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Abstract

We present numerical results supporting the existence of an exponential bound

in the dynamical triangulation model of three-dimensional quantum gravity. Both

the critical coupling and various other quantities show a slow power law approach

to the infinite volume limit.
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Introduction

Much interest has been generated recently in lattice models for euclidean quantum gravity
based on dynamical triangulations [1, 2, 3, 4, 5, 6, 7, 8]. The study of these models was
prompted by the success of the same approach in the case of two dimensions, see for
example [9]. The primary input to these models is the ansatz that the partition function
describing the fluctuations of a continuum geometry can be approximated by performing
a weighted sum over all simplicial manifolds or triangulations T .

Z =
∑

T

ρ (T ) (1)

In all the work conducted so far the topology of the lattice has been restricted to the
sphere Sd. The weight function ρ (T ) is taken to be of the form

ρ (T ) = e−κdNd+κ0N0 (2)

The coupling κd represents a bare lattice cosmological constant conjugate to the total
volume (number of d-simplices Nd) whilst κ0 plays the role of a bare Newton constant
coupled to the total number of nodes N0.

We can rewrite eqn. 1 by introducing the entropy function Ωd (Nd, κ0) which counts the
number of triangulations with volume Nd weighted by the node term. This the primary
object of interest in this note.

Z =
∑

Nd

Ωd (Nd, κ0) e−κdNd (3)

For this partition sum to exist it is crucial that the entropy function Ωd increase no
faster than exponentially with volume. For two dimensions this is known [10] but until
recently the only evidence for this in higher dimensions came from numerical simulation.
Indeed for four dimensions there is some uncertainty in the status of this bound [11, 12, 8].

With this in mind we have conducted a high statistics study of the three dimensional
model at κ0 = 0, extending the simulations reported in [13] by an order of magnitude
in lattice volume. While in the course of preparing this manuscript we received a paper
[14] in which an argument for the bound in three dimensions is given. Whilst we observe
a rather slow approach to the asymptotic, large volume limit, our results are entirely
consistent with the existence of such a bound. However, the predicted variation of the
mean node number with volume is not seen, rather the data supports a rather slow power
law approach to the infinite volume limit.

If we write Ω3 (N3) as

Ω3 (N3) = aeκc

3
(N3)N3 (4)

the effective critical cosmological constant κc
3 is taken dependent on the volume and a

bound implies that κc
3 → const < ∞ as N3 → ∞. In contrast for a model where the

entropy grew more rapidly than exponentially κc
3 would diverge in the thermodynamic

limit.
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To control the volume fluctuations we add a further term to the action of the form δS =
γ (N3 − V )2. Lattices with N3 ∼ V are distributed according to the correct Boltzmann

weight up to correction terms of order O
(

1
√

γV

)

where we use γ = 0.005 in all our runs.

This error is much smaller than our statistical errors and can hence be neglected.
Likewise, as a first approximation, we can set κc

3 equal to its value at the mean of the
volume distribution V which allows us to compute the expectation value of the volume
exactly since the resultant integral is now a simple gaussian. We obtain

〈N3〉 =
1

2γ

(

κ3
3 (V ) − κ3

)

+ V (5)

Equally, by measuring the mean volume 〈N3〉 for a given input value of the coupling κ3

we can estimate κc
3 (V ) for a set of mean volumes V . The algorithm we use to generate a

Monte Carlo sample of three dimensional lattices is described in [15]. We have simulated
systems with volumes up to 128000 3-simplices and using up to 400000 MC sweeps (a
sweep is defined as V attempted elementary updates of the triangulation where V is the
average volume).

Our results for κc
3 (V ), computed this way, are shown in fig. 1 as a function of lnV .

The choice of the latter scale is particularly apt as the presence of a factorial growth in
Ω3 would be signaled by a logarithmic component to the effective κc

3 (V ). As the plot
indicates there is no evidence for this. Indeed, the best fit we could make corresponds to
a convergent power law

κc
3 (V ) = κc

3 (∞) + aV −δ (6)

If we fit all of our data we obtain best fit parameters κc
3 (∞) = 2.087(5), a = −3.29(8)

and δ = 0.290(5) with a corresponding χ2 per degree of freedom χ2 = 1.3 at 22% confidence
(solid line shown). Leaving off the smallest lattice V = 500 yields a statistically consistent
fit with an even better χ2 = 1.1 at 38% confidence. We have further tested the stability
of this fit by dropping either the small volume data (V = 500 − 2000 inclusive), the large
volume data (V = 64000−128000 inclusive) or intermediate volumes (V = 8000−24000).
In each of these cases the fits were good and yielded fit parameters consistent with our
quoted best fit to all the data. Furthermore, these numbers are consistent with the earlier
study [13]. We are thus confident that this power law is empirically a very reasonable
parameterisation of the approach to the thermodynamic limit. Certainly, our conclusions
must be that the numerical data strongly favour the existence of a bound.

One might object that the formula used to compute κc
3 is only approximate (we have

neglected the variation of the critical coupling over the range of fluctuation of the volumes).
This, in turn might yield finite volume corrections which are misleading. To check for this
we have extracted κc

3 directly from the measured distribution of 3-volumes Q (N3). To do
this we computed a new histogram P (N3)

P (N3) = Q (N3) eκ3N3+γ(N3−V )2 (7)

As an example we show in fig. 2 the logarithm of this quantity as a function of volume
for V = 64000. The gradient of the straight line fit shown is an unbiased estimator of
the critical coupling κc

3 (64000). The value of 1.9516(10) compares very favourably with
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the value κc
3 (64000) = 1.9522(12) obtained using eqn. 5. Indeed, this might have been

anticipated since we might expect corrections to eqn. 5 to be of magnitude O
(

V −(1+δ)
)

which even for the smallest volumes used in this study is again much smaller than our
statistical errors.

In addition to supplying a proof of the exponential bound in [14] Boulatov also con-
jectures a relation between the mean node number and volume in the crumpled phase of
the model (which includes our node coupling κ0 = 0). This has the form

〈N0/V 〉 = c1 + c2
ln(V )

V
(8)

Our data for this quantity are shown in fig. 3. Whilst it appears that the mean
coordination may indeed plateau for large volumes the approach to this limit seems not
to be governed by the corrections envisaged in eqn. 8 – it is simply impossible to fit the
results of the simulation with this functional form. Indeed, the best fit we could obtain
corresponds again to a simple converging power with small exponent 〈N0/V 〉 ∼ b + cV −d.
The fit shown corresponds to using all lattices with volume V ≥ 8000 and yields b =
0.0045(1), c = 1.14(2) and power d = 0.380(3) (χ2 = 1.6). Fits to subsets of the large
volume data yield consistent results.

Finally, we show in fig. 4, a plot of the mean intrinsic size of the ensemble of simplicial
graphs versus their volume. This quantity is just the average geodesic distance (in units
where the edge lengths are all unity) between two randomly picked sites. The solid line is
an empirical fit of the form

L3 = e + f (ln V )g (9)

Clearly, the behaviour is close to logarithmic (as appears also to be the case in four
dimensions [7]), the exponent g = 1.047(3) from fitting all the data (χ2 = 1.7 per degree
of freedom). This is indicative of the crumpled nature of the typical simplicial manifolds
dominating the partition function at this node coupling. It is tempting to speculate that
the true behaviour is simply logarithmic and the deviation we are seeing is due to residual
finite volume effects.

Alternatively, we can fit the data as a linear combination of the form

L3 = e + f lnV + g ln ln V (10)

This gives a competitive fit with e = −1.45(4), f = 1.438(4) and g = −0.55(3) with
χ2 = 1.6. One might be tempted to favour this fit on the grounds that it avoids the
problem of a power close to but distinct from unity. However, the situation must remain
ambiguous without further theoretical insight.

To summarise this brief note we have obtained numerical results consistent with the
existence of an exponential bound in a dynamical triangulation model of three dimensional
quantum gravity. Thus, practical numerical studies can reveal the bound argued for in
[14]. Our results also favour the existence of a finite (albeit large ∼ 200) mean coordination
number in the infinite volume limit in the crumpled phase. However, the nature of the
finite volume corrections to the latter appear very different from those proposed in [14].
Indeed, both for the critical coupling and mean coordination number we observe large
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power law corrections with small exponent. Finally, we show data for the scaling of the
mean intrinsic extent with volume which suggests a very large (possible infinite) fractal
dimension for the typical simplicial manifolds studied.

This work was supported, in part, by NSF grant PHY 92-00148. Some calculations
were performed on the Florida State University Cray YMP.
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Figure 1: Critical coupling vs volume
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Figure 2: Modified distribution of 3-volumes
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