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Abstract 

The polynomial time 1-tt complete sets for EXPand RE are poly­
nomial time many-one complete. 

1 Introduction 

Ladner, Lynch, and Selman [LLS75] showed that polynomial time one-one, 
many-one, truth-table, and Turing reducibilities differ on the exponential 
time computable sets. For example, there are 1-tt incomparable exponential 
time computable sets A and B that are 2-tt equivalent. Watanabe [Wat87] 
improved many of the Ladner-Lynch-Selman theorems by showing that es­
sentially the same behavior occurs within the EXP complete sets1 of the 

*These results were presented by Steven Homer at the Fifth Annual IEEE Structure 
Complexity Conference (cf. [Hom90]). 

fSupported in part by National Science Foundation grant CCR-8814339. 
*Supported in part by National Science Foundation grant CCR-89011154. 
1We use EXP to denote the class of sets computable in time 2P(n) for some polynomial 

p; although our results also hold for 2cn. 
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weaker reducibility, specifically, that there are 2-tt complete sets for EXP 
that are 1-tt incomplete. 

One of the Ladner-Lynch-Selman theorems that Watanabe didn't improve 
was the existence of 1-tt comparable, many-one incomparable sets. Based on 
Watanabe's experience with weaker reducibilities, it seemed plausible that 
there would be a 1-tt complete set that is not m-complete. On the other 
hand, Berman [Ber77] had shown that every m-complete set for EXP is 1-
li complete, and so it was also plausible that there were no 1-tt complete, 
m-incomplete sets. 

In this note, we show that every set that is 1-tt complete for EXP 
(resp. RE)Z is also m-complete for EXP (resp, RE). 

Perhaps the most interesting aspect of this result is the light it sheds 
on the Ko-Long-Du [KLD87] and Kurtz-Mahaney-Royer [KMR88] papers. 
Ko, Long, and Du show that the 2-tt complete degree for EXP contains 
a noncollapsing3 1-li degree if and only if P = UP. Kurtz, Mahaney, and 
Royer show that the 2-tt complete degree for EXP contains a collapsing m­
degree. In both cases, it seemed impossible to make the degree constructed 
complete for stronger reductions than 2-tt. It is now clear why. There are 
oracles relative to which the 1-li degree of EXP collapses4 and oracles relative 
to which the 1-li degree of EXP does not collapse5 • As the 1-tt complete 
degree for EXP is now seen to be a 1-li degree, there can be no relativizing 
improvement of either the Ko-Long-Du or Kurtz-Mahaney-Royer theorems. 

2 Mathematical Preliminaries 

We assume familiarity with complexity theory ( cf. [BDG88]), and structural 
complexity theory ( cf. [KMR90]). 

We identify sets with their characteristic functions: if A is a set, then 
A(x) = 1 means x E A and A(x) = 0 means x (j. A. We say that (h)ieE• is a 
programming system for a class of functions C if and only if C = {fi : i E ~*} 
and the function A.i, x. fi( x) is computable. The recursion theorem holds for 
{fi)ieE• if and only if for each "f-program" i, there is an f-program e such 

2RE denotes the set of recursively enumerable languages. 
3 A degree is collapsing if it consists of a single polynomial time isomorphism type. 
4 Any oracle that makes P = UP suffices. 
5 E.g., a random oracle [KMR89]. 
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that 

fe = ~x.f;((e,x}). (1) 

Intuitively, e is a self-referential program that, on input x, generates a copy 
of its own program "text" e, builds (e, x), and runs the !-program ion this 
pair. 

Let (p;)iei:• be a programming system for the polynomial time computable 
functions such that ~i, x .p;(x) is computable in time exponential in Iii+ lxl 
and such that the recursion holds for (Pi)iei:•· See Kozen [Koz80) or Royer­
Case [RC87) for examples of such (Pi}iei:•· 

A language A is 1-tt reducible to a language B if there is a function f 
from strings to expressions of the form true, false, (y E B), (y ¢ B) such 
that for all strings x, x E A if and only if f( x) is a true assertion about B. 

3 The 1-tt Complete Sets for EXP. 

A precursor of the proof technique of the following theorem can be found in 
Ganesan and Homer [GH88]. 

Theorem 1 The 1-tt complete languages for EXP are m-complete, i.e., the 
1-tt complete degree for EXP is an m-degree. 

We give two versions of the proof of this theorem, one using a recursion 
theorem, and a second which avoids its (explicit) use. 

First Proof of Theorem 1: Let E be an m-complete set for EXP. For 
each i E E*, define Ai = { x : Pi ( x) E E}. If we view EXP as a collection of 
characteristic functions, then (A;);ei:• is a programming system for EXP for 
which the recursion theorem holds. (See [KMR90, Page 115] for details.) 

Let L be 1-tt complete for EXP. Then Lis uniformly 1-tt complete: there 
is a programming system of 1-tt reductions (ti}iei:• such that for each i E E*, 
t; is a 1-tt reduction of A; to L and the function ~i, x. ti(x) is computable 
in exponential time.6 Moreover, we assume without any loss of generality 

6 Proof: Let t be a 1-tt reduction of E to L and for each i define t; = top;. 
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that for any 1-tt reduction ti of a set A to L there is no x for which we have 
ti(x) =true or ti(x) = false. 7 

It suffices to show that E ism-reducible to L. Lett be a 1-tt reduction 
of E to L. For each x E E*, one the following cases holds. 

Case 1. t(x) = (Yx E L), for some Yx, and so X E E {:::::::} Yx E L. 

Case 2. t(x) = (Yx ¢ L), for some Yx, and so X E E {:::::::} Yx ¢ L. 

On those x's for which Case 1 holds, x 1-+ Yx acts like an m-reduction of E to 
L; and on those x's for which Case 2 holds, x 1-+ Yx acts like an m-reduction 
of E to L. If Case 1 held for every x, we'd be done. Since we can't assume 
this, we have to deal with the "twists" introduced by t in Case 2. The idea 
of the proof is to use the recursion theorem to exhibit an e such that Ae is a. 
version of E tha.t undoes the twists. That is, for all x, 

Ae(x) = { E(x), 
E(x), 

if (i) te(x) = (Yx E L); and 

if (ii) te(x) = (Yx ¢ L). 
(2) 

If {i) holds for x, then x E E {:::::::} x E Ae and x E Ae {:::::::} Yx E L; 
hence, x E E {:::::::} Yx E L. If {ii) holds for x, x E E {:::::::} x ¢ Ae and 
X E Ae {:::::::} Yx ¢ L; hence, X E E {:::::::} Yx E L. 

Therefore, x 1-+ Yx is an m-reduction forE to Las required. 

0 

The first proof used self-reference to construct an e that "knew" that te 
was a 1-tt reduction of Ae to L. At the price of some clarity, the second proof 
achieves the same effect and circumvents use of the recursion theorem (i.e., 
it contains just enough of the proof of the recursion theorem to get by). 

Second Proof of Theorem 1: Let E, L and (ti)ieE• be as above. We 
again show tha.t E is m-reducible to L by constructing an intermediate set 
which does the untwisting for us. 

Define A by 

A((i,x)) = {E(x), 
E(x), 

if (i) ti( {i, x}) = (Yx E L ); and 

if (ii) ti({i,x}) = (Yx ¢ L). 
(3) 

7 To eliminate these two cases, fix some a E L. Interpret t;(x) =true as t;(x) =(a E L) 
and interpret t;(x) =false as t;(x) =(a fl. L). 
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This A is easily seen to be computable in exponential-time. By the 1-tt 
completeness of L, there is a 1-tt reduction f of A to L. Let j beat-index 
for J, i.e., f = t;. 

If (i) holds for x in (3), then x E E {:=} {j, x) E A and {j, x) E A {:=} 

Y:r: E L; hence, x E E {:=} Y:r: E L. If (ii) holds for x, then x E E {:=} 

(j, x) fl. A and {j, x} E A {:=} Y:r: fl. L; hence, x E E {:=} Yx E L. 
Therefore, x ~---+ Y:r: is an m-reduction forE to Las required. 

0 

Combining our Theorem 1 with Berman's [Ber77] theorem that them­
complete languages for EXP are 1-li complete yields: 

Corollary 2 The 1-tt complete for EXP languages are 1-li complete. 

With hindsight the coincidence of 1-tt and m-completeness for exponen­
tial time sets is not surprising. Both types of reductions allow one query to 
the oracle set, and Watanabe's theorems [Wat87] depend critically on the 
extra queries available to the weaker reducibilities. We also knew the cor­
responding result is true for r.e. sets with respect to recursive reductions, 
although the proof in the r.e. case doesn't generalize to subrecursive classes. 

The moral of Theorem 1 is that 1-truth-table reductions should be cat­
egorized with the "strong" many-one, one-one and one length-increasing re­
ductions, and not with weaker bounded truth-table reductions. 

4 The 1-tt Complete Sets for RE. 

We next prove the analogous result for r.e. sets, polynomial time 1-tt com­
plete sets for RE are polynomial time m-complete. 

The proof idea is similar Theorem 1. However, unlike EXP, RE is not 
closed under complementation. We cannot define an r .e. set A by an equation 
of the form A(x) = K(x). What we can do, if t(x) = (Y:r: ¢ L), is define 
A(x) = L(y:r:)· The "twisted" case of Theorem 1 becomes a paradoxical case 
in Theorem 3. 

Theorem 3 The polynomial time 1-tt complete sets for r. e. are polynomial 
time m-complete. 
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Proof: We set ourselves up as in Theorem 1. 
Let K be m-complete RE. For each i E :E*, define Ai = { x : Pi ( x) E K}. 

The Ai's are precisely the r.e. sets, and the recursion theorem holds for Ai. 
Let L be polynomial time 1-tt complete for RE. Again, L is uniformly 

polynomial time 1-tt complete, i.e., there is a programming system (ti)iei:• 
such that ti : Ai ~f-tt L and ..\i, x. ti( x) is (exponential time) computable. 
We can again assume that the cases ti(x) = true and ti(x) = false don't 
occur. 

It suffices to construct a polynomial time m-reduction from K to L. 
Define A as: 

A((i,x)) = {K(x), 
L(yx), 

if (i) ti( (i, x)) = (Yx E L); and 

if (ii) ti((i,x)) = (Yx (/. L). 
(4) 

As K and L are r.e., so is A. By the 1-tt completeness of L there is a 1-tt 
reduction f: A ~l-tt L. Let j be at-program for f. 

If (i) holds for x, then x E K ¢=:::? (j, x) E A and (j, x) E A ¢=:::? Yx E 
L; hence, x E K ¢=:::? Yx E L. If (ii) holds for x, then (j, x} E A ¢=:::? Yx E 
L, but also (j, x} E A ¢=:::? Yx (/. L; hence Yx E L ¢=:::? Yx (/. L. This is 
impossible, so (ii) never holds! 

Therefore, x ~----+ Yx is a polynomial time m-reduction of K to L, as re­
quired. 

0 

Note that Theorem 3 cannot be restated in the degree theoretic language 
used in Theorem 1. The problem is that the polynomial time 1-tt degree for 
RE contains sets that are not themselves r.e. Our proof depends critically on 
the fact that L is r.e. For example, K is a member of the polynomial time 
1-tt degree complete for RE, but K is not even recursively m-complete for 
RE. 

Corresponding to Corollary 2, and this time combining our result with 
Dowd's theorem [Dow78] that the polynomial time m-complete sets for RE 
are polynomial time 1-complete, we have, 

Corollary 4 The polynomial time 1-tt complete r.e. sets are polynomial time 
1-complete. 
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5 Remarks 

Our proofs do not work for nondeterministic subrecursive classes such as 
NEXP or NP. Harry Buhrman [Buh90] has succeeded in proving the analo­
gous theorem for NEXP-nondeterministic exponential time. That is, every 
1-tt complete for NEXP set ism-complete for NEXP. The problem for NP 
remains open and interesting. 

Our methods do work for logspace reductions, the analogous theorems 
can be obtained mutatis mutandis. 
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