
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

1995 

Effects of Technology Mapping on Fault Detection Coverage in Effects of Technology Mapping on Fault Detection Coverage in 

Reprogrammable FPGAs Reprogrammable FPGAs 

Kevin A. Kwiat 
Rome Laboratory 

Warren Debany 
Rome Laboratory 

Salim Hariri 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Kwiat, Kevin A.; Debany, Warren; and Hariri, Salim, "Effects of Technology Mapping on Fault Detection 
Coverage in Reprogrammable FPGAs" (1995). Electrical Engineering and Computer Science. 165. 
https://surface.syr.edu/eecs/165 

This Article is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215691361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/165?utm_source=surface.syr.edu%2Feecs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


E�ects of Technology Mapping on Fault Detection Coveragein Reprogrammable FPGAsKevin Kwiat, Rome LaboratoryWarren Debany, Rome LaboratorySalim Hariri, Syracuse UniversityABSTRACTAlthough Field-Programmable Gate Arrays (FPGAs) are tested by their manufacturers prior toshipment, they are still susceptible to failures in the �eld. In this paper, test vectors generated forthe emulated (i.e., mission) circuit are fault simulated on two di�erent models: the original viewof the circuit, and the design as it is mapped to the FPGA's logic cells. Faults in the cells and inthe programming logic are considered. Experiments show that this commonly-used approach failsto detect most of the faults in the FPGA.1 IntroductionField-Programmable Gate Arrays (FPGAs) resemble traditional mask-programmed gate arrays,but di�er in that they are programmed but by the end user. A typical FPGA consists of a two-dimensional array of logic blocks (or cells) that can be connected through interconnection resources.In some FPGAs a cell may be as simple as a 2-input NAND gate, while the cells of other FPGAs maybe as complex as an entire PAL-like structure. This paper deals with dynamically recon�gurableFPGAs [1].The starting point for designing an FPGA is logic entry. A schematic capture or logic synthesistool is used to create a description of the circuit to be implemented. Then, the circuit design istranslated into a standard form consisting of basic logic gates. This process of converting the netlistof basic logic gates into a netlist of FPGA cells is referred to as technology mapping [2].For this paper, we de�ne the following terms:unmapped logic circuit A circuit design described as a netlist of basic logic gates. This is thetarget circuit that is to be emulated by the FPGA.mapped logic circuit The same logic design as an unmapped logic circuit, but implemented asFPGA cells through technology mapping.mission vectors The vectors that would be applied to the unmapped logic circuit. These vectorsare applied to the corresponding inputs of a mapped logic circuit after the FPGA has beenprogrammed. In the case where both circuits are fault-free, their output responses for anysequence of mission vectors are the same. 1



Manufacturers' documentation of reprogrammable FPGAs state that the devices have beentested with 100% fault coverage prior to their shipment (e.g., [1] [3] [4]). However, faults inducedthereafter (i.e., �eld failures), must be tested for by the user. The manufacturer's test algorithmmay be unavailable, but even if it were available, it may be impossible to apply it during boardlevel test due to the FPGA's pin assignments. Thus, the most common approach is to generate testvectors for the unmapped circuit that the FPGA will embody. This paper describes the adversee�ects that technology mapping has on this approach.2 Determining Fault Detection CoverageThe procedure we use to measure the e�ects of technology mapping on fault detection coverage ina reprogrammable FPGA is as follows:� Step 1: Create a logic model of the unmapped circuit.� Step 2: Perform the technology mapping.� Step 3: Create a logic model of the unprogrammed FPGA consisting of cells, cell intercon-nections, cell program memory, and FPGA programming logic.� Step 4: Create the programming vectors that embed the mapped circuit into the FPGAmodel.� Step 5: Obtain mission vectors that achieve the maximum fault coverage for the unmappedcircuit, and produce lists of detected and undetected faults for the unmapped circuit.� Step 6: Using vectors obtained from Step 4 and Step 5, obtain FPGA simulation vectors.� Step 7: Fault simulate the vectors from Step 6 on the mapped circuit, and obtain lists ofdetected and undetected faults in the FPGA.� Step 8: From the lists of detected and undetected faults for both circuit types, determine thediscrepancies in fault coverage.Next, an illustrative example of a full adder mapped to an FPGA provides a demonstration ofthis procedure.3 FPGA3.1 Cell Model and ProgrammingThe FPGA implementation considered in this paper is based loosely on the Atmel architecture[1]. In these FPGAs, each cell can perform a combinational function, a sequential function (a2



d-type ip-op), or both. These cells can also be used as simple \wires" to connect cells over shortdistances. For fast communication over longer distances, buses run horizontally between rows ofcells and vertically between columns of cells. Figure 1 depicts the cell architecture.Several programming methods may be available for a given FPGA. However, a method commonto all reprogrammable FPGAs is serial loading of programming data into the device, and this isthe only programming method considered in this paper. Figure 2 shows the FPGA programminglogic and a cell's program memory. Associated with each cell are two registers: a shift register toaccept the serial data and a parallel-load register to hold the program data for the cell. A feature ofAtmel's dynamically recon�gurable FPGAs is the ability to reprogram any cell without disturbingthe rest of the array. Our FPGA model exhibits this feature by addressing each individual cell forprogramming.3.2 Circuit Mapping for Fault SimulationThe �rst step in our procedure involves determining the logic diagram of the circuit under study.Figure 3 shows a full adder composed of basic logic gates. This represents how the designer mightdescribe the circuit to be implemented in the FPGA. From this schematic, the logic model of theunmapped full adder is created.Technology mapping is the next step in measuring the fault coverage detection. Figure 4 showsa mapping of the full adder description to the FPGA where the set of logic gates speci�ed inthe original schematic have been transformed to those available through cell programming. Whileplacing the cells that implement the full adder, additional cells are allocated for signal routing.Cells that are not involved in the full adder implementation have their bus drivers disabled. InFigure 4, individual cells are identi�ed by their row and column coordinates, indexed from 1, withcell (1,1) being the cell in the top left corner.4 Simulation4.1 Simulation SetupLogic models of the unmapped and mapped circuits are needed prior to fault simulation. A RomeLaboratory-developed language, called the Netlist Intermediate Form (NIF) [5], was used to modelboth circuit types. A computer program was written to generate automatically the NIF descriptionof the unprogrammed FPGA. A gate-level NIF model of the unmapped full adder was created andthen translated to the Navy's Hierarchical Integrated Test Simulator (HITS) [6] language for faultsimulation. The simulation platform was a VAX 8650.To reduce both the model complexity and the simulation times, the unused cells were modi�ed.3



An unused cell can be greatly simpli�ed because the only path for its outputs to the adder output isthrough the bus interface, which is disabled. As a result, a cell that was not used by the technologymapper and router was replaced by a stub of a full cell. All programming logic was removed froma stub and its architecture was reduced to only disabled bus drivers and a single gate that sinksall the cell's inputs and sources a constant output of zero. For the full adder the elapsed time forfault simulation of the mapped circuit (2,312 gates) exceeded 18 hours.An exhaustive set of mission vectors achieved 100% fault detection of all single stuck-at-0 andstuck-at-1 faults in the unmapped circuit; this set comprised the mission vectors for our experiment.A vector sequence that programs the FPGA to implement the full adder was created (882 vectors),and the eight mission vectors were appended to this sequence. This sequence of 900 vectors wasthen fault simulated, and lists of detected and undetected faults in the FPGA were obtained.4.2 Simulation ResultsFault grading was done in accordance with the standard procedure for fault coverage reporting(MIL-STD-883 Procedure 5012) [7] [8]. This procedure provides a consistent means of reportingfault coverage, regardless of the logic and fault simulator used. Exceptions to the baseline procedurewere as follows: the fault universe was based on all faults on the signal lines, instead of faultequivalence classes of those faults; undetectable faults were not dropped from the fault universe;and faults in the logic that fed only the bus enables (there were 95 such faults in each cell) whichare detectable only as potential detects were dropped from the fault universe.The �nal step of the procedure calls for determining the fault coverage discrepancies between thetwo circuit types. Table 1 shows the fault coverages on a cell-by-cell basis, and for the programminglogic; these values are repeated in Figure 4 where the corresponding function of each cell is alsoshown.Unfortunately, when the constant zeroes sourced by the stubs are propagated through the logicmodel, these constants cause the fault simulator to reduce the fault universe, and as a result thenumber of faults per cell is not constant. Likewise, cells on the FPGA's periphery have some oftheir inputs tied to a constant value, and this accounts for the di�erences in the total number ofsimulatable faults for these cells. After adjusting the fault universe to account for these artifactsof fault simulation, only 17.5% of the faults in the entire FPGA were detected.No FPGA faults were detected until the �rst mission vector was applied. Most faults in theprogramming logic are detectable only as potential detects. Unprogrammed cells that are intendedto be programmed produce indeterminate values in the simulated circuit, so the fault originatingthe error is only potentially detectable. However, if a programming logic fault results in unmappedand mapped circuits that are decisively not functionally equivalent, then the fault is still detectableas a solid detect. 4



The technology mapping illustrated by Figure 4 is not unique. It is well-known that layout caninuence testability (e.g., [9]), and a di�erent arrangement of the stubs would produce di�erent faultcoverages for their neighboring cells. The technology mapping determines what programming inputa cell can receive in the presence of a fault, so another technology mapping alters the circumstancesof detecting the fault. Furthermore, a change in the order in which cells are programmed can alsoproduce di�erences in fault detection.The fault simulation results show that, when a set of mission vectors that is a complete test foran unmapped logic circuit is applied to a mapped circuit, the fault coverage is greatly reduced. Todetermine if the low fault coverage for the mapped circuit was due to intrinsic lack of testabilityof the FPGA, an experiment was performed to determine the achievable level of fault coverage foran FPGA cell. An FPGA cell (without the bus drivers) was modelled and a test of size 12 wasobtained that detects all detectable faults in the combinational part of the cell. Next, this test setwas modi�ed so that whenever a vector is applied to the cell, the cell's ip-op is clocked, resultingin 24 vectors. A vector was then added to test the ip-op reset, making the sequence length 25. Inthe worst case, each of these 25 tests would require a unique cell programming. A total of 25 clockcycles (24 to shift in the data and one additional cycle to load the hold register), multiplied by thenumber of vectors, means that at most 625 test vectors would be required to detect all detectablefaults in a single FPGA cell. Using this test sequence, the maximum achievable fault coverage fora cell is 95.884%. This coverage represents detection of faults in both the cell architecture andthe cell's program memory. A cell is therefore intrinsically highly testable; however, the low faultcoverage achievable using a complete test vector set for an unmapped circuit demonstrates thescope of the adverse e�ect technology mapping has on fault coverage.5 ConclusionThe e�ectiveness of user tests applied to an FPGA depends on the cell architecture, the cell programmemory, and the FPGA's programming logic. The approach shown in this paper can be applied tostudy other reprogrammable FPGA architectures. We have demonstrated that, when a gate-leveldesign is mapped to a network of FPGA cells and tested using mission vectors developed for theoriginal, unmapped gate-level design, the reduction in fault detection coverage is enormous.References[1] Con�gurable Logic Design and Application Book, Atmel Inc., San Jose, CA 1993.[2] Brown, S.D., Francis, R.J., Rose, J., and Vranesic, Z.G.: `Field-Programmable Gate Arrays',Kluwer, 1992. 5



[3] The Programmable Gate Array Data Book, Xilinx Inc., San Jose, CA 1992.[4] Optimized Recon�gurable Cell Array (ORCA) Data Book, AT&T Microelectronics, Allentown,PA 1993.[5] Debany, W.H., Lui, W., Kwiat, K.A., Sherman, K.J., Hayes, J.M., and Carletta, J.E.: `In-termediate Form for Digital Model Transformation', Proceedings of the IEEE Reliability andMaintainability Symposium, 1986, pp. 11-16.[6] Hosley, L., and Modi, M.: `HITS { The Navy's New DATPG System', AUTOTESTCON Pro-ceedings, 1983, pp. 29-35.[7] Debany, W.H., Kwiat, K.A., Dussault, H.B., Gorniak, M.J., Macera, A.R., and Daskiewich,D.E.: `Fault Coverage Measurement for Digital Microcircuits', Mil-Std-883 Procedure 5012,Rome Laboratory (RL/ERDA), Gri�ss AFB, NY 13441, Dec. 18, 1989 (Notice 11) and July27, 1990 (Notice 12).[8] Debany, W.H., Kwiat, K.A., and Al-Arian, S.A.: `A Method for Consistent Fault CoverageReporting', IEEE Design & Test of Computers, Sept. 1993, 10, (3), pp. 68-79.[9] Spencer T.H., and Savir, J.: `Layout Inuences Testability', IEEE Transactions on Computers,March 1985, C-34, pp. 287-290.

6



A Inputs B Inputs

A Outputs B Outputsclockreset
N E S W N E S W

DQ
ns2p18p19 p22p23
p15

p12 p13 p17 p21p14N E S W N E S W
ew2p16 p20

`1' `1'`0' `1' `1'
0 1 2 3 3 2 1 0p8p9

p3-p0 p7-p4p10p11ns1ew1
Figure 1: Cell Architecture p0p1p23 p22CELL (i, j) Cell ArchitectureROWCOL row icolumn jloadprogramenableprogram dataclock Figure 2: FPGA Programming Logic and Cell Program Memory7



Sum
CarryCinXY

Figure 3: Unmapped Full Adder
8



FPGA Faults Total FaultComponent Detected Faults Coveragecell (1,1) 152 711 24.7%cell (1,2) 156 717 25.1%cell (1,3) 144 703 23.7%cell (1,4) 0 21 0.0%cell (2,1) 110 709 17.9%cell (2,2) 191 717 30.7%cell (2,3) 0 21 0.0%cell (2,4) 125 701 20.6%cell (3,1) 0 21 0.0%cell (3,2) 136 717 21.9%cell (3,3) 221 717 35.5%cell (3,4) 201 715 32.4%cell (4,1) 115 709 18.7%cell (4,2) 114 725 18.1%cell (4,3) 222 717 35.7%cell (4,4) 199 709 32.4%cell (5,1) 161 709 26.2%cell (5,2) 233 717 37.5%cell (5,3) 0 21 0.0%cell (5,4) 0 21 0.0%cell (6,1) 0 21 0.0%cell (6,2) 217 709 35.3%cell (6,3) 232 707 37.9%cell (6,4) 143 701 25.6%prog logic 10 305 3.3%Table 1: Fault Coverages
9



Cin

Sum Carry

0.0%0.0%
0.0% 0.0%0.0%

0.0%24.7% 25.1% 23.7% 20.6%30.7%17.9% 21.9% 35.5% 32.4%32.4%35.7%18.1%18.7%26.2% 37.5%35.3% 37.9% 25.6%

X Y

Figure 4: Mapped Full Adder. Percentages are individual cell fault coverages achieved by applyingan exhaustive set of mission test vectors. 10


	Effects of Technology Mapping on Fault Detection Coverage in Reprogrammable FPGAs
	Recommended Citation

	tmp.1287766504.pdf.ojX1F

