
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

A Problem Solving Environment for Network Computing A Problem Solving Environment for Network Computing

Salim Hariri
Syracuse University

Haluk Topcuoglu
Syracuse University

Wojtek Furmanski
Syracuse University

Dongmin Kim
Syracuse University

Yoonhee Kim
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hariri, Salim; Topcuoglu, Haluk; Furmanski, Wojtek; Kim, Dongmin; and Kim, Yoonhee, "A Problem Solving
Environment for Network Computing" (1998). Electrical Engineering and Computer Science. 135.
https://surface.syr.edu/eecs/135

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215689394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/135?utm_source=surface.syr.edu%2Feecs%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Problem Solving Environment for NetworkComputing�Salim Hariri, Haluk Topcuoglu, Wojtek Furmanski, Dongmin Kim, Yoonhee Kim,Ilkyeun Ra, Xue Bing, Bouqing Ye, Jon ValenteyDept. of Electrical Engineering and Computer ScienceHPDC LaboratorySyracuse University, Syracuse, NY 13244-4100yRome Laboratory, Rome, NYA chapter in Problem Solving Environments book,edited by E. Houstis, R. Bramley, and E. Gallopoulos,to be published by IEEE Computer Society in 1997.AbstractThe current advances in high-speed networks and WWW technologies have made networkcomputing a cost-e�ective high performance computing environment. New software devel-opment models and problem solving environments must be developed to utilize the networkcomputing environment e�ciently. In this paper we present Virtual Distributed ComputingEnvironment (VDCE), which provides a problem solving environment for high-performancedistributed computing over wide-area networks. VDCE enables scientists to develop dis-tributed applications without knowing the detailed architecture of the underlying resources.VDCE provides well-de�ned library functions that relieve end users from tedious task imple-mentations and it supports software reusability. The VDCE software architecture consistsof two modules: Application Editor, and VDCE Runtime System. Application Editor is aWeb-based graphical user interface that helps user to develop network applications and spec-i�es the computing and communication properties of each task within the applications. TheVDCE Runtime System schedules the individual tasks of the application to the best availableresources, runs, and manages the application execution on the assigned resources. We alsopresent how VDCE can be used as a problem solving environment and how the users canexperiment and evaluate the performance of their applications for di�erent VDCE hardwareand/or software con�gurations.�This research is supported by Rome Lab contract number F30602-95-C-0104.1

1 IntroductionThe current advances in networking protocols (including ATM and Fast Ethernet), softwaredevelopment tools, and emerging WWW technologies have enabled the development of acost-e�ective, high-performance distributed computing environment, network-based com-puting [1]. The network-based computing (or network computing (NC)) environment canprovide the computational and storage requirements for solving large scale applicationsthat used to run only on massively parallel processors and supercomputers.The available software tools for an high-performance computing environment still re-quires detailed understanding of the underlying architecture and the components of theapplication. Writing a parallel/distributed program overwhelms most of the users due tothe complexity of communication and synchronization issues. Therefore, over the last fewyears, a number of application development and representing tools have become availableto relieve users from this tedious process, including Code [2], HeNCE [3], and Zoom [3, 4],which are all graph-based programming environments. The graph representation of par-allel programming simpli�es programming, debugging, and visualization phases. However,most of these tools do not provide users the ability to experiment and evaluate the paral-lel/distributed programs with di�erent underlying software and hardware components.There is a growing interest to combine the computational and storage resources thatare available over the Internet or over high speed networks (i.e VBNS, NYNET testbed)which provides a new computing environment, called metacomputing. In this paper, wepresent an overview of the Virtual Distributed Computing Environment (VDCE), a meta-computing environment that is currently being developed at Syracuse University. We alsopresent how VDCE can be used as a problem solving environment for large scale networkapplications. Our problem solving environment enables users to focus on the solution ap-proach to the problem rather than worrying about the parallel/distributed computing andnetwork implementation issues.The software architecture of the VDCE problem solving environment has a web-basedgraphical user interface, called Application Editor, to develop parallel/distributed networkapplications and evaluate the application performance for the di�erent combinations ofhardware/software tools. The Application Editor provides menu-driven functional buildingblocks of task libraries for building high performance distributed computing applications.VDCE Application Editor provides a large set of task libraries grouped in terms of theirfunctionality, such as matrix algebra library, C3I (command and control applications) li-brary. By providing these functional building blocks, VDCE addresses the reusability issueof the problem solving environments. The visualization capability to show the performancefor di�erent hardware/software con�gurations is another important feature of the Applica-tion Editor.Once the application is designed/developed using the Application Editor, VDCE Run-time System is invoked to schedule, to run and to manage the execution of the applicationin a transparent manner. The VDCE Runtime System is responsible for task-to-resource2

mapping, monitoring the VDCE resources, setting up the execution environment for a givenapplication, monitoring the execution of the application tasks on the assigned computers,and maintaining the performance, fault tolerance, and quality of service (QoS) require-ments.The rest of the paper is organized as follows. Section 2 introduces the issues of softwaredevelopment process for network-based computing and related work. In Section 3, wepresent an overview of VDCE and its applicability as a problem solving environment. InSection 4, we demonstrate through several examples how VDCE can be used to easilydevelop distributed applications as well as experiment and evaluate their performance.Concluding remarks are given in Section 5.2 Software Development Issues and StagesSoftware development in any high performance (parallel/distributed) computing environ-ment is a non-trivial process and requires a through understanding of the application andthe underlying computer architecture [10]. The software development process is describedas a set of stages which correspond to the phases encountered by a developer. Each stagerequires di�erent kinds of supports, such as portable application description/design sup-port, program implementation and run-time support, visualization support and reusabilitysupport. The stages in the process, which forms a development pipeline, are: ApplicationDesign and Speci�cation Stage, Application Con�guration and Scheduling Stage, Applica-tion Execution and Runtime Stage.2.1 Application Design and Speci�cation Stage.The software development process considers two types of application development.� \New" Application Development: This class of applications involves solving new prob-lems that require developers to start from scratch using a textual description of theproblem or some means of formal and/or informal application speci�cations tech-niques.� Porting of Exiting Applications (Dusty-Decks): This class includes developers at-tempting to port and update the existing codes written.In this stage, the application is speci�ed (represented) in the form of a functional
ow de-scription of the application and its computation and communications requirements. Eachnode (termed as functional module) in the functional
ow diagram is a black-box and con-tains information about (1) its input(s), (2) the function to be performed, (3) the desiredoutput(s) and (4) the requirements at each node. The output of this stage is a detailedprocess
ow graph where the nodes represent the functional components and the edgesrepresent interdependencies. 3

Designing and implementing parallel/distributed programs overwhelms most users dueto the di�culty of expressing communication and synchronization among the computa-tions [5]. Some text-based parallel programming environments support the data parallelparadigm, which requires advanced compilation techniques and compilers. Most of theother environments require explicit insertion of communication and synchronization prim-itives within the programs, which makes parallel programs di�cult to understand.However, a graph-based programming environment provides simple and easy-to-usemechanisms for expressing the interaction of multiple threads within a parallel program [5].In a graph-based programming environment (or graph-based application development tool),a program is de�ned as a directed graph where nodes denote computations and links denotecommunication and synchronization between nodes [6]. The graph representation of par-allel programming simpli�es programming, debugging, and visualization phases. Over thelast few years a number of graph-based application development and representation toolshave become available, including Code [2], HeNCE [3], and Zoom [3, 4]. However, most ofthese tools do not provide users the ability to experiment and evaluate the generated par-allel/distributed programs with di�erent underlying software and hardware components,di�erent implementation techniques, interconnection networks and message-passing tools.On the other hand, application development tools and environments supports web-based user interfaces; since World Wide Web is becoming a low-cost standard interfacemechanism [7] to access the computational resources that are distributed all over the world.The Application Editor module of VDCE (which is explained in Section 3.) is a web-basedgraphical user interface for designing/specifying parallel and distributed applications. Itprovides a menu-driven functional building blocks of task libraries, which addresses thereusability issue of the software development process.2.2 Application Con�guration and Scheduling StageThe application development stage receives the application speci�cations (in terms of appli-cation
ow graph or another speci�cation syntax). This stage determines the hardware andsoftware requirements of the application by interpreting the application speci�cations andassigns current best available resources for running the application tasks in order to mini-mize the total execution time. This stage includes mapping module and estimation module.The mapping module has two consecutive parts according to it hierarchy: domain-mapping part, resource-mapping part. The information provided by application designand development stage is used to map the functional components of the application tothe domain by domain-mapping part and speci�cally appropriate computing elements (orprocessors) by resource-mapping part. Both parts of this module use estimation module toget feedback for selecting between the existing candidates.Estimation Module is a critical component of the application development stage. Thismodule evaluates di�erent options available and identi�es the option that provides the best4

performance. Estimation Module receives information about the hardware con�guration,application
ow information/requirements and the possible mappings. Then it estimatesthe performance of each mapping scheme and identi�es the one which gives the best per-formance.Since the general form of scheduling problem is NP-hard, researchers have been work-ing on near-optimal scheduling decisions. The research in this area has produced manydi�erent types of scheduling algorithms (i.e, static, dynamic, centralized, distributed, etc.).Most of these algorithms are not general; instead they are targeted for speci�c applicationand speci�c resource types. There are some research projects that target application-levelresource allocation issues such as APPLeS [9], and MARS [8] projects.VDCE provides application-based scheduling algorithm that runs on VDCE Server ateach site. The required parameters of scheduling include task-speci�c, resource-speci�c,and user-speci�c parameters, which are stored in the site repositories. The task schedulingapproach is based on developing e�cient techniques to predict the performance of each taskexecution on each existing VDCE computing resource. Furthermore, our resource allocationapproach is e�cient, since it uses a combination of performance analysis and measurementand benchmarking techniques to estimate the execution time of a task running on anyVDCE computing platform under network contention and varying load conditions.2.3 Application Execution and Run-Time Stage.This stage handles the task of executing the developed and con�gured application andproduce the required output. The runtime stage integrates the assigned resources thatwill be involve in execution, and supports inter-module communications, which is based oneither a message-passing tool such as PVM, p4, MPI, NCS or a distributed shared mem-ory (DSM). During the execution of the application, this stage accepts data from di�erentcomputing elements and combines them for proper visualization. It intercepts the errormessages generated and provides proper interpretation. The runtime system handles dy-namic load-balancing, application and resource-level fault tolerance capabilities.Most of these functionalities are provided by VDCE Runtime System, which is thekernel of our problem solving environment. VDCE Runtime System is explained in Section3. VDCE allows an end user to experiment and evaluate his/her application for the di�erentcombinations of hardware and software medium. VDCE gives user the ability to select anymessage passing tool (NCS, P4, PVM, etc) and to select the types of network (Ethernet,ATM etc) to connect the computing resources.3 Overview of VDCEThe objective of the Virtual Distributed Computing Environment is to provide a generalsoftware development environment to design and construct large scale HPDC applications5

on a network of heterogeneous computers.As a problem-solving environment, VDCE pro-vides users with a set of task libraries to solve one class of applications. These task librariescan be used to compose any HPDC application as an application
ow graph. VDCE is com-posed of geographically distributed computation sites, each of which runs its own VDCEServer. An end user views the underlying VDCE resources, interconnected by a global widearea network, as a single seamless computation resource (see Figure 1).The VDCE Server functions as a site manager that bridges the other components tothe Web-based repository. VDCE-based resource information within the site such as siteresource con�guration, user information, application development data, and applicationrun-time information are stored in the repository. VDCE Server implementation is basedon JAVA Web Server technology.
Figure 1: An example of a Virtual Distributed Computing Environment (VDCE)Site repository, the web-based storage environment within a VDCE site, consists offour di�erent databases.User-info database is used to handle the user authentication. Inuser-account database, each VDCE user account is represented with a 5-tuple: user name,password, user ID, priority, access domain type. The resource-performance database pro-vides the resource (machine and network) attributes/parameters. These attributes aregrouped into two parts: a)static attributes that are are stored in the database once (i.ehost name, IP address, Architecture type, OS type, total memory size); and b)dynamicattributes that are updated periodically, such as recent load measurement, and availablememory. In order to �nd locations of task's executables, VDCE stores location infor-mation of each task (i.e the absolute path of the task executable) for each host in thetask-constraints database. Due to speci�c library requirements some task executables mayreside only on some of the hosts. The task-performance database provides performancecharacteristics for each task available in the system. Each task implementation is speci�ed6

by several parameters, i.e, computation size, communication size, required memory size etc.The software development cycle for network applications can be viewed in terms of threephases: application design and development phase, application con�guration and schedul-ing phase, and application execution and runtime phase. VDCE Application Editor modulewithin a site provides the required functionality of the �rst phase. Application Editor is aWeb-based graphical user interface that helps user to develop network application and spec-i�es the computing and communication properties of each task within the application. TheApplication Editor generates its output as an application
ow graph (AFG). The secondphase, handles the scheduling of each component (i.e task) of the network application to thebest available resource; and application execution/runtime phase starts, runs and managesthe application execution on the assigned machines. VDCE Runtime System provides allthe functions of the last two phases; i.e interpreting the generated AFG and assigning thecurrent best available resources for running the tasks, setting up an execution environmentfor each submitted task, managing the execution to meet successfully the requirements ofthe application. In what follows we describe the VDCE components (Application Editorand VDCE Runtime System) in more detail.3.1 Application EditorThe Application Editor is implemented in the JAVA programming language and integratedwith web-browsers. To develop an application, the end user establishes a URL connectionto the VDCE Server within the site. After user authentication, the Application Editorwill be loaded into the user's local web browser, so that, user can develop his/her networkapplication.In Application Editor, tasks are grouped into domain libraries. A selected task is repre-sented as a clickable and draggable graphical icon in the active editor area. Each such iconincludes the task name and a set of markers for logical ports. Color coding used in thisvisual representation helps to distinguish input ports from output ports. Operationally,the Application Editor can be in the task mode, link mode, or run mode. In the taskmode, the user can select-and-add new tasks, and/or click-and-drag icons to position themconveniently in the active editor area. In the link mode, the user can specify connectionsbetween tasks. In the run mode, Editor submits the graph for the execution and visualizesperformance and runtime characteristics of an ongoing computation.The process of building a network application with the Application Editor can begrouped into two steps: building the application
ow graph (AFG), and specifying thetask properties of the application. Figure 2 shows the building of application
ow graphof a Linear Equation Solver with the help of Application Editor. The nodes of this ap-plication, i.e, LU decomposition, matrix inversion, matrix multiplication etc., are selectedfrom matrix operations menu and linked to form the application
ow graph, as shown inFigure 2. After the application
ow graph is generated, the next step in the application7

Figure 2: Building Application Flow Graph of Linear Equation Solver Applicationdevelopment process is to specify the properties of each task. A double click on the taskicon generates a popup panel that allows the user to specify (optional) preferences such ascomputational mode (sequential or parallel), machine type, and the number of processorsto be used in a parallel implementation of a given task (see Figure 3). In this �gure, for theLU Decomposition task of Linear Equation Solver, the user has selected parallel executionmode using 2 nodes of Solaris machines interconnected by an ATM network.Apart from the application development process, Application Editor provides di�erentvisualization supports that are grouped as:� Module/Application Visualization: The performance (i.e, the execution time) of anyindividual task or an overall application is shown as a post-mortem visualization.Application visualization includes the visualization of all tasks within the application.� Workload Visualization: Up-to-date load information on the resources (machines andnetworks) can be visualized.� Comparative Visualization: VDCE provides an end user to experiment and evalu-ate his/her application for di�erent combinations of hardware and software medium.VDCE gives the ability to select any message passing tool (NCS, P4, PVM, etc) onany network type (Ethernet, ATM etc) for the execution of the application. Thesealternatives are given in the task properties window/panel of the Application Edi-tor. For the comparative visualization case, performance data is shown for all hard-ware/software alternatives provided by VDCE.8

Figure 3: Snapshot of the Application Editor while Specifying Task Properties3.2 VDCE Runtime SystemThe functionalities of VDCE Runtime System, which is the kernel of our problem solvingenvironment, can be viewed in terms of two machines: Control Virtual Machine (CVM)and Data Virtual Machine (DVM). Control Virtual Machine is responsible for schedulingthe application, monitoring and managing the execution of the application on assignedVDCE resources. CVM handles the load measurement of resources (hosts and networks)and periodically updates the resource-performance database. CVM supports real-time andpost-mortem visualization of the application execution.Data Virtual Machine provides an execution environment for a given VDCE applicationby binding tasks so that they can interact and communicate e�ciently. DVM supports asocket-based point-to-point inter-task communication system. DVM Kernel sets up dy-namic execution environment depending on the service requirements of the application andmanages the application execution to meet its requirements.3.2.1 Control Virtual MachineThe functionalities of CVM process can be group into two servers, according to where it islocated: Site CVM (S CVM) and Local CVM (L CVM).Site CVM (S CVM) . S CVM is located at the VDCE Server. The S CVM daemonmanages the execution of three processes: scheduler process, database manager process,and visualization process. 9

� Scheduler Process. After the Application Flow Graph (AFG) is generated by theApplication Editor, it is sent to the VDCE Server. The VDCE Server saves the AFGand activates the scheduler process. The scheduler process interprets the AFG andassigns the current best available resources for running the application tasks in orderto minimize the total execution time. The scheduling algorithm computes the pre-dicted execution time of each task and selects the best available machine within thesite. The schedule decision is based on software and hardware requirements of the ap-plication, locations and con�gurations of the resources, up-to-date machine/networkloads. The execution of the scheduling algorithm is completed by generating resourceallocation information in terms of two forms: Application Con�guration Table (ACT)and Channel Information Table (CIT).The Application Con�guration Table (ACT) includes resource allocation informa-tion of each task of the application. Each task entity includes assigned machineinformation, i.e., hostname, IP address, architecture type, OS type, thread type ,communication protocol type. For the parallel execution of a task, CIT is used togenerate the host�les (for PVM applications) or procgroup �les (for P4 applications)dynamically. A Host �le (or a procgroup �le) lists the name, address and commu-nication state for each host. Channel Information Table (CIT) is used to establishthe socket connections among the individual tasks of an application. Each link inthe Application Flow Graph has a related entity in the CIT. If a task Ti is linked tothe task Tj, its CIT entity includes related information (i.e, task number, machine IPaddress, port number, socket) for both source task, Ti, and the destination task, Tj.� Database Manager Process The database manager process handles user-speci�c,task-speci�c and resource-speci�c data-retrieval requests from the site repository fromVDCE components. The monitored load data are updated periodically at the repos-itory, by the monitor threads located on each machine. Database manager period-ically assigns a positive random number to the alive �eld of VDCE Server. Whenthe monitor thread of any machine updates machine's load measurement, it retrievesserver-generated number and updates current machines alive �eld with this number.At the next random-number update phase, database manager thread checks alive�elds; i.e. at this point, if a machine's alive �eld is di�erent than VDCE Server'salive �eld, it is thought as crashed and its �eld is set to -1 (dead).� Visualization Process The visualization process collects the visualization data fromclient machines and shows the results on user screen by Application Editor. VDCEsupports both post-mortem visualization (i.e after the execution is completed) andreal-time visualization. VDCE provides application/module visualization, workloadvisualization and comparative visualization, which were explained at the previoussection.Local CVM (L CVM) After the resource allocation tables (ACT and CIT) are gener-ated by scheduler process of S CVM, VDCE Server parses the ACT and multicasts a signal10

to the L CVM of the machines that will be involved in the execution. Each activatedL CVM invokes a DVM proxy, which sets up the application execution environment on themachine. DVM proxymanages DVM activities that provides the requested service functionsand the execution environment. In addition to DVM proxy, L CVM manages the executionof a)monitor thread, which periodically measures the up to date processor parameters, i.e,CPU load and memory availability, and updates the site repository, b)visualization thread,which periodically sends the visualization data to the S CVM after the task executionstarts. For the other machines that will not be involved in the application execution, theonly active L CVM process will be the monitor thread.3.3 Data Virtual MachineDVM Kernel sets up the dynamic execution environment and provides speci�c servicesshown in Figure 4. The requested services are selected by the user during the applicationdevelopment phase with specifying the appropriate parameters. To provide these services,DVM Kernel has interaction with the CVM and Application Editor. Table 1 shows thesupported methods for each VDCE kernel service type.
User Code

MPI

NCS_Socket

Pthread

Unix File In/Out

Load & Task Perf.

Comm. Failure

Visualization

Console

DVM Kernel

Thread
 Service

Service
Visualization

Measuring Perf.
Service

Service

Console

Service

In/Output

Service
Fault Report

Service
Environment
Programming

Service
Communication

User Task 1

User Code

P4

Socket

Unix File In/Out

Comm. Failure

DVM Kernel

User Task 2

User Code

DSM

Cthread

URL In/Out

Load & Task Perf.

Mem & Comm. Failure

Visualization

Console

DVM Kernel

User Task 3

DVM KernelFigure 4: VDCE Runtime ServiceAt each participating machine, L CVM activates a copy of the DVM Kernel, called ControlDVM (C DVM). C DVM manages the communication interface between LCVM and user task.The communication channel number and the task ID (name) is provided to the C DVM. In Fig-ure 5.a, the channel number is 5000 and task ID is LU (LU Decomposition). After the connectionis established, CDVM activates the user task (in our example LU) and user task reports resultsand errors to L CVM through C DVM.After setting up communication channel between L CVM and DVM, L CVM sends Channelinformation Table(CIT) to DVM task through C DVM. DVM task sends an acknowledgment sig-nal to L CVM through C DVM. Server CVM waits all acknowledgments from DVM tasks which11

Table 1: VDCE Kernel ServicesVDCE Kernel ServicesService Type Supported MethodsProgram Environment Service Message-Passing(p4,PVM,MPI,NCS), DSMCommunication Service NCS-ATM, NCS-socket, NEXUSThread Service Pthread, Qthread, CthreadI/O Service File I/O, URL I/OPerformance Service Execution Time, User-de�ned MeasurementsFault Report Service Socket Conn., Data Transmission, Resource AllocationVisualization Service Real-time Visualization, Post-mortem VisualizationConsole Service Suspend Execution, Restart Executionare participating of an application execution. After Server CVM collects all acknowledgments, itsends a task activation message to all participating tasks to start the task executions. Figure 5bshows the required steps of the task initialization.

LCVM

CDVM DVM_init

execute

connect

connectexecute

DVM

exec
("5000", "LU")

(LU)

LCVM

CDVM DVM_init

DVM

CIT

CIT Ack

Task Activation

CIT Task Activation

(LU)
Connec

t /
Acc

ep
t

Connect / Accept

(a) (b)Figure 5: a.Setup the Execution Environment b.Initialize the Task ExecutionThe socket-based inter-task communication is handled using VDCE send, VDCE recv calls.After a data communication path is established, source task sends the data with VDCE send call,and target task receives it with VDCE recv call. After the VDCE send call is completed withoutany error, the sended message is written to a speci�c directory (in current prototype, the directoryis tmp). The message copy can be used by VDCE to support fault (recovery) service. After thedestination task receives (with VDCE recv call) the message successfully, it reports the receiveddata size to its LCVM via CDVM.4 VDCE-based Application Design and DevelopmentAs mentioned earlier in this paper, VDCE problem solving environment provides a large set oftask libraries to solve applications in di�erent domains, such as C3I (command, control, com-munication, and information) applications and matrix algebra applications. In order to solve a12

problem in VDCE, the user builds the application
ow graph (AFG) with the Application Editorand speci�es the module/task properties of the application. During this process, menu-drivenfunctional building blocks of task libraries is used to generate the application
ow graph. In whatfollows we will present in more detail how VDCE can be used as a problem solving environmentfor C3I and matrix algebra applications.C3I Applications An end user can integrate large scale Command and Control systems fromthe provided set of independent, specialized functions given in the C3I library menu of the Appli-cation Editor. We received a suite of such functions from the Parallel C3I Benchmarking Projectat Rome Laboratory. The VDCE C3I library menu includes the following tasks:� Terrain Masking - This function generates evasive low visibility terrain domains with respectto a set of threats.� Plot-Track Assignment - It computes track continuation by matching sensor measurementsat time t+1 with the current set of tracks reconstructed at time t.� Hypothesis Testing - It generates and tests the track initiation hypothesis given the sensormeasurements in a set of time frames.� Route Optimization - This function �nds the minimal risk terrain routes from the base toa destination for a given set of threats� Threat Analysis - It computes interception intervals for a set of ballistic threats with ellipticorbits and a set of interceptor bases.The Application Editor is used to describe large scale C3I applications using these tasks/functions.Figure 6 illustrates a more complete Command and Control application, constructed by connectingthe individual C3I tasks.
Figure 6: C3I System13

Matrix Algebra Applications VDCE Problem solving environment supports several mod-ules to solve matrix-algebra based problems. Linear Equation Solver application is an exampleproblem that can be solved with the help of the functions in the matrix algebra menu. In thisapplication, the problem is to �nd the solution vector x in an equation Ax = b, where A is aknown N�N matrix and b is a known vector. The Linear Equation Solver can be solved based onGauss-Jordan elimination, Gaussian Elimination with back-substitution, or LU Decomposition.With LU Decomposition any matrix can be decomposed into the product of a lower triangularmatrix L and upper triangular matrix U . Once LU Decomposition is solved, the solution vector,x, is derived as shown below: Ax = b(LU)x = bUx = L�1bx = U�1(L�1b)Figure 2 shows the building the application
ow graph of a Linear Equation Solver (based on LUDecomposition) with the Application Editor. To construct the
ow graph of this application, theuser creates nodes by selecting the LU Decomposition, Matrix Inverse(2), and Matrix Multiply(2)tasks from the Matrix Operations menu. Figure 3 shows how user can specify the task properties(i.e machine type, sequential or parallel execution, number of machines for parallel execution case)of Linear Equation Solver application.4.1 Experiments and ResultsAdditionally, VDCE can provide support to experiment and evaluate application executions fordi�erent underlying hardware/software con�gurations. In what follows we explain the results ofFFT (fast Fourier Transformation) experiments for di�erent message passing tools and machinecon�gurations, and Linear Equation Solver experiments for di�erent network types and machinecon�gurations.Fast Fourier Transform (FFT) Given the input sample signal s(k), k = 0; 1; : : : ;M�1,computation of FFT gives the output X(i), i = 0; 1; : : : ;M�1 such thatX(i) = M�1Xk=0 s(k) �W ikwhere W = ej2�=M , j = p�1 and M = number of sample points.Suppose we have N workstations on the network andM=N �2n (n � 1), the DIF (Decimationin Frequency) algorithm for FFT can be mapped onto the network of workstations. A case ofM =8 and N=2 is shown in Figure 7. Each of the small circles represents a computation whichtakes two sample inputs and gives two outputs. If sample size is M , then there are M=2 rowsof computation. Each process takes M=(2 �N) rows. The lines crossing the bold lines representinterprocessor communication. There are log2M computation steps and log2N communicationsteps. The algorithm has been implemented using the master/slave programming model.14

7

4

s(k) X(i)

0

1

2

3

4

5

6

0

2

6

1

5

3

73

2

1

0 0

0

2

2

0

0

0

0

B

Comp Comp CompComm

A

k

X = A+B

Y = (A-B).W k

0 0 1 2

s(k): input

X(i): output

comp: computation

comm: communication step

step

Process 1

Process 2 Figure 7: Computation of a 8 point FFT using 2 workstationsIn this case, the performance of running FFT on 2, 4 and 8 workstations interconnected byan ATM network is evaluated. The parallel FFT implementation is based on NCS, MPI, p4, andPVM message passing tools. Therefore the VDCE user is provided with 12 di�erent experimentsin the system. Table 2 shows the benchmarking results of FFT for these 12 cases, when it isrun in VDCE. For four nodes, the total execution time of NCS is 1506.365 milliseconds. Thisperformance is about 22 % improvement versus MPI implementation (1848.056 milliseconds), 12% improvement versus p4 implementation (1700.832 milliseconds), and 15 % improvement ver-sus PVM implementation (1739.750 milliseconds). For the eight nodes, the performance gains ofNCS versus MPI, p4, and PVM are around 38%, 32%, 36%, respectively. From these performancebenchmarking, VDCE end user can select the NCS implementation over 8 nodes to achieve betterperformance.Table 2: Performance of FFT (Sample Points: 1024, Set Size: 8) (msec)No. of nodes NCS MPI p4 PVM2 nodes 1738.237 2145.398 2015.830 1989.4614 nodes 1506.365 1848.056 1700.832 1739.7508 nodes 1148.320 1587.914 1517.796 1561.961Linear Equation Solver As explained in the previous section, Linear Equation Solver ap-plication �nds the the solution vector x in an equation Ax = b, where A is a known N�N matrixand b is a known vector. We experimented with Linear Equation Solver based on LU Decompo-sition method (see Figure 3). The problems size in the experiments is 128� 128. Each task wasexecuted with 1, 2 and 4 solaris machines interconnected by both ATM and Ethernet networks.Therefore VDCE user is provided with 6 di�erent experiments for each task. The Table 2 shows15

the benchmarking results of individual tasks (LU (LU Decomposition), INV (matrix inversion)and MULT (matrix multiplication)).Table 3: Performance of Linear Equation Solver tasks on ATM and Ethernet (msec)No. of nodes LU LU INV INV MULT MULTEthernet ATM Ethernet ATM Ethernet ATM1 node 226073 217191 280626 278534 49903 483922 nodes 236180 233573 276193 273654 49205 440914 nodes 253731 253089 274421 270139 53088 50311LU gives better performance for sequential execution than 2-node and 4-node cases, becauseof its implementation is communication-bound. For an N �N problem size and P processors, LUtask requires NP all-to-all communication and 2 one-to-all communication steps. For INV task,4-node is the best and for MULT task, 2-node is the best among others; since INV and MULT im-plementations require communication only for data distribution phase, and result gathering phase.Therefore their implementations require only 2 one-to-all communication steps. ATM-based net-work gives better results than Ethernet-based case for all task implementations. According tothese results, if the VDCE user chooses 1 node for LU, 4 nodes for INV and 2 nodes for MULTwhile developing his/her application, this combination will achieve better performance than otherpossibilities.Our current VDCE prototype is not complete and we are currently working on adding moreperformance evaluation capabilities. The linear equation solver example presented here serves asa proof-of-concept on the bene�ts that can be gained from allowing users to experiment with dif-ferent implementation algorithms to determine the con�guration that lead to better performanceresults.5 ConclusionWe have proposed a problem-solving environment, called Virtual Distributed Computing Envi-ronment (VDCE), for large-scale network applications. VDCE enables scientists to develop paral-lel/distributed applications without specialized knowledge of the underlying computer hardwareand software. End users can access to VDCE through web-browsers to write parallel/distributednetwork applications and experiment and evaluate the applications for the di�erent combinationsof hardware and/or software tools. VDCE can be described by two main modules: ApplicationEditor and VDCE Runtime System. The Application Editor provides users with all software toolsand library functions required to develop a VDCE application. VDCE Runtime System maps thetasks of the application onto the resources, monitors the resources, enables a high-performancecommunication medium among the modules of VDCE applications, sets up the application exe-cution environment and manages the execution to meet the requirements of the application. Wealso showed how the VDCE can be used to develop network applications and evaluate the per-formance of the application tasks. We are improving the current implementation of the VDCEso that it can support access to several sites which are geographically distributed. We are alsoimplementing distributed shared memory to allow VDCE users to describe their application using16

shared memory paradigm.References[1] D. K. Panda, and L. M. Ni, \Special Issue on Workstation Clusters and Network-BasedComputing", Journal of Parallel and Distributed Computing, 40, pp 1-3, 1997.[2] Peter Newton, James C. Browne, \The CODE 2.0 Graphical Parallel Programming Lan-guage", Proceedings ACM International Conference on Supercomputing, July 1992.[3] R. Wolski, C. Anglano, J. Schopf, F. Berman, \Developing Heterogeneous Applications UsingZoom and HeNCE", Heterogeneous Workshop IPPS 95.[4] C. Angalano, J. Schopf, R. Wolski, F. Berman, \Zoom: A Hierarchical Representation forHeterogeneous Applications", UCSD CS Technical Report, CS95-451.[5] J. C. Browne, S. Hyder, J. Dongarra, K. Moore, P. Newton,e \Visual Programming andDebugging for Parallel Computing", IEEE Parallel and Distributed Technology, Spring 95.[6] M.F. Kleyn, J.C. Browne, \A High Level Language for Specifying Graph Based Languagesand Their Programming Environment (Draft)", University of Texas at Austin[7] K. Dincer and G. C. Fox, \Design Issues in Building Web-based Programming Environ-ments", To appear in Proceedings of the Sixth IEEE Int.Sym. on High Performance Dis-tributed Computing (HPDC-6), 1997.[8] J. Gehring and A. Reinefeld, \MARS - A Framework for minimizing the job execution timein a metacomputing environment", Future Generation Computing Systems, 1996.[9] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, \Application-Level Schedulingon Distributed Heterogeneous Networks", Proceedings of Supercomputing 96.[10] M. Parashar, S. Hariri, T. Haupt, G. Fox, \A Study of Software Development for High Perfor-mance Computing" Programming Environments for Massively Parallel Distributed Systems,1994.
17

	A Problem Solving Environment for Network Computing
	Recommended Citation

	tmp.1286291883.pdf.U4boo

