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Chiral Nonet Mixing in ππ Scattering

Amir H. Fariborz, a ∗, Renata Jora b †, Joseph Schechter c §, and M. Naeem Shahid c ¶

c Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA,
a Department of Engineering, Sciences and Mathematics,

State University of New York, Institute of Technology,Utica, NY13504-3050, USA, and
b Grup de Fisica Teorica and IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain,

(Dated: June 23, 2011)

Pion pion scattering is studied in a generalized linear sigma model which contains two scalar
nonets (one of quark-antiquark type and the other of diquark-antidiquark type) and two corre-
sponding pseudoscalar nonets. An interesting feature concerns the mixing of the four isosinglet
scalar mesons which yield poles in the scattering amplitude. Some realism is introduced by en-
forcing exact unitarity via the K-matrix method. It is shown that a reasonable agreement with
experimental data is obtained up to about 1 GeV. The poles in the unitarized scattering amplitude
are studied in some detail. The lowest pole clearly represents the sigma meson (or f0(600)) with a
mass and decay width around 500 MeV. The second pole invites comparison with the f0(980) which
has a mass around 1 GeV and decay width around 100 MeV. The third and fourth poles, resemble
some of the isosinglet state in the complicated 1-2 GeV region. Some comparison is made to the
situation in the usual SU(3) linear sigma model with a single scalar nonet.

PACS numbers: 14.80.Bn, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

Although the exact nature of the low lying scalar mesons has been a topic of intense debate, the fact that these
states play important roles in our understanding of low-energy QCD seems to be shared by all. Various models
have been put forward for the properties of the scalar mesons. A general discussion of the experimental situation on
light scalars is given in ref. [2]. Some characteristic treatments of the last twenty years are given in refs. [3]-[35].
In particular, an important four-quark (i.e. two quarks and two antiquarks) component, as was first proposed in
the MIT bag model [37], seems to explain some of their unusual properties such as the reversed mass spectrum. It
has also been pointed out [21], [22], [23], [25], [26], [27]-[32], that four quark components alone are not sufficient for
understanding the physical parameters of these states but seems to rquire a scenario based on an underlying mixing
between quark-antiquark nonets and nonets containing two quarks as well as two anti quarks. A simple picture for
scalar states below 2 GeV then seems to emerge. Amusingly, this mixing [32] automatically leads to light scalars that
are dominantly of two quark- two antiquark nature and light conventional pseudoscalars that are, as expected from
established phenomenology, dominantly of quark-antiquark nature.
As some of the light scalar mesons (such as the σ and the κ) are very broad their Lagrangian masses (“bare” masses)

are considerably different from their pole locations in appropriate scattering amplitudes. The work of [32] investigated
in detail the “bare” mass spectrum of these states, as well as their internal structure by fitting the predictions of
the model for various low-energy parameters to known experimental data. This fixed all Lagrangian parameters (to
the leading order). In this paper, we work with the same Lagrangian (i.e. without introducing any new parameters)
and investigate the effect of unitarization on the isosinglet, zero angular momentum partial wave pi-pi scattering
amplitude computed at tree order.
We will treat the pion scattering amplitude unitarization by using the K-matrix method. As the model involves two

nonets of scalars, there are altogether four isosinglet scalar mesons (two from each nonet) that contribute as poles in
the pion scattering amplitude. Therefore the K-matrix unitarization has to deal with all four poles at the same time
resulting in a more involved version of the conventional single-pole K-matrix unitarization.
The advantages of the K-matrix approach to unitarization are that it does not introduce any new parameters and

that it forces exact unitarity. It is plausible since if one starts from a pure pole in the partial wave amplitude, one
ends up with a pure Breit Wigner shape. A disadvantage is that it neglects, in the simple version we use, the effects
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of the opening of thresholds like the KK̄ on the pi pi amplitude. This is not expected to be too serious for our initial
appraisal here.
In Sec. II we give a brief review of the Lagrangian and the relevant formulas, followed by the K-matrix unitarization

of the scattering amplitude in Sec. III and a summary and discussion of the results in Sec. IV.

II. BRIEF REVIEW OF THE MODEL

The model employs the 3×3 matrix chiral nonet fields:

M = S + iφ, M ′ = S′ + iφ′. (1)

The matrices M and M ′ transform in the same way under chiral SU(3) transformations but may be distinguished
by their different U(1)A transformation properties. M describes the “bare” quark antiquark scalar and pseudoscalar
nonet fields while M ′ describes “bare” scalar and pseudoscalar fields containing two quarks and two antiquarks. At
the symmetry level in which we are working, it is unnecessary to further specify the four quark field configuration.
The four quark field may, most generally, be imagined as some linear combination of a diquark-antidiquark and a
“molecule” made of two quark-antiquark “atoms”.
The general Lagrangian density which defines our model is

L = −1

2
Tr

(

∂µM∂µM
†
)

− 1

2
Tr

(

∂µM
′∂µM

′†
)

− V0 (M,M ′)− VSB, (2)

where V0(M,M ′) stands for a function made from SU(3)L× SU(3)R (but not necessarily U(1)A) invariants formed
out of M and M ′.
As we previously discussed [28], the leading choice of terms corresponding to eight or fewer underlying quark plus

antiquark lines at each effective vertex reads:

V0 = − c2 Tr(MM †) + ca4 Tr(MM †MM †)

+ d2 Tr(M
′M ′†) + ea3(ǫabcǫ

defMa
dM

b
eM

′c
f + h.c.)

+ c3

[

γ1ln(
detM

detM †
) + (1− γ1)ln

Tr(MM ′†)

Tr(M ′M †)

]2

. (3)

All the terms except the last two (which mock up the axial anomaly) have been chosen to also possess the U(1)A
invariance. The symmetry breaking term which models the QCD mass term takes the form:

VSB = −2Tr(AS) (4)

where A = diag(A1, A2, A3) are proportional to the three light quark masses. The model allows for two-quark
condensates, αa = 〈Sa

a〉 as well as four-quark condensates βa = 〈S′a
a〉. Here we assume [? ] isotopic spin symmetry

so A1 =A2 and:

α1 = α2 6= α3, β1 = β2 6= β3 (5)

We also need the “minimum” conditions,

〈

∂V0

∂S

〉

+

〈

∂VSB

∂S

〉

= 0,

〈

∂V0

∂S′

〉

= 0. (6)

There are twelve parameters describing the Lagrangian and the vacuum. These include the six coupling constants
given in Eq.(3), the two quark mass parameters, (A1 = A2, A3) and the four vacuum parameters (α1 = α2, α3, β1 =
β2, β3).The four minimum equations reduce the number of needed input parameters to eight.
Five of these eight are supplied by the following masses together with the pion decay constant:

m[a0(980)] = 984.7± 1.2MeV

m[a0(1450)] = 1474± 19MeV

m[π(1300)] = 1300± 100MeV

mπ = 137MeV

Fπ = 131MeV (7)
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Because m[π(1300)] has such a large uncertainty, we will, as previously, examine predictions depending on the choice
of this mass within its experimental range. The sixth input will be taken as the light “quark mass ratio” A3/A1,
which will be varied over an appropriate range. The remaining two inputs will be taken from the masses of the four
(mixing) isoscalar, pseudoscalar mesons. This mixing is characterized by a 4 × 4 matrix M2

η . A practically convenient

choice is to consider TrM2
η and detM2

η as the inputs.
Given these inputs there are a very large number of predictions. At the level of the quadratic terms in the

Lagrangian, we predict all the remaining masses and decay constants as well as the angles describing the mixing
between each of (π, π′), (K,K ′), (a0, a

′
0), (κ, κ

′) multiplets and each of the 4×4 isosinglet mixing matrices (each
formally described by six angles).
In the case of the I=0 scalars there are four particles which mix with each other; the squared mass matrix then

takes the form:

(

X2
0

)

=









4 ea3 β3 − 2 c2 + 12 ca4 α
2
1 4

√
2 ea3 β1 4 ea3 α3 4

√
2 ea3 α1

4
√
2 ea3 β1 −2 c2 + 12 ca4 α

2
3 4

√
2 ea3 α1 0

4 ea3 α3 4
√
2 ea3 α1 2 d2 0

4
√
2 ea3 α1 0 0 2 d2









(8)

For this matrix the basis states are consecutively,

fa =
S1
1 + S2

2√
2

nn̄,

fb = S3
3 ss̄,

fc =
S′1
1 + S′2

2√
2

nsn̄s̄,

fd = S′3
3 nnn̄n̄. (9)

The non-strange (n) and strange (s) quark content for each basis state has been listed at the end of each line above.

III. PION SCATTERING AMPLITUDE

Some initial discussion of the pion scattering in this model was given in refs. [28] and [29]. The tree level ππ
scattering amplitude is:

A(s, t, u) = −g

2
+
∑

i

g2i
m2

i − s
, (10)

where the four point coupling constant is related to the “bare” four-point couplings as:

g =

〈

∂4V

∂π+ ∂π− ∂π+ ∂π−

〉

=
∑

A,B,C,D

〈

∂4V

∂(φ2
1)A ∂(φ1

2)B ∂(φ2
1)C ∂(φ1

2)D

〉

(Rπ)A1 (Rπ)B1 (Rπ)C1 (Rπ)D1 (11)

where the sum is over “bare” pions and A,B, · · · = 1, 2 with 1 denoting nonet M and 2 denoting nonet M ′. Rπ is
the pion rotation matrix (given, for typical parameters in [32].
The physical scalar-psedudoscalar-pseudoscalar couplings are related to the bare couplings:

gi =

〈

∂3V

∂fi ∂π+ ∂π−

〉

=
∑

M,A,B

〈

∂3V

∂fM∂(φ2
1)A ∂(φ1

2)B

〉

(L0)Mi (Rπ)A1 (Rπ)B1 (12)

where A and B = 1,2 and M=1,2,3 and 4 and respectively represent the four bases in Eq. (9). L0 is the isosinglet
scalar rotation matrix.
The only non-vanishing “bare” four-point and three-point couplings are:

〈

∂4V

∂(φ2
1)1 ∂(φ

1
2)1 ∂(φ

2
1)1 ∂(φ

1
2)1

〉

= 8 ca4 (13)

〈

∂3V

∂fa ∂(φ2
1)1 ∂(φ

1
2)1

〉

= 4
√
2 ca4 α1

〈

∂3V

∂fb ∂(φ2
1)1 ∂(φ

1
2)2

〉

=

〈

∂3V

∂fb ∂(φ2
1)2 ∂(φ

1
2)1

〉

=

〈

∂3V

∂fc ∂(φ2
1)1 ∂(φ

1
2)1

〉

= 4 ea3 (14)
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Now we project Eq. (10) to the I=J=0 partial wave amplitude. The K-matrix unitarization of this ”Born” scattering

amplitude T 0
0
B

defines the unitary partial wave amplitude

T 0
0 =

T 0
0
B

1− i T 0
0
B

(15)

wherein:

T 0
0
B
= Tα +

∑

i

T i
β

m2
i − s

(16)

with:

Tα =
1

64π

√

1− 4m2
π

s

[

−5g4 +
1

p2π

∑

i

g2i ln

(

1 +
4p2π
m2

i

)

]

(17)

T i
β =

3

32π

√

1− 4m2
π

s
g2i (18)

pπ =
1

2

√

s− 4m2
π (19)

IV. COMPARISON WITH EXPERIMENT

For comparison with experiment it is convenient to focus on the real part of the partial wave scattering amplitude
in Eq. (15). For typical values of parameters we find the behavior illustrated in Fig. (1). The zeros which occur can
be understood as follows. First, they can result from a zero of T 0B

0 . Such a zero occurs at threshold, for example.
Secondly, a zero can also result from the poles in T 0B

0 at s = m2
i in Eq.(16) corresponding to the “bare” masses.

We compare the predictions of our model for the scattering amplitude with the corresponding experimental data up
to about 1.2 GeV in Fig 2 for two values of the SU(3) symmetry breaking parameter A3/A1 and three choices of the
only roughly known ”heavy pion” mass m[Π(1300)]. One sees that, without using any new parameters, the mixing
mechanism of [32] predicts the scattering amplitude in reasonable qualitative agreement with the experimental data
up to around 1 GeV. This provides some support for the validity of this mixing mechanism.
For interpretation of the physical resonances it is conventional to look at the pole positions in the complex plane

of the analytically continued expression for T 0
0 . We examine these physical pole positions by solving for the complex

roots of the denominator of the K-matrix unitarized amplitude Eq. (15):

D(s) = 1− i T 0B
0 = 0 (20)

with T 0B
0 given by Eq. (16). We search for solutions, s(j) = s

(j)
r + is

(j)
i = m2

j − imjΓj of this equation, where mj and
Γj are interpreted as the mass and decay width of the j-th physical resonance ( which would hold for small Γ ). A
first natural attempt would be to simultaneously solve the two equations:

ReD (sr, si) = 0

ImD (sr, si) = 0 (21)

However, this approach turns out to be rather complicated to be implement. A more efficient numerical approach is
to consider the single equation involving only positive quantities:

F (sr, si) = |Re (D(sr , si))|+ |Im (D(sr, si))| = 0 (22)

A search of parameter space leads to four solutions for the pole positions [1]. As an example, for the choice of A3/A1

= 30 and m[Π(1300)] = 1.215 GeV, the function F is plotted over the complex plane around the first pole. We see a
clear local minimum at which the function is zero, hence pointing to a solution of Eq. (20). Similarly, other areas of
the complex plane are searched and altogether four poles are found. The results are given in Table I for m[Π(1300)] =
1.215 GeV and two choices of A3/A1 = 20 and 30. For each choice we see that this model predicts a light and broad
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1/2
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0
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0.4

R
e 

(T
00

)

FIG. 1: The real part of the unitarized ππ scattering amplitude for a typical choice of parameters. The four squares correspond
to the poles in T 0B

0 .The circles correspond to locations where T 0B

0 = 0.

scalar meson below 1 GeV which is a clear indication of f0(600) or σ. We see that the characteristics of the second
predicted state around 1 GeV are close to those expected for f0(980). The third and the fourth predicted states
should correspond to two of f0(1370), f0(1500) and f0(1710).
We have performed the same analysis over the range of the parameter m[Π(1300)] = 1.2 - 1.4 GeV, and for two

choices of A3/A1 = 20 and 30. The physical masses and the decay widths are given in Figs. 4 and 5, respectively.
The effect of the unitarization can be seen in Fig. 4 where the physical masses are compared with the “bare” masses;
the unitarization reduces the mass, particularly for the first and the third predicted states.

Pole Mass (MeV) Width (MeV) Mass (MeV) Width (MeV)

1 483 455 477 504

2 1012 154 1037 84

3 1082 35 1127 64

4 1663 2.1 1735 3.5

TABLE I: The physical mass and decay width of the isosinglet scalar states, with m[Π(1300)] = 1.215 GeV and with A3/A1 =
20 (the first two columns) and with A3/A1 = 30 (the last two columns).

V. CONCLUDING DISCUSSION

We studied the predictions of the real (mass) and imaginary (width) parts of the pion scattering amplitude poles
representing the isoscalar scalar singlets in a chiral model containing not only the usual pseudoscalar and scalar nonets
describing quark- antiquark bound states but also pseudoscalar and scalar nonets describing states with the same
quantum numbers but constructed out of two quarks and two antiquarks in a general way. The physical particles
correspond to mixtures of these two types.
In this model there are four scalars so the process is technically complicated. No new parameters were introduced
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FIG. 2: Real part of unitarized scattering amplitude for two values of A3/A1 and three choices of m[Π(1300)].
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FIG. 3: The local minimum of function F(sR, sI) defined in Eq. (22) at the position of the lightest isosinglet scalar pole in
the complex s plane for m[Π(1300)] = 1.215 GeV and A3/A1 = 30. Top left is the plot of function F(sR, sI) vs sR and sI ,
followed by projection of this function onto F-sR and onto F-sI planes.

here, either for the model itself or to treat the scattering. The model has been studied in a number of previous papers
with the parameter determination culminating in ref. [32].
The fact that the comparison with the experimental scalar candidates, as discussed in the last section, is reasonable

is in itself a non trivial conclusion. A numerical technique to facilitate this result was presented in the last section.
Also the fact that the simple single channel K-matrix unitarization (using no new parameters) seems to work may be
useful to point out. Presumably the results would be improved if the effect of the K - K̄ channel were to be included.
Mixing with a possible glueball state is another relevant effect.
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FIG. 4: Predicted physical masses are compared with the “bare” masses for two values of A3/A1 over the experimental range
of m[Π(1300)].
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FIG. 5: Predicted decay widths for two values of A3/A1 over the experimental range of m[Π(1300)].
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The worst prediction seems to be the too low mass value for pole 3. We note from Fig. 4 that there is a relatively
large difference between the ”bare” mass and the pole mass in this case. The inclusion of the K - K̄ threshold effects
may improve this feature.
It may also be interesting to compare the predictions of pole 1 and pole 2 with those calculated in a similar manner

using the single M SU(3) sigma model [22]. The agreement is quite good. However, in that model, the result was
calculated using the most general form of the interaction potential involving the field matrix M; an attempt to just
use the “renormalizable” terms did not give as good a result. In the present case it was not necessary to introduce
any additional terms in the Lagrangian to get good results for the pi pi scattering.
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