridopen request as follows, for the G3 case:/* array of pointer to subgrid mailers: */ZIP_MAILER **subgrid_mailers =g3_subgrid_open(ZIP_MAILER *mailer, /* mailer already opened *//* for each (p,q,r) on original grid, marks its subgrid: */int (*select_fn)(int p, q, r, void *extra),void *select_extra; /* extra data needed by select_fn() */int *nsubgrids); /* the number of subgrids created */while each non-Postmaster process in the original g3 grid open() does a second, standard g3 grid open():ZIP_MAILER *mailer = g3_grid_open(&P, &Q, &R, NULL);Each subgrid so created gets its own unique contexts of communication.4.4.6 Method Caching in MailersZipcode currently provides a \method caching" mechanism that allows one to associate new speci�c methodsfor pre-de�ned collective and point-to-point operations with mailers, allowing mailers to be customized atruntime to take advantage of speci�c features inherent in a process group (eg, homogeneity, power of two,shared memory message passing, etc). This feature is less general than MPI's caching mechanism thatallows arbitrary attributes to be attached to communicators, with full copy- and delete-callback facilities[14, Section 5]. We illustrate the usefulness of \method caching" in Figures 5, 6.4.5 InvoicesIn order to facilitate ease-of-use and to prepare for portability to heterogeneous parallel computers, Zipcodehas been extended to provide a mechanism to pack and unpack bu�ers and letters. Bu�ers are unstructuredarrays of data provided by the user; they are applicable with bu�er-oriented collective operations. Letters arethe unstructured arrays of data already mentioned previously in Section 4.4.2. Letters are tied to speci�c15

contexts and are dynamically allocated and freed by Zipcode. Further discussion on invoices and theirinteractions with letters and bu�ers is available in [34].Pack (gather) and unpack (scatter) are implemented with the use of Zip Invoices. The analogy is takenfrom invoices or packing slips used to specify the contents of a postal package. An invoice informs Zipcodewhat variables are to be associated with a communication operation or communication bu�er. This invoiceis subsequently used when zip pack() (zip unpack()) is called to copy items from the variables speci�edinto (out of) the communication bu�er space to be sent (received); this implements gather-send- and receive-scatter-style semantics. In a heterogeneous environment, pack/unpacking will allow data conversions to takeplace without user intervention. Users that code strictly with zip pack()/zip unpack() will have codesthat are guaranteed to work in heterogeneous implementations of Zipcode. Performance of the existinglayered implementation is described in [31, 34].The zip new invoice() call creates new invoices:int = zip_new_invoice(Zip_Invoice **inv, const char *format, va_list ap);zip new invoice() creates an invoice (inv), while taking a variable number of arguments, starting witha format string (format) similar to the commonly used printf() strings. The format string contains oneor more conversion speci�cations. A conversion speci�cation is introduced by a percent sign (`%') and isfollowed by� A positive integer indicating the number of items to convert, or a `*' or `&' indicating argument-listspeci�cation of an integer expression or address (see below). If no integer is speci�ed the default is oneitem.� An optional stride factor indicated by a `.' followed by a positive integer indicating the stride. Op-tionally a `*' or `&' may be speci�ed, signifying argument-list speci�cation of an integer expression oraddress (see below). If no stride is speci�ed the default is one.� An optional `-' character indicating that the indicated space is to be reserved but not packed (ignore-space option).� A character specifying an internal type or a string indicating a user type.For both the number of items to convert or stride, `*' or `&' can replace the hard-coded integer. If `*' isused, then the next argument in the argument list is used as an integer expression specifying the size of theconversion (or stride). Both the number of items to convert or stride factor can be indirected by using `&'instead of an integer. The `&' indicates that a pointer to an integer should be stored, which will address thesize of the invoice item (or stride) when it is packed. When `&' is used, the size is not evaluated immediately,but is deferred until the actual packing of the data occurs. `&'-indirection consequently allows variable-sizeinvoices to be constructed at runtime; we call this feature deferred sizing. `*' allows the size of an invoiceitem (or stride) to be speci�ed at runtime. Note that one must be cautious of the scope of C variables whenusing `&'. For example, it is erroneous to create an invoice in a subroutine that has a local variable as astride factor and then attempt to pass this invoice out and use it elsewhere, since the stride factor points ata variable that no longer is in scope. Unpredictable, bad things will happen if this is attempted.The simple data types that are supported are as follows: `c' for character, `s' for short integer, `i' forinteger, `l' for long integer, `f' for single-precision
oating point, `d' for double-precision
oating point. Foreach conversion speci�cation, a pointer to an array of that type must be passed as an argument. User-de�nedtypes may be added to the system to ease the packing of complicated data structures. An extra �eld (forpassing whatever the user wants) may be passed to the conversion routines by adding `(*)' to the end ofthe user-type name. The `-' character can be used to skip space so that one can selectively push/pull thingsout of a letter. This allows for unpacking part of a letter and then unpacking the rest based on the partunpacked.The following code would pack variable i followed by elements 0; 2; 4; ::18 of the double array.16

/* Example 1 */ZIP_MAILER *mailer;char *letter;...Zip_Invoice *invoice;int i = 20;double double_array[20];zip_new_invoice(&invoice, "%i%10.2d", &i, double_array);.../* use the invoice (see below) */letter = zip_malloc(mailer, zip_sizeof_invoice(mlr, invoice));length = zip_pack(mailer, invoice, ZIP_LETTER, &letter, ZIP_IGNORE);if(length == -1) /* an error occurred */...The second example is a variant of the �rst. The �rst pack call is the same, while the second packs the�rst �ve elements of the double array./* Example 2 */int len = 10, stride = 2;...zip_new_invoice(&invoice, "%i%&.&d", &i, &len, &stride, double_array);/* use the invoice */letter = zip_malloc(mailer, zip_sizeof_invoice(mailer, invoice));length = zip_pack(mailer, invoice, ZIP_LETTER, &letter, ZIP_IGNORE);...len = 5; /* set the length and stride for this use of the invoice */stride = 1;/* use the invoice */letter = zip_malloc(mailer, zip_sizeof_invoice(mailer, invoice));length = zip_pack(mailer, invoice, ZIP_LETTER, &letter, ZIP_IGNORE);If a user-de�ned type matrix has been added to the system to pack matrix structures, then the followingexample shows how matrix-type data can be used in an invoice declaration. See also below on how to adda user-de�ned type./* Example 3 */struct matrix M; /* some user-defined type */int i;Extra extra; /* contains some special info on packing a 'matrix'; *//* often this will not be needed, but this feature *//* is provided for flexibility */zip_new_invoice(&invoice, "%i%matrix(*)%20d", &i, &M, &extra, double_array);At times it might be useful to know the size (in bytes) that is needed to hold the variables speci�ed by an17

invoice. zip sizeof invoice returns the size (in bytes) that the invoice will occupy when packed. We havealready used this facility in several examples above.int zip_sizeof_invoice(ZIP_MAILER *mailer, Zip_Invoice *inv);To delete an existing invoice use zip free invoice():void zip_free_invoice(Zip_Invoice **inv);This will free up the speci�ed invoice and set *inv = NULL to help
ag accidental access.User-de�ned types for pack and unpack routines are de�ned using a registry mechanism provided byZipcode.int zip_register_invoice_type(char *name, Method *in, Method *out,Method *len, Method *align);In the above, name is the user-de�ned name for the auxiliary type. User-de�ned names follow the ANSIstandard for C identi�ers. They begin with a non-digit (characters `A' through `Z', `a' through `z', and theunderscore ` '), followed by one or more non-digits or digits. User-de�ned-type names currently have globalscope with potential for name con
icts. User-de�ned types cannot be the same as one of the built-in typesspeci�ed above. The in, out, len and align are the Methods used to pack/unpack the user-de�ned type[31, 34].The \out" (resp, \in") method performs any necessary data conversions when messages are sent (resp,received). The total size necessary to pack a user-de�ned type is computed by the \len" method. The \align"method returns the number of bytes that must be added to properly align a user-de�ned type.Finally, the following call is used to remove a user-de�ned type from the system:int zip_unregister_invoice_type(char *name);zip unregister invoice type deletes the entry for the named type, which cannot be used after this callhas been made.4.5.1 Packing and UnpackingPacking is done when one wishes to copy the variables into the communications bu�er space prior to trans-mission; to access the contents of a packed bu�er, one must unpack it �rst.int zip_pack(ZIP_MAILER *mailer, Zip_Invoice *inv, int buffer_type,char **ptr, int len);This command packs the invoice. buffer type is either `ZIP BUFFER' or `ZIP LETTER', indicating whetherwe are packing into a bu�er (say for a combine or fanout) or a letter (for sends/receives).If one is packing a bu�er and has preallocated the bu�er space, then len must be set to the size of thisallocated bu�er space. If the invoice is too large to �t in this bu�er space an error occurs. By specifying*ptr = NULL and len = ZIP IGNORE, the pack routine will allocate the space for the bu�er based on thesize of the invoice to be packed. Alternatively, if a pre-allocated letter is being packed, then pack will �llin the letter by using the invoice. If the letter provided is not large enough then an error will occur. If nopre-allocated letter is available, the pack routine can create one automatically, provided *ptr = NULL. Notethat len is ignored when letters are involved, as the size of letters can be determined with Zip length();len should always be ZIP IGNORE when packing letters. For either case, zip pack() returns the number ofbytes that the data from the invoice occupies in the communication space (letter or bu�er).To unpack a letter use 18

int zip_unpack(ZIP_MAILER *mailer, Zip_Invoice *inv, int buffer_type, char *ptr);As in zip pack(), inv is the invoice to unpack. The buffer type parameter indicates the type of com-munication space being used; that is, whether we are unpacking a letter (buffer type = ZIP LETTER) or abu�er (buffer type = ZIP BUFFER). The parameter ptr is a pointer to the communication space. Unlikezip pack(), we pass a pointer to the communication space to zip unpack(), not a pointer to a pointer.The communication space must be freed by the caller after it is unpacked.4.5.2 The Packed-Message FunctionsAs may be apparent, many packs are followed almost immediately by sends while corresponding receives arefollowed closely by unpacks. Not only is this somewhat notationally tedious, but it also limits the runtimeoptimizations that can be contemplated by future versions of Zipcode. To create a more
exible systemwith future high performance, Zipcode provides the capability to do both the pack and communications ina single call. For instance,g3_pack_send(ZIP_MAILER *g3_mailer, int p, q, r, Zip_Invoice *invoice);takes care of creating the letter, packing the invoice and sending it to the grid location speci�ed by fp,q,rg.Whenever possible, use pack send-style routines, as they will generally be more runtime optimizable thanpack calls followed by send calls.Packed collective operations are also provided. For those collective operations which require methods,Zipcode provides built-in methods that work over the elements of an invoice. There are currently twelvebuilt-in methods available that perform operations such as addition (ZIP ADD), logical `and' (ZIP LAND),and minimums and maximums (ZIP MIN and ZIP MAX). Zipcode also provides macros that create newuser-de�ned methods. Here is the speci�c syntax of the grid pack combines:int g{1,2,3}_pack_combine(ZIP_MAILER *mailer, Zip_Invoice *invoice,Method *comb_method);4.5.3 Lessons LearnedThough we de�ned invoices to improve the software-engineering aspects of message-passing programming,we have come to understand that abstractions like invoices are helpful for runtime optimization of message-passing. Basically (without overselling the concept), the user indicates \what" is to be communicated ratherthan \how," so it is possible at runtime for the system to make choices that reduce the number of copiesof data, and that possibly use special gather/scatter hardware. For instance, for collective operations, wecould use hardware such as the CM-5's control network in order to implement certain collective operationson small bu�ers. By contrast, on the Cray T3D, we could use remote memory access primitives for shortmessages and change to the \Block Transfer Engine" for longer messages, where the T3D's gather/scatterhardware's startup overhead is proportionally less signi�cant.To summarize, we have experience using invoices in a practical application, where we found that theyreduced the time needed to formulate a message-passing application [34]. In [34], we o�er evidence thata layered invoice implementation is not without overhead. Higher net e�ciency requires a non-layered ap-proach, and should make use of e�cient hardware where available, accessed through a portable, e�cientdevice mechanism if possible (see [19]). We have found that invoices are su�ciently
exible to tackle com-plicated tasks, but that the use of the string-based syntax is not particularly convenient for extremely largeinvoices. 19

Vendor Hardware

Vendor Message-Passing, Process Management, Kernel,...

CE — Cosmic Environment RK — Reactive Kernel

Zipcode Process,
Static-Process-Group

Management

Zipcode Class-Independent
Point-to-Point Primitives

Zipcode PMG —
Context Server

Process
[Optional]

Z-Class
Point-to-Point

Class-Independent
Mailer

Initialization
(Collective)

Z-Class
Collective Methods

"Mailer Hierarchy"
Collective

Initialization

Virtual
Topologies

G1,G2,G3,...
 Point-to-

Point

G1,G2,
G3,...

Collective

Z, L-Class
Collective

L, Y-class
Point-to-

Point

•

Zipcode
PMG

AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Zipcode Applications (C, Fortran)

Zipcode Queue Management,
Envelope and Context Matching

Figure 3: We depict the protocol stack for the current Zipcode implementation. Towards the left, thehierarchical layering of process management is shown. Towards the right, the hierarchical layering of message-passing services is shown. Currently, Zipcode uses the Cosmic Environment (CE) primitives as its interfaceto process management, and the Reactive Kernel (RK) primitives as its interface to message passing. To thisdate, ports of the relatively modest number of CE/RK primitives have been accomplished on a wide varietyof multicomputers and shared-memory multiprocessors, as well as homogeneous networks of workstations.(The arrow indicates further layering dependence that we could not otherwise depict in two dimensions.)20

5 Portability5.1 Current Porting StrategyZipcode has to now relied on the basic process management (spawn/kill) and messaging services (x-primitives)of the Reactive Kernel / Cosmic Environment, or, more usually, our own emulations thereof [23, 24, 25]. Thisstrategy has been e�ective in that we have produced stable, usable ports for the Symult S2010, nCUBE/2,iPSC/2, iPSC/860, Delta, Paragon, BBN TC2000, CM-5 scalar machine, Sun workstation network, andRS/6000 networks during the past �ve years. A port to the PVM systems is nearly completed [4, 5]; inte-gration of Zipcode with ELROS messaging capabilities is also being undertaken [8]; a direct TCP/IP portis also contemplated, which omits a PVM-like intermediate library.Zipcode supports the common multicomputer host/node model of computation, which essentially meansthat there is an initial process that is responsible for the main part of the \sequential fraction" of computation,including spawning, killing, and initializing the parallel processes of an application. This model is not asgeneral as one would prefer in an hierarchical, heterogeneous environment, but is a starting point, and isreasonable for multicomputers. On a related note, certain multicomputer systems we have addressed in thepast do not allow for dynamic process management (e.g., Intel Delta), and many restrict programming toone process per processor. For such systems, operations like \spawn process" and \kill process" are NULLoperations (or restricted), but acceptable portability is still maintained.5.2 Future Scope of PortabilityZipcode has fully surpassed its original Reactive Kernel / Cosmic Environment platform [23, 24, 25]; itis now planned that Zipcode implementations will be based on one or more of the following in a givenimplementation:� Hardware-based shared memory,� Active-message strategies (cf, [38]),� Lightweight layering on MPI implementations,� Control-Network operations de�nable on process groups (subsets of processes),� TCP/IP and/or UDP,� High-speed network protocols (e.g., ATM, Fiberchannel, FDDI).Heterogeneous translation can be by one of several translation mechanisms, for instance: XDR [35], ELROS[7, 8], or other strategies (that appropriately balance the work of the sender and recipient in the translationprocess as a function of their computational speed for such translations). Because invoices are persistentobjects, the runtime cost of discovering and reorganizing data transmission to enhance vectorization ispossibly feasible, as such costs can be amortized over many uses. This runtime optimization can be donetransparently to the user, and di�erently in each mailer, according to the nature of the processes belongingto each mailer.Importantly, when a code is moved to a system that does not have special features (e.g., a purely message-passing system), the user code's calls to Zipcode will compile down to pure message-passing, whereas the callscompile down to faster schemes within special parts of non-uniform memory access hierarchies. Originally,the CE/RK primitives were the cheapest available primitives for system-level message-passing, and hencethe most attractive to build higher-level services like Zipcode. Today, vendor operating systems are likely toprovide additional services in the other categories mentioned above which, if used directly in applications,would prove unportable, unmanageable, or too low-level (like direct use of CE/RK primitives). If a userneeds to optimize a code for a speci�c system, he or she works in terms of process groups, and contexts, toget desirable mappings from which Zipcode can e�ect runtime optimizations. These ideas are depicted inFigures 5, and 6. 21

Zipcode
Thread
Support

Multi-Vendor, Heterogeneous Hardware

Vendor Message Passing,
Process Management,

Kernel ...

Zipcode Process,
Static-Process-Group

Management

Posix
Threads

MPID Vendor
Devices

Active
Messages

ASN.1 Data
Conversion

Inter-Vendor Device Layer

MPI Context, Group, Communicator Control

Class-Independent
Mailer Initialization

(Collective)

"Mailer Hierarchy"
Collective

Initialization

Zipcode
Active

Message
Interface

(Postcards)

MPI Virtual
Topologies

Zipcode
Topology

Management

L, Y, Z, G1, G2,
G3, ... Point-To-

Point

MPI
Point-To-

Point
MPI

Collective

L, Z, G1,
G2, G3, ...
Collective

•

MPI and Zipcode Applications (C, Fortran, C++)

•

Figure 4: The advent of MPI, Active Messages, and the Posix standardization of threads [36] opens newopportunities for further Zipcode research. In particular, studying means to interface multiple MPI systemswith threads and active messages alone poses worthwhile technical challenges. In the \new world order," MPIsubsumes much of the layering of the original Zipcode protocol stack for message passing, leaving a \thin"interface to the user, and revealing higher performance than Zipcode could achieve previously. Zipcode willcontinue to provide the added value of virtual topology support supplementary to MPI, as well as processmanagement (including threads) and active messages. This protocol stack would give Zipcode applicationsaccess both to the medium-latency, high-bandwidth MPI protocols, as well as the low-latency, low-bandwidthActive Message protocols. Finally, access to threads will help make Zipcode-based applications latencytolerant. (Arrows indicate further layering dependence that we could not otherwise depict in two dimensions.)22

Processor Subset1 Processor Subset2

Non-Uniform Memory Access Hardware (NUMA)

Mailer Hierarchy 3

Zipcode
Point-To-

Point
Methods

Mailer Hierarchy 2

Zipcode
Point-To-

Point
Methods

Mailer Heirarchy 2

Mailer Hierarchy 1

Zipcode
Collective
Methods

Zipcode
Point-To-

Point
Methods

CE/RK CE/RK CE/RK

ELROS/ P4/
PVM

XDR /
ASN.1Shared Memory Shared Memory

Group2 ProcessesGroup1 Processes Group1 Group2∪

Zipcode
Collective
Methods

Zipcode
Collective
Methods

Figure 5: In a non-uniform memory access (NUMA) hardware environment, Zipcode's mailers provide auseful abstraction. The �gure depicts two groups of processes, each working within a special subset of adistributed memory hierarchy. The Zipcode mailer for each process group would utilize shared-memory-based primitives appropriate to that portion of the hardware. The Zipcode mailer for the union group wouldhave to use (potentially slower) message-passing mechanisms. The software technology to achieve this typeof runtime optimization is already in place in Zipcode, but we have not yet demonstrated a running systemof this complexity.
P-way Multiprocessor
Node shared memory

(eg, Paragon dual node)

Multiprocessor Multicomputer System (eg, Intel Paragon)

Mailer Hierarchy 3

Zipcode
Point-To-

Point
Methods

Mailer Hierarchy 2

Zipcode
Point-To-

Point
Methods

Mailer Heirarchy 2

Mailer Hierarchy 1

Zipcode
Collective
Methods

Zipcode
Point-To-

Point
Methods

CE/RK CE/RK CE/RK

Group2 ProcessesGroup1 Processes

Vendor Message
Passing... (eg, NX)Shared Memory Shared Memory

Group1 Group2∪
P-way Multiprocessor
Node shared memory

(eg, Paragon dual node)

Zipcode
Collective
Methods

Zipcode
Collective
Methods

Figure 6: A non-uniformmemory access environment (NUMA) can also occur within a single multicomputer.The �gure depicts a special case of Figure 5 for the Intel Paragon system, assuming the node pairs areprogrammed symmetrically. For groups of processes (e.g., pairs of processes) executing on a multiprocessornode, shared-memory-based primitives would be used to implement the Zipcode protocol stack. Mailersde�ned over those processes would avoid full-weight message passing of the mesh-connected multicomputer.Mailers with process groups including multiple multiprocessor nodes would use a full-weight message-passingprotocol. We expect to test this technology in the coming months.23

6 Future WorkA communication context degrades the raw performance of any message-passing system, in return for use-ful guarantees of program correctness, and manageability. How much degradation results depends on thehardware characteristics, number of processes per processor, and whether additional queueing is required tosupport contexts. This speaks to the need for contexts in vendor primitives, rather than just in a user-levellibrary such as Zipcode. With vendor implementations of MPI, lighter-weight context support will becomea reality, and Zipcode-based applications will increase performance either by moving directly to MPI primi-tives, or by our planned light-weight port of Zipcode that will run on top of MPI. We view this evolution ashighly satisfactory, as it has provided good portability and performance enhancement to our MulticomputerToolbox libraries. Therefore, no Zipcode-based application or library will su�er in face of the standardiza-tion. Instead, they will bene�t almost immediately by it, and be even more portable, as multiple vendorswill eventually implement MPI, whereas we were obliged to undertake each Zipcode port as new hardwarebecame available.Because Zipcode provides process management (whereas MPI does not), we will continue actively todevelop, distribute, and support Zipcode for the next several years, principally to investigate inter-vendorMPI support, active messages, and threads, all working together.Furthermore, the heterogeneous environment has not been addressed or explored fully in practice, andMPI does not address dynamic process models. All of these factors suggest that new Zipcode features canpotentially provide a continued useful role in providing further input to a future MPI e�ort, while remaininga \full" portability platform. Of course, we hope that future generations of MPI will include dynamic processsupport and control, and strict guidelines for inter-vendor MPI interoperability. Our views on future workare well-characterized in Figures 4, 5, 6.7 ConclusionsZipcode currently provides portable message-passing capability on a number of multicomputers. It also workson homogeneous networks of workstations, and, with ports in progress, will soon be supported in several wayson heterogeneous networks, and should be readily portable to future heterogeneous multicomputers. Thekey bene�ts of Zipcode are its ability to limit the scope of message passing activities over sets of processesdesignated by the user (process groups), to de�ne separate contexts of communication so that libraries canbe written readily, and to allow di�erent notations (virtual topologies) of process naming. Tagged messagepassing with rank naming of processes is included as a particular case of the notations supported by Zipcode.We see notational abstraction as helpful in dealing with issues of non-uniform memory access hierarchiesand heterogeneity in multicomputers and distributed computers. Abstraction is a way to help Zipcode �ndadditional runtime optimizations, rather than a tacit source of ine�ciency.In the emerging MPI standard of message passing, we see many of the unique features of Zipcode repre-sented in it: contexts, process groups plus contexts, virtual topologies, and invoices/pack/unpack technology.As such, the concepts in Zipcode have proven to be successful models of what will be implemented as stan-dard capabilities by vendors, thereby enabling library development. When MPI becomes pervasive, Zipcode,as it is today, must become less important as a direct tool to achieve performance on real multicomput-ers. Zipcode will continue to provide a vehicle for testing advanced concepts in message passing as it hassuccessfully done over the past �ve years. The additional kinds of research issues involving inter-vendorMPI, threads, and active messages mean that Zipcode research will take a new turn in the future. We willconcentrate on using MPI to achieve standard message passing, and explore the new areas of parallel threadsand active messages, that are outside MPI.In closing, we note that Zipcode 1.00 will be made available through anonymous ftp and netlib, approx-imately December 1, 1993 with updates thereafter. 24

8 AcknowledgementsWe acknowledge Dr. Charles L. Seitz, and Dr. Wen-King Su, both of Myricom, Inc. We acknowledge thehelp of Dr. Charles H. Still, Lawrence Livermore National Laboratory, for help with several Zipcode ports.We express our sincere gratitute to the reviewers for their numerous suggestions and constructive criticismsof the �rst version of this article.

25

References[1] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and R. van deGeijn. Basic Linear Algebra Communication Subprograms. In Sixth Distributed Memory ComputingConference Proceedings, pages 287{290. IEEE Computer Society Press, 1991.[2] V. Bala and S. Kipnis. Process groups: a mechanism for the coordination of and communication amongprocesses in the Venus collective communication library. Technical report, IBM T. J. Watson ResearchCenter, October 1992. Preprint; (also, Proc 7th IPPS, April 1993).[3] V. Bala, S. Kipnis, L. Rudolph, and Marc Snir. Designing e�cient, scalable, and portable collectivecommunication libraries. Technical report, IBM T. J. Watson Research Center, October 1992. Preprint.[4] A. Beguelin, J. Dongarra, G. A. Geist, R. Manchek, and V. Sunderam. A users' guide to PVM: ParallelVirtual Machine. Technical Report ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.[5] A. Beguelin, G. A. Geist, W. Jiang, R. Manchek, K. Moore, and V. Sunderam. The PVM project.Technical report, Oak Ridge National Laboratory, February 1993.[6] Luc Bomans and Rolf Hempel. The Argonne/GMD macros in FORTRAN for portable parallel pro-gramming and their implementation on the Intel iPSC/2. Parallel Computing, 15:119{132, 1990.[7] M.L. Branstetter, J.A. Guse, and D.M. Nessett. ELROS { An Embedded Language for Remote Opera-tions Service. Technical Report UCRL-JC-108862, Lawrence Livermore National Laboratory, November1991.[8] M.L. Branstetter, J.A. Guse, D.M. Nessett, and L.C. Stanberry. An ELROS Primer. Technical report,Lawrence Livermore National Laboratory, 1992.[9] R. Butler and E. Lusk. User's guide to the P4 programming system. Technical Report TM-ANL{92/17,Argonne National Laboratory, 1992.[10] Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior. Portable programming with theparmacs message{passing library. Parallel Computing, 1994. in this issue.[11] J.J. Dongarra and R.A. van de Geijn. Two dimensional basic linear algebra communication subprograms.LAPACK Working Note 37, Technical Report CS-91-138, University of Tennessee, 1991.[12] Nathan E. Doss, WilliamGropp, Ewing Lusk, and Anthony Skjellum. An initial implementation of MPI.Technical Report MCS-P393-1193, Mathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, IL 60439, 1993.[13] Robert D. Falgout, Anthony Skjellum, Steven G. Smith, and Charles H. Still. The multicomputertoolbox Approach to Concurrent BLAS and LACS. In J. Saltz, editor, Proc. Scalable High PerformanceComputing Conf. (SHPCC), pages 121{128. IEEE Press, April 1992. Also available as LLNL TechnicalReport UCRL-JC-109775.[14] Message Passing Interface Forum. Document for a Standard Message-Passing Interface. TechnicalReport Technical Report No. CS-93-214., University of Tennessee, November 1993. Available on netlib.[15] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K. Salmon, and David W.Walker. Solving Problems on Concurrent Processors, volume 1. Prentice Hall, 1988.[16] D. Frye, R. Bryant, H. Ho, R. Lawrence, and M. Snir. An external user interface for scalable parallelsystems. Technical report, IBM, May 1992.[17] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user's guide to PICL: a portableinstrumented communication library. Technical Report TM-11616, Oak Ridge National Laboratory,October 1990. 26

[18] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A Users' Guide to PICL { A Portable Instru-mented Communication Library. Technical Report ORNL/TM-11616, Oak Ridge National Laboratory,May 1992.[19] William Gropp and Ewing Lusk. An abstract device de�nition to support the implementation of ahigh-level point-to-point message-passing interface. Technical Report MCS-P342-1193, Mathematicsand Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, 1993.[20] Leslie Hart and Tom Henderson. Summary of GP5 Library Routines, August 26 1992.[21] Parasoft Corporation. Express Version 1.0: A Communication Environment for Parallel Computers,1988.[22] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on Hypercube Con-current Computers and Applications, pages 384{390. ACM Press, 1988.[23] Charles L. Seitz et al. The C Programmer's Abbreviated Guide to Multicomputer Programming. Tech-nical Report Caltech-CS-TR-88-1, California Institute of Technology, January 1988.[24] Charles L. Seitz, Sven Mattisson, William C. Athas, Charles M. Flaig, Alain J. Martin, Jakov Seizovic,Craig M. Steele, and Wen-King Su. The architecture and programming of the ametek series 2010 multi-computer. In Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications(HCCA3), pages 33{36. ACM Press, January 1988. (Symult s2010 Machine).[25] Jakov Seizovic. The Reactive Kernel. Technical Report Caltech-CS-TR-88-10, California Institute ofTechnology, 1988.[26] Anthony Skjellum, Steven F. Ashby, Peter N. Brown, Milo R. Dorr, and Alan C. Hindmarsh. TheMulticomputer Toolbox. In G. L. Struble et al., editors, Laboratory Directed Research and DevelopmentFY91 { LLNL, pages 24{26. Lawrence Livermore National Laboratory, August 1992. UCRL-53689-91(Rev 1).[27] Anthony Skjellum and Chuck H. Baldwin. The Multicomputer Toolbox: Scalable Parallel Librariesfor Large-Scale Concurrent Applications. Technical Report UCRL-JC-109251, Lawrence LivermoreNational Laboratory, December 1991.[28] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing Libraries in MPI. InAnthony Skjellumand Donna S. Reese, editors, Proceedings of the Scalable Parallel Libraries Conference.IEEE Computer Society Press, October 1993.[29] Anthony Skjellum and Alvin P. Leung. Zipcode: A Portable Multicomputer Communication Libraryatop the Reactive Kernel. In Proceedings of the Fifth Distributed Memory Computing Conference(DMCC5), pages 767{776. IEEE Press, April 1990.[30] Anthony Skjellum, Alvin P. Leung, Charles H. Still Steven G. Smith, Robert D. Falgout, and Chuck H.Baldwin. The Multicomputer Toolbox { First-Generation Scalable Libraries. In Proceedings of HICSS{27. IEEE Computer Society Press, 1994. HICSS{27 Minitrack on Tools and Languages for TransportableParallel Applications.[31] Anthony Skjellum, Steven G. Smith, Nathan E. Doss, Charles H. Still, Alvin P. Leung, and ManfredMorari. Zipcode: A Portable Communication Layer for High Performance Multicomputing. TechnicalReport UCRL-JC-106725 (revised 9/92, 11/93), Lawrence Livermore National Laboratory, March 1991.To appear in Concurrency: Practice & Experience.[32] Anthony Skjellum, Steven G. Smith, Charles H. Still, Alvin P. Leung, and Manfred Morari. The ZipcodeMessage-Passing System. In Geo�rey C. Fox, editor, Parallel Computing Works!, chapter 16. MorganKaufman, 1994. 27

[33] Anthony Skjellum and Charles H. Still. Zipcode: and the Reactive Kernel for the Caltech Intel DeltaPrototype and nCUBE/2. In Proc. Sixth Distributed Memory Computing Conf. (DMCC6), pages 26{33.IEEE, April 1991. Also available as LLNL Technical Report UCRL-JC-107636.[34] Steven G. Smith, Robert D. Falgout, Charles H. Still, and Anthony Skjellum. High-Level Message-Passing Constructs for Zipcode 1.0: Design and Implementation. In Proceedings of the Scalable ParallelLibraries Conference. IEEE Computer Society Press, 1993.[35] (Unattributed). XDR: External Data Representation Standard. Technical Report RFC 1014, SunMicrosystems, June 1987.[36] (Unattributed). Draft Standard for Information Technology | Portable Operating System Interface(POSIX) | Part 1: System Application Program Interface (API) | Amendment 2: Threads Extension[C Language]. Technical Report Work Item Number JTC 1.22.21.x., IEEE, April 1993. P1003.4a/D7.[37] (Unattributed). Elan Widget Library. Technical report, Meiko, 1993.[38] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active messages:a mechanism for integrated communication and computation. Technical Report UCB/CSD 92/#675,UC Berkeley, Computer Science, 1992.[39] Tammy Welcome. Programming in LMPS. Technical Report UCRL-MA-107031, Lawrence LivermoreNational Laboratory, March 1992.

28

	The Design and Evolution of Zipcode
	Recommended Citation

	tmp.1285252205.pdf.2afel

