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Abstract

A remarkable theoretical prediction for a crystalline (polymerized) surface is
that its Poisson ratio σ is negative. Using a large scale Monte Carlo simulation
of a simple model of such surfaces we show that this is indeed true. The
precise numerical value we find is σ ≃ −0.32 on a 1282 lattice at bending
rigidity κ = 1.1. This is in excellent agreement with the prediction σ = −1/3
following from the self-consistent screening approximation of Le Doussal and
Radzihovsky.

Crystalline surfaces have been studied extensively in recent years. Unlike one-
dimensional polymers, which are always crumpled, non self-avoiding crystalline sur-
faces undergo a continuous phase transition from a high temperature crumpled phase
to a low temperature flat phase [1–3]. The flat phase is characterized by long-range
orientational order in the normals to the surface.

There are several experimental realizations of crystalline surfaces. Some, like sus-
pended layers of graphite oxide in aqueous solution [4, 5] or polymerized adsorbed
mono-layers, are chemical systems one can synthetize in the laboratory. There are
also beautiful biological examples of such surfaces [6]: the cytoskeleton of erythro-
cytes (red blood cells) is composed of a network of nodes (actin oligomers) and links
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Table I: The scaling exponents.
MC AL LR Large-d

η ∼ 0.62 24/25 0.81... 2/3
ηu 0.50(1) 2/25 0.36... 2/3
ζ 0.64(2) 13/25 0.59... 2/3

(spectrin tetramers). A typical skeleton is a triangulated network of roughly 70,000
plaquettes.

The crumpling transition and the flat phase of crystalline surfaces have been
investigated numerically by several authors. The interested reader may consult the
excellent reviews [7, 8]. Bowick et. al. have recently performed a large scale simula-
tion of a triangulated crystalline surface with bending rigidity using free boundary
conditions [9]. The largest surface simulated has 32,258 triangles. The equilibrium
distribution is sampled using a Monte Carlo algorithm with a local Metropolis up-
date. The action used has a simple Gaussian potential and a bending energy term:

βH =
∑

〈ij〉

(~ri − ~rj)
2 − κ

∑

〈αβ〉

~nα · ~nβ, (1)

where ~ri is the position of node i, ~nα is the unit normal to triangle α and κ is the
bending rigidity. For κ > κc ≃ 0.79 the system is in a flat phase and it behaves like
a membrane with anomalous elasticity.

The flat phase is characterized by the scaling of the renormalized effective elastic
constants λR ∼ µR ∼ qηu and of the bending rigidity κR ∼ q−η. The exponent η
can be determined from the scaling of the height-height correlation function (η is
related to the roughness exponent ζ = 1 − η/2). The exponent ηu determines the
finite size scaling of the mean square phonon fluctuations.

We summarize the results of [9] in Table I. These results are compared to the
analytical predictions obtained from an ǫ = 4 − D expansion (AL) [10,11], a large-
d expansion [11–13] and a self-consistent screening approximation (LR) [14]. In
this notation D represents the dimensionality of the elastic manifold and d is the
dimensionality of the embedding space (for physical membranes D = 2 and d = 3.)
Scattering experiments on the red blood cell skeleton give ζ ≃ 0.65(10) [6].

In addition to the anomalous scaling of the coupling constants, one of the most
dramatic effects of fluctuations on crystalline surfaces is the prediction of a negative

Poisson ratio σ. The Poisson ratio measures the in-plane transverse response of the
surface when stress is applied in the longitudinal direction. It is defined to be positive
for matter which shrinks in the x̂-direction when stretched in the ŷ-direction.

Analytical calculations in the context of a self-consistent screening approxima-
tion (LR) [14] and an ǫ expansion (AL) [10] predict that for crystalline surfaces σ
is −1/3 (LR) and −1/5 (AL) respectively. The unusual sign of the Poisson ratio
is a result of entropic suppression of the height fluctuations in a membrane under
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stress [15]. This effect is clearly demonstrated by crumpling a sheet of paper and
pulling on two opposite corners: the sheet expands in the direction transverse to
the applied strain [16,17].

In this letter we demonstrate numerically that a crystalline surface, defined by
Eq. (1), indeed has a negative Poisson ratio, and that it agrees with the prediction
from [14]. We compare our result with previous numerical determinations of σ [18].
We stress that this work extends the analysis of Monte Carlo data collected in [9],
and we refer to it for the details of the simulations.

Consider an asymptotically flat elastic surface at thermal equilibrium. In the
Monge gauge, its behavior is described by the partition function

Z[σij ] =

∫

[dr]3 exp

{

−
∫

d2ς

[

1

2

(

2µ0u
2
ij + λ0u

2
kk

)

+
κ0

2
(∇2h)2 − σijuij

]}

, (2)

where ς is the intrinsic coordinate, µ0 and λ0 are the bare Lamé coefficients and κ0

is the bending rigidity. The stress tensor σij represents an external source linearly
coupled to the system. The strain tensor uij , to linear order in ~u, is related to ~r by

~r = ~s + ~u + ẑh (3)

uij =
1

2
(∂iuj + ∂jui + ∂ih∂jh). (4)

Here ~s is the rest (equilibrium) position of the surface, assumed to lie in the x–y
plane, and h is the height of the surface above the reference plane.

The Poisson ratio can be defined in terms of correlation functions at zero external
stress using linear response theory. Considering a diagonal (hydrostatic) stress, the
derivation is straightforward and leads to

σ = −〈uxx uyy〉c
〈u2

yy〉c
, (5)

where the subscript c indicates the connected part. Since the correlation functions
are measured in the limit of zero external stress (σij = 0) the system is isotropic in
the x–y plane and

〈u2
xx〉c = 〈u2

yy〉c. (6)

For computational purposes it is convenient to express the strain tensor in terms
of the tangent vectors ~ti = ∂i~r. The index i refers to the intrinsic coordinate system.
The strain tensor is

uij = ∂i~r · ∂j~r − 〈∂i~r〉 · 〈∂j~r〉 = gij − δij , (7)

where gij = ∂i~r · ∂j~r is the induced metric, and we have rescaled the intrinsic
coordinates so that 〈gij〉 = δij . Substituting Eq. (7) in Eq. (5) we get

σ = −〈gxx gyy〉c
〈g2

yy〉c
. (8)
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Table II: The Poisson Ratio.
L κ = 1.1 κ = 2.0

32 −0.28(1) −0.25(1)
46 −0.30(2) −0.26(2)
64 −0.30(3) −0.28(3)
128 −0.32(4) —

In terms of a discretized surface the induced metric g assumes a simple form. Take
for example the xx component at point ς

gxx(ς) = ∂x~rς · ∂x~rς = (~rς+x − ~rς) · (~rς+x − ~rς), (9)

which is the squared length of the “link” between the point at ς and its neighbor in
the x̂ direction.

The derivation of σ implicitly assumed that the intrinsic coordinate system is
orthogonal. As our discretized surface is a triangular lattice, we need to transform
the coordinate system. In fact, we can directly access only the ∂i~rς , i = 1, 2, 3,
of Eq. (9), in the three natural directions of the triangular lattice, while Eq. (8) is
expressed in terms of x̂ and ŷ. If ê1, ê2, ê3 are the basis vectors of a triangular
lattice, we define the x̂ direction to overlap with ê1, and we use ŷ = (ê2 + ê3)/

√
3.

At this point we can use Eq. (6), isotropy, as a consistency check on our definition
of the strain fluctuation. In fact we verified that 〈g2

xx〉c, 〈g2
11〉c, 〈g2

22〉c, 〈g2
33〉c, and

〈g2
yy〉c are equal within numerical accuracy.

One can find an equivalent definition of σ in terms of different correlation func-
tions. Since 〈gxxgxx〉c − 〈gxxgyy〉c = 2〈gxygxy〉c [18], it is easy to show that

σ = −1 + 2
〈gxygxy〉c
〈g2

xx〉c
. (10)

We have verified that this definition gives results consistent with Eq. (8). But it
must be noted that it is more difficult to use numerical methods to determine σ
from Eq. (10) as 〈gxy〉 is much smaller than 〈gxx〉.

We report in Table II the measured values of the Poisson ratio for various sizes of
the surface and for two different values of the bending rigidity κ. The errors quoted
in the table are due to statistical fluctuations and are estimated using the binning
method. In Figure 1 we plot σ for κ = 1.1. We see marked changes in σ as the
lattice size increases and as the bending rigidity increases. These discrepancies are
a measure of the uncertainty in our determination of the Poisson ratio. We remark
that theoretical arguments [10,14] indicate that the behavior in the whole flat phase
is governed by an infrared-stable fixed point at κ = ∞ (the fluctuations stiffen the
surface at long wavelength). Hence we expect to find the correct asymptotic behavior
as L → ∞ anywhere above the crumpling transition. Larger values of the bending
rigidity influence the results since the auto-correlation times are longer — it is more
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Figure 1: The Poisson ratio for κ = 1.1 and d = 3L/4.

time consuming to gather the equivalent number of independent configuration. For
both values of κ the results are consistent with an approach to a value of σ ∼ −0.32,
which agrees with the theoretical prediction of −1/3 (LR). The infinite volume value
is extracted from the fit to σ(L) = σ(∞) + a(κ)/Lb. The statistical errors on the
data do not allow for a reliable estimate of the exponent b.

Zhang, Davis and Kroll have obtained a different result σ = −0.15(1) for the
Poisson ratio of a tethered membrane in a molecular dynamics simulation with
periodic boundary conditions [18]. There are several possible explanations for the
discrepancy. We stress that the present simulation goes to much larger lattice sizes:
in view of the finite size effects demonstrated in Table II, we believe size to be
relevant. Furthermore, it is hard to compare the value of the bare parameters used
in the two simulations because both the numerical techniques and the models studied
differ.

For completeness we mention that Boal, Seifert and Shillcock have investigated
numerically, and with mean field techniques, the Poisson ratio of 2-dimensional
networks under tension [15]. These models differ from the one we study in that they
are strictly planar. It was found, nonetheless, that entropic effects drive the Poisson
ratio negative.

A comment now on our treatment of boundary effects. As noted by Abraham
[19], large edge fluctuations might influence the results, even though boundary effects
should vanish in the infinite volume limit. Zhang, Davis and Kroll simulate a surface
in a closed cell [18], imposing periodic boundary conditions in the x–y plane only,
and, in some cases, dynamically modifying the cell size. In our simulations the
surface’s boundary is free to fluctuate, and we need to carefully analyze the data
in order to quantify the effect of boundary fluctuations. To this end, we restrict
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Figure 2: The Poisson ratio for the 14 subsets at κ = 1.1 and L = 46. The circles
correspond to definition Eq. (8), while the squares to definition Eq. (10).

the definition of the correlation functions in Eq. (8) to a hexagonal subset of the
mesh (the method is described in great detail in ref. [9]). The subset excludes the
portions of the surface close to the boundary. For each size simulated (L = 32,
46, 64, and 128) we construct 14 hexagonal regions of increasing diameter centered
with respect to the bulk lattice. We then measure the correlation functions (and
hence σ) restricted to these subsets. We found that, within our statistical error,
the Poisson ratio for a subset of diameter d is in fair agreement with the one of an
independent surface of size L = d. Thus we conclude that σ does not suffer much
from boundary effects: presumably these effects cancel out in taking the ratio of
the correlation functions. The values quoted in Table II are measured on subsets of
diameter d = 3L/4. The justification for this choice of subset size is given in [9]. We
show there that the scaling exponents are insensitive to d for subsets with d ∼ 3L/4.
Our choice is a compromise between excluding the boundary and including enough
bulk surface for self-averaging. In Figure 2 we show the Poisson ratio for L = 46
measured on the 14 subsets.

Details of the statistics gathered for the various lattice sizes and different bending
rigidities are reported in [9]. For the largest lattices we ran 74 × 106 Monte Carlo
sweeps equivalent to 150 independent configurations. One sweep corresponds to a
Metropolis update of each node of the lattice.

We acknowledge K. Anagnostopoulos, S. Catterall, G. Jungman, P. Le Doussal,
D. Nelson, and L. Radzihovsky for helpful discussions and suggestions. NPAC has
kindly provided computational facilities. The research of GT was sponsored by
Syracuse University research funds for part of the work presented here. The research
of MB and MF was supported by the Department of Energy U.S.A. under contract
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No. DE-FG02-85ER40237. EG thanks the S.U. Physics Department for their kind
hospitality.
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