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Abstract

The paper describes a distributed spectral-screening
PCT algorithm for fusing hyper-spectral images in
remote sensing applications.  The algorithm provides
intrusion tolerance from information warfare attacks
using the notion of computational resiliency. This
concept uses replication to achieve fault tolerance, but
goes further to dynamically regenerate replication in
response to an attack or failure. The concepts of
resiliency are incorporated through library technology
that is application independent. This library hides the
details of communication protocols required to achieve
dynamic replication and reconfiguration in distributed
applications. The paper provides a status report on our
progress in developing the concept and applying it to
image fusion.  In particular we examine the
performance of the PCT algorithm and compare the
results with and without resiliency to assess the
associated overheads

1. Introduction

Any system that operates in highly adverse
environments, such as battlefield command and control,
must be able to tolerate attacks and failures. Many
distributed systems have sought to use replication as a
mechanism to provide this fault-tolerance [Agarwal
1994, Amir 1992, Budhiraja 1993]. Although this
approach provides graceful degradation of system

performance to the point of failure, it is clearly not
sufficient to aggressively recover assured operation.

We are investigating an alternative approach,
computational resiliency, that combines real-time
attack assessment with on-the-fly replication,
camouflage, and process reconfiguration to maintain
and improve system capabilities. To understand how
these concepts might operate, consider a distributed
application, as analogous to an apartment complex
inhabited by a new strain of roach (process/thread).
The roaches are highly resilient: you can stamp on
them, spray them, strike them with a broom but you
never kill them all or prevent them from their goal of
finding food (resources). To foil your eradication
efforts, they use several techniques: they are highly
mobile moving from one place in the apartment
complex (network) to another with speed and agility.
They continually replicate to ensure that it is not
possible to kill them all. They sense (attack
assessment) their environment to obtain clues that
mobility is necessary: if a light is turned on, they
scurry away in all directions to hide behind cupboards
in places of known safety (secure network zones). If a
new roach killer is invented they learn from it, and
adapt their behavior to compensate. However, this
new strain is particularly aggressive and seeks to live
in the daylight (wide-area operation): thus it adopts
techniques for camouflage as a form of protection and
disinformation. 2

This paper describes our progress to date in
developing the ideas of computational resiliency and



applying them to remote sensing applications using a
spectral-screening PCT algorithm. The intent is to gain
a preliminary evaluation of the overheads involved in
using resiliency. The PCT algorithm summarizes the
information content of a hyper-spectral image into a
single color-composite image using three techniques:
spectral angle classification, principal component
transformation, and human centered color mapping.
Test data for the algorithm is supplied from the Hyper-
spectral Digital Imagery Collection Experiment
(HYDICE) sensor, an airborne imaging spectrometer.
The algorithm is executed on a local area network
containing 16 workstations connected with 100BaseT
networking.

2. Computational Resiliency

There are several significant technical challenges
involved in developing systems based on computational
resiliency. Techniques must be developed for providing
policy driven, on-the-fly replication, camouflage, and
mobile threads. There are also a number of serious
theoretic concerns that relate to race conditions in
reconfiguration of a distributed application, resource
management, and providing guarantees on message
delivery:

Clustered Multiprocessing. Today’s distributed
computing platforms are not a simple mix of local area
networking and workstations that can be utilized
directly by message passing. With high-performance
and wireless networking pushing from one end of the
technology spectrum and low cost multiprocessor
technology pushing from the other, there is now a
confluence of technologies based on heterogeneous
clustered environments that includes shared-memory
multiprocessors. Theses systems are composed of
machines with substantively different memory and
processor characteristics, operating systems floating
point representations and byte orderings.

To provide highly mobile threads with the ability to
reconfigure in such an environment, it is necessary to
have an explicit representation of the communication
structure used by the application.  We have developed a
concurrent programming library, SCPlib, that provides
this basic functionality [Taylor et al. 1995].  We
implement distributed applications composed of a
collection of threads that communicate and synchronize
either through shared memory or by sending messages.
Each thread has an associated state, which is operated
on by application specific routines e.g. in a remote
sensing application this may involve matrix algebra. A
thread also has a machine independent description of its

communication structure. In general these systems are
reactive [Seitz 1985] in that the important transitions
between data states occur at the receipt of messages.
This provides a natural mechanism to synchronize
each thread, detect and information warfare attack and
initiate recovery.

Resilience. To tolerate information warfare attacks,
applications may choose to replicate mission critical
threads as shown in Figure 1, thereby gracefully
degrading to the point of failure. In any realistic
system, there will never be sufficient resources to
replicate all resources, therefore some policy-based
methods for controlling replication are required.
Although this approach provides fault-tolerance it is
not resilient in that it does not assure continued
operation of the system.

Figure 1: Replication of Threads

An alternative approach is to dynamically recreate the
level of replication in the face of attack and so as to
assure that operational readiness is eventually restored,
subject only to the constraints imposed by the total
available resources. Obviously to be successful, the
replacement thread must be mapped to an alternative
location in the network with sufficient resources.
Protocols are required both to communicate between
groups of threads and to reconfigure the groups
dynamically. Prototypes for these protocols have been
devised and are used to configure the concurrent
computation in this paper. The protocols both recreate
the thread and automatically reconfigure
communication to the new location in the network.
The protocols deal with race conditions inherent in
reconfiguration, ensure that no communication is lost,
that the integrity of the state is maintained, and that
where possible locality of communication is
preserved.

Resource Management. To dynamically recover,
replication requires the ability to recreate a thread with
the appropriate communication structure at some other
location in the network. Replicating a thread at the

Shadow Threads



location of one of the backup copies, and subsequently
moving the new thread to a new location can achieve
this. Unfortunately, it may not be efficient with the
available resources to move the thread either because of
memory disparities or because of granularity: the ratio
of computation to communication in the application.
Protocols are needed to allow thread granularity to be
increased, by merging, or decreased, by splitting the
associated thread computation [Watts and Taylor 1998].
Armed with basic techniques for mapping and
granularity control. It is then possible to build concepts
for resource management [Watts et al. 1995, 1998].
There exists no general solution to the resource
management problem, and thus each application must
employ an appropriate technique [Bokhari 1981].  In
this paper a simple Manager-Worker approach is used.

3. Concurrent Spectral-Screening PCT
Algorithm

To examine how to utilize resiliency, we developed a
spectral-screening PCT algorithm that can be used for
hyper-spectral image fusion in remote sensing
applications [Achalakul et al. 1999]. The algorithm
combines the Principal Component Transform (PCT)
[Mackiewicz 1993, Singh 1993] with spectral angle
classification [Kruse et al. 1993] and human-centered
color mapping [Boynton 1979, Peterson et al. 1993,
Poirson and Wandell, 1993].

The PCT is used to summarize and de-correlate the
images by removing redundancy and packing the
residual information into a small set of images, termed
principal components.  To prevent the PCT from
highlighting only the variation that dominates
numerically, we augment it with spectral angle
classification prior to the de-correlation process.  This
has the effect of reducing the importance of an object
that occurs frequently in a scene.  For example, the
spectral signature of a mechanized vehicle embedded in
a forest scene will be treated as equally important as the
signature associated with trees. The final step of the
algorithm is to generate a color-composite image from a
collection of principal components.  To achieve this, we
use a human-centered approach that attempts to match
the spatial-spectral content of the output image with the
spatial-spectral processing capabilities of the human
visual system.

The distributed version of this algorithm uses the
standard manager/worker decomposition technique
[Chandy and Taylor 1992]. The manager thread
partitions the problem and distributes the sub-problems
to worker threads.  The workers solve the allocated sub-

problem, send back the result, and wait for the next
problem. Each sub-problem is a sub-cube of the hyper-
spectral image set similar to the decompositions used
in [Palmer et al. 1998].  To reduce communication
overhead, a worker overlaps the request for its next
sub-problem with the calculation associated with the
current sub-problem. Using this approach the PCT
algorithm is divided into 8 steps as follows:

1. Spectral classification: The manager divides an
original hyper-spectral image cube into P parts,
where P is the number of workers in the system.
Each part, which consists of a set of pixel vectors,
is sent to a worker.  Each worker operates
concurrently to form a unique spectral set by
calculating an arccosine of dotproduct of all pixel
vectors pair.

2. Merge unique sets: The P unique sets are sent
back to the manager and combined.  Upon
completion there will be one unique set left with
K pixel vectors.

3. Mean vector: Each component of the mean
vector, m, is the average of the pixel values of
each spectral band of the unique set.  The n-band
hyper-spectral image produces a mean vector of n
elements where each element can be computed as
follows:

4. Covariance Sum: All the pixel vectors in a
unique set are divided into P parts, and sent to P

for all p=1 to P concurrently
for all pixels (i, j) in each p {
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workers.  Each worker then executes the following
code to form a covariance sum:

5. Covariance matrix: The covariance matrix is the
average of all the matrices calculated in step 4, and
is calculated sequentially by the manager since its
complexity is related only to the number of
workers rather than the image size.

6. Transformation matrix: The eigenvectors of the
covariance matrix are calculated and sorted
according to their corresponding eigenvalues which
provide a measure of their variances.  As a result,
the high spectral content is forced into the front
components.  Since the degree of data dependency
of the calculation is high, but its complexity is
related to the number of spectral bands rather than
the image size, this step is also done sequentially.

7. Transformation of the data: Each pixel vector, Isij,
in the original hyper-spectral image, can be
transformed independently.  Therefore, all workers
transform their portions of the data concurrently as
follows:

8. Color mapping: Each worker performs the
human-centered color mapping using the first
three resulting components of step 7 to generate a
portion of the final color image.

The algorithm was tested using a 210-channel hyper-
spectral image collected with the Hyper-spectral
Digital Imagery Collection Experiment (HYDICE)
sensor, an airborne imaging spectrometer. These
images correspond to foliated scenes taken from an
altitude of 2000 to 7500 meters at wavelengths
between 400nm and 2.5 micron. The scenes contain
mechanized vehicles sitting in open fields as well as
under camouflage. Figure 2 shows two frames picked
from the 210 spectral bands.

Figure 2: 400 and 1998 nm

Figure 3 shows the resulting image after applying the
concurrent spectral-screening PCT to the full 210
frames data set.  The color-mapping scheme maps the
first principal component to achromatic, the second to
red-green opponency, and the third to blue-yellow
opponency.  The result, when viewed on a high-quality
monitor, shows significantly improved contrast levels.
The forested areas show significantly improved detail
and the camouflaged vehicle in the lower left corner is
significantly enhanced against its background.
Postprocessing steps can subsequently be applied to

for all p = 1 to P concurrently{
sump = 0
for all pixels (i, j) in each p {
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sump = sump + Cij
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}
where P = number of parts
          sump = the matrix sum of the

       covariance  in each p
          Iij = pixel vectors in the unique set

for all p = 1 to P concurrently
for all pixels (i, j) in each p
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           Isij = pixel vectors in the original
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          Csij = transformed pixel vectors
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detect edges in the image and use structural information
to detect and classify the vehicles.

Figure 3: Color-Composite Image

4. Performance Evaluation

The performance of the algorithm was measured on a
distributed environment consisting of 16 Sun Solaris
300MHz.workstations connected with 100BaseT
networking technology. The same experiment was
conducted with all workers replicated to a level of two;
the manager, which represents the sensor itself was not
replicated.

The expected result was that performance would
decrease by a factor of two since the replicated
processes require both memory and processor
resources. We expect the performance to decrease more
than a factor two due to the increased overhead of
communication associated with the more complex
communication protocols required to achieve
redundancy.

Figure 4 shows the speed up gained as a function of the
number of computers both with and without resiliency.
Notice that the overhead caused by resiliency is
approximately 10% plus the cost of replication
uniformly. The concurrent algorithm operates within
20% of linear speedup in both cases.  There are several
aspects of the algorithm that cause it to deviate from
ideal speed up: The problem size required
communication overhead in transferring sub-problems
between the manager and worker, Steps 2 and 6 in the
algorithm currently operate sequentially and the code
used for finding the eigenvalues (step 6) dominates the
sequential time.  Although the algorithm has a

complexity of O(n3), at the typical problem size of
210 frames, the time used for Step 6 does not
dominate the overall performance.

Figure 4: Performance Chart

The overhead in transferring a sub-problem is a
function of the granularity of the decomposition.
Figure 5 examines performance using different
granularity decompositions.  The results show that
dividing an image cube into a considerably larger
number of sub-cubes than the number of processors
enables computation and communication overlapping.
The overlapping reduces the communication overhead,
and thus, increases overall performance.  When the
granularity is too fine, the computation on each sub-

Figure 5: Granularity control

cube becomes too small, and communication overhead
dominated.  In the experiment the initial cube size was
320x320x105.  The performance tailed off when the
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problem was spilt into more than n = 32 sub-cubes.
This indicates that, for this problem size, using more
than 16 computers will not buy substantial performance
improvement.  The general effect would be more
pronounced in larger image sets.  For example, a real
remote sensing application could have 210 frames
rather than 105, and use 1024x1024 resolution rather
than 320x320.  Unfortunately, this data set size could
not be used due to memory constraints in our available
network.

The results shown here do not include multiprocessors
in the network. On a shared memory system, the
concurrent algorithm presented here operates within 5%
of linear speedup on a wide range of problem sizes and
machine sizes [Achalakul 2000].  The advantage of
using share-memory multiprocessors is that no
communication overhead involved in the algorithm.

5. Conclusion

This paper has described an intrusion tolerant version of
our concurrent spectral-screening PCT algorithm. The
algorithm operates on a network of single- and multi-
processor PC’s/ workstations. It combines three basic
image processing concepts: spectral angle
classification, principal component transform, and
human centered color mapping and is representative of
typical techniques used in remote sensing applications.

The algorithm was implemented using the resilient
concurrent programming technology and the impact on
the algorithm of this technology is described in terms of
a simple manager-worker partitioning and mapping
scheme. The preliminary performance evaluation shows
that the overheads associated with the more complex
communication protocols required to provide resiliency
account for approximated a 10% reduction in overall
performance above that expected by the cost of
replication. The protocols are as yet in an early stage of
development and are not optimized. Considerable
research remains to examine the concept further.
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