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Abstract 36 

Data from 104 sediment cores from the Great Lakes and “inland lakes” in the region were 37 

compiled to assess historical and recent changes in mercury (Hg) deposition.  The lower Great 38 

Lakes showed sharp increases in Hg loading c. 1850-1950 from point-source water dischargers, 39 

with marked decreases during the past half century associated with effluent controls and 40 

decreases in the industrial use of Hg.  In contrast, Lake Superior and inland lakes exhibited a 41 

pattern of Hg loading consistent with an atmospheric source - gradual increases followed by 42 

recent (post-1980) decreases.  Variation in sedimentary Hg flux among inland lakes was 43 

primarily attributed to the ratio of watershed area:lake area, and secondarily to a lake’s proximity 44 

to emission sources.  A consistent region-wide decrease (~20%) of sediment Hg flux suggests 45 

that controls on local and regional atmospheric Hg emissions have been effective in decreasing 46 

the supply of Hg to Lake Superior and inland lakes. 47 

 48 

Keywords:  mercury, sediment cores, sediment mercury deposition, Great Lakes, paleolimnology 49 

 50 

Capsule:  An analysis of data from 104 sediment cores from the Laurentian Great Lakes and 51 

nearby inland lakes indicates sedimentary Hg flux is declining region-wide.52 
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1.  Introduction 53 

 Human releases of mercury (Hg) to the atmosphere, and to a lesser extent surface waters, 54 

have contaminated ecosystems on a global scale (Fitzgerald et al. 1998).  In aquatic ecosystems, 55 

bacteria (principally sulfate reducers) transform divalent inorganic Hg into methylmercury 56 

(MeHg), which strongly bioaccumulates within food webs, resulting in exposure to humans and 57 

wildlife (National Research Council 2000).  All of the states and provinces of the Great Lakes 58 

Region, including the Great Lakes and their connecting waters, have fish consumption advisories 59 

due to MeHg contamination (Environment Canada 2011; U.S. Environmental Protection Agency 60 

2011). 61 

Lake sediments have been widely used to document the historical and spatial dimensions 62 

of Hg pollution (Biester et al. 2007).  Sediment cores can be used, for example, to evaluate the 63 

magnitude of change in Hg deposition over long time-scales (Lamborg et al. 2002) and to 64 

explore recent depositional trends owing to changes and decreases in emissions (Engstrom and 65 

Swain 1997).  Over the last two decades, numerous dated sediment records of Hg flux have been 66 

compiled for the Great Lakes region (e.g., Bookman et al. 2008; Drevnick et al. 2007; Engstrom 67 

and Swain 1997; Engstrom et al. 2007; Johnson et al. submitted; Kamman and Engstrom 2002; 68 

Lorey and Driscoll 1999; Mills et al. 2009; Muir et al. 2009; Parsons et al. 2007; Pirrone et al. 69 

1998; Rossmann 1999; Rossmann 2010; Swain et al. 1992).  These records have been interpreted 70 

largely within a local (state or provincial) context, but have not been systematically compiled or 71 

evaluated across the entire Great Lakes region. 72 

 In this study, we synthesized data from 104 dated sediment cores collected in the region 73 

to address the following key questions:  (1) temporal trends:  How much has atmospheric Hg 74 
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deposition in the Great Lakes region changed during the industrial period (i.e., 1850-present)?  75 

What are the recent trends in sediment Hg deposition (increase, decrease, stable)? 76 

(2) spatial patterns:  Do historical and recent trends in Hg deposition vary systematically across 77 

the region? Are there spatial differences related to distance/proximity to local/regional Hg 78 

emission sources?  (3) Great Lakes versus inland lakes:  Do the time trends and fluxes of 79 

sediment Hg in the Great Lakes differ from those of inland lakes within the region? And what 80 

does that tell us about the relative importance of atmospheric deposition vs. direct water 81 

discharges to the different Great Lakes?  With other factors being equal, the extent of MeHg 82 

contamination of fish is thought to be roughly proportional to long-term atmospheric Hg 83 

deposition (Harris et al. 2007; Munthe et al. 2007).  Therefore, answering these questions may 84 

inform recent and sometimes conflicting (e.g., Bhavsar et al. 2010; Monson 2009) reports of 85 

temporal trends in MeHg contamination of fish in the Great Lakes region. 86 

 87 

2. Methods 88 

 The study area for this synthesis is the Great Lakes airshed (Figure 1).  The Canada-89 

United States Air Quality Agreement (2005) defined an airshed as “a geographic area within 90 

which air pollution is freely and routinely transported and that is influenced by shared sources of 91 

pollutants, weather, and terrain.”  Based on these criteria, we consider the airshed of the Great 92 

Lakes to include:  (1) all of the U.S. states bordering the Great Lakes plus Vermont and New 93 

Hampshire and (2) the Canadian provinces of Ontario and Quebec, excluding far northern 94 

portions. 95 

 Data used in the synthesis were obtained from dated sediment cores collected from the 96 

Great Lakes and inland lakes within the Great Lakes airshed and, with few exceptions, have been 97 
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published in the peer-reviewed literature.  Data were solicited from potential contributors with 98 

the following criteria:  (1) reliable and detailed dating by 
210

Pb; (2) sediment core records 99 

extending back to preindustrial times (pre-1850); and (3) for inland lakes, relatively undisturbed 100 

watersheds, which otherwise greatly increase Hg loading through erosion, and an absence of 101 

direct inputs of Hg from wastewater or industrial waste.  We defined an inland lake as any 102 

natural lake, excluding the Great Lakes themselves, within the study area.  Potential contributors 103 

were asked to provide the following information for each core:  lake name, locality, date of 104 

collection, latitude and longitude of core site, sediment Hg fluxes (pre-1850, 1970, recent, peak), 105 

210
Pb-based focus factor, lake surface area, watershed surface area (excluding lake), and 106 

dominant land use within watershed (qualitatively or by GIS).  Contributors (all co-authors) 107 

provided data from dated sediment cores from Lake Superior (n = 9, Muir et al. 2009; Johnson et 108 

al. submitted), Lake Michigan (n = 1, Rossmann 2010), Lake Ontario (n = 3, Pirrone et al. 1998; 109 

D.G.C. Muir, Environment Canada, Burlington, Ontario, unpublished data), and from inland 110 

lakes in Minnesota (n = 31, Engstrom et al. 2007 and unpublished), Michigan (n = 26, Drevnick 111 

et al. 2007; Parsons et al. 2007), Ontario (n = 9, Muir et al. 2009), New York (n = 14, Bookman 112 

et al. 2008; Lorey and Driscoll 1999; Muir et al. 2009), Quebec (n = 2, Muir et al. 2009), and 113 

Vermont/New Hampshire (n = 11, Kamman and Engstrom 2002; Muir et al. 2009).  All sediment 114 

cores were collected during 1994-2006, except the cores from Lake Ontario, which were 115 

collected in 1981 (2 cores) and 2008 (1 core). 116 

 To represent external Hg loading to the lakes, we used 
210

Pb-based focus factors to derive 117 

focus-corrected Hg flux to each lake’s sediments.  Focusing, defined as the redistribution of 118 

sediments within a lake from shallower to deeper areas (where cores are usually collected), 119 

generally increases with lake size and fetch.  Focusing is responsible for the observation that Hg 120 
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flux to the coring site is generally greater than the average flux to the lake as a whole.  The focus 121 

factor is the ratio of the core specific 
210

Pb flux to the atmospheric 
210

Pb flux (c. 0.5 pCi/cm
2
/yr 122 

for the Great Lakes region). Because 
210

Pb has a short half-life (22 years) relative to its residence 123 

time in soils, no more than 1-2% of annual 
210

Pb fallout to the watershed is removed to the lake 124 

(Appleby, 2001). Direct atmospheric deposition to the lake surface is thus the dominant 
210

Pb 125 

load except in cases where watersheds are very large or highly disturbed. The important point 126 

here is that focusing corrections based on 
210

Pb do not account for watershed Hg inputs, which 127 

must instead be determined following other methods (see below). 128 

 The Great Lakes, because they are large and have significant wind-driven currents, are 129 

subject to considerable sediment focusing (e.g., Rossmann 2010), and it appears from a positive 130 

relationship between lake surface area and the 
210

Pb-based focus factor (lake surface area natural 131 

log transformed; n = 91, r = 0.298, p = 0.004) that sediment focusing is also significant in inland 132 

lakes.  Focus-corrected sediment Hg flux is calculated by dividing a lake’s Hg flux by its 
210

Pb-133 

based focus factor. 134 

 For each lake, we also calculated Hg flux ratios by dividing the sediment Hg fluxes for 135 

1970, recent, and peak by the pre-1850 Hg flux.  Flux ratios normalize the data across lakes by 136 

providing an estimate of relative change in sediment Hg fluxes. 137 

 Data from inland lakes (n = 91; Figure 1) were grouped into three geographic sub-138 

regions.  Sediment cores were collected from fairly discrete sub-regions that facilitated the 139 

geographic divisions:  west (west of 87˚ W; n = 44; includes cores from Minnesota, northwestern 140 

Ontario, Isle Royale, and the western Upper Peninsula of Michigan); central (81-87˚ W, n = 15, 141 

includes cores from northeastern Ontario from the rest of Michigan); and east (east of 81˚ W, n = 142 

32, includes cores from southern Ontario, New York, Quebec, Vermont, and New Hampshire). 143 
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 Data from inland lakes, as the entire dataset and by sub-region, were examined for 144 

patterns of sediment Hg fluxes and Hg flux ratios, including relative watershed influence, Hg wet 145 

deposition, and the distance/proximity to local/regional sources of atmospheric Hg emissions.  146 

Analyses were performed with JMP software (SAS Institute, Inc., Cary, NC, USA) and, 147 

depending on the nature of the data, included Student’s t-tests, one-way analysis of variance 148 

(ANOVA), simple linear regression, and stepwise multiple regression.  Data were transformed, if 149 

necessary, to meet the assumptions of the analyses. 150 

 The influence of a lake’s watershed on sedimentary Hg flux was examined with two 151 

metrics:  the watershed area:lake area ratio (AW:AL) and dominant land use type. Lakes derive a 152 

variable portion of their total Hg load from watershed export of atmospheric deposition, which 153 

we estimate from AW:AL by assuming that a similar proportion (24%) of Hg deposition to the 154 

terrestrial watershed is exported to all lakes. This approach allows us estimate the atmospheric 155 

Hg flux for each lake (and sub-region) by adjusting the focus-corrected Hg fluxes for watershed 156 

contributions. It is a direct modification of the method of Swain et al. (1992) and is described 157 

more fully in the discussion section below. 158 

 Of the 91 sediment cores from inland lakes, 80 were collected from lakes with forested 159 

catchments, and 11 were collected from lakes dominated by “other” land use:  agriculture, 160 

agriculture/forest, or agriculture/urban.  We observed no difference in sediment Hg fluxes or Hg 161 

flux ratios between lakes with forested watersheds and lakes with “other” dominant land use 162 

(Student t-test).  This result was predictable, considering that we selected lakes a priori with 163 

relatively undisturbed (largely forested) catchments.  Thus, while land use can significantly 164 

influence Hg flux to a lake (Engstrom et al. 2007), it is not a factor in our dataset and is not 165 

considered further. 166 
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Estimates of Hg wet deposition were obtained from the Mercury Deposition Network 167 

(MDN; National Atmospheric Deposition Program 2011).  The MDN operates more than 25 sites 168 

(varies by year) within the Great Lakes region.  For each site, total Hg is measured in 169 

precipitation weekly, and annual Hg wet deposition is calculated.  Where there is sufficient 170 

spatial coverage, isopleth maps are produced that interpolate annual wet deposition between 171 

sites.  Beginning in 2004, isopleth maps have been produced for the entire Great Lakes region.  172 

For this study, estimates of annual Hg wet deposition for inland lakes were obtained by 173 

overlaying the GPS coordinates of sediment cores onto maps displaying MDN isopleths for the 174 

years 2004-2006 (the latter being the final year of core collection for this study).  The average of 175 

the 3 years represents recent Hg wet deposition for each site.  In addition, Hg wet deposition as a 176 

percentage of recent focus-corrected Hg flux was calculated for each site. 177 

To examine Hg wet deposition and sedimentary Hg flux in the context of 178 

distance/proximity to local/regional sources of atmospheric Hg emissions, we made crude 179 

estimates of distance to the nearest major urban area and the number of major urban areas within 180 

500 km.  We define a major urban area as having a human population greater than 1,000,000 181 

(city plus suburbs).  Distances were calculated, according to latitude and longitude, from core 182 

sites to the approximate centers of the major urban areas. 183 

 184 

3. Results and Discussion 185 

3.1. Great Lakes 186 

 A review of studies from the Great Lakes (Table 1) indicates that relatively little work 187 

has been done to understand sedimentary Hg fluxes in these important ecosystems.  Most 188 

previous studies have compared Hg concentrations in surficial sediments collected from selected 189 
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stations at different time periods (e.g., 1970 versus 2000) (Marvin et al. 2004).  This approach 190 

has shown that there are differences in Hg concentrations in surficial sediments within and 191 

among the Great Lakes, and that there have been marked decreases in Hg concentrations since 192 

the late 1960s/early 1970s.  However, if more work is to be done on Hg contamination of Great 193 

Lakes sediments, efforts should focus on dated sediment cores, as this approach is more useful 194 

for lake management.  Dated sediment cores yield temporal data that are highly detailed, as well 195 

as flux estimates that can be used for source characterization and mass-balance calculations.   196 

While surficial sediments can be useful in identifying pollution from direct wastewater 197 

discharges, estimates from dated sediment cores indicate that more than 90% of modern 198 

sedimentary Hg fluxes are due to atmospheric deposition directly to the lake surface, at least for 199 

Lake Superior (Rolfhus et al. 2003) and Lake Michigan (Rossmann 2010). 200 

 The sedimentary records from Lake Ontario and Lake Michigan indicate that Hg loading 201 

from direct wastewater discharge had been elevated in the past, with Lake Ontario more strongly 202 

affected than Lake Michigan.  Pre-1850 sediment Hg fluxes for both lakes were relatively low 203 

and stable, but by approximately 1950 had reached peak fluxes of 760 µg/m
2
-yr in Lake Ontario 204 

and 53 µg/m
2
-yr in Lake Michigan, resulting in peak to pre-industrial flux ratios of 76 and 17, 205 

respectively.  These ratios greatly exceed the typical values of 2-5 observed worldwide for lakes 206 

unaffected by point-source water pollution (Biester et al. 2007).  For Lake Ontario and Lake 207 

Michigan, respectively, Hg fluxes decreased from peak values by one-half and one-third by 1970 208 

and another one-half and one-third by recent estimates.  The human populations along the 209 

shorelines of these two Great Lakes are large, with many well-documented point-source 210 

wastewater discharges (e.g., Marvin et al. 2004), including chlor-alkali and pulp and paper 211 

facilities that used Hg in industrial processes, as well as municipal wastewater treatment plants.  212 
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Both the timing and magnitude of change in these sediment records suggest that direct (end-of-213 

pipe) water discharges, not atmospheric deposition, were responsible for the mid-20
th

 century Hg 214 

peaks and large subsequent declines. 215 

In contrast, the sedimentary records from Lake Superior indicate primarily an 216 

atmospheric signal.  The human population along the shoreline of Lake Superior is the smallest 217 

of the Great Lakes, but there are, and have been, significant direct wastewater discharges to the 218 

lake (Kerfoot et al. 1999).  The areal extent of pollution from wastewater discharges may be 219 

localized near the outfalls to this largest Great Lake, however.  From cores collected in 1983, 220 

Rossmann (1999) reported Hg fluxes to surficial sediments as high as 100 µg/m
2
-yr for 221 

nearshore areas affected by point sources, but lower Hg fluxes for offshore areas (recalculated in 222 

Rossmann 2010; means in µg/m
2
-yr of 7.2 for pre-1850 sediments and 27.7 for surficial 223 

sediments; flux ratio of 4).  These earlier values reported by Rossman (1999) were crude 224 

estimates, however, because core chronologies and sedimentation rates were not measured, but 225 

taken from previously published reports.  The data contributed for the present synthesis were 226 

from cores collected from offshore areas (Johnson et al. submitted; Muir et al. 2009).  Loading of 227 

Hg to offshore waters of Lake Superior is dominated by atmospheric deposition (Rolfhus et al. 228 

2003).  Sediment Hg fluxes, compared to values from Lake Ontario and Lake Michigan, are low 229 

for all periods (in µg/m
2
-yr; pre-1850 2.7, peak 12.8, recent 10.8), but agree well with estimates 230 

of atmospheric fluxes derived from inland lakes in adjacent northeastern Minnesota (Engstrom 231 

and Swain 1997; Swain et al. 1992; see below inland lakes).  The sediment cores from Lake 232 

Superior and those of Engstrom and Swain (1997) also had similar Hg flux ratios (3-4 vs. 4-5) 233 

and peak years of Hg flux (1977 vs. mid-1970s).  Sediments from offshore areas of Lake 234 

Superior appear to be a near-ideal recorder of net atmospheric Hg deposition. 235 
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 236 

3.2. Inland Lakes 237 

 Sediment Hg fluxes (Figure 2), peak year of flux (Figure 3), and flux ratios (Figure 4) 238 

from sediment records from inland lakes indicate that atmospheric Hg deposition was generally 239 

uniform across the Great Lakes region.  Inland lakes from each geographic region exhibited 240 

similar patterns of relative change in Hg fluxes.  Median pre-1850 sediment fluxes for the west 241 

(W), central (C), and east (E) were 7.5, 4.6, and 15.2 µg/m
2
-yr, respectively. Fluxes had 242 

increased approximately three-fold by 1970 (W 21.1, C 16.1 , E 51.4 µg/m
2
-yr) and by four- to 243 

five-fold at peak during the late 1980s (W 29.9,  C 24.8, E 68.7 µg/m
2
-yr).  Recent fluxes (W 244 

24.0, C 20.5, E 55.8 µg/m
2
-yr) have declined about 20%, to near 1970 levels. Peak and recent 245 

fluxes, especially those for the central and east sub-regions, showed the greatest variation (Figure 246 

2).     247 

 For each period, the median Hg flux to the sediment in the east lakes was two to three 248 

times greater than that in the west and central sub-regions.  Atmospheric Hg deposition may be 249 

elevated in the east due to generally higher precipitation, but probably not because of human 250 

influence, as Hg flux ratios in this sub-region were similar to those in the west and central sub-251 

regions.  Most likely the high Hg flux in the eastern lakes was primarily due to greater Hg inputs 252 

from their relatively larger watersheds (Lorey and Driscoll 1999), as AW:AL tended to be greatest 253 

in this sub-region (one-way ANOVA; F2,88 = 3.01, p = 0.054).  The central sub-region had higher 254 

flux ratios for peak:pre-1850 (one-way ANOVA; F2,88 = 5.11, p = 0.008) and recent:pre-1850 255 

(one-way ANOVA; F2,88 = 3.28, p = 0.042) than the west and east.  We cannot rule out, however, 256 

that the high flux ratios in this sub-region may have been an artifact of the small number of lakes 257 

with a large range in flux ratios. 258 
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   Based on previous reports, we did not expect a clear region-wide pattern of recent 259 

declines in Hg flux.  Engstrom and Swain (1997) reported from a suite of Minnesota lakes that 260 

Hg flux peaked in the 1970s and was declining region wide (upper Midwest).  A more 261 

comprehensive dataset from Minnesota, however, suggested that the declines (of 20-30% since 262 

peak) were limited to lakes near (<60 km from) sources of atmospheric Hg emissions (Engstrom 263 

et al. 2007).  Parsons et al. (2007) stressed the importance of watershed-scale sources to 264 

Michigan lakes, reporting that only 11 of 26 (42%) lakes studied had recent declines in Hg flux.  265 

Similarly, Muir et al. (2009) observed only 5 of 14 (36%) lakes within the Great Lakes airshed 266 

showing recent declines in sediment Hg flux.  In contrast, the literature suggests that recent 267 

declines are more pronounced in lakes in the eastern reaches of the Great Lakes region 268 

(Bookman et al. 2008; Kamman and Engstrom 2002).  The present synthesis incorporated all of 269 

the above-mentioned studies, as well as others, but as mentioned previously, included only lakes 270 

with relatively undisturbed watersheds, to more clearly examine trends in atmospheric Hg 271 

deposition without the confounding influence of land use.  Of the lakes in our synthesis, 76 of 91 272 

(84%) showed a recent decline in sedimentary Hg flux.  If the 15 lakes that showed no decline 273 

are removed from the data analysis, median values for all lakes, as well as for each of the three 274 

sub-regions, for peak year (91 lakes, 1989; 76 lakes, 1985) and the flux ratio of recent:peak (91 275 

lakes, 0.85; 76 lakes, 0.81) were little affected. 276 

Watershed factors 277 

 The relationship between AW:AL and sedimentary Hg flux for a given set of lakes has 278 

been used to derive atmospheric Hg flux for a given area (Swain et al. 1992).  This approach 279 

involves simple linear regression of sedimentary Hg flux (dependent variable) against AW:AL 280 

(independent variable).  The intercept of the regression line at AW:AL = 0 approximates Hg 281 
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loading to a lake with no watershed, i.e. atmospheric Hg deposition.  The slope divided by the 282 

intercept approximates the proportion of atmospheric Hg deposition delivered to the lake from 283 

the watershed.  We performed simple linear regressions of AW:AL and Hg fluxes (pre-1850, 284 

peak, recent) from inland lakes for the Great Lakes airshed as a whole and for the west, central, 285 

and east sub-regions separately (Table 2).  Relationships with the entire Great Lakes airshed and 286 

with the east sub-region were statistically significant, whereas those with the central and west 287 

sub-regions were not. And while the regressions with the entire dataset provided reasonable 288 

estimates (when back transformed) for atmospheric Hg deposition (pre-1850 = 5.5, recent = 20 289 

µg/m
2
-yr) the same estimates for the eastern sub-region were substantially higher (pre-1850 = 290 

11,  recent = 30 µg/m
2
-yr). Present-day values for wet Hg deposition from MDN monitoring (5-291 

10 µg/m
2
-yr) are much lower than either of these estimates and show little regional 292 

differentiation (Figure 1).  The values for the ratio of slope to intercept (when both are back 293 

transformed) are also questionable, because they indicate very low delivery of atmospheric Hg 294 

deposition from watershed to lake (5% or less).  Empirical measurements generally indicate that 295 

watersheds deliver much higher (~20%) proportions of atmospheric Hg deposition to lakes (e.g., 296 

Aastrup et al. 1991). 297 

 In an attempt to provide more realistic estimates, we performed the analyses for the Great 298 

Lakes airshed as a whole and for the west, central, and east sub-regions separately, but with lakes 299 

with AW:AL <10 and again with AW:AL <5.  Most of the relationships are not significant, 300 

however, and the values for slope and intercept do not improve estimates for atmospheric Hg 301 

deposition and watershed influence.  Perhaps, as noted by Muir et al. (2009), this regression 302 

approach is not ideal for a diverse group of lakes, but is more suitable for lakes in close 303 

proximity (e.g., Lorey and Driscoll 1999, Kamman and Engstrom 2002). 304 
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 There was also no apparent relationship between AW:AL and flux ratios or peak year of 305 

flux.  For the Great Lakes airshed as a whole and for the west, central, and east sub-regions 306 

separately, we performed simple linear regressions between AW:AL and flux ratios for peak:pre-307 

1850, recent:pre-1850, recent:peak, and peak year.  As above, we performed the analyses with 308 

data from all lakes, lakes with AW:AL <10, and lakes with AW:AL <5.  None of the 48 309 

relationships tested were statistically significant (statistics not shown). 310 

 We believe that much of the difficulty in using the regression approach to estimate 311 

atmospheric Hg deposition may arise from unaccounted-for variation in Hg export, in-lake 312 

cycling, and sedimentation among our large and diverse group of lakes and watersheds. Hence 313 

we developed an alternative method that independently estimates atmospheric Hg deposition for 314 

each lake and thus removes the influence of outliers that otherwise may distort the regression 315 

analyses. In this approach we corrected the sediment Hg flux in each lake for the relative size of 316 

the lake’s watershed by rearranging terms in the relationship of Swain et al. (1992), so that: 317 

 318 

Atmospheric Hg flux = focus-corrected sediment Hg flux / (1 + (0.24 AW:AL))     (1) 319 

 320 

We assume here that 24% of Hg deposition to the terrestrial watershed is exported to each lake, a 321 

coefficient chosen as the mid-point between the value of 26% found for modern deposition in the 322 

western Great Lakes sub-region by Swain et al. (1992) and 22% reported by Lorey and Driscoll 323 

(1999) in the east. By estimating atmospheric deposition in this manner, we make the gross 324 

assumption that all terrestrial watersheds behave similarly, not only in the present, but also in the 325 

past. 326 
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The median atmospheric Hg deposition calculated in this manner is broadly uniform 327 

across the Great Lakes region and shows a similar magnitude of change to that of the sediment 328 

Hg fluxes. In preindustrial times (pre-1850) median Hg deposition rates for the west, central, and 329 

east were 2.6, 2.1, and 3.7 µg/m
2
-yr, respectively (Figure 5). These rates increased to 9.1, 9.1, 330 

and 13.1 µg/m
2
-yr by 1970, peaked at 13.1. 15.0 and 16.9 µg/m

2
-yr in the 1980s, and declined to 331 

10.3, 13.1, and 10.8 µg/m
2
-yr in recent times (west, central, and east, respectively). These values 332 

are very similar to those reported by Swain et al. (1992) from a different group of Minnesota 333 

lakes (pre-1850 = 3.7 µg/m
2
-yr, and recent (c. 1990) = 12.5 µg/m

2
-yr), and are only slightly 334 

higher (for the modern rate) than MDN measurements of wet deposition for the Great Lakes 335 

airshed (generally 5-10 µg/m
2
-yr). 336 

Relationship with emissions and wet Hg deposition 337 

For all lakes across the Great Lakes airshed, estimates of Hg wet deposition from MDN 338 

are not correlated with recent sedimentary Hg flux (recent sedimentary Hg flux natural log 339 

transformed; n = 91, r = 0.039, p = 0.715).  Perhaps this result is not surprising as there is little 340 

spatial variation in estimates of Hg wet deposition across the airshed (Prestbo and Gay 2009; 341 

Risch et al. this issue), but there is a significant gradient in sedimentary Hg flux (east higher than 342 

west and central; for all time periods examined).  Moreover, dry Hg deposition generally exceeds 343 

wet Hg deposition (Miller et al. 2005; Driscoll et al. 2007a).  For each lake, we calculated Hg 344 

wet deposition as a percent of recent focus-corrected Hg flux, finding values ranging from 2% to 345 

112%, with a median of 21%.  For the three sub-regions (Figure 6), the percentage of recent 346 

sediment Hg deposition as wet deposition was significantly lower in the east (16%) than the west 347 

(29%) and central (42%) (natural log of Hg wet deposition divided by recent Hg flux; one-way 348 

ANOVA; F2,88 = 14.8, p < 0.001). 349 
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 An examination of the relationship between Hg wet deposition as a percentage of recent 350 

sedimentary Hg flux and AW:AL (Figure 7) teases out the influence of watershed size on Hg flux 351 

in inland lakes.  The two variables were significantly and negatively related (both variables 352 

natural log transformed; n = 91, r = -0.435, p < 0.001).  It would appear that the lower inferred 353 

percent Hg wet deposition (relative to recent sedimentary Hg flux) in the eastern lakes is a 354 

proximal result of higher sediment-Hg fluxes in this sub-region.  At a mechanistic level, it could 355 

indicate that lakes with relatively large watersheds receive a greater portion of their Hg inputs 356 

from runoff (as opposed to direct atmospheric deposition), or that lakes with small surface areas 357 

receive more Hg from litterfall (dry deposition) than do large lakes, which have a smaller “edge 358 

effect”.  If the latter is true, it might also explain the relatively high Hg fluxes in the east. 359 

 There are distinct effects of local sources of atmospheric Hg emissions on wet and dry 360 

Hg deposition and on sedimentary Hg flux in the Great Lakes airshed.  We performed simple 361 

linear regressions of (1) distance to the nearest major urban area; and (2) the number of major 362 

urban areas within 500 km with (i) Hg wet deposition, (ii) Hg wet deposition as a percentage of 363 

recent sedimentary Hg flux, (iii) sedimentary Hg fluxes (pre-1850, peak, recent), and (iv) Hg 364 

flux ratios (peak:pre-1850, recent:pre-1850, recent:peak) (Table 3).  Relationships were 365 

significant with Hg wet deposition and Hg wet deposition as a percentage of recent sedimentary 366 

Hg flux, indicating that atmospheric Hg deposition (wet and dry) is elevated in the 367 

proximity/vicinity of atmospheric Hg sources.  For the sediment records, relationships were 368 

significant with peak and recent flux rates and inconsistent with flux ratios.  These relationships 369 

were predictable because gaseous Hg(II) emitted by combustion sources has a relatively short 370 

atmospheric residence time (Lindberg et al. 2007).  Engstrom and Swain (1997) estimated that 371 

40% of atmospheric Hg deposition in Minnesota lakes originated from sources within the region, 372 



 17 

however, as short-stack, high pHg/Hg(II) emissions have decreased, sources within the region 373 

now contribute generally less than 30% to atmospheric Hg in the region (Selin et al. 2007).  374 

Denkenberger et al. (this issue) estimated that 40% of the total Hg emissions in 2005 in the Great 375 

Lakes watershed were from oxidized Hg. 376 

 A step-wise multiple regression analysis indicates that much of the variation (R
2
 = 0.553) 377 

in recent sedimentary Hg flux in inland lakes can be explained by the pre-1850 flux, AW:AL, and 378 

the number of major urban areas within 500 km.  Other variables considered by the model, but 379 

not entered in the regression equation (probability to enter = 0.25), included Hg wet deposition 380 

and distance to the nearest major urban area. The regression equation is: 381 

 382 

ln(recent flux) = 1.91 + 0.480 x ln(pre-1850 flux) + 0.159 x MUA
1/2

 + 0.121 x ln(AW:AL)    (2) 383 

 384 

Pre-1850 flux accounts for underlying differences among the lakes and geological sources of Hg, 385 

the number of major urban areas (MUA) within 500 km accounts for wet and dry atmospheric 386 

Hg deposition, and AW:AL accounts for watershed delivery of atmospheric Hg to the lake (Mills 387 

et al. 2009). 388 

 389 

3.3 Great Lakes versus Inland Lakes 390 

 Similarities in sedimentary Hg flux between the Great Lakes and inland lakes were 391 

observed in temporal trends and spatial patterns.  Both types of systems responded to post-1850 392 

increases in Hg loading, reached a peak during the mid to late 20
th

 century (although nearly 40 393 

years apart), and now show declines in Hg flux.  For spatial patterns, both the Great Lakes and 394 

inland lakes show elevated Hg fluxes toward the eastern sub-region of the Great Lakes airshed.  395 
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The spatial patterns arise from different reasons, however.  The lower Great Lakes (e.g., Lake 396 

Ontario) exhibit greater Hg contamination than the upper Great Lakes (e.g., Lake Michigan, 397 

Lake Superior) because of greater wastewater and industrial waste discharges, whereas relatively 398 

high Hg fluxes for inland lakes are found in the east (for all time periods examined), likely due to 399 

watersheds that are large relative to the areas of the lakes. 400 

 Differences in sedimentary Hg flux between the Great Lakes and inland lakes are 401 

observed in the magnitude of change during the industrial period.  Lake Ontario and Lake 402 

Michigan, both affected by point-source wastewater discharges, have peak:pre-1850 flux ratios 403 

of 76 and 17, respectively.  Sediment Hg deposition has declined more than 50% since peak 404 

values in these systems.  In contrast, inland lakes have peak:pre-1850 flux ratios of 405 

approximately 5, with declines generally less than 20% since peak values. 406 

 Hg fluxes, the peak year of flux, and flux ratios for Lake Superior are more similar to 407 

inland lakes than to the other lower Great Lakes.  This finding likely relates to sediments from 408 

offshore areas of Lake Superior yielding what appears to be a record of net atmospheric Hg flux.  409 

The sedimentary Hg fluxes (pre-1850, peak, recent) from Lake Superior are lower than our 410 

focus-corrected sediment Hg flux derived from inland lakes (Table 2), but are similar to our 411 

median estimates of atmospheric Hg flux in the west (in µg/m
2
-yr; Lake Superior and west are, 412 

respectively: pre-1850 2.7 and 2.6, 1970 11.1 and 9.1, peak 12.8 and 13.1, recent 10.8 and 10.3). 413 

 414 

4. Conclusions 415 

 The most important finding from our synthesis may be that sedimentary Hg flux is 416 

declining in both the Great Lakes and inland lakes of the Great Lakes region.  Local, regional, 417 

and (inter)national management of Hg discharges to water and air are making significant 418 
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progress in decreasing Hg loads to lakes, big and small, across the region.  Another important 419 

and perhaps unexpected finding is that atmospheric Hg deposition appears uniform across the 420 

Great Lakes airshed.  This consistent observation has important management implications.  First, 421 

it suggests that local and regional sources of atmospheric Hg emissions are important sources of 422 

Hg deposition compared to global sources.  Atmospheric Hg emissions within the Great Lakes 423 

region have decreased in recent decades (Pirrone et al. 1998; Driscoll et al. 2007b; Evers et al. 424 

2007), whereas global sources have increased (AMAP/UNEP 2008).  Second, it suggests that 425 

regional and local controls on atmospheric emissions have been effective in decreasing the 426 

delivery of Hg to lakes, across the region regardless of watershed size.  This important 427 

observation was unexpected, because a region-wide trend of declining atmospheric Hg 428 

deposition is not evident from MDN data (for the period 1996-2005; Prestbo and Gay 2009) or 429 

from previous sediment core data (see second paragraph of section 3.2).  430 

 We also anticipated significant relationships between AW:AL and (1) recent:peak and (2) 431 

peak year, although none were discerned in our analysis.  It has been hypothesized (Fitzgerald 432 

and Lamborg 2004; Grigal 2002), and shown in a few studies (e.g., Lorey and Driscoll 1999, 433 

Kamman and Engstrom 2002, Harris et al. 2007), that continued flux of “legacy” Hg (i.e., 434 

historical Hg deposition) from a watershed will cause a lag in recovery of Hg loading to lakes, 435 

and that this effect is magnified in lakes with large watersheds.  The combined observations that 436 

sediment-Hg declines were recorded in lakes regardless of watershed size and the absence of 437 

clear trends in recent MDN monitoring suggest that sediment records may be responding to 438 

decreases in Hg deposition that occurred decades earlier.   439 

 We have a concern that this pattern of recent declines in Hg deposition relies on 440 

interpretation of data from the most recent strata of lake sediments, which are characterized by 441 
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some uncertainty concerning disturbance and diagenesis in deposition processes.  An important 442 

test of the veracity of these declines will come with future core work on the same or another suite 443 

of regional lakes.  However, given that recent declines in sediment Hg deposition have been 444 

observed in a large number of lakes sampled by a broad suite of investigators, we believe that 445 

these observations suggest a “cause and effect” relationship between controls on local and 446 

regional emissions of Hg to the atmosphere and partial ecosystem recovery from Hg 447 

contamination.  Note that at least one regional study has reported recent decreases in fish Hg 448 

concentrations (Dittman and Driscoll 2009).  Deviations from our findings for sedimentary Hg 449 

flux, either temporal (e.g., the recent increase in Hg concentrations in walleye in Minnesota; 450 

Monson 2009) or spatial (e.g., exceptionally high Hg concentrations in fish in an area of low Hg 451 

flux, Voyageurs National Park; Wiener et al. 2006), are likely related to ecosystem factors, such 452 

as Hg methylation or lake productivity, and not atmospheric Hg flux. 453 

 454 
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Figure captions 634 

 635 

Figure 1.  Map of the Great Lakes study area, with an overlay of wet Hg deposition obtained 636 

from the Mercury Deposition Network (National Atmospheric Deposition Program 2011).  637 

Shown are the location of sediment cores used in this synthesis, the boundary of the Great Lakes 638 

watershed, provincial and state boundaries, and the west, central and east sub-regions used in 639 

data analysis. 640 

 641 

Figure 2.  Box plots of accumulation rates (or flux) of mercury (Hg) in dated sediment cores 642 

from inland lakes of the Great Lakes airshed.  Plots are presented for four time periods (pre-643 

1850, 1970, peak, recent) for the entire region (all) and for three subregions:  west (west of 87˚ 644 

W), central (81-87˚ W), and east (east of 81˚ W).  Boxes represent interquartile ranges, whiskers 645 

delineate upper and lower 10%, and the center line is the median. 646 

 647 

Figure 3.  Box plot of peak year of accumulation rates (or flux) of mercury (Hg) in dated 648 

sediment cores from inland lakes in three subregions (west, central, east; further described in 649 

Figure 2 and text) of the Great Lakes airshed.  Box plot as described in Figure 2. 650 

 651 

Figure 4.  Box plots of the ratio of mercury (Hg) accumulation (flux ratios) for peak:pre-1850, 652 

recent:pre-1850, and recent:peak from dated sediment cores from inland lakes in three 653 

subregions (west, central, east; further described in Figure 2 and text) of the Great Lakes airshed.  654 

Dashed line denotes a flux ratio of 1 (no change).  Box plots as described in Figure 2.  The upper 655 
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whiskers for the central subregion extend to 68 and 30 for peak:pre-1850 and recent:pre-1850, 656 

respectively. 657 

 658 

Figure 5.  Box plots of atmospheric mercury (Hg) deposition calculated by correcting sediment 659 

Hg fluxes for sediment focusing and watershed Hg inputs (see text). Results shown for inland 660 

lakes in three subregions (west, central, east; further described in Figure 2 and text) of the Great 661 

Lakes airshed and for the entire region. Box plots as described in Figure 2. 662 

 663 

Figure 6.  Box plot of mercury (Hg) wet deposition as a percent of recent Hg accumulation rates 664 

(flux) for sediment coring sites at inland lakes in three subregions (west, central, east; further 665 

described in Figure 2 and text) of the Great Lakes airshed.  Data for Hg wet deposition are from 666 

the Mercury Deposition Network for the years 2004-2006.  Box plot as described in Figure 2. 667 

 668 

Figure 7.  Scatter plot of watershed area : lake area ratio (AW:AL) and mercury (Hg) wet 669 

deposition as a percent of recent Hg accumulation rates (flux) for inland lakes in three 670 

subregions (west, central, east; further described in Figure 2 and text) of the Great Lakes airshed.  671 

Data for Hg wet deposition are from the Mercury Deposition Network for the years 2004-2006. 672 
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