View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Syracuse University Research Facility and Collaborative Environment

Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1999

TRUCE: Agent Coordination Through Concurrent Interpretation of
Role-Based Protocols

Wilfred C. Jamison
Syracuse University

Douglas Lea
SUNY Oswego

Follow this and additional works at: https://surface.syr.edu/eecs

b Part of the Programming Languages and Compilers Commons

Recommended Citation

Jamison, Wilfred C. and Lea, Douglas, "TRUCE: Agent Coordination Through Concurrent Interpretation of
Role-Based Protocols" (1999). Electrical Engineering and Computer Science. 53.
https://surface.syr.edu/eecs/53

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://core.ac.uk/display/215691397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Feecs%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/53?utm_source=surface.syr.edu%2Feecs%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

TRUCE: Agent Coordination Through
Concurrent Interpretation of Role-Based

Protocols
Wilfred C. Jamison Douglas Lea
Dep't of Electrical Engineering Computer Science Department
and Computer Science SUNY Oswego
Syracuse University Oswego, NY 13126
Syracuse, NY 13244 di@cs.oswego.edu

wcjamiso@cat.syr.edu

November 23, 1998

Abstract

Established protocols for coordination are essential figplementing joint-
action activities among collaborating software agent. Mogsting agents, how-
ever, are designed only to support static protocols, whirtlit their interaction
domain to specific sets of agents. We develop an agent caoditdno framework
for open systems that enables an agent to expand its acajueénset and to adapt
to various coordination protocols dynamically. This is iaekd through writing
coordination scripts that are interpreted at collaboratione. We developed a
role-based coordination language for writing these ssrighere the coordination
mechanism used is the concurrent interpretation of a sisgipt by the partici-
pants of a given collaboration. This interpretation defities behavior of every
agent. Thus. their individual interpretation may diffepéading on the roles that
were assigned to them. This new coordination language g@ewarious coor-
dination primitives in which the basic synchronization éhigved via distributed
rendezvous points. In this paper, we present and demoasttelements of the
TRUCE language.

1 Introduction

The current methodologies for designing interacting agents in a coopemtblem
solving (CPS) environment are tight, in the sense that coordinatimngpls are often
incorporated either within the agents themselves or the applications.ddwaside
of this method is the high coupling between coordination and real conigutalius
limiting the flexibility of the entire application. Moreover, such application is more

likely to require substantial rewriting when adapting to new collalions. Thus, our
main objective is to develop a collaboration framework that meets thenfiolg re-
quirements (apart from the basic requirements of open distributedmgstsuch as
security, reliability, response timeic):

Adaptive Coordination. Agents adapt to varying coordination protocols resulting
from working with different groups of agents.

Heterogeneity. Agents work in an open system and therefore interact with different
kinds of agents from different platforms.

Multiple Collaboration. Agents engage in several collaboration activities simulta-
neously, thus maximizing their use.

To achieve an adaptive and dynamic agent environment, we extract the @ordin
tion logic from the application at hand, and treat the correspondinglawation rules
as subscribable services. In other words,sgparatethe coordination domain from
the application domain where coordination is carried out by special agered cadir-
dinators As such, coordinators can offer higher-level coordination patternguttaer
generalize interaction behaviors. Coordination patterns are one wayaiwfiagf coor-
dination logic reusability.

The separation approach is highly accepted in this research area. Gelernter and
Carriero stated that using a separate coordination language leads to lfgrtabich
in turn promoteseusability[12]. This is because a coordination languagedscom-
mittedto any base language. Consequently, the language can be used to linle,or glu
different applications, written in different languages, together.

Coordination can be viewed as a set of coordination rulegratocols Prepro-
grammed low-level fixed protocols such as TCP/IP do exist. Similaighdr-level
fixed protocols, such as blackboard systems, publish-subscribe sydgarit-tolerant
services, and resource negotiation[18], are available. Dynamic codadiphowever,
impliescustomizability— that is, programmable coordination services that fit the needs
of a particular group, and hence, requiring a special forprofocolprogramming. We
do need to write coordination protocols, possibly more specialized pacific, that
could best satisfy the needs of the problem being solved. Thus, wenddsiggeneral-
purpose coordination language that will allow us to specify any argipestocol.

TRUCE (Tasks and roles in a unified coordination environment) is a kEggu
framework based upon the environment that carries out coordinatiorcesrvirhis
environment is called ACACIA (Agency-based Collaboration Architectoredoop-
erating Intelligent Agents). TRUCE, however, is not exclusive toASTA. In this
paper, we shall be describing the TRUCE framework alone. The succeedimnsect
will present the essential concepts and is not intended for describinaxsgntl com-
plete semantics. However, we provide an example to illustrate theftisis language.

2 Coordination Languages

There is a considerable number of coordination languages already intronfuttesl
research area. These include languages basemmrersations, tuple-spaces, rules
and events, logic systerasd others. Some examples are Linda [11], COOL [3], Fi-
nesse [4], ColLa [1] and PoLis [8]. TRUCE is a small and yet powerfupsiag lan-
guage that is designed to support various kinds of multi-party axtom protocols
that are necessary for agent coordination in an open system. Its salienttig®pes
listed below. Some of these cannot be found in existing languages.

¢ It simplifies delegation of coordination tasksdoordinator agentsThese coor-
dination tasks can be developed independently of the functional comgarfent
agents.

e It contains a variety of primitive coordination constructs.

e It enables simple expression of coordination constructs that ofteslatanto
complex underlying actions.

¢ It simplifies the task of programming in a heterogeneous environment.
¢ It provides dynamic capabilities that are useful for dynamic collabamnatio

The most significant contribution of the TRUCE language is a coattin pro-
gramming paradigm that is based on scripts (thus, protocols can beaprogrd dy-
namically). This paradigm introduces a new coordination mechanism thased on
concurrent interpretation of a single script.

3 Collaboration Group

Central to any collaboration framework, and to an open system in genetad, i®tion
of a group (or collaboration group). A collaboration group is a sepagsibly het-
erogeneous agents that are engaged together in a cooperative problem soivityy act
and governed by a common set of coordination protocols. In our systewguer,
the members are replaced (that is, represented individually) by a homogesetaf
coordinators.

A collaboration group is defined by the composition of its membersptbblem
being solved, and the coordination protocols being used. The prstdoahot define
a single thread of control: control is distributed among the grogmivers. This is
necessary in an open system which operates asynchronously and in which agents may
join and leave a group anytime.

Apart from the basic synchronization machinery, our coordination fremnie sup-
ports the following:

1. engagementin protocols that become known to agents dynamically in tfeecou
of their life-cycles;

2. separation of the identity of an agent fromiibde(s) in a protocol, allowing it
to assume multiple roles in the same protocol and to engage simulsnéou
multiple protocols;

3. accommodation for agents to join and leave collaboration groups atatpt®
dynamically;

4. encapsulation of coordination support as services whereby subsusiptie es-
tablished when the support becomes necessary: details of coordination proce-
dures are no longer the concern of the agents; and

5. availability of high-level supervisory capabilities without degence upon frag-
ile, centralized control mechanisms.

4 Coordination Protocols

Coordination among autonomous entities is easily implemented thitbegtstablish-

ment of protocols.Protocolsare rules or policies known to two or more parties who
agree to comply with them. Protocols are created to address the set of dependencies
imposed upon a collaborative task. Solutions to different probleoslgnrequire dif-

ferent protocols. Some solutions, however, may use the same paiterosrdination

for completely different problems. In such cases, coordination protceni®e shared

and reused. We describe a familiar pattern below.

A master agent sends the same message to a number of slave agents
(mostly, by broadcasting). Each slave eventually sends its reply to

the master. The master waits until it has collected all replies from

the original set of slaves, at which point, it performs some procgssin
on the messages received to come up with a single result.

One possible application that follows this protocobiddingin which the master
sends information about a sale item to the slaves. The latter replythithprice bids.
After collecting all bids, the master chooses the winner (using soneia)it Another
application isedundant programmingn this case, the master solves a problem using
some methods. To evaluate the quality of its solution, it sendsadhee problem to
a number of slaves that can solve the same problem, but using diffesthods. It
compares its own solution with those returned by the slaves. Hadlegcted them
all, the master determines its confidence-level of its own solution.

Some protocols are simple constraints. For example, “Task B cannot praiteed
out finishing task A.” is a constraintimposed upon task B. This exanspan instance
of order dependencieg\nother example is “Task C gets its inputs only from task D.”.
By applying such a constraint, task C becordeta dependerin task D. Task D, on
the other hand, remains unconstrained. Some constraints are state-baseq,der-
tain restrictions are imposed upon the possible states of an entitgxmple, “Agent

As buffer cannot exceed n items.” is a constraint which A must observe. eTdrer
other types of dependencies. Interested readers can refer to Crowstron [10].
Some protocols may also come as guarded rules or triggers. These are iates o
tions that are triggered whenever a particular condition is satisfiedxmple, "When
the temperature reaches 100 Farenheit, the boiler must be shut off.” iffidrerte be-
tween a constraint and a trigger is that the fornmeposesa restriction, whereas the
otherenablesa rule or an activity when certain conditions occur. Strictly speaking, a
trigger is a form of constraint wherein tla@plication of ruless constrained.
An agent may subscribe to a coordination service with different cooiidimato-
tocols at various times. Since a collaboration group has no single tdaamtrol (that
is, each agent has its own thread), the only way that participants can followitnagr
protocol is by having a copy of a script that describes such protocol.

5 Concurrent Role-Based | nterpretation

Concurrent Role-Based Interpretati@onstitutes TRUCE'’s primary mechanism for
coordination. A scriptis interpreted by the collaboration groupgsmultiple instances
of the same interpreter. The collaboration group is given a script igegts way to
accomplishing its task. A copy of this script is given to each member of thepgy
Subsequently, they all interpret the script simultaneously.

Role-based interpretation is a forma#lectivanterpretation wherein an interpreter
does not have to execute every instruction in the script. The fraofitime script to be
interpreted is determined from the interpretesiswof the script — which depends on
its role assignment. We explain these concepts in the following sexctio

51 Roles

In a system of interacting components, Lea and Marlow [16] used roles toilokes
view of one or more components by providing awterfacespecification of the mes-
sages expected. Thus, a role abstracts all other things about the congpdnethie
same way, a role in TRUCE hides various details of an agent who revealg#onbr
pabilities by performing the steps (or instructions) specified fat thle. Application
agents are individually mapped to a particular role.

Collaboration is about tasks and their coordination. While the conopleff these
tasks is necessary, the identities of the providing agents are irrefevém process.
Referencing roles instead of the actual agents, not only hides these inforniatt is
sufficient to describe a collaboration. Such an abstraction enables diffecedgrs
to play the same role at different times without affecting the overallaioation pro-
tocols. Agents may also subcontract their tasks to other agents (inchidisgthat are
not members of the group). Such a strategy is hidden and unimpaotattier roles,
thus it can be adopted without introducing unwanted consequences.

Agents carry out their individual tasks based on the roles assigned to tbaoe
therole assignmentgalso calledole-bindingare established, all future references to

the agents will occur through their role names. Knowledge about rolgremsent is
hidden from other entities, including the users and other agents.

Roles may be viewed as a language mechanism for dynamically binding agants to
set of coordination protocols. A role is a profile in terms of exertskills and respon-
sibilities. Any agent that fits the profile is@ospectfor the role. Willing prospects
becomecandidates An agent may fit a number of profiles, suggesting that simultane-
ous role assignments are possible.

5.2 Role-Based Programming

Every instruction, called atep in a script has a set of executors. These are roles
delegated to carry out the instruction. There are four possible wéves interpreting
a step:

1. executor— that performs the action actively
2. receiver— that receives the target result of the action directly
3. object— that is being used or manipulated by the action

4. observer— that is not involved at all but can sense and use the results of the
action

Unlike some other coordination languages, TRUCE is used to define aa enti
ordination plan in a single script (a script is calletiace). The actions of each collab-
orator in a collaboration group are all described imuece These actions or protocols
are intermingled in a way that still reflects their execution order statically

An action is specified using step A protocol specification is composed of one
or more steps. Aside from the action itself, a step specifies thesenafam: (1) the
performer of the action, (2) the receiver of the action, and (3) the objabicéction,
and some optional specifiers or directives. Every role in a step has at least these
roles.

e Performer. The role is the main executor of the step, which also means that it
initiates the execution.

e Receiver. The role is the target of a message sent by the performer.

e Object. The role or some of its properties are referenced in the step.

A role that does not have any participation in a step but needs to walttheti
step is completed is calledspectator some tasks need to finish first before another
can proceed. Primitive steps are the basic actions defined in the languageststery
step has an associated set of specifiers or directives. The 15 TRUCE pristipse
are listed in Table 1. User-defined steps can be formulated from exiséipg through
composition. A TRUCE step, optionally, can be given a user-defined nanmeay

Primitive Steps | Description |

truce to declare and define a truce

cast to declare a named set of roles

packet to declare and define the format of a packet
protocol to declare and define a set of event-based rules
set to assign a value to a property

tell to send information to another role

wait to put a role in a waiting state

proceed to tell a waiting role to resume its execution
retract to undefine an existing property or rule

recover to undo the retraction of a retracted name

trigger to execute a truce, an episode or raise an event signal
step to declare and define a named sequence of steps
if to execute conditionally a sequence of steps
echo to print out text on the standard output

break to skip the current context

Table 1: TRUCE's Primitive Steps

declare names within the step body. The classification of names incagiemames,
rule names, step hames, packet names, property nantgsle names

A property is akin to a variable in traditional languages. A global proyp@refixed
by a dollar symbol) is one that can be accessed by all roles. Basic typesesaclud
number, strings, boolean, role, date, time, list, packet

Every step has aontext— a transient environment that consists of all names cre-
ated within the step. A context also inherits the context of an immegliatatlosing
step, that is, when the step occurs inside another step. If collisionobetaween a
recently declared name and an inherited one (that is, same name), the formehaides
latter until the current context is destroyed, which happens as soon iasdtpretation
of the step is completed.

Everyrole in a step defines a viewpoint, which implies that the semaoftecgiven
step may differ depending on which role the step is being viewed fromekample,
let the pseudocode below represent a step:

producer.tell consumer about object X.

In this exampletell is an action used to specify the transmission of a message from
a source to a destination. Therformer of the action igoroducer, while thereceiver
is consumer. The object isX. The semantics afell from the point of view of the
producer can be described as follows:

The tell action specifies that a message is placed in a packet containing at
least the address of the destination, and sent to the destination.

Whereas, the viewpoint of theonsumerole is given below:

The tell action specifies that a message is expected to arrive, and therefore
the receiver is suspended temporarily to wait for the message. When
the packet finally arrives, the actual message is taken out of the packet
and stored in a buffer, after which, the receiver resumes.

Thus, an interpreter for sle-basedscript behaves differently, depending on whose
viewpoint it is performing the interpretation for.

5.3 RoleBinding

TRUCE defines an arbitrarily large and unstructuvetbal agent spacevith different
agents coming from various places. Collaboration groups are formedtfrisragent
space and coordinate themselves by interpreting a collaboration scripte Harery
agent becomes an independentinterpreter. A role-based interpreter must answhe o
the viewpoints (or role) in the step. Itis therefore necessary to gpetbiich agent has
which role in every step. To do this, we maintain symbolic namdd®to represent
every agent. We use these names to specify a collaborator’s role in a sepnifue
assignment of a symbolic name to an agent is catetbinding Although we can
perform role-binding before every step execution (thus allowingousse different
symbolic names every time), such method is not very efficient. Role4tjnididone
only once, — just before the first step is executed, — giving each collabaratoone
symbolic name for the entire script. This symbolic name is usedeasdliaborator’s
rolename

At any given step, a specific expertise/skill may be required for someeofdles
in that step. The corresponding collaborators of those roles mustftinersatisfy,
directly or indirectly, the given requirement. In general, the requiremeaeded by
a role, which a collaborator must be able to meet, is the sum of all expksitills
required in all of the steps where that role appears. Role-binding igtegorocess of
matching up the responsibilities of a role to an actual agent (a collalbpitaad can and
is willing to take these responsibilities. Furthermore, this bigdserves as aontract
between the collaborator and the collaboration group, obligating theeficto fulfill all
of its responsibilities. A collaborator may be bound to multipleesoonly if it is able
to meet the combined requirements of these roles. Roles and collaboratbsuack
dynamically, and therefore roles need not be bound to the same agent every ti

5.4 Concurrent Interpretation

We have seen the mechanics of role-based interpretation — how the semaatstsf
is viewed by the interpreter based its role. However, role-based intetjgret@lone
cannot accomplish the coordination process. In order to achieve theeagidination
effect, a step must be interpreted from all of its viewpoints simultasgpcombining
its semantics from all views. This process is cattedcurrent interpretationBy doing
this, the coordination protocols embedded within a step are extractedxeaudited
properly. Hence, concurrent interpretation is, in effect, the applicatimoofdination

protocols. We extend this idea by applying concurrent interpretaticl tsteps in a
script. In so doing, theoordination taskcan be accomplished.

The combination of role-based and concurrent interpretation allows aioatith
process to work without centralized control. It also avoids both perémce and fault-
tolerance problems associated with centralized mediation. Because each host has a
copy of the complete script, the only communications necessary are #upsiead by
the steps. The key point is thiEach agent knows exactly when to wait and to interact,
and what to expect from otherk a distributed environment, nothing can be assumed
about the relative speeds of the interacting agents. Therefaedazvoumechanism
is used when two roles need to interact.

6 Example

In the area oklectronic commergeslectronicauctioningis a very promising applica-
tion of agents. We illustrate how a simple auction may be carried out andlicated
using TRUCE.

6.1 Description

Thefisherman'’s auctioprotocol is an old method normally used by fishermen to sell
their fish to the middlemen. A fisherman presents his catch to the publienWte
go-signal is given, any interested middleman edrisperhis bid to the fisherman or
to a representative. A bidder can only whisper once. After the last bidaehiginest
price and the winner are announced.

We extend the scenario, generaliziighermerto sellers where there can be mul-
tiple items for sale. In this setting, only one seller can sell an item ae. tiA seller
can also bid for other sellers’ items.

6.2 Solution

We include a facilitator to serve as a neutral party. This agent managesdhépi
collecting them and announcing the highest price. The bidding goesgthisrveral
rounds until nobody else can beat the current highest price. The sellersutak in a
round-robin fashion. The whole session finishes when all sellers $a@id (or at least
attempted) to sell their items.

The solution is composed of two parts. First, we writerauce for a bidding
session involving only one item from a seller. Second, we extenddiwien to in-
clude repetition of theé r uce developed in part 1, changing only the seller and item
parameters.

6.2.1 First Part.

Listing 1.0 gives us the complete solution codes for this part. \&atitl three roles

in this coordination problem. These deeilitator, seller and soméuyers. Also, we
simplify the information domain, for brevity, by defining salent as consisting of the
following information: item code, current price, descriptio®ome other information
needed would include tH&d priceof each interested buyer and the winning bid. Thus,
we declare three packets (lines 3-6). Packets are data structures that are ased wh
passing messages.

Buyers are not allowed to communicate with each other. Communication only
flows from thefacilitator to thebuyers and vice-versa. TRUCE enables us to define
a communication topology for the group. Each type of topology hasifive com-
munication operations. In this examplestar topology is ideal. This is specified in
line 07 by using theaststep, which define a subgroup of the collaboration group. In a
star topology, one of the roles become the center where communication waonilp
between the center and all other roles. In this casefatiétator is the center of the
star.

There are 3 main activities that need to be accomplished.

e Declaration of item for sale
e bidding
¢ Declaration of the winning bid

6ft 180 Ibs 54 eugene 40 yrs 9332319

For activity 1, we shall ask the seller to get the item information framreal col-
laborating agent (called its client). Then it relays the information tdah#itator (Line
32-34). Notice that a packet type must be specified explig#ylitem in this case) to
determine the type of information being asked for. The symblintis reserved and
pertains to the actual agent (thus, assigning values to it means these valpassed
to the agent). Afterwards, the information is passed toféleditator. The seller then
waits until the facilitator notifies it with the outcome of the sale.

For activity 2, the item for sale is given to the buyers who in returruldaeply
with their bids. The buyers take their bids from their corresponaioipborators.
Later, the facilitator selects the highest bid and announces it to the biditethen
calls for another round, giving them a chance to beat the current price. idusgure
repeats until no bidder beats the current price.

In lines 10-16, the facilitator first relays the item information tokallyers using
spread — a primitive operation fostar in which the center broadcasts a message to
the rest. This operation is followed by a block of TRUCE codes, callect#fiback
actions. These are actions executed as soon as the receiver gets the message. In thi
example, duyer executes the callback actions when it receives the item. The callback
actions mainly describe the interaction betweebuger and the actual agent. The
buyer gives the item information to the agent while the latter returns ad@tessarily,
the facilitator collects all bids as shown in lines 18-26.

10

The propertyhighest-price by the facilitator, which is initially set to zero, stores
the current highest bid for the current round. The properityning-price stores the
highest price that nobody else has beaten (hence, the winner). At this tharfa-
cilitator collects the bids.Collectis another primitive operation in which the center
receives messages from the other roles. The callback actions, whifdcilitator ex-
ecutes whenever it receives a bid, tell us that the bid just received is companetigvi
current highest bid. The propertiagghest-price andwinner (a role reference to the
bidder of the highest price) are both updated depending on the redud obimparison.
The predefined propertysendermertains to the role that sent the latest message (cur-
rent bid, in this case). Notice that the speciignchis set to true; This means that all
members of the bidding-group waits until all bids have been collectegautssed.

Now, we have to check whether another round is required. It happens when the
current highest bid has changed. If so, a request for new bids frdaykes is issued
by thefacilitator. Otherwise, the current highest price is declared as the winning price
and the seller is notified.

Listing 1.0 Completet r uce for Part 1

01trucefisherman-auctioq facilitator, seller, buyer[} {
02 % Let's define the packets
03 packet sell-item{ number {item-code, current-prige

04 text{descpn},
05 bid-item{ number {item-code, asking-prige},
06 winning-bid{ number {price}, role{bidder} };

07 cast bidding-group{ facilitator, buye} struct=star;
08 episodeauction{

09 initially { facilitatorset {highest-pricé 0;};
10 step sell-and-bid{
11 bidding-groupspread { sell-item{item-for-salg } {

12 % when the buyers receive the item, they tell their agents
13 % about the item and then ask them for a bid price.

14 set {_client} sell-itemy{item-for-salég;
15 set {my-bid} bid-item{_client};
16 1

17 % highest-price is initially set to zero;

18 set { winning-price} {highest-pricé;

19 bidding-groupzollect { bid-item{my-bid} } synch=true
20 timeout=500q

21 % For every replies received by the facilitator,

22 % it executes the following

23 if { highest-price< my-bid@asking-price {
24 set {highest-pricé my-bid@asking-price;
25 set {winner} _sender;

26 1

27 if { winning-price< highest-price} {

11

28 facilitatorset {winning-price} highest-price;

29 sell-and-bid;

30 }

31 } % end of step

32 sellerset {item-for-salg sell-item{_client};

33 sellettell {facilitator} data=item-for-sale target=item-for-sale;
34 sellewait {facilitator};

35 bidding-group.sell-and-bid,;

36 % facilitator announces the winner

37 facilitatorset {result winning-bid{winning-price, winney;
38 facilitatortell {seller, buyef data=result synchrue

39 target=result;

40 {seller, buye}.set {_client} result;

41 } % end-of-episode
42} % end-of-truce

6.2.2 Second Part.

The second part of the solution considers the case where there ardemsétiprs with
multiple items to sell. We mentioned earlier that we shall use roubdstheduling to
coordinate them. We achieve this by structuring them into a ring ferdnt topology.
Atoken is passed around so that the current bearer gets to sell one of gs Wémn a
seller has nothing to sell, it simply passes the token to the nexs. aldiomplishes the
round-robin scheduling strategy.

Recall that we need to know when to stop the cycle. Once in a while, we sheuld
able to test for the condition where all sellers did not attempt to selacEomplish this,
we use the token as a counter. Initially set to 0, the counter is incremeveegtime a
seller sells an item. After travelling the whole ring, its value is¢ddby the facilitator.
If the value remains at O, the session is terminated. The whole listiognd in Listing
2.0. Inline 3, we declare a cast with a ring topology.

To pass around the token, we use tielay communication protocol with the fa-
cilitator as the originator, as shown in lines 24-37. The token iscé€t before the
facilitator relays the token. In this topology, only one role receiestoken at a time.
The receiver can choose to sell or not (hence, the upesdibly). If not, the token is
automatically passed to the next without modifying its value. Otheawit sets its flag
myturn to indicate that it is going to sell something. A global propé&sglling is also
set. The new seller waits while the selling is taking place. When it is, therseller
resets its flag and increments the token. The token is passed to the nexirséile
ring.

The actual selling procedure is performed in a protocol nas&tihg-protocol.
Notice that all roles have to execute this protocol. The trigger ire®h global property
$selling, which is set by a seller in theell step. Seeselling-protocolfrom lines 10-
22. Onlysellers test the value of their local propertyyturn. Recall that a receiver

12

of the token sets this property. Thus, it gets to satisfy the camdédnd execute the
step,set $“current-seller” = _me The propertymeis predefined and refers to the role
executing the step.

When such setting has been accomplished, the protocol is temporarilyedissabl
that no further trigger can take place. Theuce we have written in part 1 is per-
formed. The roldacilitator is bound to the samfacilitator in this imported truce. The
role seller is bound to whoever is the current seller while bothlthgers and thesell-
ers become the buyers. Once finished with the selling, the protocol islsed back
on.

Listing 2.0 Completet r uce for Part 2

01 truce multiple-fisherman-auctiofy facilitator, sellers[], buyersfj
02 import={fisherman-auctioh {

03 cast selling-grouf facilitator,seller$ struct=ring;

04 packet token-type{ number{countet };

05 episode sell-and-buy{

06 initially action

07 facilitatorset {token} token-typg0};
08

09

10 protocol selling-protocol

11 when { $selling = true} {

12 sellersf {myturn=trug {

13 set $“current-seller’=me;

14 }

15 retract {selling-protoco};

16 facilitatorset {$selling} false;

17 fisherman-auctiofifacilitator, $“current-seller”,
18 {buyers, sellers };

19 recover {selling-protoco};

20 facilitatorpr oceed{$“current-seller?};
21 }

22 } % end-of-protocol

23 %%

24 step sell {

25 buyerswait;

26 facilitatorset {token} token-typg0};

27 selling-groupelay {token} synchzrue {
28 sellers{

29 possibly {

30 set {myturn} true;

31 set {$selling}true;

32 wait;

13

33 set {myturn} false;

34 set {token@countgrtoken@counter +1;
35 }

36 }

37 } % end-of-relay

38 facilitatorpr oceed{buyerg;

39 {facilitator, buyers, sellefsif {token@counter> 0 }
40 { sell;}

42 } % end-of-sell

43 sell;

44} %end-of-episode
45} % end-of-truce

The stepsell is the entry point of the episode. We have discussed how this step
works. The control loops through the same ssefi. Observe that the termination
condition is checked against the token value.

7 Conclusion

Our work is mainly centered around the notion of a framework for deguiatpcollabo-
rative agents in a distributed environment such adritesnet Multi-agent systems are
attractive for collaborative problem solving, but support tools iatheworks for de-
velopment are not available. Our aim is to fill in the void by developgirgllaboration
framework in which coordination procedures are provided as a servicelfabogating
applications. The most important properties of our framework inelibe following:

e Decentralization of the whole coordination process

e Separation of coordination and computation concerns

e Services approach to coordination (advertise-subscribe collaboratioslmod
e Dynamic coordination using protocol scripts

¢ Reusable coordination protocols

e Internet-oriented

e Support for simultaneous participation in multiple collaboratitwysa single
agent

We focused on providing coordination services and dynamic coordineitiothel-
egation and programmable coordination protocols. We designed a naticdi lan-
guage, named TRUCE, for writing coordination scripts. The TRUCEUang is based

14

upon the method of concurrent role-based interpretation. Finally, weaxXor a sig-
nificant increase in productivity of agent developers. This is primatilg to the ab-
straction of coordination protocols from the main computations efgtoblem being
solved.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

Aguilar, M., Hirsbrunner, B., and Krone, O., “The CoLa Approacdh:Coor-
dination Language for Massively Parallel Systems”,
http://www. cs. dart nout h. comlinstitut d’'Informatique de Fribourgm
Chemin du Musee, Sept. 28, 1994.

Arbab, F. “Coordination of Massively Concurrent ActivitiesCS-R9565 1995
Computer Science/Department of Interactive Systems, Centrum voor Vdiskun
en Informatica, Amsterdam, NL.

Barbuceanu, M. and Fox, M., “The Design of a Coordination Languagh édti-
Agent Systems"Technical ReportEnterprise Integration Laboratory, University
of Toronto.

Berry, A. and Kaplan, S.. “Open, Distributed Coordination with- Fi
nesseTechnical ReportSchool of Information Technology. The University of
Queensland, Australia.

Biddle, Bruce J.Role Theory: Expectations, Identities, and Behavidsademic
Press, Inc., NY, 1979.

Bond, A. and Gasser, L.(editorReadings in Distributed Artificial Intelligence
Morgan Kauffman Pub. Inc., San Mateo, California, 1988.

Castellani, S., and Ciancarini, P., “Enhancing Coordination and Néwitiy
Mechanisms for a Language with Objects-as-Multisetgthnical ReportDe-
partment of Computer Science, University of Bologna, Italy.

Ciancarini, P., Jensen, K., and Yankelevich, D., “On the Operationah8tcs of
a Coordination LanguageTechnical ReportDepartment of Mathematics, Uni-
versity of Bologna, Bologna, Italy.

Ciancarini, P., Vitali, F., and Tolksdorf, R., “Weaving the WebarPageSpace
Using Coordination”Technical ReportDepartment of Mathematics, University
of Bologna, Bologna, Italy.

Crowston, Kevin ¢r owst on@im ch. edu), “A Taxonomy of Organizational
Dependencies and Coordination Mechanisrethnical ReportThe University
of Michigan, School of Business Administration.

15

[11] Factor, M., Fertig, S. and Gelernter, D., “Using Linda to Builddhat Al Appli-

cations”, TR-861 Yale University Department of Computer Science, June 1991.

[12] Gelernter, D., Carriero, N., “Coordination Languages and their iSogmce”,
Communications of the ACNrebruary 1992/\ol. 35, No. 2, pp. 97-107.

[13] Haddadi, Afsaneh, “Communication and Cooperation in Agent SysteRrag-
matic Theory”, Lecture Notes in Atrtificial Intelligenceyol. 1056, Springer-
Verlag, 1995.

[14] Jamison, W., “ACACIA: An Agency Based Collaboration Framewfok Het-

erogeneous Multiagent Systemdlultiagent Systems Methodologies and Appli-

cations, Lecture Notes in Atrtificial Intelligeni286, Springer-Verlag, 1996, pp.
76-91.

[15] Jamison, W., “Approaching Interoperability for Heterogeneousdtisigent Sys-
tems Using High Order AgenciesCooperative Information Agents, First Inter-
national Workshop, CIA'97, Kiel, Germany 1997 Proceedingpringer-Verlag,
pp. 222-233.

[16] Lea, D. and Marlowe, J. "PSL: Protocols and Pragmatics for Open Systems”,

available aht t p: / / gee. cs. oswego. edu/ dl ,

[17] Malone, T. and Crowston, K., “The Interdisciplinary Study ofd®dination”,
ACM Computing Surveyol. 26. pp. 87-119, March 1994.

[18] Rosenschein, J. and Zotkin, Rules of Encounter, Designing Conventions for

Automated Negotiation among Compuiérse MIT Press,, 1994.

[19] Shoham, Y., “Agent-Oriented ProgrammingAttificial Intelligence60, pp 51-
92, 1993.

[20] Singh, Munindar P., “Multiagent Systemts, A Theoretical Framé&wor Inten-
tions, Know-How, and Communicationg’ecture Notes in Artificial Intelligence
Vol. 799, Springer-Verlag, 1994.

[21] Wooldridge, Michael and Jennings, Nicholas R., “Agent Theorieshid@ctures
and Languages: A Survey”, in Wooldridge and Jennings (edlligent Agent
Springer-Verlag, 1-22.

16

	TRUCE: Agent Coordination Through Concurrent Interpretation of Role-Based Protocols
	Recommended Citation

	tmp.1286291883.pdf.71UN7

