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Abstract

Multivariate statistical analysis is an important data
analysis technique that has found applications in var-
ious areas. In this paper, we study some multivariate
statistical analysis methods in Secure 2-party Compu-
tation (S2C) framework illustrated by the following sce-
nario: two parties, each having a secret data set, want
to conduct the statistical analysis on their joint data,
but neither party is willing to disclose its private data
to the other party or any third party. The current sta-
tistical analysis techniques cannot be used directly to
support this kind of computation because they require
all parties to send the necessary data to a central place.
In this paper, We define two Secure 2-party multivariate
statistical analysis problems: Secure 2-party Multivari-
ate Linear Regression problem and Secure 2-party Mul-
tivariate Classification problem. We have developed a
practical security model, based on which we have devel-
oped a number of building blocks for solving these two
problems.

Keywords: Privacy, security, multivariate statistical
analysis, secure multi-party computation.
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1 Introduction

Multivariate statistical analysis is an important data
analysis technique that has found applications in various
areas, such as business, education, and defense. In this
paper, we study the multivariate statistical analysis in
a Secure 2-party Computing (S2C) environment, where
data are observed by two parties who are not willing
to fully share their private observations with others;
however, both parties do want to take advantage of
the collaboration, and they do want to benefit from a
joint computation on their joint data. For example,
they might want to derive a prediction model based
on the joint data set, or they might want to know
whether an attribute observed by Alice is related to
an attribute observed by Bob, etc. We call this type
of data analysis problem under S2C environment the
Secure 2-party Multivariate Statistical Analysis (S2-
MSA) problem. Figure 1 depicts the S2-MSA problem.
In this figure, Alice observes attributes x1 and x2,
while Bob observes attributes x3, x4, and x5; they
both can observe the y attribute. The task of S2-MSA
is to conduct multivariate statistical analysis, without
requiring each party’s data to be disclosed to the other.

A common strategy to solve the S2-MSA problem
is to assume the trustworthiness of the participants, or
to assume the existence of a trusted third party. In
today’s environment, making such assumptions can be
difficult and infeasible. Moreover, in certain situations,
even though we could trust that the other parties will
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Figure 1: Secure 2-party Multivariate Statistical Anal-
ysis

not abuse our private information, we cannot guarantee
that their computer systems and network are secure
enough to prevent our information from being stolen.
Alternatively, from the trusted party’s point of view,
in order to conduct such a cooperative computation,
they have to carry the extra burden of securing other
party’s data. A security breach that compromises the
data may result in serious ramifications. Therefore, it
is desirable if nobody knows the other parties’ secret
information. Techniques that can support this type
of joint computation while protecting the participants’
privacy are of growing importance.

There are many multivariate data analysis tech-
niques, such as regression, classification, factor analysis,
T 2 test, etc. In this paper, we focus on two techniques:
multivariate linear regression and classification. Mul-
tivariate linear regression concerns about determining
a linear function that best fits a set of data observa-
tions. Multivariate classification concerns about build-
ing a classification model for predicting membership of
objects from their measurements on one or more pre-
dictor variables.

This paper defines two S2-MSA problems: Secure
2-party Multivariate Linear Regression (S2-MLR) prob-
lem, and Secure 2-party Multivariate Classification (S2-
MC) problem. Because MLR and MC problems are
built upon matrix computations (multiplication, in-
verse, etc.), we have developed a set of basic protocols
for secure 2-party matrix computations; then we de-
velop our solutions to the S2-MLR and S2-MC problems
based on these basic protocols. It should be noted that
the building blocks and the methodologies proposed in
this paper can be used to solve other privacy-preserving
problems beyond the Multivariate Classification and the
Linear Regression problems.

2 Problem Definition and Background

2.1 Notations Let M be a data set represented by
the following N × (n + m) + 1 matrix:

M =




x1,1 . . . x1,n x1,n+1 . . . x1,n+m y1

...
...

...
...

...
xN,1 . . . xN,n xN,n+1 . . . xN,n+m yN




Each column of the data set represents an attribute,
so there are (n + m) + 1 attributes in this data set,
X1, . . . ,Xn+m and Y . Each row of M represents a
subject’s values of these attributes, and there are N

subjects in this data set. We define X as an N×(n+m)
matrix formed by attributes X1, . . . ,Xn+m; we define Y

as a vector formed by attribute Y .
In the problems studied in this paper, the data set

X is vertically divided into two parts and are distributed
to two parties. We call this partition the vertical
partition, and these two parties Alice and Bob. Alice
has the subset A and Bob has the subset B, where A

and B are defined as the following:

A =




x1,1 x1,2 . . . x1,n

...
...

...
xN,1 xN,2 . . . xN,n




B =




x1,n+1 x1,n+2 . . . x1,n+m

...
...

...
xN,n+1 xN,n+2 . . . xN,n+m




In other words, Alice is able to observe the values of
attributes X1, . . . ,Xn for these N subjects, while Bob
can observe the values of attributes Xn+1, . . . ,Xn+m

for the same set of the subjects. In addition, both Alice
and Bob can observe the values of the Y attribute1.
We use the notation (A : B) to represent the union of
these two data sets, i.e., X = (A : B); we also use
M = (A : B : Y ) to represent the whole data set.

The goal of this paper is to find ways to conduct
multivariate statistical analysis under the circumstance
described above, without any party disclosing his/her
private data (A or B) to the other.

There is another way for the data set M to be
distributed: M can be horizontally divided into two
parts, with Alice knowing all the attributes values of
a subset of the subjects, and Bob knowing all the
attributes values of the other subset of the subjects. We
call this partition the horizontal partition. Conducting
statistical analysis on the horizontally partitioned data
is much easier than that on the vertically partitioned

1Our solutions can be easily extended to the situations where
Y is observed by only one party.



data because there is no need for Alice and Bob to
disclose their parts of data to the other party: all they
need to exchange is the aggregate information, not the
raw data. We will skip the details for the horizontal-
partition situation in this paper.

2.2 Multivariate Linear Regression The goal of
linear regression is to determine the values of param-
eters for a linear function that cause the function to
best fit a set of data observations. For the data set
M = (A : B : Y ), to find out how the value of the de-
pendent variable Y depends on the value of independent
variables X1, . . . ,Xn+m, we need to find the parameters
β, such that Y = Xβ best fits the data set M .

Once the values of the parameters are determined,
one can use the formula to predict the value of Y for a
new subject whose values of X1, . . . ,Xn+m are provided.
For example, after we build a linear regression model
based on a known data set, we can predict the number
of credit cards used by a customer based on his/her
family size, family income, and number of automobiles
owned.

If a perfect fit existed between the function and the
actual data, the actual value of Y in the data set M

would exactly equal to the predicted value. Typically,
however, this is not the case, and the difference between
the actual value of the dependent variable Y and its
predicted value for a particular observation is the error
of the estimate, which is known as the “residual”. The
goal of regression analysis is to determine the values
of the parameters that minimize the sum of the squared
residual values for the set of observations. This is known
as a “least squares” regression fit. Based on the least
square method, β can be calculated using the following
equation:

(2.1) β = (XT X)−1XT Y

Problem 1. (Secure 2-party Multivariate Linear Re-
gression Problem) For a data set M = (A : B : Y ),
Alice knows A, Bob knows B, and they both know the
vector Y . Alice and Bob want to build a linear regres-
sion model based on X = (A : B) and Y , namely, they
want to find out a vector β, such that Y = Xβ best fits
the data set M . Due to privacy concerns, Alice cannot
disclose A to Bob, neither can Bob disclose B to Alice.

2.3 Classification Unlike in the linear regression
analysis situation where the value of Y for each subject
is a continuous value, in many other situations, the value
of Y is a discrete value, representing a category that a
subject belongs to. If we want to build a model and use
it to predict what category a new subject should belong
to, we cannot use the linear regression analysis, instead,

we use the classification method.
The purpose of classification is to build a model

which can be used for predicting the class label (the
category) for a subject based on its values of a set
of attributes. Classification can be conducted using
various methods, such as statistical methods, decision
trees, and neural networks [17]. In this paper we focus
on a statistical analysis method and we only give a brief
overview of this method. The details of the method can
be found in [24].

One can say that a subject belongs to a class k, if
the attributes vector of that subject is closest to the
centroid of class k (i.e. the vector of means of subjects
in class k). The distance (it will be defined later) for
a subject in a class indicates how far the subject is
from the centroid of all subjects in that class. Let Dk

represents the data set consisting of the vectors of all
the subjects in class k, i.e. each row in Dk represents
the vector of a subject. Let Dk be the vector of means of
subjects in class k, namely, Dk represents the centroid
of class k. Let Dk(i) represents the ith row of matrix

Dk, and D̂k be a matrix, where D̂k(i) = Dk(i) − Dk.
The distance (T 2

k ) between a subject (whose at-
tributes vector is V ) and the centroid of class k can
be computed using the following equation:

T2

k
= (V − Dk)T C−1

k (V − Dk) + ln|Ck|(2.2)

Ck =
1

(n − 1)
D̂k

T
D̂k(2.3)

A large distance indicates that an observation is
an outlier for the predictor. Assume there are c

different categories (class labels) in Y . After computing
T 2

1 , . . . , T 2
c , the smallest value is selected. For instance,

if T 2
j is the smallest value, one can decide that the new

subject belongs to category j. Therefore, in order to
make predictions, the goal of classification is to compute
Ck (the covariance matrix) and Dk.

Problem 2. (Secure 2-party Classification Problem)
For a data set M = (A : B : Y ), Alice knows A, Bob
knows B, and they both know the vector Y . Alice
and Bob wants to build a classification model based
on X = (A : B) and Y such that, given a new
subject whose Y attribute (category) is unknown, the
model can predict which category the subject belongs
to based on the subject’s X attributes. At the end of
the computation, both Alice and Bob should know the
classification model, i.e. Ck and Dk for k = 1, . . . , c.
However, due to privacy concerns, Alice cannot disclose
A to Bob, neither can Bob disclose B to Alice.



3 Security Model and Methodologies

To compute equation (2.1), (2.2) and (2.3) under the
secure two-party framework, we need to know how to
conduct basic matrix computations on the private data
from two different parties. We present our solutions
to various basic matrix computations including ma-
trix product, matrix inverse, and matrix determinant.
These solutions serve as the building blocks for solv-
ing our secure two-party multivariate statistical analy-
sis problems. Before we discuss the building blocks, we
first introduce our security model, computation model,
and methodology.

3.1 Security Model Studies in Secure Multi-party
Computation (SMC) have formalized privacy in the
Secure Two-party Computation [15]. According to
such formalization, whatever computed by a party
participating in the protocol can only be computed
based on the party’s input and output. Since the parties
have the access rights to their input and output, by the
problem definition, no additional information is learned.

The security property of the above SMC security
model is very desirable because it does not disclose
extra information; however, this desirable property is
difficult to achieve efficiently. As the above literature
has shown, the results of SMC are limited only to a small
set of computation problems. Very few work has been
done to extend the SMC concepts to more complicated
computations, such as data mining, statistical analysis,
and scientific computations, all of which require a
large amount of complicated computations. Although
some work has extended SMC to more complicated
computation problems, such as data mining problem
in [18, 25], most of them are still not efficient enough
for practical use.

In order to achieve a balance between efficiency
and security, we propose a new security model. The
proposed security model lowers the requirements on
security in exchange for better performance. Our
tradeoff is that a dishonest party might be able to learn
some information about the other party’s private data,
but it is still impossible for the dishonest party to derive
the raw data of the other party.

Since the computations we are studying, such as
statistical analysis, are employed in the field of real
numbers, the proposed security model is defined on the
field of real numbers other than on a finite field (all
the known secure multi-party computation protocols are
defined in a finite field).

Definition 3.1. (Security Model) All inputs in this
model are in the field of real numbers ℜ. Let IA and
IB be Alice’s and Bob’s private inputs respectively, and

OA and OB be Alice’s and Bob’s outputs, respectively.
Let C represent the two-party computation between
Alice and Bob, i.e. (OA, OB) = C(IA, IB). A protocol
C is secure against dishonest Bob if there exists an
infinite number of (I ′A, O′

A) pairs in (ℜ,ℜ) such that
(O′

A, OB) = C(I ′A, IB). Similarly, a protocol C is secure
against dishonest Alice if there exists an infinite number
of (I ′B , O′

B) pairs in (ℜ,ℜ) such that (OA, O′

B) =
C(IA, I ′B).

Intuitively speaking, a protocol is secure if, for any
input/output pair (I,O) from one party, there exists an
infinite number of possible inputs in ℜ from the other
party such that the result of the protocol is still O from
the first party’s point of view when given its own input
I. Therefore, from its own observed output, a dishonest
party cannot determine the inputs from the other party.

Comparing to the SMC security model, our security
model is weaker in security. Theoretically, a protocol
that satisfies this security model might still disclose sig-
nificant information. This happens when all the possible
values I ′A of input IA are close to IA, thus although the
exact information about IA is not disclosed, enough in-
formation about it is compromised. However, how likely
can this situation occur and under what situation can it
occur are yet to be determined. Before the theories are
developed for this model, we only consider the model as
a heuristic model, and we believe it is of great impor-
tance to study it because the model can lead to solutions
that are much more efficient than the solutions based on
the secure multi-party computation model. Theoretical
analysis of this model is still our ongoing investigation.
This paper focuses on how practical solutions for var-
ious multivariate statistical analysis problems can be
developed.

3.2 Computation Model In this paper, we discuss
the Secure 2-party Multivariate Statistical Analysis
problems under two computation models: the two-party
model and the Commodity-Server (CS) model. The
two-party model involves just two parties, and it does
not need any help from a third party. In a CS model,
participants accept help from a semi-trusted third party.
The third party learns nothing about the private data
if it does not collude with any of the two participants.
Theoretically, the two-party model is better than the CS
model in security; however, in practice, the CS model
could also be appealing because it usually leads to much
more efficient solutions.

The commodity server is called a semi-trusted third
party because of the following reasons: (1) it cannot
derive the private information of the data from Alice or
Bob; it should not know the computation result either.
(2) It should not collude with either party. (3) It follows



the protocol correctly. In real world, finding such a
semi-trusted third party is much easier than finding a
trusted third party.

As we will see from our solutions, the commodity
server does not participate in the actual computation
between Alice and Bob; it only supplies commodities
that are independent of the private data, and these com-
modities can help Alice and Bob to achieve computation
security. Therefore, the server can generate independent
data off-line, and sell them as commodities to Alice and
Bob (hence the name “commodity server”).

The commodity server model was first proposed by
Beaver [4, 5], and has been used for solving Private
Information Retrieval problems [4, 5, 8] and various
secure 2-party computation problems [9].

3.3 Data Disguising Methodology For many non-
trivial computations, achieving security usually takes
more than one step. We inevitably face one problem:
who should keep the intermediate results, the results
produced after each step? In many applications, nobody
should know the intermediate results. For example,
if the intermediate result is a × b (a and b are two
numbers), where a belongs to Alice and b belongs to
Bob; whoever knows a×b can find out the other party’s
private input. Therefore, we should not only protect the
private inputs, but also protect the intermediate results.

Assume that Sk = Fk(A,B), where Fk is the desired
computation, A is a private input from Alice, and B is
a private input from Bob. In the proposed protocols,
at each step, the intermediate result Sk is protected in
the following way: Alice (only Alice) knows Ak and Bob
(only Bob) knows Bk, where Ak +Bk = Sk. We use the
following notation to represent the above computation:

[A : B] → [Ak : Bk|Ak + Bk = Fk(A,B)]

The notation means that the input of the compu-
tation Fk is A from Alice and B from Bob, and Alice
and Bob do not share their inputs; the output of the
computation for Alice is Ak, and for Bob is Bk, where
the sum of Ak and Bk is the actual computation result,
but Alice and Bob do not share Ak and Bk.

When the computation contains multiple steps, we
use the scheme depicted in Figure 2 to conduct each
step. As long as we can cut each intermediate result into
two pieces, with one piece being randomly generated,
nobody can find out the intermediate results.

4 Building Blocks

4.1 Matrix Product I: A · B We now describe
several building blocks that are used in our solutions.
We start from the matrix product protocol. In this
protocol, Alice has an n × N matrix A and Bob has

Step k Step k+1
A1

B1 B2B1’

A1’ A2

B0

A0

Party A

Party B

Figure 2: Data Disguising Strategy

an N ×m matrix B. They want to conduct the product
computation, such that Alice gets Va and Bob gets Vb,
where Va + Vb = A · B, namely, the product of A and
B is divided into two secret pieces, with one piece going
to Alice and the other piece going to Bob. We use the
following notation to represent this computation.

[A : B] → [Va : Vb|Va + Vb = A · B]

It should be noted that if A · B is the intermediate
result, to maximize information disguise, Alice (resp.
Bob) should not disclose Va (resp. Vb) to the other
party. However, in some problems (e.g. multivariate
classification), A · B is the final result and needs to
known by both parties. In these situations, regardless
of what solutions are used, it is impossible to achieve
security if both A and B are invertible matrices, because
knowing A · B and one of the inputs (A or B) allows
one to derive the other input. However, in our Secure
2-party multivariate classification problem, N ≫ n and
N ≫ m; therefore A·B (a n×m matrix) is much smaller
than A and B, so knowing A · B and one of the inputs
does not allow one to derive the significant information
about the other input.

This matrix product protocol will be used as the
building block for our other protocols; therefore we
provide two solutions: one uses the commodity server
model, and the other uses the two-party model.

4.1.1 Commodity-Server Solution To achieve se-
curity, we let Alice send Â = A + Ra to Bob, and
let Bob send B̂ = B + Rb to Alice, where Ra and
Rb are random matrices. Therefore Bob can com-
pute Â · B = A · B + Ra · B, and Alice can compute
Ra · B̂ = Ra ·B + Ra ·Rb. Combining Â ·B and Ra · B̂
can give us A · B − Ra · Rb. The challenge is how to
get rid of Ra · Rb; the Commodity Server can help us
achieve that.

Protocol 1. ((A · B) Protocol – Commodity Server)

1. The Commodity Server generates a random n×N

matrix Ra and another random N × m matrix Rb,
and lets ra + rb = Ra · Rb, where ra (or rb) is a
randomly generated n×m matrix. Then the server
sends (Ra, ra) to Alice, and (Rb, rb) to Bob.



2. Alice sends Â = A + Ra to Bob, and Bob sends
B̂ = B + Rb to Alice.

3. Bob generates a random n × m matrix Vb, and
computes T = Â · B + (rb − Vb), then sends the
result T to Alice.

4. Alice computes Va = T + ra − (Ra · B̂)

It is easy to verify that

Va + Vb

= [(Â · B + (rb − Vb)) + ra − (Ra · B̂)] + Vb

= [A · B − Vb + (ra + rb − Ra · Rb)] + Vb

= A · B

Theorem 4.1. Protocol 1 does not allow Alice to learn
B, it does not allow Bob to learn A either.

Proof. See Appendix A.

It should also be noted that our protocol does not
deal with the situation where one party lies about its
input. For example, instead of sending B + Rb, Bob
sends B′ +Rb, where B′ is an arbitrary matrix. In that
case, neither of them can get correct results, but still,
neither of them can gain information about the other
party’s private input.

If N ≫ n, which is the situation we face in solving
S2-MSA problems (note n is the number of attributes,
and N is the number of subjects), the dominating
communication cost of this protocol is caused by sending
Ra, Rb, Â, and B̂, which is 4nN (we assume that
m = n for the simplicity of the analysis). This cost is
4 times the optimal cost of a two-party matrix product
(the optimal cost of a matrix product is defined as the
cost of conducting the product of A and B without
the privacy constraints, namely one party just sends
its data in plaintext to the other party). The cost can
be further improved to 2nN because matrices Ra and
Rb are randomly generated by the commodity server,
and only the seeds (numbers of constant size) for a
common random generator are needed by Alice and Bob
to compute them.

4.2 Two-Party Solution The matrix product can
also be achieved using a two-party protocol without
using any third party. The idea is to transform A (resp.
B) to another matrix A′ (resp. B′) such that disclosing
part of A′ to Bob does not allow Bob to derive the
raw data of A, and disclosing part of B′ to Alice does
not allow Alice to derive the raw data of B. A linear
transformation would achieve this goal. We select an
invertible N×N matrix M , and let A′ = AM ; disclosing
half of the data of A′ does not allow anyone to derive

all raw data of A. Based on this observation, we derive
our protocol (for the sake of simplicity, we assume N is
even; this can be achieved by padding an extra row or
column in the original matrices when N is odd):

We vertically divide the N × N matrix M to two
equal-sized sub-matrices Mleft and Mright with size
N × N

2
; we horizontally divide M−1 to two equal-

sized sub-matrices Minv−top and Minv−bottom with size
N
2
× N . The notations are depicted in Figure 3.

N × N
2

N × N
2

N
2
× N

N
2
× N

Minv−top

Mright

Minv−bottom

M
−1

=M = Mleft

Figure 3: M and M−1

Protocol 2. ((A · B) Protocol – Two Party)

1. Alice and Bob jointly generate a random invertible
N × N matrix M .

2. Alice computes A1 = A · Mleft, A2 = A · Mright.
and sends A1 to Bob.

3. Bob computes B1 = Minv−top · B, B2 =
Minv−bottom · B, and sends B2 to Alice.

4. Alice computes Va = A2 · B2.

5. Bob computes Vb = A1 · B1.

It is easy to see that the above protocol achieves the
following:

A · B = AM · M−1B = (A1 A2)

(
B1

B2

)
= Va + Vb

4.3 Analysis of the Two-Party Solution To ana-
lyze how secure Protocol 2 is, we need to find out how
much Alice and Bob know about each other’s informa-
tion. Since the protocol is symmetric, we just discuss
how much information Alice disclosed to Bob. Let vec-
tor X represent a row of matrix A. We now discuss how
much information about X is disclosed to Bob. In this
protocol, Bob knows A1, which contains N

2
data items

of the vector XM . Let us consider X = (x1, . . . , xN )
as N unknown variables, and XM as a linear system of
equations on these N unknown variables. If Bob knows
all of the N equations, Bob can easily solve this linear
system, and recover all the values in X. However, in this
protocol, Bob only knows N

2
equations. Theoretically, if



xi’s are in ℜ, based on these N
2

equations, there are infi-
nite number of solutions to these N unknown variables.
Therefore, although Bob learns N

2
linear combinations

of the N data items, it is impossible for Bob to learn
the actual values for all items in vector X.

However, the above discussion does not exclude the
situation when Bob can learn the actual values for some
data items in vector X. For instance, if we choose
M = I, Bob now learns half of the values in vector
XM = X. This is a significant information disclosure.
Therefore, a good selection of M is very important. In
the following, we analyze the properties of matrix M

(whose size is N × N).
Let Mk be a sub-matrix formed by removing any k

rows from Mleft, and let Minv−k be a sub-matrix formed
by removing any k columns from Minv−bottom. In the
following discussion we assume that the ranks of Mleft

and Minv−bottom are N
2

otherwise M is not invertible.
For the simplicity of presentation, we only analyze the
properties of Minv−bottom, and the properties of Mleft

are similar. We let M̂ = Minv−bottom, i.e., M̂ is an
N
2
× N matrix. We introduce the following definition.

Definition 4.1. (k-secure) Let M̂k be a sub-matrix
formed by removing any k columns from the matrix M̂ .
M̂ is k-secure if the rank of M̂k is N

2
for any M̂k.

Theorem 4.2. If M̂ is k-secure, any nonzero linear
combination of the the row vectors of M̂ generates a
row vector with at least k + 1 non-zero entries.

Proof. Let row vector v be a nonzero linear combination
of the row vectors of M̂ , i.e., v = pM̂ , where p is row
vector of size N

2
. Assume that v has at most k non-zero

entries. We use e1, . . . , ek to represent the position of
these entries.

Remove the columns e1, . . . , ek from M̂ and we
get M̂k. Therefore, pM̂k = 0, i.e., the same linear
combination p on the new sub-matrix generates a zero
vector. This means, after removing k columns from M̂ ,
the rank of resultant matrix M̂k is less than N

2
. This

contradicts to the fact that M̂ is k-secure.

The above theorem guarantees that, regardless of
how the equations M̂x = b are linearly combined
(except the trivial zero combination), it is impossible
to generate an equation that contains less than k +
1 variables. This means that each single equation
disclosed by Alice or Bob involves at least k+1 variables.
In other words, each unknown data item is disguised by
at least k other unknown data items.

Based on our above definition, the identity matrix
I is a bad choice for M because I is not even 1-secure:

removing any row from Ileft results in a matrix whose
rank is less than N

2
.

Only requiring that each equation contains k + 1
variables is still not sufficient to prevent information
disclosure, because these k + 1 variables might still be
solvable. For example, if there exists k + 1 linearly
independent equations that involves the same k + 1
variables, the linear system of equations formed by these
k+1 equations has a unique solution and can be solved.
We need to guarantee that the situation like this cannot
happen.

Theorem 4.3. Let Λ be a k × N matrix, where each
row of Λ is a nonzero linear combination of row vectors
in M̂ . If M̂ is k-secure, the linear system of equations
Λx = b involves at least 2k variables.

Proof. Using a proper Gaussian elimination on the
linear system of equations Λx = b, we can get a new
linear system of equations (I : Λ′)x = b′, where I is the
k × k identity matrix, Λ′ is an k × (N − k) matrix, and
(I : Λ′) means the vertical concatenation of I and Λ′.

According to Theorem 4.2, each row of (I : Λ′)
contains at least k + 1 non-zero entries, i.e., each row
of Λ′ contains at least k non-zero entries. Therefore the
linear system of equations (I : Λ′)x = b′ involves at least
k +k = 2k variables, with k variables being contributed
by I, and at least k other variables being contributed
by Λ′.

In summary, k-secure guarantees that any equation
contains at least k + 1 variables and any k combined
equations contain at least 2k variables; however, with
these properties, k-secure is still not secure enough
because it does not rule out the situation when 2k
equations can contain just the same 2k variables (thus
can be solvable). To make it impossible to find 2k
equations, we should let N

4
< k ≤ N

2
because there

are only N
2

equations in M̂ .
We say that an N ×N matrix M is k-secure if both

Mleft and Minv−bottom are k-secure. Based on the above
discussion, we can derive the following theorem:

Theorem 4.4. If M is k-secure, where N
4

< k ≤ N
2
, in

Protocol 2, the linear systems of equations Minv−bottom ·
B = B2 and A · Mleft = A1 have infinite number of
solutions for each variable in B and A, respectively.

To achieve the best security, we should choose a
matrix that is N

2
-secure. We have developed an efficient

algorithm to construct such a matrix M that is N
2

-secure
by using a class of maximum distance separable codes,
and we have proved that such M satisfies N

2
-secure

property. The details are described in Appendix B.



In addition to the selection of M , we should also
be careful about the input reusing. For each row vector
X in A, A1 in Protocol 2 discloses N

2
equations about

X. If A is reused in another protocol between Alice and
Bob, another N

2
equations about X could be disclosed

to Bob. If these N = N
2

+ N
2

equations are linear
independent, Bob can solve X. Therefore, when A is
reused in another protocol, make sure to use the same
M and disclose the same part of the data.

It should be noted that the k-secure property of
M̂ only guarantees that there exists infinite number
of solutions in the real domain for each variable for
the linear system of equation M̂x = b, where M̂ is
a matrix of size N

2
× N . However, since the domain

of each variable x is only a subset of the real domain,
based on M̂x = b, an adversary might be able to further
derive the actual range for certain x. The smaller such
a range is, the less privacy is preserved, even though the
adversary cannot find the exact value of x. Therefore,
to fully understand the privacy-preserving property of
our scheme, it is important to analyze the actual range
of each variable. We plan to conduct such an analysis
in our future work.

The communication cost of Protocol 2 is nN (as-
suming n ≈ m), which is the optimal cost of the two-
party (non-secure) matrix product computation. How-
ever, if N is large and N ≫ n, as it is usually the

case, the multiplication computation cost (O(N2

2
)) is

expensive due to the computation of finding M (M−1

can be constructed by the method give in Appendix B
which only involves addition). However, since M does
not depend on the inputs from Alice or Bob, M can be
pre-computed off-line and can also be reused.

4.4 Matrix Product II: (A1 + B1)(A2 + B2) In
this protocol, Alice has matrices A1 and A2, Bob has
matrices B1 and B2; A1 and B1 are n1 × t matrices
while A2 and B2 are t × n2 matrices.

Alice and Bob need to compute (A1 + B1)(A2 +
B2), such that Alice gets Va and Bob gets Vb, where
Va + Vb = (A1 + B1)(A2 + A2). This computation can
be achieved using the (A · B) Protocol twice because
(A1 + B1)(A2 + B2) = A1A2 + A1B2 + B1A2 + B1B2.
The protocol is represented by the following:

[(A1, A2) : (B1, B2)]
→ [Va : Vb|Va + Vb = (A1 + B1) · (A2 + B2)]

4.5 Matrix Inverse: (A + B)−1 In this protocol,
Alice has A, Bob has B; both A and B are n × n

matrices, and A+B is invertible. Alice and Bob need to
compute (A+B)−1, such that Alice (only Alice) gets Va

and Bob (only Bob) gets Vb, where Va+Vb = (A+B)−1.

The protocol is represented by the following notation:

[A : B] → [Va : Vb|Va + Vb = (A + B)−1]

Our solution consists of two major steps: first Alice
and Bob jointly convert matrix (A + B) to P (A + B)Q
using two random matrices P and Q that are only
known to Bob. The results of P (A+B)Q will be known
only by Alice who can conduct the inverse computation
and gets Q−1(A+B)−1P−1. The purpose of P and Q is
to prevent Alice from learning matrix B. In the second
step, Alice and Bob jointly remove Q−1 and P−1 and
gets Va + Vb = (A + B)−1. Both steps can be achieved
using the (A ·B) protocol, thus can be solved using both
the commodity-server model and the two-party model.

Similar techniques could be used to compute matrix
determinant |A + B| and matrix norms ‖A + B‖. We
leave the details to readers.

5 Privacy-Preserving Multivariate Statistical

Analysis

5.1 Multivariate Linear Regression With the
building blocks described above, we can now solve S2-
MLR and S2-MC problems. In S2-MLR problem, Alice
has a data set A for N subjects, Bob has another data
set B for the same subjects, and X = (A : B) is the con-
catenation of A and B. Alice and Bob both know the
multivariate relationship (denoted by Y ) between their
data sets, but Alice does not know B and Bob does not
know A. The goal is to find β from Equation 2.1:

β = (XT X)−1(XT Y )

where XT X can be represented by the following
form:

(5.4) XTX =

(
AT A AT B

BT A BT B

)

Let Vai represent the data known only to Alice,
and let Vbi represent the data known only to Bob. To
compute β, we want to achieve the following:

1. Va1 + Vb1 = XT X

2. Va2 + Vb2 = (XT X)−1 = (Va1 + Vb1)
−1

3. Va3 + Vb3 = XT Y

4. β = (Va2 + Vb2)(Va3 + Vb3).

Step 1 can be achieved using our (A · B) Protocol;
step 2 can be achieved using our (A + B)−1 Protocol;
step 3 can be achieved simply by letting Va3 = AT Y

and Vb3 = BT Y ; finally step 4 can be achieved using
our Matrix Product II protocol.



In each of the step (except the last one), we have
used a random number to disguise the intermediate re-
sults, such that nobody knows the intermediate results.
Even if a party is dishonest, he/she still cannot get use-
ful information because of the randomized disguise.

5.2 Multivariate Classification The goal of build-
ing a classification model using Equation 2.2 and 2.3 is
to compute Ck and DK . DK can be directly obtained
by letting Alice and Bob exchange the corresponding
mean values. We describe how to compute Ck without
disclosing the raw data.

According to Equation 2.3, we need to find a way

to compute D̂k

T
D̂k, where one part (A′) of D̂k is

known to Alice, and the other part (B′) is known to
Bob. Because the original data set M is constructed by
the vertical concatenation of Alice’s and Bob’s private
data, D̂k is the vertical concatenation of A′ and B′, i.e.
D̂k = (A′ : B′). Similar to Equation 5.4, we have the
following:

D̂k

T

D̂k =

(
A′T A′ A′T B′

B′T A′ B′T B′

)

Therefore, Alice and Bob just need to compute Va+Vb =
A′T B′ using the Matrix Product protocol. Then Alice
sends A′T A′ and Va to Bob, Bob sends B′T B′ and Vb to
Alice, and they will both have the classification model
Ck for each k.

After Bob knows A′T B′ and A′T A′, he can learn
some information about A′. However, since both A′T B′

and A′T A′ are n × n matrices (assuming both A′ and
B′ are N × n matrices), and N ≫ n (remember that
N is the number of subjects, and n is the number of
attributes), the amount of information disclosed to Bob
is negligible compared to the size of A′. In another
words, if Bob treats A′ as N ∗ n unknown variables,
then Bob only has 2n2 equations, which is not enough
to solve all these variables.

If Bob selects some specific matrix B′, he can learn
up to n2 values from A′. For example, Bob lets the
first rows of B′ to be In×n, then A′T B′ discloses the
first n rows of A′ to Bob. However, this is not the
problem caused by our solution; it is associated with
the Secure 2-party Multivariate Classification Problem
itself regardless of what the solutions are used. One way
to solve this problem is to disallow any party to learn
the actual classification model, but this limits the usage
of the model because, to make a prediction, one needs
to communicate with both Alice and Bob. Another way
is to add some random noise to perturb each element of
A′ before using it in the protocol. This way, even if Bob
can learn the values of some elements in the perturbed

A′, he still has trouble determining the original values
of A′ because of the random noise. The downside of
this approach is that the results will be approximate.
We are currently investigating how accurate such an
approximation approach can achieve.

6 Related Work

The Secure 2-party Multivariate Statistical Analysis
problems we described in this paper are special cases
of a more general problem, the Secure Multi-party
Computation (SMC) problem. The history of the SMC
problem is extensive since it was introduced by Yao [26]
and extended by Goldreich, Micali, and Wigderson [16],
and by many others.

Goldreich states in [15] that the general secure
multi-party computation problem is solvable in theory.
However, he also points out that using the solutions
derived from these general results for special cases of
multi-party computation, can be impractical; special
solutions should be developed for special cases for
efficiency reasons. This is one of the major motivations
underlying this work.

Some statistical functions are discussed in the
secure multi-party computation framework in [6],
which introduces Selective Private Function Evaluation
(SPFE). In this problem, a client interacts with one or
more servers holding copies of a database x = x1, . . . , xn

in order to compute f(xi1 , . . . , xim
), for some func-

tion f , where indices i = i1, . . . , im are chosen by
the client. Ideally, the client must learn nothing more
about the database than f(xi1 , . . . , xim

), and the servers
should learn nothing. Various approaches for construct-
ing sublinear-communication SPFE protocols were pre-
sented in [6], both for the general problem and for spe-
cial cases of interest, such as the statistical functions.

Secure 2-party univariate statistical analysis prob-
lems were studied in [9,11]. Some basic univariate statis-
tical analysis were studied in the paper, including mean
value of a data set, standard deviation, correlation co-
efficient, and linear regression line. Our paper not only
extends this work to deal with multivariate statistical
analysis techniques, but also provides more efficient so-
lutions.

Another body of literature related to this work
is the privacy preserving data mining. In general,
there are two different approaches: one is to use data
distortion approach, in which data are disguised by
the added noises [1, 2, 13, 14, 22, 23]. Another gen-
eral approach is the secure multi-party computation ap-
proach [7, 12, 18, 21, 25]. The advantage of the first ap-
proach is its performance, but it achieves this at the cost
of accuracy. On the other hand, the second approach
ensures the results are 100% the same as the results ob-



tained from the original algorithms (without the privacy
concerns), but is general much more expensive than the
first approach. This work takes the second approach,
with the goal of improving the performance.

Both [12] and [25] use dot product as their building
block. Secure 2-party computation on dot product of
two vectors was originally studied by Du and Atallah [3,
10], and further studied by Vaidya and Clifton [25].
The solution proposed in [25] is more similar to the
solution we proposed here than other solutions, because
they both use a disguise matrix (in different ways) to
mix data together for the privacy purpose. The results
in this paper distinguish themselves from [25] in the
following aspects: First the work in [25] does not study
how the disguise matrix should be selected. As we
discussed in this paper, the selection of the disguise
matrix is important, and, if selected poorly, can disclose
a significant amount of information. Our work has
identified and proved that the disguise matrix needs
to be N

2
-secure. We have also developed an efficient

algorithm to come up with such kind of disguise matrix.
Second, our work addresses a more general class of
computations, the computation on matrices; the dot
product is just a special case. Besides the matrix
product, we also proposed ways to compute matrix
inverse, matrix determinant and norms. Third, our
work proposes a methodology to allow two parties to
evaluate a more complicated math expression than just
the dot product or matrix product.

7 Conclusion and Future Work

In this paper, we have described a new set of problems,
the Secure 2-party Multivariate Statistical Analysis (S2-
MSA) problems. S2-MSA allows two parties to conduct
collaborative statistical analysis on their joint data sets
without disclosing each party’s private data to the other
party. We have developed a practical security model and
a number of building blocks to solve two specific S2-
MSA problems, the Secure 2-party Multivariate Linear
Regression problem and the Secure 2-party Multivariate
Classification problem.

In our future work, we will also study more multi-
variate statistical analysis techniques under the secure
2-party computation framework, such as factor analy-
sis, variance analysis, and cluster analysis. Our goal is
to develop a set of useful building blocks that can be
used to provide efficient solutions to the secure 2-party
multivariate statistical analysis problems.
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Appendix

A Proof of Theorem 4.1

From the protocol, Â = A + Ra is all what Bob gets
that are related to Alice’s private data A. Because of
the randomness and the secrecy of Ra, Bob cannot find
out A.

We now prove that the protocol is secure if Alice
is dishonest. According to the protocol, Alice gets (1)

B̂ = B + Rb, (2) T = Â · B + (rb − Vb), and (3) ra,
Ra, where ra + rb = Ra ·Rb. We will show that for any
arbitrary B′, there exists r′b, R′

b and V ′

b that satisfies
the above equations.

Assume B′ is an arbitrary matrix. Let R′

b = B̂−B′,

r′b = Ra · R′

b − ra, and V ′

b = Â · B′ + r′b − T . Therefore

Alice has (1) B̂ = B′ + R′

b, (2) T = Â · B′ + (r′b − V ′

b ),
and (3) ra, Ra, where ra + r′b = Ra ·R

′

b. Therefore from
what Alice learns, there exists infinite possible values
for B.

B Constructing the N
2
-secure Matrix M

Let M = (A B) be an N × N invertible matrix and its

inverse be M−1 =
(

C
D

)
, where A,B are N× N

2
matrices

and C,D are N
2
× N matrices. In order to satisfy the

N
2

-secure property, the matrix A (D) must have rank

of N
2

and the deletion of any N
2

rows (columns) in A

(D) must not reduce the rank of the resultant N
2
× N

2

matrix. Equivalently, any N
2

rows (columns) of the
matrix A (D) must be linearly independent over ℜ,
the field of real numbers. Next we will show that the
matrix A (D) can be obtained by a generator matrix of
an (n, k) maximum distance separable code (MDS code)
over finite field GF (p) [19], where p is a prime2.

Let G be a generator matrix of an (n, k) linear
code over GF (p). Here n denotes the length of the
codewords and k the dimension of the code. That is,
G is a k × n matrix with each entry in GF (p). The
number of codewords is pk and each codeword is a linear
combination of the rows of G. If u ∈ GF (p)k represents
a vector of k information symbols, it can be encoded
into c = uG. An MDS code is defined as the code
whose minimum distance of the code is n+k +1, where
the minimum distance of a linear code is the smallest
number of nonzero entries of all nonzero codewords. It
has been proved that every k columns in a generator
matrix G of any MDS code are linear independent over
GF (p). A famous class of MDS codes is the Reed-
Solomon codes which have been applied to many real-
world applications. The length of the codewords n of
all Reed-Solomon codes over GF (p) is of p − 1 and the
dimensions of the codes exist for 1 ≤ k < n. For a more
detail introduction to MDS codes see [19].

Assume that A =
(

A1

A2

)
, B =

(
B1

B2

)
, C = (C1 C2),

and D = (D1 D2) , where Ai, Bi, Ci,Di are all square
matrices for i = 1, 2. That is,

M =

(
A1 B1

A2 B2

)
and M−1 =

(
C1 C2

D1 D2

)
.

Since MM−1 = I we have
A1C1 + B1D1 = I, A1C2 + B1D2 = 0,

A2C1 + B2D1 = 0, A2C2 + B2D2 = I.

2Even though MDS codes are defined over GF (q), where q is a

prime or the power of a prime, in this paper we only consider
those codes over a ground finite field, since the addition and
multiplication in this field can be taken as real number addition
and multiplication modula p.



Note that Ai and Di must be all invertible matrices
for i = 1, 2. Let B1 be the identity matrix. Then a
necessary condition for B2 which satisfies the above four
matrix equations is D−1

2 D1 + A2A
−1

1 = 0. Under this
condition, we have

B1 = I, B2 = D−1

2 + A2A
−1

1 ,

C1 = A−1

1 − A−1

1 D1, C2 = −A−1

1 D2.

Let A1 = I. If we choose D2 = −I, then we have
D1 = A2. Consequently, we have

B1 = I, B2 = −I + A2,

C1 = I − A2, C2 = I.

The remaining part we need to show is that every N
2

rows of A =
(

I
A2

)
are linearly independent over ℜ

and every N
2

columns of D = (A2 −I) are linearly
independent over ℜ.

Before our construction of A and D we first quote
three needed theorems from the original materials with-
out given any proof.

Theorem B.1. [19] An (n, k) code over GF (p) with
a generator matrix G is MDS iff every k columns of
G are linearly independent. Furthermore, an (n, k)
code with generator matrix G = (I E), where E is a
k × (n − k) matrix, is MDS iff every square submatrix
(formed from any i rows and any i columns, for any
i = 1, 2, . . . ,min{k, n − k}) of E is nonsingular.

Theorem B.2. [20] Vectors which are linearly inde-
pendent over GF (p) are also linearly independent over
ℜ.

The constructions of A and D are as follows:

Step 1: Find a prime number p which is larger than N .
In practice, one may want to find a prime which is
as close to N as possible.

Step 2: Construct the generator matrix G of the
(p − 1, N

2
) Reed-Solomon code over GF (p). The

method of this construction can be found in [19].

Step 3: Make the first N
2

columns of G form the N
2
× N

2

identity matrix by row operations. Assume that
G = (I E).

Step 4: Delete the last p−1−N columns in G such that
the resultant matrix G′ = (I E′) becomes an N

2
×N

matrix. It is clear that this deletion will not effect
the desired linearly independent property that the
resultant matrix G′ inherits from G before deletion.

Step 5: Take A = G′T =
(

I
E′T

)
and D = (E′ −I).

Treat each entry in A to be a real number.

First we prove that every N
2

rows (columns) in A (D) are
linearly independent over GF (p) and, by Theorem B.2,
they are also linearly independent over ℜ. According
to Theorem B.1, every N

2
columns in G of Step 2 are

linearly independent over GF (p). In Step 3, the row
operations taken transfers the original MDS code into
a systematic MDS code where the first N

2
symbols of

each codeword represent the information symbols. By
Theorem B.1 again, after Step 3, every N

2
columns of

G = (I E) are linearly independent. By Theorem B.1,
every square submatrix of E is nonsingular. Conse-
quently, every square submatrix of E′ is nonsingular
after the deletion of last p− 1−N columns. Therefore,
by Theorem B.1 again, both (E′ I) and (I E′T ) are
generator matrices for two MDS codes. Therefore, the
desired properties of linearly independent are followed
immediately for A and D since the minus sign in D does
not affect the linearity of D.
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