View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Syracuse University Research Facility and Collaborative Environment

Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

A Problem Solving Environment for Network Computing

Salim Hariri
Syracuse University

Haluk Topcuoglu
Syracuse University

Wojtek Furmanski
Syracuse University

Dongmin Kim
Syracuse University

Yoonhee Kim
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

b Part of the Computer Sciences Commons

Recommended Citation

Hariri, Salim; Topcuoglu, Haluk; Furmanski, Wojtek; Kim, Dongmin; and Kim, Yoonhee, "A Problem Solving
Environment for Network Computing" (1998). Electrical Engineering and Computer Science. 135.
https://surface.syr.edu/eecs/135

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://core.ac.uk/display/215689394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/135?utm_source=surface.syr.edu%2Feecs%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Problem Solving Environment for Network
Computing*

Salim Hariri, Haluk Topcuoglu, Wojtek Furmanski, Dongmin Kim, Yoonhee Kim,
TIlkyeun Ra, Xue Bing, Bouqing Ye, Jon Valentef

Dept. of Electrical Engineering and Computer Science
HPDC Laboratory
Syracuse University, Syracuse, NY 13244-4100
TRome Laboratory, Rome, NY

A chapter in Problem Solving Environments book,
edited by E. Houstis, R. Bramley, and E. Gallopoulos,
to be published by IEEE Computer Society wn 1997.

Abstract

The current advances in high-speed networks and WWW technologies have made network
computing a cost-effective high performance computing environment. New software devel-
opment models and problem solving environments must be developed to utilize the network
computing environment efficiently. In this paper we present Virtual Distributed Computing
Environment (VDCE), which provides a problem solving environment for high-performance
distributed computing over wide-area networks. VDCE enables scientists to develop dis-
tributed applications without knowing the detailed architecture of the underlying resources.
VDCE provides well-defined library functions that relieve end users from tedious task imple-
mentations and it supports software reusability. The VDCFE software architecture consists
of two modules: Application Fditor, and VDCE Runtime System. Application Fditor is a
Web-based graphical user interface that helps user to develop network applications and spec-
ifies the computing and communication properties of each task within the applications. The
VDCE Runtime System schedules the individual tasks of the application to the best available
resources, runs, and manages the application execution on the assigned resources. We also
present how VDCE can be used as a problem solving environment and how the users can
experiment and evaluate the performance of their applications for different VDCE hardware
and/or software configurations.

*This research is supported by Rome Lab contract number F30602-95-C-0104.

1 Introduction

The current advances in networking protocols (including ATM and Fast Ethernet), software
development tools, and emerging WWW technologies have enabled the development of a
cost-effective, high-performance distributed computing environment, network-based com-
puting [1]. The network-based computing (or network computing (NC)) environment can
provide the computational and storage requirements for solving large scale applications
that used to run only on massively parallel processors and supercomputers.

The available software tools for an high-performance computing environment still re-
quires detailed understanding of the underlying architecture and the components of the
application. Writing a parallel /distributed program overwhelms most of the users due to
the complexity of communication and synchronization issues. Therefore, over the last few
years, a number of application development and representing tools have become available
to relieve users from this tedious process, including Code [2], HeNCE [3], and Zoom [3, 4],
which are all graph-based programming environments. The graph representation of par-
allel programming simplifies programming, debugging, and visualization phases. However,
most of these tools do not provide users the ability to experiment and evaluate the paral-
lel/distributed programs with different underlying software and hardware components.

There is a growing interest to combine the computational and storage resources that
are available over the Internet or over high speed networks (i.e VBNS, NYNET testbed)
which provides a new computing environment, called metacomputing. In this paper, we
present an overview of the Virtual Distributed Computing Environment (VDCE), a meta-
computing environment that is currently being developed at Syracuse University. We also
present how VDCE can be used as a problem solving environment for large scale network
applications. Our problem solving environment enables users to focus on the solution ap-
proach to the problem rather than worrying about the parallel /distributed computing and
network implementation issues.

The software architecture of the VDCE problem solving environment has a web-based
graphical user interface, called Application Editor, to develop parallel/distributed network
applications and evaluate the application performance for the different combinations of
hardware/software tools. The Application Editor provides menu-driven functional building
blocks of task libraries for building high performance distributed computing applications.
VDCE Application Editor provides a large set of task libraries grouped in terms of their
functionality, such as matrix algebra library, C*I (command and control applications) li-
brary. By providing these functional building blocks, VDCE addresses the reusability issue
of the problem solving environments. The visualization capability to show the performance
for different hardware/software configurations is another important feature of the Applica-
tion Editor.

Once the application is designed/developed using the Application Editor, VDCE Run-
time System is invoked to schedule, to run and to manage the execution of the application
in a transparent manner. The VDCE Runtime System is responsible for task-to-resource

mapping, monitoring the VDCE resources, setting up the execution environment for a given
application, monitoring the execution of the application tasks on the assigned computers,
and maintaining the performance, fault tolerance, and quality of service (QoS) require-
ments.

The rest of the paper is organized as follows. Section 2 introduces the issues of software
development process for network-based computing and related work. In Section 3, we
present an overview of VDCE and its applicability as a problem solving environment. In
Section 4, we demonstrate through several examples how VDCE can be used to easily
develop distributed applications as well as experiment and evaluate their performance.
Concluding remarks are given in Section 5.

2 Software Development Issues and Stages

Software development in any high performance (parallel/distributed) computing environ-
ment is a non-trivial process and requires a through understanding of the application and
the underlying computer architecture [10]. The software development process is described
as a set of stages which correspond to the phases encountered by a developer. Each stage
requires different kinds of supports, such as portable application description/design sup-
port, program implementation and run-time support, visualization support and reusability
support. The stages in the process, which forms a development pipeline, are: Application
Design and Specification Stage, Application Configuration and Scheduling Stage, Applica-
tion Erecution and Runtime Stage.

2.1 Application Design and Specification Stage.

The software development process considers two types of application development.

o “New” Application Development: This class of applications involves solving new prob-
lems that require developers to start from scratch using a textual description of the
problem or some means of formal and/or informal application specifications tech-
niques.

e Porting of Friting Applications (Dusty-Decks): This class includes developers at-
tempting to port and update the existing codes written.

In this stage, the application is specified (represented) in the form of a functional flow de-
scription of the application and its computation and communications requirements. Each
node (termed as functional module) in the functional flow diagram is a black-box and con-
tains information about (1) its input(s), (2) the function to be performed, (3) the desired
output(s) and (4) the requirements at each node. The output of this stage is a detailed
process flow graph where the nodes represent the functional components and the edges
represent interdependencies.

Designing and implementing parallel/distributed programs overwhelms most users due
to the difficulty of expressing communication and synchronization among the computa-
tions [5]. Some text-based parallel programming environments support the data parallel
paradigm, which requires advanced compilation techniques and compilers. Most of the
other environments require explicit insertion of communication and synchronization prim-
itives within the programs, which makes parallel programs difficult to understand.

However, a graph-based programming environment provides simple and easy-to-use
mechanisms for expressing the interaction of multiple threads within a parallel program [5].
In a graph-based programming environment (or graph-based application development tool),
a program is defined as a directed graph where nodes denote computations and links denote
communication and synchronization between nodes [6]. The graph representation of par-
allel programming simplifies programming, debugging, and visualization phases. Over the
last few years a number of graph-based application development and representation tools
have become available, including Code [2], HeNCE [3], and Zoom [3, 4]. However, most of
these tools do not provide users the ability to experiment and evaluate the generated par-
allel /distributed programs with different underlying software and hardware components,
different implementation techniques, interconnection networks and message-passing tools.

On the other hand, application development tools and environments supports web-
based user interfaces; since World Wide Web is becoming a low-cost standard interface
mechanism [7] to access the computational resources that are distributed all over the world.
The Application Editor module of VDCE (which is explained in Section 3.) is a web-based
graphical user interface for designing/specifying parallel and distributed applications. It
provides a menu-driven functional building blocks of task libraries, which addresses the
reusability issue of the software development process.

2.2 Application Configuration and Scheduling Stage

The application development stage receives the application specifications (in terms of appli-
cation flow graph or another specification syntax). This stage determines the hardware and
software requirements of the application by interpreting the application specifications and
assigns current best available resources for running the application tasks in order to mini-
mize the total execution time. This stage includes mapping module and estimation module.

The mapping module has two consecutive parts according to it hierarchy: domain-
mapping part, resource-mapping part. The information provided by application design
and development stage is used to map the functional components of the application to
the domain by domain-mapping part and specifically appropriate computing elements (or
processors) by resource-mapping part. Both parts of this module use estimation module to
get feedback for selecting between the existing candidates.

Estimation Module is a critical component of the application development stage. This
module evaluates different options available and identifies the option that provides the best

performance. Estimation Module receives information about the hardware configuration,
application flow information/requirements and the possible mappings. Then it estimates
the performance of each mapping scheme and identifies the one which gives the best per-
formance.

Since the general form of scheduling problem is NP-hard, researchers have been work-
ing on near-optimal scheduling decisions. The research in this area has produced many
different types of scheduling algorithms (i.e, static, dynamic, centralized, distributed, etc.).
Most of these algorithms are not general; instead they are targeted for specific application
and specific resource types. There are some research projects that target application-level
resource allocation issues such as APPLeS [9], and MARS [8] projects.

VDCE provides application-based scheduling algorithm that runs on VDCE Server at
each site. The required parameters of scheduling include task-specific, resource-specific,
and user-specific parameters, which are stored in the site repositories. The task scheduling
approach is based on developing efficient techniques to predict the performance of each task
execution on each existing VDCE computing resource. Furthermore, our resource allocation
approach is efficient, since it uses a combination of performance analysis and measurement
and benchmarking techniques to estimate the execution time of a task running on any
VDCE computing platform under network contention and varying load conditions.

2.3 Application Execution and Run-Time Stage.

This stage handles the task of executing the developed and configured application and
produce the required output. The runtime stage integrates the assigned resources that
will be involve in execution, and supports inter-module communications, which is based on
either a message-passing tool such as PVM, p4, MPI, NCS or a distributed shared mem-
ory (DSM). During the execution of the application, this stage accepts data from different
computing elements and combines them for proper visualization. It intercepts the error
messages generated and provides proper interpretation. The runtime system handles dy-
namic load-balancing, application and resource-level fault tolerance capabilities.

Most of these functionalities are provided by VDCE Runtime System, which is the
kernel of our problem solving environment. VDCE Runtime System is explained in Section
3. VDCE allows an end user to experiment and evaluate his/her application for the different
combinations of hardware and software medium. VDCE gives user the ability to select any
message passing tool (NCS, P4, PVM, etc) and to select the types of network (Ethernet,
ATM etc) to connect the computing resources.

3 Overview of VDCE

The objective of the Virtual Distributed Computing Environment is to provide a general
software development environment to design and construct large scale HPDC applications

on a network of heterogeneous computers.As a problem-solving environment, VDCE pro-
vides users with a set of task libraries to solve one class of applications. These task libraries
can be used to compose any HPDC application as an application flow graph. VDCE is com-
posed of geographically distributed computation sites, each of which runs its own VDCE
Server. An end user views the underlying VDCE resources, interconnected by a global wide
area network, as a single seamless computation resource (see Figure 1).

The VDCE Server functions as a site manager that bridges the other components to
the Web-based repository. VDCE-based resource information within the site such as site
resource configuration, user information, application development data, and application
run-time information are stored in the repository. VDCE Server implementation is based

on JAVA Web Server technology.

VDCE 3ite

Bl VDCE Server
il SMAMIMD g rm

Wector
Supercomptiiter

YDCE (3ite

%g Special Purposs:
Storage System VOOE Dite Architecture

Figure 1: An example of a Virtual Distributed Computing Environment (VDCE)

Site repository, the web-based storage environment within a VDCE site, consists of
four different databases.User-info database is used to handle the user authentication. In
user-account database, each VDCE user account is represented with a 5-tuple: user name,
password, user ID, priority, access domain type. The resource-performance database pro-
vides the resource (machine and network) attributes/parameters. These attributes are
grouped into two parts: a)static attributes that are are stored in the database once (i.e
host name, IP address, Architecture type, OS type, total memory size); and b)dynamic
attributes that are updated periodically, such as recent load measurement, and available
memory. In order to find locations of task’s executables, VDCE stores location infor-
mation of each task (i.e the absolute path of the task executable) for each host in the
task-constraints database. Due to specific library requirements some task executables may
reside only on some of the hosts. The task-performance database provides performance
characteristics for each task available in the system. Each task implementation is specified

by several parameters, i.e, computation size, communication size, required memory size etc.

The software development cycle for network applications can be viewed in terms of three
phases: application design and development phase, application configuration and schedul-
ing phase, and application execution and runtime phase. VDCE Application Editor module
within a site provides the required functionality of the first phase. Application Editor is a
Web-based graphical user interface that helps user to develop network application and spec-
ifies the computing and communication properties of each task within the application. The
Application Editor generates its output as an application flow graph (AFG). The second
phase, handles the scheduling of each component (i.e task) of the network application to the
best available resource; and application execution/runtime phase starts, runs and manages
the application execution on the assigned machines. VDCE Runtime System provides all
the functions of the last two phases; i.e interpreting the generated AFG and assigning the
current best available resources for running the tasks, setting up an execution environment
for each submitted task, managing the execution to meet successfully the requirements of
the application. In what follows we describe the VDCE components (Application Editor
and VDCE Runtime System) in more detail.

3.1 Application Editor

The Application Editor is implemented in the JAVA programming language and integrated
with web-browsers. To develop an application, the end user establishes a URL connection
to the VDCE Server within the site. After user authentication, the Application Editor
will be loaded into the user’s local web browser, so that, user can develop his/her network
application.

In Application Editor, tasks are grouped into domain libraries. A selected task is repre-
sented as a clickable and draggable graphical icon in the active editor area. Each such icon
includes the task name and a set of markers for logical ports. Color coding used in this
visual representation helps to distinguish input ports from output ports. Operationally,
the Application Editor can be in the task mode, link mode, or run mode. In the task
mode, the user can select-and-add new tasks, and/or click-and-drag icons to position them
conveniently in the active editor area. In the link mode, the user can specify connections
between tasks. In the run mode, Editor submits the graph for the execution and visualizes
performance and runtime characteristics of an ongoing computation.

The process of building a network application with the Application Editor can be
grouped into two steps: building the application flow graph (AFG), and specifying the
task properties of the application. Figure 2 shows the building of application flow graph
of a Linear Equation Solver with the help of Application Editor. The nodes of this ap-
plication, i.e, LU decomposition, matrix inversion, matrix multiplication etc., are selected
from matrix operations menu and linked to form the application flow graph, as shown in
Figure 2. After the application flow graph is generated, the next step in the application

[®] YDCE Application Desi

SYSTEM EDIT EXECUTE MISUALIZE FILEModule Elementary Special Matriz | Data_analysis polynomialfinter
Miscellaneous Matriz_Analysis
Linear_equation
InputFile: A Eigen_values

diagon|_form_{CDF -

E M. _functions 2 my_exponentials &

InputFile: B [N MY

MULT

T3¢ Unsigned Java Applet Window

Figure 2: Building Application Flow Graph of Linear Equation Solver Application

development process is to specify the properties of each task. A double click on the task
icon generates a popup panel that allows the user to specify (optional) preferences such as
computational mode (sequential or parallel), machine type, and the number of processors
to be used in a parallel implementation of a given task (see Figure 3). In this figure, for the
LU Decomposition task of Linear Equation Solver, the user has selected parallel execution
mode using 2 nodes of Solaris machines interconnected by an ATM network.

Apart from the application development process, Application Editor provides different
visualization supports that are grouped as:

e Module/Application Visualization: The performance (i.e, the execution time) of any
individual task or an overall application is shown as a post-mortem visualization.
Application visualization includes the visualization of all tasks within the application.

e Workload Visualization: Up-to-date load information on the resources (machines and
networks) can be visualized.

o Comparative Visualization: VDCE provides an end user to experiment and evalu-
ate his/her application for different combinations of hardware and software medium.
VDCE gives the ability to select any message passing tool (NCS, P4, PVM, etc) on
any network type (Ethernet, ATM etc) for the execution of the application. These
alternatives are given in the task properties window/panel of the Application Edi-
tor. For the comparative visualization case, performance data is shown for all hard-
ware/software alternatives provided by VDCE.

[@] YDCE Application Design

SYSTEM EDIT EXECUTE MISUALIZE FILEModule Elementary Special Matriz Data_analysis polynemial/inter

Miscellaneous

InputFile: &

InputFile: B 1N INY

MULT Tfsg Unsigred Java Applet Window

Computation Type ~Sequential “*Parallel
Machine Type @ Machine Numher !
Selaris]
RSB000 N
HP 7

MULT

)
1 ’:
B i

QutputFile: ¥

OK Cancel|

748 Unsigned Java Applet Window

Figure 3: Snapshot of the Application Editor while Specifying Task Properties

3.2 VDCE Runtime System

The functionalities of VDCE Runtime System, which is the kernel of our problem solving
environment, can be viewed in terms of two machines: Control Virtual Machine (CVM)
and Data Virtual Machine (DVM). Control Virtual Machine is responsible for scheduling
the application, monitoring and managing the execution of the application on assigned
VDCE resources. CVM handles the load measurement of resources (hosts and networks)
and periodically updates the resource-performance database. CVM supports real-time and
post-mortem visualization of the application execution.

Data Virtual Machine provides an execution environment for a given VDCE application
by binding tasks so that they can interact and communicate efficiently. DVM supports a
socket-based point-to-point inter-task communication system. DVM Kernel sets up dy-
namic execution environment depending on the service requirements of the application and
manages the application execution to meet its requirements.

3.2.1 Control Virtual Machine
The functionalities of CVM process can be group into two servers, according to where it is

located: Site CVM (S_.CVM) and Local CVM (L_CVM).

Site CVM (S_.CVM) . S_.CVM is located at the VDCE Server. The S_.CVM daemon
manages the execution of three processes: scheduler process, database manager process,
and visualization process.

e Scheduler Process. After the Application Flow Graph (AFG) is generated by the
Application Editor, it is sent to the VDCE Server. The VDCE Server saves the AFG
and activates the scheduler process. The scheduler process interprets the AFG and
assigns the current best available resources for running the application tasks in order
to minimize the total execution time. The scheduling algorithm computes the pre-
dicted execution time of each task and selects the best available machine within the
site. The schedule decision is based on software and hardware requirements of the ap-
plication, locations and configurations of the resources, up-to-date machine/network
loads. The execution of the scheduling algorithm is completed by generating resource
allocation information in terms of two forms: Application Configuration Table (ACT)

and Channel Information Table (CIT).

The Application Configuration Table (ACT) includes resource allocation informa-
tion of each task of the application. Fach task entity includes assigned machine
information, i.e., hostname, IP address, architecture type, OS type, thread type ,
communication protocol type. For the parallel execution of a task, CIT is used to
generate the hostfiles (for PVM applications) or procgroup files (for P4 applications)
dynamically. A Host file (or a procgroup file) lists the name, address and commu-
nication state for each host. Channel Information Table (CIT) is used to establish
the socket connections among the individual tasks of an application. Each link in
the Application Flow Graph has a related entity in the CIT. If a task 7} is linked to
the task T}, its CIT entity includes related information (i.e, task number, machine IP
address, port number, socket) for both source task, T}, and the destination task, 7.

e Database Manager Process The database manager process handles user-specific,
task-specific and resource-specific data-retrieval requests from the site repository from
VDCE components. The monitored load data are updated periodically at the repos-
itory, by the monitor threads located on each machine. Database manager period-
ically assigns a positive random number to the alive field of VDCE Server. When
the monitor thread of any machine updates machine’s load measurement, it retrieves
server-generated number and updates current machines alive field with this number.
At the next random-number update phase, database manager thread checks alive
fields; i.e. at this point, if a machine’s alive field is different than VDCE Server’s
alive field, it is thought as crashed and its field is set to -1 (dead).

e Visualization Process The visualization process collects the visualization data from
client machines and shows the results on user screen by Application Editor. VDCE
supports both post-mortem visualization (i.e after the execution is completed) and
real-time visualization. VDCE provides application/module visualization, workload
visualization and comparative visualization, which were explained at the previous
section.

Local CVM (L_.CVM) After the resource allocation tables (ACT and CIT) are gener-
ated by scheduler process of S_CVM, VDCE Server parses the ACT and multicasts a signal

10

to the L_.CVM of the machines that will be involved in the execution. Fach activated
L_CVM invokes a DVM prozxy, which sets up the application execution environment on the
machine. DVM proxy manages DVM activities that provides the requested service functions
and the execution environment. In addition to DVM proxy, L_.CVM manages the execution
of a)monitor thread, which periodically measures the up_to_date processor parameters, i.e,
CPU load and memory availability, and updates the site repository, b)visualization thread,
which periodically sends the visualization data to the S_.CVM after the task execution
starts. For the other machines that will not be involved in the application execution, the
only active L_CVM process will be the monitor thread.

3.3 Data Virtual Machine

DVM Kernel sets up the dynamic execution environment and provides specific services
shown in Figure 4. The requested services are selected by the user during the application
development phase with specifying the appropriate parameters. To provide these services,

DVM Kernel has interaction with the CVM and Application Editor. Table 1 shows the
supported methods for each VDCE kernel service type.

User Code

P4

Socket

Unix File In/Out

Comm. Failure

DVM Kernel

Programnming User Task 2

Communicatioly
Environment Service
Service Thread
Service
DVM Kernel
\
Fault Report
Service

NCS Socket

Pthread User Code

Unix File In/Out

Dsm

Load & Task Perf.
Service

Console In/Output
Service Service

Cthread

Comm. Failure

URL In/Out

Visualization

Load & Task Perf.
Console

DVM Kernel Mem & Comm. Failure

Visualization

User Task 1

Console

DVM Kernel

User Task 3
Figure 4: VDCE Runtime Service

At each participating machine, L_CVM activates a copy of the DVM Kernel, called Control
DVM (CDVM). C_DVM manages the communication interface between LCVM and user task.
The communication channel number and the task ID (name) is provided to the C_LDVM. In Fig-
ure 5.a, the channel number is 5000 and task 1D is LU (LU Decomposition). After the connection
is established, CDVM activates the user task (in our example LU) and user task reports results

and errors to L_.CVM through C_DVM.
After setting up communication channel between L_.CVM and DVM, L._CVM sends Channel

information Table(CIT) to DVM task through C_LDVM. DVM task sends an acknowledgment sig-
nal to LL.CVM through C_DVM. Server CVM waits all acknowledgments from DVM tasks which

11

Table 1: VDCE Kernel Services

VDCE Kernel Services

Service Type

Supported Methods

Program Environment Service

Message-Passing(p4,PVM,MPINCS), DSM

Communication Service

NCS-ATM, NCS-socket, NEXUS

Thread Service

Pthread, Qthread, Cthread

[/O Service

File /O, URL I/O

Performance Service

Execution Time, User-defined Measurements

Fault Report Service

Socket Conn., Data Transmission, Resource Allocation

Visualization Service

Real-time Visualization, Post-mortem Visualization

Console Service

Suspend Execution, Restart Execution

are participating of an application execution. After Server CVM collects all acknowledgments, it
sends a task activation message to all participating tasks to start the task executions. Figure 5b
shows the required steps of the task initialization.

- - -~ -~ -~ -~ -~ -~"~"1 "~ ~"“"|~‘~"T"/"’T"—~"~"~*"~*"~""~>"*""~>“"~“"~"*~"~"*~"~"T>"T~Y"~"*“~“"“~"“~"*°”° ‘7777777” . . TSt T T \-
execute | connect ! Cﬂ TT’*“(Activation %5;9

3 (”sogxofmu") ‘ (LU) 3 CIT (LV) O‘K\‘\&

! connect ! — &

! DVM._init DVM_init|

N o,

| execute Task Activatio e,

| 5 <

DVM DVM %y

@ (b)

Figure 5: a.Setup the Execution Environment b.Initialize the Task Execution

The socket-based inter-task communication is handled using VDCFE_send, VDCE_recv calls.
After a data communication path is established, source task sends the data with VDCE_send call,
and target task receives it with VDCE_recv call. After the VDCE send call is completed without
any error, the sended message is written to a specific directory (in current prototype, the directory
is tmp). The message copy can be used by VDCE to support fault (recovery) service. After the
destination task receives (with VDCE_recv call) the message successfully, it reports the received

data size to its LCVM via CDVM.

4 VDCE-based Application Design and Development

As mentioned earlier in this paper,

VDCE problem solving environment provides a large set of

task libraries to solve applications in different domains, such as C*I (command, control, com-
munication, and information) applications and matrix algebra applications. In order to solve a

12

problem in VDCE;, the user builds the application flow graph (AFG) with the Application Editor
and specifies the module/task properties of the application. During this process, menu-driven
functional building blocks of task libraries is used to generate the application flow graph. In what
follows we will present in more detail how VDCE can be used as a problem solving environment
for C3I and matrix algebra applications.

(3 Applications An end user can integrate large scale Command and Control systems from
the provided set of independent, specialized functions given in the C®I library menu of the Appli-
cation Editor. We received a suite of such functions from the Parallel C*I Benchmarking Project
at Rome Laboratory. The VDCE C?3I library menu includes the following tasks:

e Terrain Masking - This function generates evasive low visibility terrain domains with respect
to a set of threats.

e Plot-Track Assignment - It computes track continuation by matching sensor measurements
at time t+1 with the current set of tracks reconstructed at time t.

e Hypothesis Testing - It generates and tests the track initiation hypothesis given the sensor
measurements in a set of time frames.

e Route Optimization - This function finds the minimal risk terrain routes from the base to
a destination for a given set of threats

e Threat Analysis - It computes interception intervals for a set of ballistic threats with elliptic
orbits and a set of interceptor bases.

The Application Editor is used to describe large scale CI applications using these tasks/functions.

Figure 6 illustrates a more complete Command and Control application, constructed by connecting
the individual C3I tasks.

‘ her
%;?e’\llance
and
Wﬂﬂce
Lnctions
if—

\I’hreats
Threat
Analysis

Interceptor
ocations Database

Hypothesis
Testing

(track initiation)

Tracks Plot-Track Y Tracks
Assignment
t (track continuation) \

Terrain
Masking

Decision
Support
System

Theatre

Optimal Opti Assets ;
ptimal Intercpption
Routes Locations Database Intefvals
k4 ¥ ¥
(COMMAND AND CONTROL DECISION MAKING)

Figure 6: C®I System

13

Matrix Algebra Applications VDCE Problem solving environment supports several mod-
ules to solve matrix-algebra based problems. Linear Equation Solver application is an example
problem that can be solved with the help of the functions in the matrix algebra menu. In this
application, the problem is to find the solution vector z in an equation Az = b, where A is a
known N x N matrix and b is a known vector. The Linear Equation Solver can be solved based on
Gauss-Jordan elimination, Gaussian Elimination with back-substitution, or LU Decomposition.
With LU Decomposition any matrix can be decomposed into the product of a lower triangular
matrix I and upper triangular matrix U. Once LU Decomposition is solved, the solution vector,
z, is derived as shown below:

Ar = b
(LU)x = b
Us = L7

z = U YL7'b)

Figure 2 shows the building the application flow graph of a Linear Equation Solver (based on LU
Decomposition) with the Application Editor. To construct the flow graph of this application, the
user creates nodes by selecting the LU_Decomposition, Matrix_Inverse(2), and Matrix_Multiply(2)
tasks from the Matrix_Operations menu. Figure 3 shows how user can specify the task properties
(i.e machine type, sequential or parallel execution, number of machines for parallel execution case)
of Linear Equation Solver application.

4.1 Experiments and Results

Additionally, VDCE can provide support to experiment and evaluate application executions for
different underlying hardware/software configurations. In what follows we explain the results of
FFT (fast Fourier Transformation) experiments for different message passing tools and machine
configurations, and Linear Equation Solver experiments for different network types and machine
configurations.

Fast Fourier Transform (FFT) Given the input sample signal s(k), k = 0,1,..., M —1,
computation of FF'T gives the output X(¢),7=10,1,..., M —1 such that

M-1)
X(@) =Y s(ky-w*

k=0

where W = €/27/M j = /=1 and M = number of sample points.

Suppose we have N workstations on the network and M =N -2" (n > 1), the DIF (Decimation
in Frequency) algorithm for FFT can be mapped onto the network of workstations. A case of
M =8 and N =2 is shown in Figure 7. Each of the small circles represents a computation which
takes two sample inputs and gives two outputs. If sample size is M, then there are M/2 rows
of computation. Each process takes M/(2- N) rows. The lines crossing the bold lines represent
interprocessor communication. There are log,M computation steps and logy N communication
steps. The algorithm has been implemented using the master/slave programming model.

14

S0 X

Compy, Comm, Comp, Comp,,
0 ~_ —
L O O /(3\
0 0>< Process 1
2~ _— 2
, O e oo
1
4~ 1
5 — O\ — O\ — Cg\ 5
2 0
>< Process 2
6 ~_ _— 3
e e oo
3
X = A+B s(k): input
A O/ X(i): output
: ion st
. / » \) comp: computatllonl ep
Y = (A-B).W comm: communication step

Figure 7: Computation of a 8 point FFT using 2 workstations

In this case, the performance of running FFT on 2, 4 and 8 workstations interconnected by
an ATM network is evaluated. The parallel FF'T implementation is based on NCS, MPI, p4, and
PVM message passing tools. Therefore the VDCE user is provided with 12 different experiments
in the system. Table 2 shows the benchmarking results of FF'T for these 12 cases, when it is
run in VDCE. For four nodes, the total execution time of NCS is 1506.365 mulliseconds. This
performance is about 22 % improvement versus MPI implementation (1848.056 milliseconds), 12
% improvement versus p4 implementation (1700.832 milliseconds), and 15 % improvement ver-
sus PVM implementation (1739.750 milliseconds). For the eight nodes, the performance gains of
NCS versus MPI, p4, and PVM are around 38%, 32%, 36%, respectively. From these performance
benchmarking, VDCE end user can select the NCS implementation over 8 nodes to achieve better
performance.

Table 2: Performance of FFT (Sample Points: 1024, Set Size: 8) (msec)

No. of nodes | NCS MPI p4 PVM
2 nodes 1738.237 | 2145.398 | 2015.830 | 1989.461
4 nodes 1506.365 | 1848.056 | 1700.832 | 1739.750
8 nodes 1148.320 | 1587.914 | 1517.796 | 1561.961

Linear Equation Solver As explained in the previous section, Linear Equation Solver ap-
plication finds the the solution vector z in an equation Az = b, where A4 is a known N X N matrix
and b is a known vector. We experimented with Linear Equation Solver based on LU Decompo-
sition method (see Figure 3). The problems size in the experiments is 128 x 128. Each task was
executed with 1, 2 and 4 solaris machines interconnected by both ATM and Ethernet networks.
Therefore VDCE user is provided with 6 different experiments for each task. The Table 2 shows

15

the benchmarking results of individual tasks (LU (LU Decomposition), INV (matrix inversion)
and MULT (matrix multiplication)).

Table 3: Performance of Linear Equation Solver tasks on ATM and Ethernet (msec)

No. of nodes || LU LU INV INV MULT | MULT
Ethernet | ATM Ethernet | ATM Ethernet | ATM
1 node 226073 217191 || 280626 278534 || 49903 48392

2 nodes 236180 233573 || 276193 273654 || 49205 44091
4 nodes 253731 253089 || 274421 270139 || 53088 50311

LU gives better performance for sequential execution than 2-node and 4-node cases, because
of its implementation is communication-bound. For an N x N problem size and P processors, LU
task requires % all-to-all communication and 2 one-to-all communication steps. For INV task,
4-node is the best and for MULT task, 2-node is the best among others; since INV and MULT im-
plementations require communication only for data distribution phase, and result gathering phase.
Therefore their implementations require only 2 one-to-all communication steps. ATM-based net-
work gives better results than Ethernet-based case for all task implementations. According to
these results, if the VDCE user chooses 1 node for LU, 4 nodes for INV and 2 nodes for MULT
while developing his/her application, this combination will achieve better performance than other

possibilities.

Our current VDCE prototype is not complete and we are currently working on adding more
performance evaluation capabilities. The linear equation solver example presented here serves as
a proof-of-concept on the benefits that can be gained from allowing users to experiment with dif-
ferent implementation algorithms to determine the configuration that lead to better performance
results.

5 Conclusion

We have proposed a problem-solving environment, called Virtual Distributed Computing Envi-
ronment (VDCE), for large-scale network applications. VDCE enables scientists to develop paral-
lel/distributed applications without specialized knowledge of the underlying computer hardware
and software. End users can access to VDCE through web-browsers to write parallel/distributed
network applications and experiment and evaluate the applications for the different combinations
of hardware and/or software tools. VDCE can be described by two main modules: Application
Editor and VDCE Runtime System. The Application Editor provides users with all software tools
and library functions required to develop a VDCE application. VDCE Runtime System maps the
tasks of the application onto the resources, monitors the resources, enables a high-performance
communication medium among the modules of VDCE applications, sets up the application exe-
cution environment and manages the execution to meet the requirements of the application. We
also showed how the VDCE can be used to develop network applications and evaluate the per-
formance of the application tasks. We are improving the current implementation of the VDCE
so that it can support access to several sites which are geographically distributed. We are also
implementing distributed shared memory to allow VDCE users to describe their application using

16

shared memory paradigm.

References

[1]

[2]

D. K. Panda, and L. M. Ni, “Special Issue on Workstation Clusters and Network-Based
Computing”, Journal of Parallel and Distributed Computing, 40, pp 1-3, 1997.

Peter Newton, James C. Browne, “The CODE 2.0 Graphical Parallel Programming Lan-
guage”, Proceedings ACM International Conference on Supercomputing, July 1992.

R. Wolski, C. Anglano, J. Schopf, F. Berman, “Developing Heterogeneous Applications Using
Zoom and HeNCE”, Heterogeneous Workshop IPPS 95.

C. Angalano, J. Schopf, R. Wolski, F. Berman, “Zoom: A Hierarchical Representation for
Heterogeneous Applications”, UCSD CS Technical Report, CS95-451.

J. C. Browne, S. Hyder, J. Dongarra, K. Moore, P. Newton,e “Visual Programming and
Debugging for Parallel Computing”, IEFE Parallel and Distributed Technology, Spring 95.

M.F. Kleyn, J.C. Browne, “A High Level Language for Specifying Graph Based Languages
and Their Programming Environment (Draft)”, University of Texas at Austin

K. Dincer and G. C. Fox, “Design Issues in Building Web-based Programming Environ-
ments”, To appear in Proceedings of the Sixth IEEE Int.Sym. on High Performance Dis-
tributed Computing (HPDC-6), 1997.

J. Gehring and A. Reinefeld, “MARS - A Framework for minimizing the job execution time
in a metacomputing environment”, Future Generation Computing Systems, 1996.

F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-Level Scheduling
on Distributed Heterogeneous Networks”, Proceedings of Supercomputing 96.

M. Parashar, S. Hariri, T. Haupt, G. Fox, “A Study of Software Development for High Perfor-
mance Computing” Programming Environments for Massively Parallel Distributed Systems,
1994.

17

	A Problem Solving Environment for Network Computing
	Recommended Citation

	tmp.1286291883.pdf.U4boo

