View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Syracuse University Research Facility and Collaborative Environment

Syracuse University

SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1999

mpiJava 1.2: API Specification

Bryan Carpenter
Syracuse University, dbc@npac.syr.edu

Geoffrey C. Fox
Syracuse University

Sung-Hoon Ko
Syracuse University

Sang Lim
Syracuse University, slim@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

b Part of the Programming Languages and Compilers Commons

Recommended Citation

Carpenter, Bryan; Fox, Geoffrey C.; Ko, Sung-Hoon; and Lim, Sang, "mpiJava 1.2: API Specification" (1999).
Northeast Parallel Architecture Center. 66.

https://surface.syr.edu/npac/66

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized administrator
of SURFACE. For more information, please contact surface@syr.edu.

https://core.ac.uk/display/215690955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/66?utm_source=surface.syr.edu%2Fnpac%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

mpiJava 1.2: API Specification

Bryan Carpenter, Geoffrey For,
Sung-Hoon Ko, Sang Lim

CRPC-TR99804
September 1999

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted November 1999

mpiJava 1.2: API Specification

Bryan Carpenter, Geoffrey Fox,
Sung-Hoon Ko, Sang Lim

Northeast Parallel Architectures Centre,
Syracuse University,
111 College Place,
Syracuse, New York 13244-410
{dbc, gcf,shko,slim}npac.syr.edu

This document defines the API of mpiJava, a Java language binding for
MPI 1.1. The document is not a standalone specification of the behaviour of
MPI—it is meant to be read in conjunction with the MPI standard document
[2]. Subsections are laid out in the same way as in the standard document, to
allow cross-referencing. Where the mpiJava binding makes no significant change
to a particular section of the standard document, we will just note here that
there are no special issues for the Java binding. This does not mean that the
corresponding section of the standard is irrelevant to the Java binding—it may
mean it is 100% relevant! Where practical the APT is modelled on the MPI
C++ interface defined in the MPI standard version 2.0 [3].

Changes to the mpiJava 1.1 interface:

The MPI.0BJECT basic type has been added.
The interface for MPI.Buffer detach has been corrected.
The API of User_function has been changed.

Attributes cached in communicators are now assumed to have integer val-
ues. Attr_put and Attr_delete have been removed.

The interface to Cartcomm.dimsCreate has been corrected.

Errorhandler set, Errorhandler _get have changed from static members
of MPI to instance methods on Comm.

The method Is_null has been added to class Comm.

The initialization method MPI.Init now returns the command line argu-
ments set by MPI.

MPT exception classes are now specified to be subclasses of MPIException
rather than I0Exception. Methods are now declared to throw MPIExcept-
ion (see section 8).

The current API is viewed as an interim measure. Further significant changes
are likely to result from the efforts of the Message-passing working group of the
Java Grande Forum.

Contents
1 Introduction to MPI

2 MPI Terms and Conventions

2.1 Document Notation
2.2 Procedure Specificationo
2.3 Semantictermso
24 Datatypes
2.5 Language Binding oo,
2.6 Processes
2.7 ErrorHandling
Point-to-Point Communication

3.1 Imtroduction.
3.2 Blocking Send and Receive operations
3.3 Data type matching and data conversion
3.4 Communication Modes
3.5 Semantics of point-to-point communication
3.6 Buffer allocation and usage
3.7 Nomnblocking communication L.
3.8 Probeand Cancel
3.9 Persistent communication requestso L.
3.10 Send-receiveol o e e e e
3.11 Null processes o o i i it e e
3.12 Derived datatypes e
3.13 Packand unpack Lo oo oo
Collective Communication

4.1 Introduction and Overview
4.2 Communicator argument L.
4.3 Barrier synchronization
44 Broadcast e e e e
4.5 Gather e
4.6 Scatter
4.7 Gather-to-all L
4.8 All-to-All Scatter/Gather
4.9 Global Reduction Operations
4.10 Reduce-Scatter
411 Scan e e e e e e e
4.12 Correctness v . o i e e e e e e e e e e e

Groups, Contexts and Communicators

5.1 Introduction
5.2 Basic Concepts
5.3 Group Management
5.4 Communicator Management
5.5 Motivating Examples oL oL,
5.6 Inter-Communication
57 Caching e
Process Topologies

6.1 Introduction.
6.2 Virtual Topologies
6.3 Embeddingin MPI
6.4 Overview of the Functions
6.5 Topology Constructors oo
MPI Environmental Management

7.1 Implementation information
7.2 FError handling
7.3 Errorcodesandclasses.
74 Timers o
7.5 Startup e e
Full public interface of classes

81 MPI. i e e e e e e e e e e
82 Comm e
8.3 Intracommand Intercomm.o oo ..
84 Dp . . e
85 Group
86 Status.
8.7 Requestand Prequest.
88 Datatype e
8.9 Classes for virtual topologies

1 Introduction to MPI

Evidently, this document adds Java to the C and Fortran bindings defined in
the MPI standard. Otherwise no special issues for the Java binding.

2 MPI Terms and Conventions

2.1 Document Notation

No special issues for Java binding.

2.2 Procedure Specification

In general we use italicized names to refer to entities in the MPI language inde-
pendent procedure definitions, and typewriter font for concrete Java entities.

As a rule Java argument names are the same as the corresponding language
independent names. In instance methods of Comm, Status, Request, Datatype,
Op or Group (and subclasses), the class instance generally stands for the ar-
gument called comm, status, request, datatype, op or group, respectively in the
language independent procedure definition.

2.3 Semantic terms

No special issues for Java binding.

2.4 Data types

Opaque objects are presented as Java objects. This introduces the option of
simplifying the user’s task in managing these objects. MPI destructors can
be absorbed into Java object destructors, which are called automatically by the
Java garbage collector. We adopt this strategy as the general rule. Explicit calls
to MPI destructor functions are typically omitted from the Java user interface
(they are absorbed into finalize methods). Exceptions are made for the Comm
and Request classes. MPI. COMM_FREEF is a collective operation, so the user
must ensure that calls are made at consistent times by all processors involved—
the call can’t be left to the vagaries of the garbage collector. A similar case can
be made for MPI REQUEST_FREE.

2.5 Language Binding

Naming Conventions All MPI classes belong to the package mpi. Conven-
tions for capitalization, etc, in class and member names generally follow the
C++ MPI bindings.

Restrictions on struct derived type. Some options allowed for derived
data types in the C and Fortran binding are deleted in mpiJava. The Java
VM does not incorporate a concept of a global linear address space. Pass-
ing physical addresses to data type definitions is not allowed. The use of
the MPI_TYPE_STRUCT datatype constructor is also restricted in a way that

makes it impossible to send mixed basic datatypes in a single message. Since,
however, the set of basic datatypes recognised by MPI is extended to include
serializable Java objects, this should not be a serious restriction in practice.

Multidimensional arrays and offsets. The C and Fortran languages define
a straightforward mapping (or “sequence association”) between their multidi-
mensional arrays and equivalent one-dimensional arrays. So in C or Fortran
a multidimensional array passed as a message buffer argument is first inter-
preted as a one-dimensional array with the same element type as the original
multidimensional array. Offsets in the buffer (such as offsets occuring in de-
rived data types) are then interpretted in terms of the effective one-dimensional
array (or—equivalent up to a constant factor—in terms of physical memory).
In Java the relationship between multidimensional arrays and one dimensional
arrays is different. An “n-dimensional array” is equivalent to a one-dimensional
array of (n — 1)-dimensional arrays. In mpiJava, message buffers are always
one-dimensional arrays. The element type may be an object, which may have
array type. Hence multidimensional arrays can appear as message buffers, but
the interpretation is subtly different. In distinction to the C or Fortran case
offsets in multidimensional message buffers are always interpretted as offsets in
the outermost one-dimensional array.

Start of message buffer. C and Fortran both have devices for treating a
section of an array, offset from the beginning of the array, as if it was an array
in its own right. Java doesn’t have any such mechanism. To provide the same
flexibility, an offset parameter is associated with any buffer argument. This
defines the position of the first actual buffer element in the Java array.

Error codes. Unlike the standard C and Fortran interfaces, the mpiJava
interfaces to MPI calls do not return explicit error codes. The Java exception
mechanism will be used to report errors.

Rationale. The exception mechanism is very widely used by Java li-
braries. It is inconvenient to use up the single return value of a Java
function with an error code. (Java doesn’t allow function arguments to be
passed by reference, so returning multiple values tends to be more clumsy
than in other languages.) (End of rationale.)

Multiple return values. A few functions in the MPI interface return multi-
ple values, even after the error code is eliminated. This is dealt with in mpiJava
in various ways. Sometimes an MPI function initializes some elements in an
array and also returns a count of the number of elements modified. In Java
we typically return an array result, omitting the count. The count can be ob-
tained subsequently from the length member of the array. Sometimes an MPI

function initializes an object conditionally and returns a separate flag to say if
the operation succeeded. In Java we typically return an object reference which
is null if the operation fails. Occasionally extra internal state is added to an
existing MPI class to hold extra results—for example the Status class has ex-
tra state initialized by functions like Waitany to hold the indexr value. Rarely
none of these methods work and we resort to defining auxilliary classes to hold
multiple results from a particular function.

Array count arguments. The mpiJava binding often omits array size argu-
ments, because they can be picked up within the function by reading the length
member of the array argument. A major exception is for message buffers, where
an explicit count is always given.

Rationale. In the mpiJava, message buffers have explicit offset and
count arguments whereas other kinds of array argument typically do not.
Message buffers aside, typical array arguments to MPI functions (eg, vec-
tors of request structures) are small arrays. If subsections of these must be
passed to an MPI function, the sections can be copied to smaller arrays
at little cost. In contrast message buffers are typically large and copy-
ing them is expensive, so it is worthwhile to pass the extra arguments.
Also, if derived data types are being used, the required value of the count
argument is always different to the buffer length. (End of rationale.)

Concurrent access to arrays. In JNI-based wrapper implementations it
may be necessary to impose some non-interference rules for concurrent read and
write operations on arrays. When an array is passed to an MPI method such
as a send or receive operation, the wrapper code will probably extract a pointer
to the contents of the array using a JNI Get. ..ArrayElements routine. If the
garbage collector does not support “pinning” (temporarily disabling run-time
relocation of data for specific arrays—see [1] for more discussion), the pointer
returned by this Get function may be to a temporary copy of the elements.
The copy will be written back to the true Java array when a subsequent call to
Release...ArrayElements is made. If two operations involving the same array
are active concurrently, this copy-back may result in failure to save modifications
made by one or more of the concurrent calls.

Such an implementation may have to enforce a safety rule such as: when
several MPI send or receive (etc) operations are active concurrently, if any one
of those operations writes to a particular array, none of the other operations
must read or write any portion of that array.

If the garbage collector supports pinning, this problem does not arise.

2.6 Processes

No special issues for Java binding.

2.7 Error Handling

As explained in section 2.5, the Java methods do not return error codes. The
Java exceptions thrown instead are defined in section 7.3.

3 Point-to-Point Communication

3.1 Introduction

In general the mpiJava binding of point-to-point communication operations re-
alizes the MPI functions as methods of the Comm class. The basic point-to-point
communication operations are send and receive. Their use is illustrated in the
example below.

import mpi.* ;

class Hello {
static public void main(String[] args) throws MPIException {
MPI.Init(args) ;

int myrank = MPI.COMM_WORLD.Rank() ;
if (myrank == 0) {

char [] message = "Hello, there".toCharArray() ;
MPI.COMM_WORLD.Send(message, O, message.length, MPI.CHAR, 1, 99) ;
}
else {

char [] message = new char [20] ;
MPI.COMM_WORLD.Recv(message, O, 20, MPI.CHAR, 0, 99) ;
System.out.println("received:" + new String(message) + ":")

}

MPI.Finalize();

3.2 Blocking Send and Receive operations

void Comm.Send(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

Blocking send operation. Java binding of the MPI operation MPI_SEND. The
data part of the message consists of a sequence of count values, each of the type
indicated by datatype. The actual argument associated with buf must be an

10

array. The value offset is a subscript in this array, defining the position of the
first item of the message.

The elements of buf may have primitive type or class type. If the elements
are objects, they must be serializable objects. If the datatype argument repre-
sents an MPI basic type, its value must agree with the element type of buf: the
basic MPI datatypes supported, and their correspondence to Java types, are as
follows

MPI datatype Java datatype
MPLBYTE byte
MPI.CHAR char
MPI.SHORT short
MPI.BOOLEAN | boolean
MPLINT int
MPILONG long
MPI.FLOAT float
MPI.DOUBLE double
MPI.OBJECT Object

If the datatype argument represents an MPI derived type, its base type must
agree with the element type of buf (see section 3.12).

Rationale. The datatype argument is not redundant in mpiJava, be-
cause we include support for MPI derived types. If it was decided to
remove derived types from the API, datatype arguments could be re-
moved from various functions, and Java runtime inquiries could be used
internally to extract the element type of the buffer, or methods like Send
could be overloaded to accept buffers with elements of the 9 basic types.
(End of rationale.)

If a data type has MPI.0BJECT as its base type, the objects in the buffer will be
transparently serialized and unserialized inside the communication operations.

Status Comm.Recv(Object buf, int offset, int count,
Datatype datatype, int source, int tag)

buf receive buffer array

offset initial offset in receive buffer

count number of items in receive buffer
datatype datatype of each item in receive buffer
source rank of source

tag message tag

returns: status object

11

Blocking receive operation. Java binding of the MPI operation MPI_.RECYV.
The actual argument associated with buf must be an array. The value offset
is a subscript in this array, defining the position into which the first item of the
incoming message will be copied.

The elements of buf may have primitive type or class type. If the datatype
argument represents an MPI basic type, its value must agree with the element
type of buf; if datatype represents an MPI derived type, its base type must
agree with the element type of buf (see section 3.12).

The MPI constants MPI_ ANY_SOURCE and MPI_ ANY_TAG are available
as MPI.ANY_SOURCE and MPI.ANY_TAG.

The source and tag of the received message are available in the publically
accessible source and tag fields of the returned object. The following method
can be used to further interrogate the return status of a receive operation.

int Status.Get_count(Datatype datatype)

datatype datatype of each item in receive buffer

returns: number of received entries

Java binding of the MPI operation MPI. GET_COUNT.

3.3 Data type matching and data conversion

The Java language definition places quite detailed constraints on the represen-
tation of its primitive types—for example it requires conformance with IEEE
754 for float and double. There may still be a requirement for representa-
tion conversion in heterogenous systems. For example, source and destination
computers (or virtual machines) may have different endianess.

3.4 Communication Modes

void Comm.Bsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

Send in buffered mode. Java binding of the MPI operation MPI_BSEND. Fur-
ther comments as for send.

12

void Comm.Ssend(0Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

Send in synchronous mode. Java binding of the MPI operation MPI_SSEND.
Further comments as for send.

void Comm.Rsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

Send in ready mode. Java binding of the MPI operation MPI_RSEND. Further
comments as for send.

3.5 Semantics of point-to-point communication

No special issues for Java binding.

3.6 Buffer allocation and usage

void MPI.Buffer_attach(byte [] buffer)

buffer buffer array
Provides to MPI a buffer in user’s memory to be used for buffering outgoing

messages. Java binding of the MPI operation MPI_ BUFFER_ATTACH.

byte [] MPI.Buffer_detach()

13

returns: buffer array

Detach the buffer currently associated with MPI and return it. Java binding of
the MPI operation MPI_ BUFFER_DETACH. If the currently associated buffer
is system-defined, returns null.

The MPI constant MPI. BSEND_OVERHFEAD is available as MPT.BSEND_-
OVERHEAD.

3.7 Nonblocking communication

Nonblocking communications use methods of the Request class to identify com-
munication operations and match the operation that initiates the communica-
tion with the operation that terminates it.

Request Comm.Isend(0Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

returns: communication request

Start a standard mode, nonblocking send. Java binding of the MPI operation
MPI_ISEND. Further comments as for send.

Request Comm.Ibsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

returns: communication request

Start a buffered mode, nonblocking send. Java binding of the MPI operation
MPI_IBSEND. Further comments as for send.

14

Request Comm.Issend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

returns: communication request

Start a synchronous mode, nonblocking send. Java binding of the MPTI operation
MPI_ISSEND. Further comments as for send.

Request Comm.Irsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

returns: communication request

Start a ready mode, nonblocking send. Java binding of the MPI operation
MPI_IRSEND. Further comments as for send.

Request Comm.Irecv(0Object buf, int offset, int count,
Datatype datatype, int source, int tag)

buf receive buffer array

offset initial offset in receive buffer

count number of items in receive buffer
datatype datatype of each item in receive buffer
source rank of source

tag message tag

returns: communication request

15

Start a nonblocking receive. Java binding of the MPI operation MPI_IRECYV.
Further comments as for recv.

The following functions are used to complete nonblocking communication op-
erations (and also communications started using the persistent communication
requests—subclass Prequest—introduced later). We use the following termi-
nology. A request is “active” if it is associated with an ongoing communication.
Otherwise it is inactive. An inactive instance of the base class Request is called
a “void request”. (Note, however, that an inactive instance of the Prequest
subclass is not said to be “void”, because it retains detailed information about
a communication pattern even when no corresponding communication is ongo-

ing.)

Rationale. A “void request” corresponds to what is called a “null han-
dle” in the C and Fortran MPI bindings. It seems impractical to have
completion operations like wait set request object references to null ref-
erences in the Java sense (because Java methods cannot directly modify
references passed to them as arguments). To avoid a confusing semantic
distinction between null MPI handles and null Java references we intro-
duce the terminology of a “void request object”. If an explicit reference
to a void request is needed, one is available as MPI.REQUEST.NULL. The
inquiry Request.Is null can be used to determine if a particular request
is void. (End of rationale.)

Status Request.Wait()

returns: status object
Blocks until the operation identified by the request is complete. Java binding
of the MPI operation MPI_WAIT. After the call returns, the request object
becomes inactive.
Status Request.Test()

returns: status object or null reference
Returns a status object if the operation identified by the request is complete,
or a null reference otherwise. Java binding of the MPI operation MPI_TEST.

After the call, if the operation is complete (ie, if the return value of test is
non-null), the request object becomes an inactive request.

boolean Request.Is_null()

16

returns: true if the request object is void, false otherwise

Note that Isnull is always false on instances of the subclass Prequest.

void Request.Free()

Set the request object to be void. Java binding of the MPI operation MPT_REQ-
UEST_FREE.

static Status Request.Waitany(Request [] array_of_requests)

array_of requests array of requests

returns: status object

Blocks until one of the operations associated with the active requests in the
array has completed. Java binding of the MPI operation MPI WAITANY. The
index in array of requests for the request that completed can be obtained
from the status object from the publically accessible Status.index field. The
corresponding element of array_of_requests becomes inactive.

The array_of _requests may contain inactive requests. If the list contains
no active requests, the method immediately returns a status in which the index
field is MPI.UNDEFINED.

static Status Request.Testany(Request [] array_of_requests)

array of requests array of requests

returns: status object or null reference

Tests for completion of either one or none of the operations associated with
active requests. Java binding of the MPI operation MPI_ TESTANY. If some
request completed, the index in array of requests of that request can be ob-
tained from the status object through the Status.index field. The correspond-
ing element of array_of requests becomes inactive. If no request completed,
testAny returns a null reference.

The array_of requests may contain inactive requests. If the list contains
no active requests, the method immediately returns a status in which the index
field is MPI.UNDEFINED.

static Status [] Request.Waitall(Request [] array_of_requests)

17

array_of _requests array of requests

returns: array of status objects

Blocks until all of the operations associated with the active requests in the array
have completed. Java binding of the MPI operation MPI. WAITALL. The result
array will be the same size as array of requests. On exit, requests become
inactive. If the input value of array_of requests contains any inactive requests,
corresponding elements of the result array will contain null status references.

static Status [] Request.Testall(Request [] array_of_requests)

array_of requests array of requests

returns: array of status objects, or a null reference

Tests for completion of all of the operations associated with active requests. Java
binding of the MPI operation MPI_TESTALL. If all operations have completed,
the exit values of the argument array and the result array are as for Waitall.
If any operation has not completed, the result value is null and no element of
the argument array is modified.

static Status [] Request.Waitsome(Request [] array_of_requests)

array_of requests array of requests

returns: array of status objects

Blocks until at least one of the operations associated with the active requests in
the array has completed. Java binding of the MPI operation MPI. WAITSOME.
The size of the result array will be the number of operations that completed. The
index in array_of _requests for each request that completed can be obtained
from the index field of the returned status objects. The corresponding elements
in array_of requests become inactive.

If array of requests list contains no active requests, testAll immediately
returns a null reference.

static Status [] Request.Testsome(Request [] array_of_requests)

array_of requests array of requests

returns: array of status objects

18

Behaves like waitSome, except that it returns immediately. Java binding of the
MPI operation MPI_TESTSOME. If no operation has completed, Testsome re-
turns an array of length zero and elements of array_of _requests are unchanged.
Otherwise, arguments and return value are as for Waitsome.

3.8 Probe and Cancel

Status Comm.Iprobe(int source, int tag)

source source rank
tag tag value

returns: status object or null reference

Check if there is an incoming message matching the pattern specified. Java
binding of the MPI operation MPI IPROBE. If such a message is currently
available, a status object similar to the return value of a matching Recv opera-
tion is returned. Otherwise a null reference is returned.

Status Comm.Probe(int source, int tag)

source source rank
tag tag value

returns: status object or null reference
Wait until there is an incoming message matching the pattern specified. Java
binding of the MPI operation MPI_PROBE. Returns a status object similar to
the return value of a matching Recv operation.
void Request.Cancel()
Mark a pending nonblocking communication for cancellation. Java binding of
the MPI operation MPI_.CANCEL.
boolean Status.Test_cancelled()

returns: true if the operation was succesfully cancelled, false otherwise

Test if communication was cancelled. Java binding of the MPI operation MPI_-
TEST_-CANCELLED.

19

3.9 Persistent communication requests

Prequest Comm.Send_init(Object buf, int offset, int count,

buf
offset
count
datatype
dest

tag

returns:

Datatype datatype, int dest, int tag)

send buffer array

initial offset in send buffer

number of items to send

datatype of each item in send buffer
rank of destination

message tag

persistent communication request

Creates a persistent communication request for a standard mode send. Java
binding of the MPI operation MPI_SEND_INIT. Further comments as for Send.

Prequest Comm.Bsend_init(Object buf, int offset, int count,

buf
offset
count
datatype
dest

tag

returns:

Datatype datatype, int dest, int tag)

send buffer array

initial offset in send buffer

number of items to send

datatype of each item in send buffer
rank of destination

message tag

persistent communication request

Creates a persistent communication request for a buffered mode send. Java bind-
ing of the MPI operation MPI_BSEND_INIT. Further comments as for Send.

Prequest Comm.Ssend_init(Object buf, int offset, int count,

buf
offset
count
datatype
dest

tag

returns:

Datatype datatype, int dest, int tag)

send buffer array

initial offset in send buffer

number of items to send

datatype of each item in send buffer
rank of destination

message tag

persistent communication request

20

Creates a persistent communication request for a synchronous mode send. Java
binding of the MPI operation MPI_.SSEND_INIT. Further comments as for Send.

Prequest Comm.Rsend_init(Object buf, int offset, int count,

buf
offset
count
datatype
dest

tag

returns:

Datatype datatype, int dest, int tag)

send buffer array

initial offset in send buffer

number of items to send

datatype of each item in send buffer
rank of destination

message tag

persistent communication request

Creates a persistent communication request for a ready mode send. Java binding
of the MPI operation MPI_RSEND_INIT. Further comments as for Send.

Prequest Comm.Recv_init(Object buf, int offset, int count,

buf
offset
count
datatype
source
tag

returns:

Datatype datatype, int source, int tag)

receive buffer array

initial offset in receive buffer

number of items in receive buffer
datatype of each item in receive buffer
rank of source

message tag

persistent communication request

Creates a persistent communication request for a receive operation. Java bind-
ing of the MPI operation MPI_RECV_INIT. Further comments as for Recv.

void Prequest.Start()

Activate a persistent communication request. Java binding of the MPI operation
MPI START. The communication is completed by using the request in one of the
operations Request.Wait, Request.Test, Request.Waitany, Request.Test-
any, Request.Waitall, Request.Testall, Request.Waitsome, or Request.-
Testsome. On successful completion the request becomes inactive again. It can
be reactivated by a further call to Start.

static void Prequest.Startall(Prequest [] array_of_requests)

21

array_of requests array of persistent communication requests

Activate a list of communication requests. Java binding of the MPI operation
MPI_STARTALL.

3.10 Send-receive

Status Comm.Sendrecv(Object sendbuf, int sendoffset,

int sendcount, Datatype sendtype,
int dest, int sendtag,

Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype,
int source, int recvtag)

sendbuf send buffer array

sendoffset initial offset in send buffer
sendcount number of items to send

sendtype datatype of each item in send buffer
dest rank of destination

sendtag send tag

recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of items in receive buffer
recvtype datatype of each item in receive buffer
source rank of source

recvtag receive tag

returns: status object

Execute a blocking send and receive operation. Java binding of the MPI oper-
ation MPI_SENDRECYV. Further comments as for Send and Recv.

Status Comm.Sendrecv_replace(0Object buf, int offset,
int count, Datatype datatype,
int dest, int sendtag,
int source, int recvtag)

22

buf buffer array

offset initial offset in buffer

count number of items to send
datatype datatype of each item in buffer
dest rank of destination

sendtag send tag

source rank of source

recvtag receive tag

returns: status object

Execute a blocking send and receive operation, receiving message into send
buffer. Java binding of the MPI operation MPI. SENDRECV_REPLACE. Fur-
ther comments as for send and recv.

3.11 Null processes

The constant MPI_PROC_-NULL is available as MPI.PROC_NULL.

3.12 Derived datatypes

In C or Fortran bindings of MPI, derived datatypes have two roles. One is to
allow messages to contain mixed types (for example they allow an integer count
followed by a sequence of real numbers to be passed in a single message). The
other is to allow noncontiguous data to be transmitted. In mpiJava the first
role is abandoned. Any derived type can only include elements of a single basic

type.

Rationale. In the C binding of MPI, for example, the MPI.TYPE._-
STRUCT constructor for derived types might be used to describe the
physical layout of a struct containing mixed types. This will not work
in Java, because Java does not expose the low-level layout of its objects.
In C and Fortran another use of MPI_TYPE_STRUCT involves incorpo-
rating offsets computed as differences between absolute addresses, so that
parts of a message can come from separately declared entities. It might be
possible to contrive something analogous in a Java binding, somehow en-
coding object references instead of physical addresses. Such a contrivance
is unlikely to be very natural-—even in C and Fortran the mechanism is not
particularly elegant. Meanwhile, the effect of either of these applications of
MPI_.TYPE_STRUCT can be achieved by using MPI.0BJECT as the buffer
type, and relying on Java object serialization. (End of rationale.)

This leaves description of noncontiguous buffers as the essential role for derived
data types in mpiJava.

23

Every derived data type constructable in mpiJava has a uniquely defined
base type. This is one of the 9 basic types enumerated in section 3.2. Derived
types inherit their base types from their precursors in a straightforward way.

In mpiJava a general datatype is an object that specifies two things

e A base type
e A sequence of integer displacements

In contrast to the C and Fortran bindings the displacements are in terms of
subscripts in the buffer array argument, not byte displacements.
The base types for the predefined MPI datatypes are

MPI datatype base type

MPIL.BYTE byte
MPI.CHAR char
MPI.SHORT short
MPI.BOOLEAN | boolean
MPIINT int
MPI.LONG long
MPI.FLOAT float

MPI.DOUBLE double
MPI.OBJECT Object
MPI.LB L
MPI.UB i
MPI.PACKED byte

The symbol L is a special undefined value. The displacement sequences for the
predefined types (other than MPI.LB, MPI.UB) consist of a single zero.
If the displacement sequence of a datatype is

DispSeq = {dispq; - - ., disp,_1}

we define
Ib(DispSeq) = mjin disp;,
ub(DispSeq) = mjax(dispj +1), and
extent(DispSeq) = ub(DispSeq) — Ib(DispSeq)

Rationale. This definition of the extent differs from the definition in the
C or Fortran. It is in units of the buffer array index, not in units of bytes.
(End of rationale.)

As discussed at the end of this section, these definitions have to be modified if
the type construction involves MPI.LB, MPI.UB.

24

static Datatype Datatype.Contiguous(int count, Datatype oldtype)

count replication count
oldtype old datatype

returns: new datatype

Construct new datatype representing replication of the old datatype into con-
tiguous locations. Java binding of the MPI operation MPI_.TYPE_CONTIG-
UOUS. The base type of the new datatype is the same as the base type of the
old type. Assume the displacement sequence of the old type is

{dispg, ..., disp,_1}
with extent ex. Then the new datatype has a displacement sequence with count
- n entries defined by:
{ dispy,...,disp,_1,
dispy + ez, ..., disp,_4 + ex,

*

dispy + ex - (count — 1), ..., disp,,_, + ex - (count — 1) }

static Datatype Datatype.Vector(int count,
int blocklength, int stride,
Datatype oldtype)

count number of blocks

blocklength number of elements in each block

stride number of elements between start of each block
oldtype old datatype

returns: new datatype

Construct new datatype representing replication of the old datatype into loca-
tions that consist of equally spaced blocks. Java binding of the MPI operation
MPI TYPE_VECTOR. The base type of the new datatype is the same as the
base type of the old type. Assume the displacement sequence of the old type is

{dispy, - .., disp,,_1}

with extent exz. Let bl be blocklength. Then the new datatype has a displace-
ment sequence with count - bl - n entries defined by:

{ dispg,...,disp,,_4,

25

dispy + ez, . .., disp,_; + ez,

.y

dispy + ex- (b1 —1),...,disp,,_; + ex- (bl — 1),

dispy + ex- stride,..., disp, ; + ex- stride,
dispy + ex- (stride+1),..., disp,,_{ + ex- (stride + 1),

]

dispy + ez - (stride+bl —1),...,disp,,_; + ez (stride + bl — 1),

dispy + ez - stride- (count — 1),..., disp,,_; + ex- stride - (count — 1),
dispy + ex - (stride - (count — 1) +1),...,
disp,,_; + ex- (stride - (count — 1) + 1),
ey
dispy + ex - (stride - (count — 1) + bl —1),...,
disp,,_, + ex- (stride- (count — 1) + b1 —1) }

static Datatype Datatype.Hvector(int count,
int blocklength, int stride,
Datatype oldtype)

count number of blocks

blocklength number of elements in each block

stride number of elements between start of each block
oldtype old datatype

returns: new datatype

Identical to Vector except that the stride is expressed directly in terms of the
buffer index, rather than the units of the old type. Java binding of the MPI
operation MPI_TYPE_HVECTOR. Unlike other language bindings, the value of
stride is mot measured in bytes. The displacement sequence of the new type
is:

{ dispg,...,disp,_1,
dispy + ez, ..., disp,,_; + ex,

)

dispy + ex- (b1 —1),...,disp,,_; + ex- (b1 — 1),

26

dispy + ex - stride,..., disp,,_; + stride,
dispy + stride + ex, ..., disp,_, + stride + ez,

-y

dispy + stride + ex- (bl — 1),...,disp,,_; + stride + ez- (b1 — 1),

dispy + stride - (count — 1),..., disp,,_; + stride - (count — 1),
disp, + stride - (count — 1) + ex, ...,
disp,,_, + stride - (count — 1) + ez,
e
dispy + stride - (count — 1) + ez - (b1 —1),...,
disp,,_, + stride- (count — 1)+ ez- (b1 —1) }

static Datatype Datatype.Indexed(int [] array_of_blocklengths,
int [] array_of_displacements,
Datatype oldtype)

array_of_blocklengths number of elements per block
array_of displacements displacement of each block in units of old type
oldtype old datatype

returns: new datatype

Construct new datatype representing replication of the old type into a sequence
of blocks where each block can contain a different number of copies and have
a different displacement. Java binding of the MPI operation MPI.TYPE.-
INDEXED. The number of blocks is taken to be size of the array0fBlock-
lengths argument. The second argument, array of _displacements, should
be the same size. The base type of the new datatype is the same as the base
type of the old type. Assume the displacement sequence of the old type is

{disp07 B dispn—l}

with extent ez. Let B be the array_of_blocklengths argument and D be the

array.of displacementsargument. Then the new datatype has a displacement

sequence with n - Efﬁgntﬂ B[i] entries:

{ dispy, +D[0]- ex,...,disp,_, +D[0] - ez,
dispy + (D[0] + 1) - ez, ..., disp,,_; + (D[0] + 1) - ex,

27

.-y

.dispo + (D[0] +B[0] — 1) - ex, ..., disp,_; + (D[0] + B[0] — 1) - ez,

dispy + D[count — 1] - ex, . .., disp,,_, + D[count — 1] - ez,
dispy + (D[count — 1] + 1) - ez, ..., disp,,_; + (D[count — 1] + 1) - e,
dispy + (D[count — 1] + B[count — 1] — 1) - ex, ...,

disp,,_1 + (D[count — 1] + Blcount — 1] — 1) - ex }

Here, count is the number of blocks.

static Datatype Datatype.Hindexed(int [] array_of_blocklengths,
int [] array_of_displacements,
Datatype oldtype)

array of blocklengths number of elements per block
array.of displacements displacement in buffer for each block
oldtype old datatype

returns: new datatype

Identical to indexed except that the displacements are expressed directly in
terms of the buffer index, rather than the units of the old type. Java binding of
the MPI operation MPI_TYPE_HINDEXED. Unlike other language bindings,
the values in array of displacements are not measured in bytes. The dis-
placement sequence of the new type is:

{ dispy +D[0],..., disp,,_; + D[0],
dispy + D[0] + ez, . .., disp,,, + D[0] + ez,

ey

;iispo +D[0] + (B[0O] — 1) - ex, ..., disp,_; + D[0] + (B[0] — 1) - ex,

dispy + D[count — 1], ..., disp,,_; + D[count — 1],
dispy + D[count — 1] + ex, . .., disp,,_, + D[count — 1] + ez,

ey

28

dispy + D[count — 1] + (B[count — 1] — 1) - ez, . . .,
disp,,_, + D[count — 1] + (B[count — 1] — 1) - ez }

static Datatype Datatype.Struct(int [] array_of_blocklengths,
int [] array_of_displacements,
Datatype [] array_of_types)

array_of blocklengths number of elements per block
array_of displacements displacement in buffer for each block
array_of_types type of elements in each block

returns: new datatype

The most general type constructor. Java binding of the MPI operation MPI_-
TYPE_STRUCT. The number of blocks is taken to be size of the array_of_-
blocklengths argument. The second and third arguments, array of displace-
ments and array_of_types, should be the same size. Unlike other language
bindings, the values in array of _displacements are not measured in bytes. All
elements of array_of _types with definite base types must have the same base
type: this will be the base type of new datatype. Let T be the array_of_types
argument. Assume the displacement sequence of the old type T[¢] is

{dispg, . .., disp;,, _}
with extent er;. Let B be the array of blocklengths argument and D be the
array.of displacementsargument. Then the new datatype has a displacement
sequence with 3570 B[i] - n; entries:
{ dispy +D[0],..., dispgo_l + D[0],
dispy + D[0] + ez, . .., dispy, _, + D[0] + ez,

7

.d‘z':spg +D[0] + (B[0] — 1) - emp, .. ., dispy, _, + D[0] + (B[0] — 1) - ez,

dispg™" +D[c—1],..., dispfb:_ll_l +D[e—1],
dispy™" +D[c — 1] + eze_1, ..., displ, " | +D[c — 1] + ez_1,
dispg™" +D[c—1]+ Blc— 1] = 1) - exe_1,-- -,

dispt!, +Dle— 1]+ (Ble—1—1) - ea 1)

Here, ¢ is the number of blocks.

29

If any elements of array_of _types are MPI.LB or MPI.UB, the corresponding
displacements are omitted in the displacement sequence. These displacements
only affect the computation of Datatype.Lb, Datatype.Ub and Datatype.Ext-
ent, as explained below.

Revised definition of general datatype. In the presence of MPI.LB, MPI.UB
component types, an mpiJava general datatype can be represented by four
things:

e A base type

e A sequence, DispSeq, of proper displacements.

e A set, LBDisps, of pseudo-displacements for MPI.LB markers.
e A set, UBDisps, of pseudo-displacements for MPI.UB markers.

For basic datatypes other than MPI.LB, MPI.UB the displacements take the form

DispSeqg = {0}

LBDisps = 0

UBDisps = 0
For MPI.LB they are

DispSeq = 0

LBDisps = {0}

UBDisps =
For MPI.UB they are

DispSeq = 0

LBDisps =

UBDisps = {0}

The two sets of pseudo-displacements are propagated to derived types by for-
mulae identical to the ones given above for proper displacements. Below we will
use the definition’

AllDisps = DispSeqU LBDisps U UBDisps

int Datatype.Extent()

1The notation is slightly informal. DispSeq is really an ordered sequence rather than a set.
We occasionally use the name loosely to refer to the set of its elements.

30

returns: datatype extent

Returns the extent of a datatype. Java binding of the MPI operation MPI_-
TYPE_EXTENT. Return value is equal to

Ub() —LbO)

int Datatype.Lb()

returns: displacement of lower bound from origin

Find the lower bound of a datatype. Java binding of the MPI operation MPI_-
TYPE_LB. If LBDisps is non-empty the return value of Lb is the least element
of that set. Otherwise it is the least element of AllDisps?.

int Datatype.Ub()

returns: displacement of upper bound from origin

Find the upper bound of a datatype. Java binding of the MPI operation MPI_-
TYPE_UB. If UBDisps is non-empty the return value of Ub is the greatest ele-
ment of that set. Otherwise it is

max disp + 1
dispE AllDisps

int Datatype.Size()

returns: datatype size

Returns the total size of the type. Java binding of the MPI operation MPI_-
TYPE_SIZE. Size is defined as the total number of buffer elements incorporated
by the data type, or equivalently as the length of the displacement sequence.
Unlike other language bindings, the size is not measured in bytes.

void Datatype.Commit ()
Commit a derived datatype. Java binding of the MPI operation MPI_TYPE_-

COMMIT.

void Datatype.finalize()

21f AllDisps is empty (which could happen for a derived datatype created with replication
count of zero, for instance) the results of Lb, Ub and thus Extent are undefined.

31

Destructor. Java binding of the MPI operation MPI_TYPE_FREE.

int Status.Get_elements(Datatype datatype)

datatype datatype used by receive operation

returns: number of received basic elements

Retrieve number of basic elements from status. Java binding of the MPI oper-
ation MPI_GET_ELEMENTS.

3.13 Pack and unpack

int Comm.Pack(Object inbuf, int offset, int incount,
Datatype datatype,
byte [] outbuf, int position)

inbuf input buffer array

offset initial offset in input buffer

incount number of items in input buffer
datatype datatype of each item in input buffer
outbuf output buffer

position initial position in ouput buffer

returns: final position in output buffer

Packs message in send buffer inbuf into space specified in outbuf. Java bind-
ing of the MPI operation MPI_PACK. The return value is the output value of
position—the inital value incremented by the number of bytes written.

int Comm.Unpack(byte [] inbuf, int position,
Object outbuf, int offset, int outcount,
Datatype datatype)

inbuf input buffer

position initial position in input buffer
outbuf output buffer array

offset initial offset in output buffer

outcount number of items in output buffer
datatype datatype of each item in output buffer

returns: final position in input buffer

32

Unpacks message in receive buffer outbuf into space specified in inbuf. Java
binding of the MPI operation MPI_UNPACK. The return value is the output
value of position—the inital value incremented by the number of bytes read.

int Comm.Pack_size(int incount, Datatype datatype)

incount number of items in input buffer
datatype datatype of each item in input buffer

returns: upper bound on size of packed message
Returns an upper bound on the increment of position effected by pack. Java

binding of the MPI operation MPI_PACK _SIZE. It is an error to call this func-
tion if the base type of datatype is MPI.0BJECT.

33

4 Collective Communication

4.1 Introduction and Overview

In general the mpiJava bindings of collective communication operations realize
the MPI functions as members of the IntraComm class.

4.2 Communicator argument

No special issues for Java binding.

4.3 Barrier synchronization

void Intracomm.Barrier ()

A call to Barrier blocks the caller until all processes in the group have called
it. Java binding of the MPI operation MPI BARRIER.

4.4 Broadcast

void Intracomm.Bcast(Object buffer, int offset, int count,
Datatype datatype, int root)

buf buffer array

offset initial offset in buffer

count number of items in buffer
datatype datatype of each item in buffer
dest rank of broadcast root

Broadcast a message from the process with rank root to all processes of the
group. Java binding of the MPI operation MPI_BCAST.

4.5 Gather

void Intracomm.Gather(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)

34

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items to send

sendtype datatype of each item in send buffer
recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of items in receive buffer
recvtype datatype of each item in receive buffer
root rank of receiving process

Each process sends the contents of its send buffer to the root process. Java

binding of the MPI operation MPI_GATHER.

void Intracomm.Gatherv(Object sendbuf, int sendoffset,

int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int [] recvcounts, int [] displs,
Datatype recvtype, int root)

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items to send

sendtype datatype of each item in send buffer

recvbuf receive buffer array

recvoffset initial offset in receive buffer

recvcounts number of elements received from each process
displs displacements at which to place incoming data
recvtype datatype of each item in receive buffer

root rank of receiving process

Extends functionality of Gather by allowing varying counts of data from each

process. Java binding of the MPI operation MPI. GATHERYV. The sizes of arrays
recvcounts and displs should be the size of the group. Entry ¢ of displs
specifies the displacement relative to element recvoffset of recvbuf at which
to place incoming data. Note that if recvtype is a derived data type, elements
of displs are in units of the derived type extent, (unlike recvoffset, which is
a direct index into the buffer array).

4.6 Scatter

void Intracomm.Scatter(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,

35

int recvcount, Datatype recvtype,
int root)

sendbuf send buffer array

sendoffset initial offset in send buffer
sendcount number of items sent to each process
sendtype datatype of send buffer items
recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of items in receive buffer
recvtype datatype of receive buffer items
root rank of sending process

Inverse of the operation Gather. Java binding of the MPI operation MPI_SCAT-
TER.

void Intracomm.Scatterv(Object sendbuf, int sendoffset,
int [] sendcounts, int [] displs,
Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype,
int root)

sendbuf send buffer array
sendoffset initial offset in send buffer
sendcounts number of items sent to each process

displs displacements from which to take outgoing data
sendtype datatype of each item in send buffer
recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of elements in receive buffer
recvtype datatype of receive buffer items
root rank of sending process

Inverse of the operation Gatherv. Java binding of the MPI operation MPI -
SCATTERYV.

4.7 Gather-to-all

void Intracomm.Allgather(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype)

36

sendbuf send buffer array

sendoffset initial offset in send buffer
sendcount number of items sent to each process
sendtype datatype of send buffer items
recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of items in receive buffer
recvtype datatype of receive buffer items

Similar to Gather, but all processes receive the result. Java binding of the MPI
operation MPI_ ALLGATHER.

void Intracomm.Allgatherv(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int [] recvcounts, int [] displs,
Datatype recvtype)

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items to send

sendtype datatype of each item in send buffer

recvbuf receive buffer array

recvoffset initial offset in receive buffer

recvcounts number of elements received from each process
displs displacements at which to place incoming data
recvtype datatype of each item in receive buffer

Similar to Gatherv, but all processes receive the result. Java binding of the
MPI operation MPI_GATHERYV.

4.8 All-to-All Scatter/Gather

void Intracomm.Alltoall(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
recvcount, Datatype recvtype)

37

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items sent to each process
sendtype datatype of send buffer items

recvbuf receive buffer array

recvoffset initial offset in receive buffer

recvcount number of items received from any process
recvtype datatype of receive buffer items

Extension of Allgather to the case where each process sends distinct data to
each of the receivers. Java binding of the MPI operation MPI_ALLTOALL.

void Intracomm.Alltoallv(Object sendbuf, int sendoffset,
int [] sendcount, int [] sdispls,
Datatype sendtype,
Object recvbuf, int recvoffset,
int [] recvcount, int [] rdispls,
Datatype recvtype)

sendbuf send buffer array
sendoffset initial offset in send buffer
sendcounts number of items sent to each process

sdispls displacements from which to take outgoing data
sendtype datatype of each item in send buffer
recvbuf receive buffer array

recvoffset initial offset in receive buffer

recvcounts number of elements received from each process
rdispls displacements at which to place incoming data
recvtype datatype of each item in receive buffer

Adds flexibility to Al1toall: location of data for send is specified by sdispls
and location to place data on receive side is specified by rdispls. Java binding
of the MPT operation MPI_ ALLTOALLV.

4.9 Global Reduction Operations

void Intracomm.Reduce(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int count, Datatype datatype,
Op op, int root)

38

sendbuf send buffer array
sendoffset initial offset in send buffer

recvbuf receive buffer array

recvoffset initial offset in receive buffer

count number of items in send buffer
datatype data type of each item in send buffer
op reduce operation

dest rank of root process

Combine elements in input buffer of each process using the reduce operation,
and return the combined value in the output buffer of the root process. Java
binding of the MPI operation MPI_ REDUCE.

The predefined operations are available in Java as MPI.MAX, MPT.MIN, MPI.-
SUM, MPI.PROD, MPI.LAND, MPT.BAND, MPI.LOR, MPI.BOR, MPI.LX0R, MPI.BXOR,
MPI.MINLOC and MPI.MAXLOC.

The handling of MINLOC and MAXLOC'is modelled on the Fortran binding.
The extra predefined types MPI.SHORT2, MPI.INT2, MPI.LONG2, MPI.FLOAT2,
MPI.DOUBLE2 describe pairs of Java numeric primitive types.

Op.0p(User_function function, boolean commute)

function user defined function
commute true if commutative, false otherwise

Bind a user-defined global reduction operation to an Op object. Java binding of
the MPI operation MPI_OP_CREATE. The abstract base class User _function
is defined by

class User_function {
public abstract void Call(Object invec, int inoffset,
Object inoutvec, int inoutoffset,
int count, Datatype datatype) ;
}

To define a new operation, the programmer should define a concrete subclass of
User_function, implementing the Call method, then pass an object from this
class to the Op constructor. The User_function.Call method plays exactly the
same role as the function argument in the standard bindings of MPI. The actual
arguments invec and inoutvec passed to call will be arrays containing count
elements of the type specified in the datatype argument. Offsets in the arrays
can be specified as for message buffers. The user-defined Call method should
combine the arrays element by element, with results appearing in inoutvec.

void Op.finalize()

39

Destructor. Java binding of the MPI operation MPI_OP_FREE.

void Intracomm.Allreduce(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int count, Datatype datatype,

Op op)
sendbuf send buffer array
sendoffset initial offset in send buffer
recvbuf receive buffer array
recvoffset initial offset in receive buffer
count number of items in send buffer
datatype data type of each item in send buffer
op reduce operation

Same as Reduce except that the result appears in receive buffer of all processes
in the group. Java binding of the MPI operation MPI_ALLREDUCE.

4.10 Reduce-Scatter

void Intracomm.Reduce_scatter(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int [] recvcounts,
Datatype datatype, Op op)

sendbuf send buffer array
sendoffset initial offset in send buffer
recvbuf receive buffer array

recvoffset initial offset in receive buffer

recvcounts numbers of result elements distributed to each process
datatype data type of each item in send buffer

op reduce operation

Combine elements in input buffer of each process using the reduce operation,
and scatter the combined values over the output buffers of the processes. Java
binding of the MPI operation MPI REDUCE_SCATTER.

4.11 Scan

void Intracomm.Scan(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int count, Datatype datatype,
Op op)

40

sendbuf send buffer array
sendoffset initial offset in send buffer

recvbuf receive buffer array

recvoffset initial offset in receive buffer

count number of items in input buffer
datatype data type of each item in input buffer
op reduce operation

Perform a prefix reduction on data distributed across the group. Java binding
of the MPI operation MPI_ SCAN.

4.12 Correctness

No special issues for Java binding.

41

5 Groups, Contexts and Communicators

5.1 Introduction

No special issues for Java binding.

5.2 Basic Concepts

The constant MPI_GROUP_EMPTY is available as MPI .GROUP_EMPTY. The con-
stants MPI. COMM_WORLD, MPI_ COMM_SELF are available as MPI.COMM -
WORLD, MPI.COMM_SELF.

5.3 Group Management

int Group.Size()
returns: number of processors in the group

Size of group. Java binding of the MPI operation MPI_GROUP_SIZE.

int Group.Rank()
returns: rank of the calling process in the group

Rank of this process in group. Java binding of the MPI operation MPI -
GROUP_RANK. Result value is MPI.UNDEFINED if this process is not a member
of the group.

static int [] Group.Translate_ranks(Group groupl, int [] ranksl,
Group group2)

groupl first group
ranksl array of valid ranks in groupi
group2 second group

returns: array of corresponding ranks in group2

Translate ranks within first group to ranks within second group. Java binding of
the MPI operation MPI. GROUP_.TRANSLATE_RANKS. Result elements are
MPI.UNDEFINED where no correspondence exists.

static int Group.Compare(Group groupl, Group group2)

42

groupl first group
group2 second group

returns: result

Compare two groups. Java binding of the MPI operation MPI. GROUP_-COMP-
ARE. MPI.IDENT results if the group members and group order are exactly the
same in both groups. MPI.SIMILAR results if the group members are the same
but the order is different. MPI.UNEQUAL results otherwise.

Group Comm.Group ()

returns: group corresponding to this communicator
Return group associated with a communicator. Java binding of the MPI oper-

ation MPI_.COMM_GROUP.

static Group Group.Union(Group groupl, Group group2)

groupl first group
group2 second group

returns: union group
Set union of two groups. Java binding of the MPI operation MPI. GROUP_UN-
ION.

static Group Group.Intersection(Group groupl, Group group2)

groupl first group
group2 second group

returns: intersection group

Set intersection of two groups. Java binding of the MPI operation MPI_ GRO-
UP_INTERSECTION.

static Group Group.Difference(Group groupl, Group group2)

groupl first group
group2 second group

returns: difference group

43

Result contains all elements of the first group that are not in the second group.
Java binding of the MPI operation MPI. GROUP_DIFFERENCE.

Group Group.Incl(int [] ranks)
ranks ranks from this group to appear in new group
returns: new group
Create a subset group including specified processes. Java binding of the MPI

operation MPI_GROUP_INCL.

Group Group.Excl(int [] ranks)

ranks ranks from this group not to appear in new group

returns: new group

Create a subset group excluding specified processes. Java binding of the MPI
operation MPI_GROUP_EXCL.

Group Group.Range_incl(int [] [] ranges)

ranges array of integer triplets

returns: new group

Create a subset group including processes specified by strided intervals of ranks.
Java binding of the MPI operation MPI_ GROUP_RANGE_INCL. The triplets
are of the form (first rank, last rank, stride) indicating ranks in this group to
be included in the new group. The size of the first dimension of ranges is the
number of triplets. The size of the second dimension is 3.

Group Group.Range_excl(int [] [] ranges)

ranges array of integer triplets

returns: new group

Create a subset group excluding processes specified by strided intervals of ranks.
Java binding of the MPI operation MPI GROUP_-RANGE_EXCL. Triplet array
is defined as for Range incl, the ranges indicating ranks in this group to be
excluded from the new group.

44

void Group.finalize()

Destructor. Java binding of the MPI operation MPI. GROUP_FREE.

5.4 Communicator Management

int Comm.Size()
returns: number of processors in the group of this communicator

Size of group of this communicator. Java binding of the MPI operation MPI_-
COMM_SIZE.

int Comm.Rank ()
returns: rank of the calling process in the group of this communicator

Rank of this process in group of this communicator. Java binding of the MPI
operation MPI_.COMM_RANK.

static int Comm.Compare(Comm comml, Comm comm2)

comm1 first communicator
comm?2 second communicator

returns: result

Compare two communicators. Java binding of the MPI operation MPI.COMM_-
COMPARE. MPI.IDENT results if the comml and comm2 are references to the
same object (ie, if comml == comm2). MPI.CONGRUENT results if the underlying
groups are identical but the communicators differ by context. MPI.SIMILAR
results if the underlying groups are similar but the communicators differ by
context. MPI.UNEQUAL results otherwise.

Object Comm.clone()

returns: copy of this communicator

Duplicate this communicator. Java binding of the MPI operation MPI. COMM_-
DUP. The new communicator is “congruent” to the old one, but has a different
context.

45

Rationale. The decision to use the standard Java clone method means
the static result type must be Object. The dynamic type will be that of
the Comm subclass of the parent. MPI-defined and user-defined subclasses
of Comm will generally override clone to ensure all relevant attributes are
copied. (End of rationale.)

Intracomm Intracomm.Create(Group group)

group group which is a subset of the group of this communicator

returns: new communicator

Create a new communicator. Java binding of the MPI operation MPI_COMM_-
CREATE.

Intracomm Intracomm.Split(int color, int key)

color control of subset assignment
key control of rank assignment

returns: new communicator

Partition the group associated with this communicator and create a new commu-
nicator within each subgroup. Java binding of the MPI operation MPI.COMM_-
SPLIT.

void Comm.Free()

Destroy this communicator. Java binding of the MPI operation MPI. COMM._-
FREE.

Rationale. An explicitly called Free method is required rather than
an implicitly called finalize method, because MPI_ COMM_FREFE is a
collective operation. We cannot assume that the Java garbage collector
will call a finalize method synchronously on all processors. (End of
rationale.)

boolean Comm.Is_null()

returns: true if the communicator object has been freed, false otherwise

Replaces comparision with MPT_COMM_NULL.

46

5.5 Motivating Examples

No special issues for Java binding.

5.6 Inter-Communication

boolean Comm.Test_inter()

returns: true if this is an inter-communicator, false otherwise

Test if this communicator is an inter-communicator. Java binding of the MPI
operation MPI. COMM_TEST_INTER.

int Intercomm.Remote_size()

returns: number of process in remote group of this communicator

Size of remote group. Java binding of the MPI operation MPI_COMM_REM-
OTE_SIZE.

Group Intercomm.Remote_Group()
returns: remote group of this communicator

Return the remote group. Java binding of the MPI operation MPI_.COMM_-
REMOTE_GROUP.

Intercomm Comm.Create_intercomm(Comm local_comm, int local_leader,
int remote_leader, int tag)

local_comm local intra-communicator

local leader rank of local group leader in 1localComm
remote_leader rank of remote group leader in this communictor
tag “safe” tag

returns: new inter-communicator

Create an inter-communicator. Java binding of the MPTI operation MPI_ INTER-
COMM_CREATE.

Rationale. This operation is defined as a method on the “peer commu-
nicator”, making it analogous to a Send or Recv communication with the
remote group leader. (End of rationale.)

47

Intracomm Intercomm.Merge(boolean high)

high true if the local group has higher ranks in combined group

returns: new intra-communicator

Create an intra-communicator from the union of the two groups in the inter-
communicator. Java binding of the MPI operation MPI_INTERCOMM_MER-
GE.

5.7 Caching

It is assumed that to achieve the effect of caching attributes in user-customized
communicators programmers will create subclasses of the library-defined com-
municator classes with suitable additional fields. These fields may be copied or
deleted by suitably overridden clone and finalize methods.

Hence the only “caching” operation surviving here is the binding of MPI_-
ATTR_GET, which is needed to access values of attributes predefined by the
implementation. According the standard, the key values for such attributes
include MPI.TAG_UB, MPI.HOST, MPI.I0 and MPI.WTIME_IS_GLOBAL.

int Comm.Attr_get(int keyval)
keyval one of the key values predefined by the implementation
returns: attribute value

Retrieves attribute value by key. Java binding of the MPI operation MPI_AT-
TR_GET.

48

6 Process Topologies

6.1 Introduction

Communicators with Cartesian or graph topologies will be realized as instances
of the subclasses Cartcomm or Graphcomm, respectively of Intracomm.

6.2 Virtual Topologies

No special issues for Java binding.

6.3 Embedding in MPI

No special issues for Java binding.

6.4 Overview of the Functions

No special issues for Java binding.

6.5 Topology Constructors

Cartcomm Intracomm.Create_cart(int [] dims, boolean [] periods,
boolean reorder)

dims the number of processes in each dimension
periods true if grid is periodic, false if not, in each dimension
reorder true if ranking may be reordered, false if not

returns: new Cartesian topology communicator

Create a Cartesian topology communicator whose group is a subset of the group
of this communicator. Java binding of the MPI operation MPI_CART_CREATE.
The number of dimensions of the Cartesian grid is taken to be the size of the
dims argument. The array periods must be the same size.

static Cartcomm.Dims_create(int nnodes, int [] dims)

nnodes number of nodes in a grid
dims array specifying the number of nodes in each dimension

Select a balanced distribution of processes per coordinate direction. Java bind-
ing of the MPI operation MPI_DIMS_CREATE. Number of dimensions is the
size of is dims. Note that dims is an inout parameter.

49

Graphcomm Intracomm.Create_graph(int [] index, int [] edges,
boolean reorder)

index node degrees
edges graph edges
reorder true if ranking may be reordered, false if not

returns: new graph topology communicator

Create a graph topology communicator whose group is a subset of the group of
this communicator. Java binding of the MPI operation MPI_ GRAPH CREATE.
The number of nodes in the graph, nnodes, is taken to be size of the index
argument. The size of array edges must be index[nnodes — 1.

int Comm.Topo_test()

returns: topology type of communicator

Returns the type of topology associated with the communicator. Java bind-
ing of the MPI operation MPI_TOPO_TEST. The return value will be one of
MPI.GRAPH, MPI.CART or MPI.UNDEFINED.

GraphParms Graphcomm.Get ()

returns: object defining node degress and edges of graph

Returns graph topology information. Java binding of the MPT operations MPI_-
GRAPHDIMS_GET and MPI_GRAPH _GET. The class of the returned object
is

public class GraphParms {
public int [] index ;
public int [] edges ;
}

The number of nodes and number of edges can be extracted from the sizes of
the index and edges arrays.

CartParms Cartcomm.Get ()

returns: object containing dimensions, periods and local coordinates
Returns Cartesian topology information. Java binding of the MPI operations

MPI_CARTDIM_GET and MPI_.CART_GET. The class of the returned object
is

50

public class CartParms {
public int [] dims ;
public booleans [] periods ;
public int [] coords ;

}
The number of dimensions can be obtained from the size of (eg) the dims array.

Rationale. The inquiries MPI. GRAPHDIMS GET, MPI. GRAPH GET,
MPI_CARTDIM_GET, and MPI_.CART_GET are unusual in returning
multiple independent values from single calls. This is a problem in Java.
The Java binding could split these inquiries into several independent ones,
but that would complicate JNI-based wrapper implementations. Hence we
introduced the auxilliary classes GraphParms and CartParms to hold mul-
tiple results. (End of rationale.)

int Cartcomm.Rank(int [] coords)
coords Cartesian coordinates of a process
returns: rank of the specified process
Translate logical process coordinates to process rank. Java binding of the MPI

operation MPI_.CART_RANK.

int [] Cartcomm.Coords(int rank)
coords rank of a process
returns: Cartesian coordinates of the specified process
Translate process rank to logical process coordinates. Java binding of the MPI
operation MPI_.CART_COORDS.
int [] Graphcomm.Neighbours(int rank)
coords rank of a process in the group of this communicator
returns: array of ranks of neighbouring processes to one specified

Provides adjacency information for general graph topology. Java binding of the
MPI operations MPI. GRAPH NEIGHBOURS-COUNT and MPI_.GRAPH_NE-
IGHBOURS. The number of neighbours can be extracted from the size of the
result.

51

ShiftParms Cartcomm.Shift(int direction, int disp)

direction coordinate dimension of shift
disp displacement

returns: object containing ranks of source and destination processes

Compute source and destination ranks for “shift” communication. Java binding
of the MPI operation MPI_ CART_SHIFT. The class of the returned object is

public class ShiftParms {
public int rankSource ;
public int rankDest ;

}

Cartcomm Cartcomm.Sub(boolean [] remainDims)

remainDims by dimension, true if dimension is to be kept, false otherwise

returns: communicator containing subgrid including this process
Partition Cartesian communicator into subgroups of lower dimension. Java

binding of the MPI operation MPI_CART_SUB.

int Cartcomm.Map(int [] dims, boolean [] periods)

dims the number of processes in each dimension
periods true if grid is periodic, false if not, in each dimension

returns: reordered rank of calling process
Compute an optimal placement. Java binding of the MPI operation MPI_-

CART_MAP. The number of dimensions is taken to be size of the dims argu-
ment.

int Graphcomm.Map(int [] index, int [] edges)

index node degrees
edges graph edges

returns: reordered rank of calling process

Compute an optimal placement. Java binding of the MPI operation MPI -
GRAPH_MAP. The number of nodes is taken to be size of the index argument.

52

7 MPI Environmental Management

7.1 Implementation information

The constants MPI_TAG_UB, MPI_HOST and MPI_IO are available as MPI.-
TAG_UB, MPI.HOST, MPI. IO0.

static String MPI.Get_processor_name()
returns: A unique specifier for the actual node.

Returns the name of the processor on which it is called. Java binding of the
MPI operation MPI. GET_-PROCESSOR_NAME.

7.2 Error handling

The constants MPI. ERRORS_ARE_FATAL, MPI ERRORS_RETURN are avail-
able as MPI.ERRORS_ARE_FATAL, MPI.ERRORS_RETURN.

If the effective error handler is MPI ERRORS_RETURN, the wrapper codes
will throw appropriate Java exceptions (see section 7.3).

Currently mpiJava omits an interface for creating new MPI error handlers
(the detailed interface of the handler function depends on unstandardized fea-
tures of the MPI implementation).

static void Comm.Errorhandler_set(Errhandler errhandler)

errhandler new MPI error handler for communicator
Associates a new error handler with communicator at the calling process. Java

binding of the MPI operation MPI ERRORHANDLER_SET.

static Errhandler Comm.Errorhandler_get()

returns: MPI error handler currently associated with communicator

Returns the error handler currently associated with the communicator. Java
binding of the MPI operation MPI. ERRORHANDLER_GET.

7.3 FError codes and classes

The MPIException subclasses

53

MPIErrBuffer
MPIErrCount
MPIErrType
MPIErrTag
MPIErrComm
MPIErrRank
MPIErrRequest
MPIErrRoot
MPIErrGroup
MPIErrOp
MPIErrTopology
MPIErrDims
MPIErrArg
MPIErrUnknown
MPIErrTruncate
MPIErrQOther
MPIErrIntern

correspond to the standard MPI error classes. [Not implemented in the current
release. |

7.4 Timers

static double MPI.Wtime()

returns: elapsed wallclock time in seconds since some time in the past

Returns wallclock time. Java binding of the MPI operation MPI WTIME.

static double MPI.Wtick()

returns: resolution of wtime in seconds.

Returns resolution of timer. Java binding of the MPI operation MPI. WTICK.

7.5 Startup

static String [] MPI.Init(Stringl[] argv)

argv arguments to main method.

returns: command line arguments returned by MPI.

Initialize MPI. Java binding of the MPI operation MPI_INIT.

54

static void MPI.Finalize()

Finalize MPI. Java binding of the MPI operation MPI_FINALIZE.

static boolean MPI.Initialized()
returns: true if init has been called, false otherwise.

Test if MPI has been initialized. Java binding of the MPI operation MPI_INIT-
TALIZED.

void Comm.Abort (int errorcode)
errorcode error code for Unix or POSIX environments

Abort MPI. Java binding of the MPI operation MPI_ABORT.

55

8 Full public interface of classes

Section names appearing in comments refer to the preceding appendix. Speci-
fication of the methods immediately following those comments should be found

in the referenced section.

56

8.1 MPI

public class MPI {
public static Intracomm COMM_WORLD;

public static Datatype BYTE, CHAR, SHORT, BOOLEAN, INT, LONG,
FLOAT, DOUBLE, OBJECT, PACKED, LB, UB ;

public static int ANY_SOURCE, ANY_TAG ;
public static int PROC_NULL ;

public static int BSEND_OVERHEAD ;
public static int UNDEFINED ;

public static Op MAX, MIN, SUM, PROD, LAND, BAND,
LOR, BOR, LXOR, BXOR, MINLOC, MAXLOC ;

public static Datatype SHORT2, INT2, LONG2, FLOAT2, DOUBLE2 ;
public static Group GROUP_EMPTY ;

public static Comm COMM_SELF ;

public static int IDENT, CONGRUENT, SIMILAR, UNEQUAL ;

public static int GRAPH, CART ;

public static ErrHandler ERRORS_ARE_FATAL, ERRORS_RETURN ;

public static int TAG_UB, HOST, I0 ;

// Buffer allocation and usage

public static void Buffer_attach(byte [] buffer)
throws MPIException {...}

public static byte [] Buffer_detach() throws MPIException {...}

// Environmental Management
public static String [] Init(String[] argv) throws MPIException {...}

public static void Finalize() throws MPIException {...}

57

public
public
public

public

}

static String Get_processor_name() throws MPIException {...}
static double Wtime() {...}
static double Wtick() {...}

static boolean Initialized() throws MPIException {...}

public class Errhandler {

}

58

8.2 Comm

public class Comm {
// Communicator Management
public int Size() throws MPIException {...}
public int Rank() throws MPIException {...}

public Group Group() throws MPIException {...}
// (see ‘‘Group management’’)

public static int Compare(Comm comml, Comm comm2)
throws MPIException {...}

public Object clone() {...}
public void Free() throws MPIException {...}

public boolean Is_null() {...}

// Inter-communication
public boolean Test_inter() throws MPIException {...}
public Intercomm Create_intercomm(Comm local_comm, int local_leader,
int remote_leader, int tag)
throws MPIException {...}

// Caching

public Object Attr_get(int keyval) throws MPIException {...}

// Blocking Send and Receive operations
public void Send(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...}
public Status Recv(Object buf, int offset, int count,

Datatype datatype, int source, int tag)
throws MPIException {...}

// Communication Modes

59

public void Bsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...

public void Ssend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...
public void Rsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...
// Nonblocking communication
public Request Isend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...
public Request Ibsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...
public Request Issend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...
public Request Irsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...
public Request Irecv(Object buf, int offset, int count,
Datatype datatype, int source, int tag)
throws MPIException {...
// Probe and cancel

public Status Iprobe(int source, int tag) throws MPIException {...}

public Status Probe(int source, int tag) throws MPIException {...}

// Persistent communication requests

public Prequest Send_init(Object buf, int offset, int count,

60

Datatype datatype, int dest, int tag)
throws MPIException {...}

public Prequest Bsend_init(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...}

public Prequest Ssend_init(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...}

public Prequest Rsend_init(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)
throws MPIException {...}

public Prequest Recv_init(Object buf, int offset, int count,
Datatype datatype, int source, int tag)
throws MPIException {...}

// Send-receive

public Status Sendrecv(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
int dest, int sendtag,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype,
int source, int recvtag)
throws MPIException {...}

public Status Sendrecv_replace(Object buf, int offset,
int count, Datatype datatype,
int dest, int sendtag,
int source, int recvtag)
throws MPIException {...}

// Pack and unpack

public int Pack(Object inbuf, int offset, int incount,
Datatype datatype,
byte [] outbuf, int position)
throws MPIException {...}

public int Unpack(byte [] inbuf, int position,

Object outbuf, int offset, int outcount,
Datatype datatype) throws MPIException {...}

61

public int Pack_size(int incount, Datatype datatype)
throws MPIException {...}
// Process Topologies

int Topo_test() throws MPIException {...}

// Environmental Management

public void Errorhandler_set(Errhandler errhandler)
throws MPIException {...}

public Errhandler Errorhandler_get() throws MPIException {...}

void Abort(int errorcode) throws MPIException {...}

62

8.3 Intracomm and Intercomm

public class Intracomm extends Comm {
public Object clone() { ... }
public Intracomm Create(Group group) throws MPIException {...}
public Intracomm Split(int colour, int key) throws MPIException {...}
// Collective communication
public void Barrier() throws MPIException {...}

public void Bcast(Object buffer, int offset, int count,
Datatype datatype, int root)
throws MPIException {...}

public void Gather(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)
throws MPIException {...}

public void Gatherv(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int [] recvcount, int [] displs,
Datatype recvtype, int root)
throws MPIException {...}

public void Scatter(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)
throws MPIException {...}

public void Scatterv(Object sendbuf, int sendoffset,
int [] sendcount, int [] displs,
Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)
throws MPIException {...}

public void Allgather(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype)

63

throws MPIException {...}

public void Allgatherv(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int [] recvcounts, int [] displs,
Datatype recvtype) throws MPIException {...}

public void Alltoall(Object sendbuf, int sendoffset,
int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype)
throws MPIException {...}

public void Alltoallv(Object sendbuf, int sendoffset,
int [] sendcount, int [] sdispls,
Datatype sendtype,
Object recvbuf, int recvoffset,
int [] recvcount, int [] rdispls,
Datatype recvtype) throws MPIException {...}

public void Reduce(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int count, Datatype datatype,
Op op, int root) throws MPIException {...}

public void Allreduce(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int count, Datatype datatype,
Op op) throws MPIException {...}

public void Reduce_scatter(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int [] recvcounts, Datatype datatype,
Op op) throws MPIException {...}

public void Scan(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int count, Datatype datatype,
Op op) throws MPIException {...}

// Topology Constructors
public Graphcomm Create_graph(int [] index, int [] edges,

boolean reorder)
throws MPIException {...}

64

public Cartcomm Create_cart(int [] dims, boolean [] periods,
boolean reorder)
throws MPIException {...}

}

public class Intercomm extends Comm {
public Object clone() { ... }
// Inter-communication
public int Remote_size() throws MPIException {...}
public Group Remote_group() throws MPIException {...}

public Intracomm Merge(boolean high) throws MPIException {...}

65

8.4 Op

public class Op {
Op(User_function function, boolean commute) throws MPIException {...}

void finalize() throws MPIException {...}

66

8.5 Group
public class Group {
// Group Management
public int Size() throws MPIException {...}
public int Rank() throws MPIException {...}
public static int [] Translate_ranks(Group groupl, int [] ranksi,
Group group2)

throws MPIException {...}

public static int Compare(Group groupl, Group group2)
throws MPIException {...}

public static Group Union(Group groupl, Group group2)
throws MPIException {...

public static Group Intersection(Group groupl, Group group2)
throws MPIException {...

public static Group Difference(Group groupl, Group group2)
throws MPIException {...

public Group Incl(int [] ranks) throws MPIException {...}
public Group Excl(int [] ranks) throws MPIException {...}
public Group Range_incl(int []1 [] ranges) throws MPIException {...}
public Group Range_excl(int [] [] ranges) throws MPIException {...}

public void finalize() throws MPIException {...}

67

8.6 Status

public class Status {

public int source;
public int tag;

public int index ;
// Blocking Send and Receive operations

public int Get_count(Datatype datatype) throws MPIException {...}

// Probe and Cancel

public boolean Test_cancelled() throws MPIException {...}

// Derived datatypes

public int Get_elements(Datatype datatype) throws MPIException {...}

68

8.7 Request and Prequest

public class Request {
// Nonblocking communication
public Status Wait() throws MPIException {...}
public Status Test() throws MPIException {...}
public void Free() throws MPIException {...}
public boolean Is_null() {...}

public static Status Waitany(Request [] array_of_requests)

throws MPIException {...

public static Status Testany(Request [] array_of_requests)

throws MPIException {...

public static Status [] Waitall(Request [] array_of_requests)

throws MPIException {...

public static Status [] Testall(Request [] array_of_requests)

throws MPIException {...

public static Status [] Waitsome(Request [] array_of_requests)

throws MPIException {...

public static Status [] Testsome(Request [] array_of_requests)

throws MPIException {...

// Probe and cancel

public void Cancel() throws MPIException {...}

}

public class Prequest extends Request {
// Persistent communication requests
public void Start() throws MPIException {...}

public static void Startall(Prequest [] array_of_requests)

throws MPIException {...

69

70

8.8 Datatype

public class Datatype {
// Derived datatypes

public static Datatype Contiguous(int count, Datatype oldtype)
throws MPIException {...}

public static Datatype Vector(int count, int blocklength, int stride,
Datatype oldtype)
throws MPIException {...}

public static Datatype Hvector(int count, int blocklength, int stride,
Datatype oldtype)
throws MPIException {...}
public static Datatype Indexed(int [] array_of_blocklengths,
int [] array_of_displacements,
Datatype oldtype)
throws MPIException {...}
public static Datatype Hindexed(int [] array_of_blocklengths,
int [] array_of_displacements,
Datatype oldtype)
throws MPIException {...}
public static Datatype Struct(int [] array_of_blocklengths,
int [] array_of_displacements,
Datatype [l array_of_types)
throws MPIException {...}
public int Extent() throws MPIException {...}
public int Lb() throws MPIExceptiomn {...}
public int Ub() throws MPIException {...}
public int Size() throws MPIException {...}

public void Commit() throws MPIException {...}

public void finalize() throws MPIException {...}

71

8.9 Classes for virtual topologies

public class Cartcomm extends Intracomm {
public Object clone() { ... }
// Topology Constructors

static public Dims_create(int nnodes, int [] dims)
throws MPIException {...}

public CartParms Get() throws MPIException {...}

public int Rank(int [] coords) throws MPIException {...}

public int [] Coords(int rank) throws MPIException {...}

public ShiftParms Shift(int direction, int disp) throws MPIException {...}
public Cartcomm Sub(boolean [] remainDims) throws MPIException {...}

public int Map(int [] dims, boolean [] periods) throws MPIException {...}
}

public class CartParms {
// Return type for Cartcomm.get ()
public int [] dims ;

public booleans [] periods ;
public int [] coords ;

}

public class ShiftParms {
// Return type for Cartcomm.shift()

public int rankSource ;
public int rankDest ;

}

public class Graphcomm extends Intracomm {
public Object clone() { ... }
// Topology Constructors

public GraphParms Get() throws MPIException {...}

72

public int [] Neighbours(int rank) throws MPIException {...}

public int Map(int [] index, int [] edges) throws MPIException {...}
}

public class GraphParms {
// Return type for Graphcomm.get ()
public int [] index ;

public int [] edges ;
}

73

References

[1] Rob Gordon. Essential JNI: Java Native Interface. Prentice Hall, 1998.

[2] Message Passing Interface Forum. MPI: A message-passing interface
standard. International Journal of Supercomputer Applications, 8(3/4),
1994.

[3] Message Passing Interface Forum. MPI-2: Extension to the message
passing interface. Technical report, University of Tennessee, July 1997.
http://www.mpi-forum.org.

74

	mpiJava 1.2: API Specification
	Recommended Citation

	tmp.1285694644.pdf.Tn5Op

