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Abstract 
 

This note formalizes some analytical results on the n-dimensional multivariate truncated normal distribution where 
truncation is one-sided and at an arbitrary point. Results on linear transformations, marginal and conditional 
distributions, and independence are provided. Also, results on log-concavity, A-unimodality and the  property 
are derived. 
 

1. Introduction and definitions 
 
This note formalizes some analytical results on the n-dimensional multivariate truncated normal distribution where 
truncation is one-sided and at an arbitrary point. Using the characteristic function derived in [4], results on linear 
transformations, marginal and conditional 
 

 
 
distributions, and independence are provided. Also, results on log-concavity, A-unimodality and the MTP2 property 
are derived. Basic definitions follow. 

 
We use the standard notation , be the truncation of 
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where  is a n-dimensional Riemann integral from c to , and  (the non-strict inequality 
ensures right-continuity of the cumulations of the probabilities of W). Figs. 1–4 are contour plots for standard 
bivariate truncated normals for a few combinations of  and c. 
 

 
 

This note is concerned with truncation below c for each element of , however one could envision 
truncation of a subset of ; this just requires that for certain  , the  go to  in the limit. There are also other 
forms of truncation that have been suggested. For example, [8] considers “elliptical truncation”, where  is 
restricted by the condition , while [9] considers truncation of the form . 
Finally, [2] considers truncation of the pair  from below, so that a specified portion of the original 
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distribution is retained and  is maximized. In what follows it will be useful to define: 
 with typical elements , 

respectively, and  

 

 
The result is derived in [4]. A similar formula for the moment generating function of W is derived in [7]. 

The univariate case (n = 1) was first suggested in a problem posed by Horrace and Hernandez [5]. The characteristic 
function is used to derive some results in the next section. 
 

2. Distributional properties 
 

Interest centers on determining which of the desirable properties of the multivariate normal (if any) are preserved 
after truncation. Let D and b be real matrices of dimension (n × n) and (n × 1), respectively, with det . Define 
the linear transformation: Y = DW + b, then: 
Theorem 4. For W with general correlation structure, Y has a truncated normal distribution based on truncation of 

 below  if and only if  . 
The proof is contained in the mathematical appendix. Hence, the family of truncated normal distributions is 

not closed to general linear transformations (but it is closed to relocation by b). Notice that this result is different 
from the problem of transforming  to , and then truncating , which produces a truncated 
normal distribution. This is also different from the problem of the distribution of  subject to linear inequality 
constraints , which also produces a truncated normal distribution. For example see [3]. For the special 
case where  is diagonal, the condition in Theorem 4 for Y to be truncated normal is that D be a diagonal matrix (or 
more generally, a matrix formed from the permuted columns or rows of a diagonal matrix). 

Theorem 4 has implications for the marginal distributions. Partition 

 
and 
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Then the  or  

 
which is not the characteristic function of a truncated normal distribution in general, because the probabilities in the 
numerator and denominator will still be a function of all of . In fact, the marginal distributions are given by 

 
and 

 
implying conditional distributions: 

 
and 

 
which are truncated normal distributions. 
Conclusion 5. The marginal distributions from a truncated normal distribution are not truncated normal 
distributions, in general. However, the conditional distributions are truncated normal distributions. 

It is a well-known fact that  are independent if and only if , but is this the case for their 
truncations? 
Theorem 6. Define  as above, then  are independent if and only if 12 = 0. 

The proof is in Appendix and follows from the fact that when , then 

 
Therefore, it follows that: 
Corollary 7. If  are independent, then the marginal distribution of  is that of a  
random variable truncated at , and the marginal distribution of  is that of a  random variable 
truncated at . 

The intuition is that, in the independent case, the marginal scalings  and  are 
preserved by the joint scaling . 

 
2.1. Log-concavity, A-unimodalty and the MTP2 property 

 
It is well known that multivariate normal distributions possess certain properties that make them useful for economic 
theory and probability theory. Our purpose here is to see if a few of these properties hold up after truncation. 
Definition 8. A multivariate density function  is log-concave if: 

 
holds for all  and all . 

This is known to hold for multivariate normal distributions. The following theorem proves 
that it holds for truncated normals as well. 
Theorem 9. If  is multivariate normal, then the distribution of the truncation of  below c is log-concave. 

The proof is in Appendix. Log-concavity leads to several important probabilistic results. 
For example, [6] shows that for log-concave density function and any sets  
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Theorem 9 formalizes the result for the truncated case. 
Definition 10. A density function  is A-unimodal if the set: 

 
is convex for all  

A-unimodality is just an n-dimensional generalization of scalar unimodality. Since all log-concave 
functions are A-unimodal (see [10, p. 72]), it follows that:  
Conclusion 11. If  is multivariate normal, then the distribution of the truncation of  below c is A-unimodal. 

Unfortunately, W does not possess a symmetric distribution, so many of the properties that hinge on A-
unimodality and symmetry are lost. For example, [1] presents a theorem involving the monotonicity property of 
integrals over A-unimodal symmetric (about the origin) functions. However, it would be useful to determine any 
special cases that may still hold. The theorem is: 
Theorem 12. Let E be a convex set in , symmetric about the origin. Let  be a function such that 

 is convex for all , and (in the Lebesgue 
sense). Then, 

 
The proof is in [1]. Clearly, this holds for . We now present a version of this theorem that 

holds for truncations of . That is, we relax the condition above that  
Theorem 13. Let  be the truncation of  below c. Further, let  be the density function of W, 
and let , then Theorem 12 holds for . 

The proof is in Appendix and hinges on the translation, y, being negative . If the translation is 
unrestricted, then Theorem 12 only holds for some cases but not all. In particular: 
Corollary 14. Let  be the truncation of  below c. Further, let  be the density function of 
W, and let , then Theorem 12 holds for  where  is the compliment of  

The result follows simply from arguments in the proof of Theorem 13. The implication is that as long as the 
(non-strictly) smaller translation, , does not produce a truncation in the support of W, then Anderson’s 
monotonicity property holds. 
Definition 15. A density function  is multivariate-totally-positive-of-order- 2 (MTP2) if: 

 
holds for all y,  in the domain of  where 

 
If a multivariate normal distribution satisfies the MTP2 property then the off-diagonal elements of the 

covariance matrix are all non-negative. (See [10, p. 77].) 
Theorem 16. If W∗ is multivariate normal and satisfies the MTP2 property, then the distribution of the truncation of 
W ∗ below c satisfies the MTP2 property also. 

The proof is Appendix and formalizes the normal result for the truncated case. 
 

3. Conclusions 
 

This note presents a few results for the multivariate truncated normal distribution. The results may be particularly 
useful in economic applications where truncated random variables are used to describe data generation processes 
(e.g., see [4]). Results on linear transformations simply that sums of independent truncated normals are not truncated 
normal, so the simple average from a random sample of truncated normal variates is not truncated normal. 
Additionally, the MTP2 result implies many other useful properties for the truncated normal: conditionally 
increasing in sequence, positively associated, positively dependent in increasing sets, positively upper orthant-
dependent, and non-negatively correlated. Finally, the results may be extended to truncations of scale mixtures of 
multivariate normal distributions. 
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Appendix A. 
 

Proof of Theorem 4. By a well-known result on linear transformation of random variable: 

 
 

 

 

 

 

 
 

 
which is the not the characteristic function of a truncated normal variate in general. If , then by the 
uniqueness theorem of characteristic functions this is the characteristic function of  truncated below 

. Also, if this is the characteristic function of  truncated below  then by the 
uniqueness theorem of characteristic functions D must equal  
Proof of Theorem 6. Let = 0, then: 
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which happens to be a truncated normal characteristic function, as is 

 
Hence, the joint characteristic function equals the product of the marginal characteristic functions: 

 
SinceW1 andW2 are independent if and only if their joint characteristic is the product of the 
marginal characteristic functions and W 
∗ 
1 and W 
∗ 
2 are independent if and only if �12 = 0, 
and the proof is complete. 
Proof of Theorem 9. Notice that . Consider two cases. 

Case 1: for all . Now  implies 

 
or  for 0. Then we are always in the 
range above c where the condition holds for the multivariate 
normal  

 
Case 2:  for some j or  for some . The condition holds, 

since  for all  
Proof of Theorem 13. The probability statement in Theorem 12 is equivalent to: 

 
which certainly holds, when the condition E(W) = 0 holds. We want to show that this holds for  under the same 
condition when y is negative. Define the following partitions: 

 
Notice that for the truncation below c, 
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so that, for Q = Pr{W∗�c}, the following statements are true: 

 
The inequalities are strict when and , respectively, and become equalities when  and  
respectively.We consider four cases which exhaust the possibilities for the content of B and D.We show that in 
Cases 1 and 3 the integral condition holds for any translation (positive or negative) of the set E, but Cases 2 and 4 
require the translation to be negative. 

Case 1: B = D = ∅. In this case, Eqs. (1) and (2) hold with equality. 

 
or 

 
Therefore, the theorem holds for any y. 

Case 2: , . In this case, both (E + y) and (E +  are truncated from below at c. If y is 
negative then  and 

 
Therefore, the theorem holds for y negative. 

Case 3: , . In this case, the inequality in Eq. (1) is strict while Eq. (2) holds with equality. 
Hence, 

 
and the theorem holds for any y. 

Case 4: , . If y is negative, then this case is precluded. If B is empty, then the negative 
translation of E by y resulted in no truncation of the set E + y. Therefore, the negative translation of E by the (non-
strictly) smaller  will not produce truncation of E + , which contradicts the condition that  

Clearly, Theorem 12 only holds more generally (for any y) when  
Proof of Theorem 16. Consider two cases. 

Case 1:  for all  This also implies:   and 
for all  Therefore we are in the non-truncated range of  Since the 

condition holds in this range for , it must hold for  
Case 2:  for some . This also implies that  = min

 <  for some j �⇒ fW(w∗) = 0, and the condition holds with equality at zero.  
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