
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1999

TRUCE: Agent Coordination Through Concurrent Interpretation of TRUCE: Agent Coordination Through Concurrent Interpretation of

Role-Based Protocols Role-Based Protocols

Wilfred C. Jamison
Syracuse University

Douglas Lea
SUNY Oswego

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Jamison, Wilfred C. and Lea, Douglas, "TRUCE: Agent Coordination Through Concurrent Interpretation of
Role-Based Protocols" (1999). Electrical Engineering and Computer Science. 53.
https://surface.syr.edu/eecs/53

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215691397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Feecs%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/53?utm_source=surface.syr.edu%2Feecs%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

TRUCE: Agent Coordination Through
Concurrent Interpretation of Role-Based

Protocols

Wilfred C. Jamison
Dep’t of Electrical Engineering

and Computer Science
Syracuse University
Syracuse, NY 13244

wcjamiso@cat.syr.edu

Douglas Lea
Computer Science Department

SUNY Oswego
Oswego, NY 13126
dl@cs.oswego.edu

November 23, 1998

Abstract

Established protocols for coordination are essential for implementing joint-
action activities among collaborating software agent. Most existing agents, how-
ever, are designed only to support static protocols, which limit their interaction
domain to specific sets of agents. We develop an agent collaboration framework
for open systems that enables an agent to expand its acquaintance set and to adapt
to various coordination protocols dynamically. This is achieved through writing
coordination scripts that are interpreted at collaboration time. We developed a
role-based coordination language for writing these scripts, where the coordination
mechanism used is the concurrent interpretation of a singlescript by the partici-
pants of a given collaboration. This interpretation definesthe behavior of every
agent. Thus. their individual interpretation may differ depending on the roles that
were assigned to them. This new coordination language provides various coor-
dination primitives in which the basic synchronization is achieved via distributed
rendezvous points. In this paper, we present and demonstrate the elements of the
TRUCE language.

1 Introduction

The current methodologies for designing interacting agents in a cooperative problem
solving (CPS) environment are tight, in the sense that coordination protocols are often
incorporated either within the agents themselves or the applications. Thedownside
of this method is the high coupling between coordination and real computation, thus
limiting the flexibility of the entire application. Moreover, such anapplication is more

1

likely to require substantial rewriting when adapting to new collaborations. Thus, our
main objective is to develop a collaboration framework that meets the following re-
quirements (apart from the basic requirements of open distributed systems, such as
security, reliability, response time,etc.):

Adaptive Coordination. Agents adapt to varying coordination protocols resulting
from working with different groups of agents.

Heterogeneity. Agents work in an open system and therefore interact with different
kinds of agents from different platforms.

Multiple Collaboration. Agents engage in several collaboration activities simulta-
neously, thus maximizing their use.

To achieve an adaptive and dynamic agent environment, we extract the coordina-
tion logic from the application at hand, and treat the corresponding coordination rules
as subscribable services. In other words, weseparatethe coordination domain from
the application domain where coordination is carried out by special agents calledcoor-
dinators. As such, coordinators can offer higher-level coordination patterns thatfurther
generalize interaction behaviors. Coordination patterns are one way of attaining coor-
dination logic reusability.

The separation approach is highly accepted in this research area. Gelernter and
Carriero stated that using a separate coordination language leads to portability, which
in turn promotesreusability[12]. This is because a coordination language isnot com-
mittedto any base language. Consequently, the language can be used to link, or glue,
different applications, written in different languages, together.

Coordination can be viewed as a set of coordination rules orprotocols. Prepro-
grammed low-level fixed protocols such as TCP/IP do exist. Similarly, higher-level
fixed protocols, such as blackboard systems, publish-subscribe systems, fault-tolerant
services, and resource negotiation[18], are available. Dynamic coordination, however,
impliescustomizability— that is, programmable coordination services that fit the needs
of a particular group, and hence, requiring a special form ofprotocolprogramming. We
do need to write coordination protocols, possibly more specialized and specific, that
could best satisfy the needs of the problem being solved. Thus, we designed a general-
purpose coordination language that will allow us to specify any arbitrary protocol.

TRUCE (Tasks and roles in a unified coordination environment) is a language
framework based upon the environment that carries out coordination services. This
environment is called ACACIA (Agency-based Collaboration Architecture for Coop-
erating Intelligent Agents). TRUCE, however, is not exclusive to ACACIA. In this
paper, we shall be describing the TRUCE framework alone. The succeeding sections
will present the essential concepts and is not intended for describing syntax and com-
plete semantics. However, we provide an example to illustrate the useof this language.

2

2 Coordination Languages

There is a considerable number of coordination languages already introducedin this
research area. These include languages based onconversations, tuple-spaces, rules
and events, logic systemsand others. Some examples are Linda [11], COOL [3], Fi-
nesse [4], CoLa [1] and PoLis [8]. TRUCE is a small and yet powerful scripting lan-
guage that is designed to support various kinds of multi-party actions and protocols
that are necessary for agent coordination in an open system. Its salient properties are
listed below. Some of these cannot be found in existing languages.� It simplifies delegation of coordination tasks tocoordinator agents. These coor-

dination tasks can be developed independently of the functional components of
agents.� It contains a variety of primitive coordination constructs.� It enables simple expression of coordination constructs that often translate to
complex underlying actions.� It simplifies the task of programming in a heterogeneous environment.� It provides dynamic capabilities that are useful for dynamic collaboration.

The most significant contribution of the TRUCE language is a coordination pro-
gramming paradigm that is based on scripts (thus, protocols can be programmed dy-
namically). This paradigm introduces a new coordination mechanism that isbased on
concurrent interpretation of a single script.

3 Collaboration Group

Central to any collaboration framework, and to an open system in general, is the notion
of a group (or collaboration group). A collaboration group is a set ofpossibly het-
erogeneous agents that are engaged together in a cooperative problem solving activity,
and governed by a common set of coordination protocols. In our system, however,
the members are replaced (that is, represented individually) by a homogeneous set of
coordinators.

A collaboration group is defined by the composition of its members, theproblem
being solved, and the coordination protocols being used. The protocols do not define
a single thread of control: control is distributed among the group members. This is
necessary in an open system which operates asynchronously and in which agents may
join and leave a group anytime.

Apart from the basic synchronization machinery, our coordination framework sup-
ports the following:

1. engagement in protocols that become known to agents dynamically in the course
of their life-cycles;

3

2. separation of the identity of an agent from itsrole(s) in a protocol, allowing it
to assume multiple roles in the same protocol and to engage simultaneously in
multiple protocols;

3. accommodation for agents to join and leave collaboration groups and protocols
dynamically;

4. encapsulation of coordination support as services whereby subscriptions are es-
tablished when the support becomes necessary: details of coordination proce-
dures are no longer the concern of the agents; and

5. availability of high-level supervisory capabilities without dependence upon frag-
ile, centralized control mechanisms.

4 Coordination Protocols

Coordination among autonomous entities is easily implemented throughthe establish-
ment of protocols.Protocolsare rules or policies known to two or more parties who
agree to comply with them. Protocols are created to address the set of dependencies
imposed upon a collaborative task. Solutions to different problems mostly require dif-
ferent protocols. Some solutions, however, may use the same patternsof coordination
for completely different problems. In such cases, coordination protocolscan be shared
and reused. We describe a familiar pattern below.

A master agent sends the same message to a number of slave agents
(mostly, by broadcasting). Each slave eventually sends its reply to
the master. The master waits until it has collected all replies from
the original set of slaves, at which point, it performs some processing
on the messages received to come up with a single result.

One possible application that follows this protocol isbidding in which the master
sends information about a sale item to the slaves. The latter reply withtheir price bids.
After collecting all bids, the master chooses the winner (using some criteria). Another
application isredundant programming. In this case, the master solves a problem using
some methods. To evaluate the quality of its solution, it sends thesame problem to
a number of slaves that can solve the same problem, but using different methods. It
compares its own solution with those returned by the slaves. Havingcollected them
all, the master determines its confidence-level of its own solution.

Some protocols are simple constraints. For example, “Task B cannot proceedwith-
out finishing task A.” is a constraint imposed upon task B. This example is an instance
of order dependencies. Another example is “Task C gets its inputs only from task D.”.
By applying such a constraint, task C becomesdata dependenton task D. Task D, on
the other hand, remains unconstrained. Some constraints are state-based, that is, cer-
tain restrictions are imposed upon the possible states of an entity. For example, “Agent

4

A’s buffer cannot exceed n items.” is a constraint which A must observe. There are
other types of dependencies. Interested readers can refer to Crowstron [10].

Some protocols may also come as guarded rules or triggers. These are rules or ac-
tions that are triggered whenever a particular condition is satisfied, forexample, ”When
the temperature reaches 100 Farenheit, the boiler must be shut off.”. The difference be-
tween a constraint and a trigger is that the formerimposesa restriction, whereas the
otherenablesa rule or an activity when certain conditions occur. Strictly speaking, a
trigger is a form of constraint wherein theapplication of rulesis constrained.

An agent may subscribe to a coordination service with different coordination pro-
tocols at various times. Since a collaboration group has no single locusof control (that
is, each agent has its own thread), the only way that participants can follow an arbitrary
protocol is by having a copy of a script that describes such protocol.

5 Concurrent Role-Based Interpretation

Concurrent Role-Based Interpretationconstitutes TRUCE’s primary mechanism for
coordination. A script is interpreted by the collaboration group using multiple instances
of the same interpreter. The collaboration group is given a script to guide its way to
accomplishing its task. A copy of this script is given to each member of the group.
Subsequently, they all interpret the script simultaneously.

Role-based interpretation is a form ofselectiveinterpretation wherein an interpreter
does not have to execute every instruction in the script. The fractionof the script to be
interpreted is determined from the interpreter’sviewof the script — which depends on
its role assignment. We explain these concepts in the following sections.

5.1 Roles

In a system of interacting components, Lea and Marlow [16] used roles to describe a
view of one or more components by providing aninterfacespecification of the mes-
sages expected. Thus, a role abstracts all other things about the components. In the
same way, a role in TRUCE hides various details of an agent who reveals onlyits ca-
pabilities by performing the steps (or instructions) specified for that role. Application
agents are individually mapped to a particular role.

Collaboration is about tasks and their coordination. While the completion of these
tasks is necessary, the identities of the providing agents are irrelevantto the process.
Referencing roles instead of the actual agents, not only hides these information, but is
sufficient to describe a collaboration. Such an abstraction enables different providers
to play the same role at different times without affecting the overall coordination pro-
tocols. Agents may also subcontract their tasks to other agents (includingthose that are
not members of the group). Such a strategy is hidden and unimportant to other roles,
thus it can be adopted without introducing unwanted consequences.

Agents carry out their individual tasks based on the roles assigned to them. Once
the role assignments(also calledrole-bindingare established, all future references to

5

the agents will occur through their role names. Knowledge about role assignment is
hidden from other entities, including the users and other agents.

Roles may be viewed as a language mechanism for dynamically binding agents toa
set of coordination protocols. A role is a profile in terms of expertise, skills and respon-
sibilities. Any agent that fits the profile is aprospectfor the role. Willing prospects
becomecandidates. An agent may fit a number of profiles, suggesting that simultane-
ous role assignments are possible.

5.2 Role-Based Programming

Every instruction, called astep, in a script has a set of executors. These are roles
delegated to carry out the instruction. There are four possible viewswhen interpreting
a step:

1. executor— that performs the action actively

2. receiver— that receives the target result of the action directly

3. object— that is being used or manipulated by the action

4. observer— that is not involved at all but can sense and use the results of the
action

Unlike some other coordination languages, TRUCE is used to define an entire co-
ordination plan in a single script (a script is called atruce). The actions of each collab-
orator in a collaboration group are all described in atruce. These actions or protocols
are intermingled in a way that still reflects their execution order statically.

An action is specified using astep. A protocol specification is composed of one
or more steps. Aside from the action itself, a step specifies these information: (1) the
performer of the action, (2) the receiver of the action, and (3) the object ofthe action,
and some optional specifiers or directives. Every role in a step has at least one of these
roles.� Performer. The role is the main executor of the step, which also means that it

initiates the execution.� Receiver. The role is the target of a message sent by the performer.� Object. The role or some of its properties are referenced in the step.

A role that does not have any participation in a step but needs to wait until the
step is completed is called aspectator: some tasks need to finish first before another
can proceed. Primitive steps are the basic actions defined in the language. Everysuch
step has an associated set of specifiers or directives. The 15 TRUCE primitivesteps
are listed in Table 1. User-defined steps can be formulated from existing steps through
composition. A TRUCE step, optionally, can be given a user-defined name, or may

6

Primitive Steps Description

truce to declare and define a truce
cast to declare a named set of roles
packet to declare and define the format of a packet
protocol to declare and define a set of event-based rules
set to assign a value to a property
tell to send information to another role
wait to put a role in a waiting state
proceed to tell a waiting role to resume its execution
retract to undefine an existing property or rule
recover to undo the retraction of a retracted name
trigger to execute a truce, an episode or raise an event signal
step to declare and define a named sequence of steps
if to execute conditionally a sequence of steps
echo to print out text on the standard output
break to skip the current context

Table 1: TRUCE’s Primitive Steps

declare names within the step body. The classification of names includecast names,
rule names, step names, packet names, property namesandrole names.

A property is akin to a variable in traditional languages. A global property (prefixed
by a dollar symbol) is one that can be accessed by all roles. Basic types includes
number, strings, boolean, role, date, time, list, packet.

Every step has acontext— a transient environment that consists of all names cre-
ated within the step. A context also inherits the context of an immediately enclosing
step, that is, when the step occurs inside another step. If collision occurs between a
recently declared name and an inherited one (that is, same name), the former hidesthe
latter until the current context is destroyed, which happens as soon as theinterpretation
of the step is completed.

Every role in a step defines a viewpoint, which implies that the semanticsof a given
step may differ depending on which role the step is being viewed from. For example,
let the pseudocode below represent a step:

producer.tell consumer about object X.

In this example,tell is an action used to specify the transmission of a message from
a source to a destination. Theperformer of the action isproducer, while thereceiver
is consumer. The object isX. The semantics oftell from the point of view of the
producer can be described as follows:

The tell action specifies that a message is placed in a packet containing at
least the address of the destination, and sent to the destination.

Whereas, the viewpoint of theconsumerrole is given below:

7

The tell action specifies that a message is expected to arrive, and therefore
the receiver is suspended temporarily to wait for the message. When
the packet finally arrives, the actual message is taken out of the packet
and stored in a buffer, after which, the receiver resumes.

Thus, an interpreter for arole-basedscript behaves differently, depending on whose
viewpoint it is performing the interpretation for.

5.3 Role Binding

TRUCE defines an arbitrarily large and unstructuredvirtual agent spacewith different
agents coming from various places. Collaboration groups are formed fromthis agent
space and coordinate themselves by interpreting a collaboration script. Hence, every
agent becomes an independent interpreter. A role-based interpreter must assume one of
the viewpoints (or role) in the step. It is therefore necessary to specify which agent has
which role in every step. To do this, we maintain symbolic names orids to represent
every agent. We use these names to specify a collaborator’s role in a step. The unique
assignment of a symbolic name to an agent is calledrole-binding. Although we can
perform role-binding before every step execution (thus allowing us to use different
symbolic names every time), such method is not very efficient. Role-binding is done
only once, – just before the first step is executed, – giving each collaborator only one
symbolic name for the entire script. This symbolic name is used as the collaborator’s
rolename.

At any given step, a specific expertise/skill may be required for some of the roles
in that step. The corresponding collaborators of those roles must therefore satisfy,
directly or indirectly, the given requirement. In general, the requirements needed by
a role, which a collaborator must be able to meet, is the sum of all expertise/skills
required in all of the steps where that role appears. Role-binding is alsothe process of
matching up the responsibilities of a role to an actual agent (a collaborator) that can and
is willing to take these responsibilities. Furthermore, this binding serves as acontract
between the collaborator and the collaboration group, obligating the former to fulfill all
of its responsibilities. A collaborator may be bound to multiple roles only if it is able
to meet the combined requirements of these roles. Roles and collaborators arebound
dynamically, and therefore roles need not be bound to the same agent every time.

5.4 Concurrent Interpretation

We have seen the mechanics of role-based interpretation — how the semantics ofa step
is viewed by the interpreter based its role. However, role-based interpretation alone
cannot accomplish the coordination process. In order to achieve the rightcoordination
effect, a step must be interpreted from all of its viewpoints simultaneously, combining
its semantics from all views. This process is calledconcurrent interpretation. By doing
this, the coordination protocols embedded within a step are extracted andexecuted
properly. Hence, concurrent interpretation is, in effect, the application ofcoordination

8

protocols. We extend this idea by applying concurrent interpretation to all steps in a
script. In so doing, thecoordination taskcan be accomplished.

The combination of role-based and concurrent interpretation allows a coordination
process to work without centralized control. It also avoids both performance and fault-
tolerance problems associated with centralized mediation. Because each host has a
copy of the complete script, the only communications necessary are those required by
the steps. The key point is this:Each agent knows exactly when to wait and to interact,
and what to expect from others. In a distributed environment, nothing can be assumed
about the relative speeds of the interacting agents. Therefore, arendezvousmechanism
is used when two roles need to interact.

6 Example

In the area ofelectronic commerce, electronicauctioningis a very promising applica-
tion of agents. We illustrate how a simple auction may be carried out and coordinated
using TRUCE.

6.1 Description

Thefisherman’s auctionprotocol is an old method normally used by fishermen to sell
their fish to the middlemen. A fisherman presents his catch to the public. When the
go-signal is given, any interested middleman canwhisperhis bid to the fisherman or
to a representative. A bidder can only whisper once. After the last bidder, the highest
price and the winner are announced.

We extend the scenario, generalizingfishermento sellers, where there can be mul-
tiple items for sale. In this setting, only one seller can sell an item at a time. A seller
can also bid for other sellers’ items.

6.2 Solution

We include a facilitator to serve as a neutral party. This agent manages the bids by
collecting them and announcing the highest price. The bidding goes through several
rounds until nobody else can beat the current highest price. The sellers take turns in a
round-robin fashion. The whole session finishes when all sellers have sold (or at least
attempted) to sell their items.

The solution is composed of two parts. First, we write atruce for a bidding
session involving only one item from a seller. Second, we extend the solution to in-
clude repetition of thetruce developed in part 1, changing only the seller and item
parameters.

9

6.2.1 First Part.

Listing 1.0 gives us the complete solution codes for this part. We identify three roles
in this coordination problem. These arefacilitator, seller and somebuyers. Also, we
simplify the information domain, for brevity, by defining sale item as consisting of the
following information: item code, current price, description.Some other information
needed would include thebid priceof each interested buyer and the winning bid. Thus,
we declare three packets (lines 3-6). Packets are data structures that are used when
passing messages.

Buyers are not allowed to communicate with each other. Communication only
flows from thefacilitator to thebuyers and vice-versa. TRUCE enables us to define
a communication topology for the group. Each type of topology has primitive com-
munication operations. In this example, astar topology is ideal. This is specified in
line 07 by using thecaststep, which define a subgroup of the collaboration group. In a
star topology, one of the roles become the center where communication can flow only
between the center and all other roles. In this case, thefacilitator is the center of the
star.

There are 3 main activities that need to be accomplished.� Declaration of item for sale� bidding� Declaration of the winning bid

6ft 180 lbs 54 eugene 40 yrs 9332319
For activity 1, we shall ask the seller to get the item information from the real col-

laborating agent (called its client). Then it relays the information to thefacilitator (Line
32-34). Notice that a packet type must be specified explicitly (sell-item in this case) to
determine the type of information being asked for. The symbolclient is reserved and
pertains to the actual agent (thus, assigning values to it means these values are passed
to the agent). Afterwards, the information is passed to thefacilitator. The seller then
waits until the facilitator notifies it with the outcome of the sale.

For activity 2, the item for sale is given to the buyers who in return would reply
with their bids. The buyers take their bids from their correspondingcollaborators.
Later, the facilitator selects the highest bid and announces it to the bidders. It then
calls for another round, giving them a chance to beat the current price. This procedure
repeats until no bidder beats the current price.

In lines 10-16, the facilitator first relays the item information to allbuyers using
spread — a primitive operation forstar in which the center broadcasts a message to
the rest. This operation is followed by a block of TRUCE codes, called thecallback
actions. These are actions executed as soon as the receiver gets the message. In this
example, abuyer executes the callback actions when it receives the item. The callback
actions mainly describe the interaction between abuyer and the actual agent. The
buyer gives the item information to the agent while the latter returns a bid.Necessarily,
the facilitator collects all bids as shown in lines 18-26.

10

The propertyhighest-price by the facilitator, which is initially set to zero, stores
the current highest bid for the current round. The propertywinning-price stores the
highest price that nobody else has beaten (hence, the winner). At this point, the fa-
cilitator collects the bids.Collect is another primitive operation in which the center
receives messages from the other roles. The callback actions, which thefacilitator ex-
ecutes whenever it receives a bid, tell us that the bid just received is compared with the
current highest bid. The propertieshighest-price andwinner (a role reference to the
bidder of the highest price) are both updated depending on the result of the comparison.
The predefined propertysenderpertains to the role that sent the latest message (cur-
rent bid, in this case). Notice that the specifiersynchis set to true; This means that all
members of the bidding-group waits until all bids have been collected andprocessed.

Now, we have to check whether another round is required. It happens when the
current highest bid has changed. If so, a request for new bids from thebuyers is issued
by thefacilitator. Otherwise, the current highest price is declared as the winning price
and the seller is notified.

Listing 1.0 Completetruce for Part 1

01 truce fisherman-auctionf facilitator, seller, buyer[]g f
02 % Let’s define the packets
03 packet sell-itemf number fitem-code, current-priceg,
04 textfdescpngg,
05 bid-itemf number fitem-code, asking-priceg g,
06 winning-bidf numberfpriceg, rolefbidderg g;
07 cast bidding-groupf facilitator, buyerg struct=star;
08 episode auctionf
09 initially f facilitator.set fhighest-priceg 0;g;
10 step sell-and-bidf
11 bidding-group.spread f sell-itemfitem-for-saleg g f
12 % when the buyers receive the item, they tell their agents
13 % about the item and then ask them for a bid price.
14 set f clientg sell-itemfitem-for-saleg;
15 set fmy-bidg bid-itemf clientg;
16 g
17 % highest-price is initially set to zero;
18 set f winning-priceg fhighest-priceg;
19 bidding-group.collect f bid-itemfmy-bidg g synch=true
20 timeout=5000f
21 % For every replies received by the facilitator,
22 % it executes the following
23 if f highest-price< my-bid@asking-priceg f
24 set fhighest-priceg my-bid@asking-price;
25 set fwinnerg sender;
26 g
27 if f winning-price< highest-priceg f

11

28 facilitator.set fwinning-priceg highest-price;
29 sell-and-bid;
30 g
31 g % end of step
32 seller.set fitem-for-saleg sell-itemf clientg;
33 seller.tell ffacilitatorg data=item-for-sale target=item-for-sale;
34 seller.wait ffacilitatorg;
35 bidding-group.sell-and-bid;
36 % facilitator announces the winner
37 facilitator.set fresultg winning-bidfwinning-price, winnerg;
38 facilitator.tell fseller, buyerg data=result synch=true
39 target=result;
40 fseller, buyerg.set f clientg result;
41 g % end-of-episode
42g % end-of-truce

6.2.2 Second Part.

The second part of the solution considers the case where there are multiple sellers with
multiple items to sell. We mentioned earlier that we shall use round-robin scheduling to
coordinate them. We achieve this by structuring them into a ring - a different topology.
A token is passed around so that the current bearer gets to sell one of its items. When a
seller has nothing to sell, it simply passes the token to the next. This accomplishes the
round-robin scheduling strategy.

Recall that we need to know when to stop the cycle. Once in a while, we shouldbe
able to test for the condition where all sellers did not attempt to sell. To accomplish this,
we use the token as a counter. Initially set to 0, the counter is incrementedeverytime a
seller sells an item. After travelling the whole ring, its value is tested by the facilitator.
If the value remains at 0, the session is terminated. The whole listingis found in Listing
2.0. In line 3, we declare a cast with a ring topology.

To pass around the token, we use therelay communication protocol with the fa-
cilitator as the originator, as shown in lines 24-37. The token is set to 0 before the
facilitator relays the token. In this topology, only one role receives the token at a time.
The receiver can choose to sell or not (hence, the use ofpossibly). If not, the token is
automatically passed to the next without modifying its value. Otherwise, it sets its flag
myturn to indicate that it is going to sell something. A global property$selling is also
set. The new seller waits while the selling is taking place. When it is over, the seller
resets its flag and increments the token. The token is passed to the next seller in the
ring.

The actual selling procedure is performed in a protocol namedselling-protocol.
Notice that all roles have to execute this protocol. The trigger involves a global property
$selling, which is set by a seller in thesell step. Seeselling-protocolfrom lines 10-
22. Onlysellers test the value of their local propertymyturn. Recall that a receiver

12

of the token sets this property. Thus, it gets to satisfy the condition and execute the
step,set $“current-seller” = me. The propertymeis predefined and refers to the role
executing the step.

When such setting has been accomplished, the protocol is temporarily disabled so
that no further trigger can take place. Thetruce we have written in part 1 is per-
formed. The rolefacilitator is bound to the samefacilitator in this imported truce. The
roleseller is bound to whoever is the current seller while both thebuyers and thesell-
ers become the buyers. Once finished with the selling, the protocol is switched back
on.

Listing 2.0 Completetruce for Part 2

01 truce multiple-fisherman-auctionf facilitator, sellers[], buyers[]g
02 import=ffisherman-auctiong f
03 cast selling-groupf facilitator,sellersg struct=ring;
04 packet token-typef numberfcounterg g;
05 episode sell-and-buyf
06 initially action
07 facilitator.set ftokeng token-typef0g;
08
09
10 protocol selling-protocolf
11 when f $selling = trueg f
12 sellers.if fmyturn=trueg f
13 set $“current-seller”=me;
14 g
15 retract fselling-protocolg;
16 facilitator.set f$sellingg false;
17 fisherman-auctionffacilitator, $“current-seller”,
18 fbuyers, sellersg g;
19 recover fselling-protocolg;
20 facilitator.proceedf$“current-seller”g;
21 g
22 g % end-of-protocol
23 %%
24 step sellf
25 buyers.wait;
26 facilitator.set ftokeng token-typef0g;
27 selling-group.relay ftokeng synch=true f
28 sellers.f
29 possibly f
30 set fmyturng true;
31 set f$sellinggtrue;
32 wait;

13

33 set fmyturng false;
34 set ftoken@counterg token@counter +1;
35 g
36 g
37 g % end-of-relay
38 facilitator.proceedfbuyersg;
39 ffacilitator, buyers, sellersg.if ftoken@counter> 0 g
40 f sell;g
42 g % end-of-sell
43 sell;
44 g %end-of-episode
45g % end-of-truce

The stepsell is the entry point of the episode. We have discussed how this step
works. The control loops through the same stepsell. Observe that the termination
condition is checked against the token value.

7 Conclusion

Our work is mainly centered around the notion of a framework for developing collabo-
rative agents in a distributed environment such as theInternet. Multi-agent systems are
attractive for collaborative problem solving, but support tools andframeworks for de-
velopment are not available. Our aim is to fill in the void by developinga collaboration
framework in which coordination procedures are provided as a service for collaborating
applications. The most important properties of our framework include the following:� Decentralization of the whole coordination process� Separation of coordination and computation concerns� Services approach to coordination (advertise-subscribe collaboration model)� Dynamic coordination using protocol scripts� Reusable coordination protocols� Internet-oriented� Support for simultaneous participation in multiple collaborationsby a single

agent

We focused on providing coordination services and dynamic coordinationvia del-
egation and programmable coordination protocols. We designed a coordination lan-
guage, named TRUCE, for writing coordination scripts. The TRUCE language is based

14

upon the method of concurrent role-based interpretation. Finally, we expect for a sig-
nificant increase in productivity of agent developers. This is primarilydue to the ab-
straction of coordination protocols from the main computations of the problem being
solved.

References

[1] Aguilar, M., Hirsbrunner, B., and Krone, O., “The CoLa Approach:A Coor-
dination Language for Massively Parallel Systems”,
http://wwww.cs.dartmouth.com Institut d’Informatique de Fribourgm
Chemin du Musee, Sept. 28, 1994.

[2] Arbab, F. “Coordination of Massively Concurrent Activities”,CS-R9565 1995
Computer Science/Department of Interactive Systems, Centrum voor Wiskunde
en Informatica, Amsterdam, NL.

[3] Barbuceanu, M. and Fox, M., “The Design of a Coordination Language for Multi-
Agent Systems”,Technical Report, Enterprise Integration Laboratory, University
of Toronto.

[4] Berry, A. and Kaplan, S.. “Open, Distributed Coordination with Fi-
nesse”,Technical Report, School of Information Technology. The University of
Queensland, Australia.

[5] Biddle, Bruce J.,Role Theory: Expectations, Identities, and Behaviors, Academic
Press, Inc. , NY, 1979.

[6] Bond, A. and Gasser, L.(editors)Readings in Distributed Artificial Intelligence,
Morgan Kauffman Pub. Inc., San Mateo, California, 1988.

[7] Castellani, S., and Ciancarini, P., “Enhancing Coordination and Modularity
Mechanisms for a Language with Objects-as-Multisets”,Technical Report, De-
partment of Computer Science, University of Bologna, Italy.

[8] Ciancarini, P., Jensen, K., and Yankelevich, D., “On the Operational Semantics of
a Coordination Language”,Technical Report, Department of Mathematics, Uni-
versity of Bologna, Bologna, Italy.

[9] Ciancarini, P., Vitali, F., and Tolksdorf, R., “Weaving the Web ina PageSpace
Using Coordination”,Technical Report, Department of Mathematics, University
of Bologna, Bologna, Italy.

[10] Crowston, Kevin (crowston@umich.edu), “A Taxonomy of Organizational
Dependencies and Coordination Mechanisms”,Technical Report, The University
of Michigan, School of Business Administration.

15

[11] Factor, M., Fertig, S. and Gelernter, D., “Using Linda to Build Parallel AI Appli-
cations”,TR-861, Yale University Department of Computer Science, June 1991.

[12] Gelernter, D., Carriero, N., “Coordination Languages and their Significance”,
Communications of the ACM, February 1992/Vol. 35, No. 2, pp. 97-107.

[13] Haddadi, Afsaneh, “Communication and Cooperation in Agent System: APrag-
matic Theory”, Lecture Notes in Artificial Intelligence,Vol. 1056, Springer-
Verlag, 1995.

[14] Jamison, W., “ACACIA: An Agency Based Collaboration Frameworkfor Het-
erogeneous Multiagent Systems”,Multiagent Systems Methodologies and Appli-
cations, Lecture Notes in Artificial Intelligents1286, Springer-Verlag, 1996, pp.
76-91.

[15] Jamison, W., “Approaching Interoperability for Heterogeneous Multiagent Sys-
tems Using High Order Agencies”,Cooperative Information Agents, First Inter-
national Workshop, CIA’97, Kiel, Germany 1997 Proceedings,Springer-Verlag,
pp. 222-233.

[16] Lea, D. and Marlowe, J. ”PSL: Protocols and Pragmatics for Open Systems”,
available athttp://gee.cs.oswego.edu/dl,

[17] Malone, T. and Crowston, K., “The Interdisciplinary Study of Coordination”,
ACM Computing Survey, vol. 26. pp. 87-119, March 1994.

[18] Rosenschein, J. and Zotkin, G.,Rules of Encounter, Designing Conventions for
Automated Negotiation among Computers, The MIT Press,, 1994.

[19] Shoham, Y., “Agent-Oriented Programming”,’Artificial Intelligence60, pp 51-
92, 1993.

[20] Singh, Munindar P., “Multiagent Systemts, A Theoretical Framework for Inten-
tions, Know-How, and Communications”,Lecture Notes in Artificial Intelligence,
Vol. 799, Springer-Verlag, 1994.

[21] Wooldridge, Michael and Jennings, Nicholas R., “Agent Theories, Architectures
and Languages: A Survey”, in Wooldridge and Jennings (ed),Intelligent Agent,
Springer-Verlag, 1-22.

16

	TRUCE: Agent Coordination Through Concurrent Interpretation of Role-Based Protocols
	Recommended Citation

	tmp.1286291883.pdf.71UN7

