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INVARIANT CURRENTS AND DYNAMICAL LELONG NUMBERS

DAN COMAN & VINCENT GUEDJ

Abstract. Let f be a polynomial automorphism of C
k of degree λ, whose rational

extension to Pk maps the hyperplane at infinity to a single point. Given any positive
closed current S on Pk of bidegree (1,1), we show that the sequence λ−n(fn)∗S
converges in the sense of currents on Pk to a linear combination of the Green current
T+ of f and the current of integration along the hyperplane at infinity. We give
an interpretation of the coefficients in terms of generalized Lelong numbers with
respect to an invariant dynamical current for f−1.

Introduction

Let f = (P1, . . . , Pk) : Ck → Ck be a polynomial automorphism of first algebraic
degree λ = max deg Pj ≥ 2. We still denote by f : Pk → Pk the meromorphic
extension of f to the complex projective space Pk = Ck ∪ (t = 0), where (t = 0)
denotes the hyperplane at infinity.

The mapping f : Pk → Pk is not well defined on the indeterminacy locus I+, which
is an algebraic subset of (t = 0) of dimension ≤ k − 2. Set X+ = f((t = 0) \ I+). We
assume throughout the paper that X+ is reduced to a point which does not belong
to I+. In particular f is weakly regular (see [GS]) hence it is algebraically stable:
the sequence λ−n(fn)∗ω converges in the weak sense of currents to a positive closed
current T+ of bidegree (1, 1) such that f ∗T+ = λT+ (see [S]). Here ω denotes the
Fubini-Study Kähler form on Pk. Given S a positive closed current of bidegree (l, l)
on Pk, we set ‖S‖ :=

∫
Pk S ∧ ωk−l.

We assume in the sequel that λ > λ2(f), the second dynamical degree of f . This
allows us to construct an invariant positive closed current σ− of bidimension (1, 1)
which we study in section 1. We show (Theorem 1.2) that any quasiplurisubharmonic
function is integrable with respect to the trace measure σ− ∧ ω. Using this we can
define a generalized Lelong number ν(·, σ−) with respect to the dynamical weight σ−

(see Definition 1.3). The dynamical interest of these numbers lies in an invariance
property (Proposition 2.1) which we establish when I+ is an f−1-attracting set. This
last assumption has interesting dynamical consequences (see Theorem 2.13 in [GS]).

Let S be a positive closed current of bidegree (1, 1) and of unit mass in Pk. Analyz-
ing the behavior of the bounded sequence of currents λ−n(fn)∗S is a natural problem
since it is linked with ergodic properties of the invariant current T+. This has been
studied intensively in the past decade, starting with the work of Bedford-Smillie [BS]

2000 Mathematics Subject Classification. Primary: 32H50. Secondary: 32U25, 32U40.
Key words and phrases. Dynamics of polynomial automorphisms, currents, Lelong numbers.
D. Coman was supported by the NSF grant DMS 0140627.

1

http://arXiv.org/abs/math/0401046v1


2 Dan Coman & Vincent Guedj

and Fornæss-Sibony [FS] on complex Hénon mappings (for further references see [S],
[G1]). In the context described above, our main result is the following:

Theorem 1. Let f be a polynomial automorphism of Ck such that X+ is a point not
in I+. Assume that λ > λ2(f) and that I+ is an attracting set for f−1. If S is a
positive closed current on Pk of bidegree (1, 1) with ‖S‖ = 1, then

1

λn
(fn)∗S → cS[t = 0] + (1 − cS)T+,

in the weak sense of currents on Pk, where cS = ν(S, σ−) ∈ [0, 1] is the generalized
Lelong number of S with respect to the invariant weight σ−. Moreover, ν(S, σ−) > 0
if and only if the Lelong number ν(S, X+) > 0.

It should be noted that this result is new even in the case when f is a complex
Hénon mapping (k = 2). In this case σ− = T− is the Green current of f−1, hence
ν(S, σ−) is a generalized Lelong number in the sense of Demailly [D]. For Hénon
mappings, it was shown by Bedford and Smillie that λ−n(fn)∗[C] → cT+ in C

2, c > 0,
for any algebraic curve C ⊂ C2 (see Theorem 4.7 in [BS]). Our result can be seen
as a full generalization of this, in the sense that it yields global convergence on P2

(explaining what happens at infinity) and that it applies to any positive closed current
S and in any dimension.

On our way to prove this theorem, we introduce an interesting invariant probability
measure µf = T+ ∧ σ− (section 1.3). We prove Theorem 1 in section 2 and we check
in section 3 our hypotheses on the families of quadratic polynomial automorphisms
of C3.

1. Invariant Lelong number

Let f be a polynomial automorphism of Ck which maps (t = 0) \ I+ to a point
X+ 6∈ I+ and such that λ > λ2(f). Here λ2(f) denotes the second dynamical degree
of f , λ2(f) = lim[δ2(f

n)]1/n, where δ2(f
n) is the second algebraic degree of fn, i.e. the

degree of f−n(L), L a generic linear subspace of codimension 2 (see [S]). Under these
assumptions we can construct a positive closed current σ− of bidegree (k − 1, k − 1)
and of unit mass such that (f−1)∗σ− = λσ− (see Theorem 3.1 in [GS]).

1.1. Construction of σ−. We recall the construction of σ− since it is crucial for
everything that follows. Let Θ be a smooth positive closed form of bidegree (k −
1, k−1) and of unit mass in Pk such that Supp Θ∩I+ = ∅. Then Supp (f−1)∗Θ∩ (t =
0) = X+, thus (f−1)∗Θ is smooth in Pk \ {X+}. Since (f−1)∗Θ has mass λ, there
exists a current R of bidegree (k − 2, k − 2) on P

k, smooth in P
k \ {X+}, such that

1

λ
(f−1)∗Θ = Θ + ddcR.

For W0 an arbitrarily small neighborhood of X+ we may assume that 0 ≤ R ≤ Cωk−2

in Pk \ W0, with a constant C depending on W0. Then 0 ≤ (f−p)∗R ≤ C(f−p)∗ωk−2

holds in Pk \ f p(W0). We infer

σ
(n)
− :=

1

λn
(f−n)∗Θ = Θ + ddcRn −→ σ− := Θ + ddcR∞,
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where Rn =
∑n−1

j=0 λ−j(f−j)∗R converges to R∞ in the weak sense of currents: indeed

{Rn} is an increasing sequence of positive currents in Pk \ W0 (because R ≥ 0 in
Pk \ W0 and we can assume f(W0) ⊂ W0) with bounded mass as λ > λ2(f). We will
use over and over the following facts:

Rn is smooth in C
k and R∞ ≥ 0 in P

k \ W0.

Remark 1.1. Let K− ⊂ Ck be the set of points z with bounded backward orbit
{f−n(z)}n>0. When I+ is f−1-attracting it was shown in [GS] that the current σ− is
supported in the closure (in Pk) of K−, which intersects (t = 0) only at the point X+.
This was used in particular to show that σ− has full mass 1 in Ck. We will show here
that σ− has full mass 1 in C

k even when I+ is not f−1-attracting. (This occurs for
certain maps in the classes 4 and 5 from Theorem 3.1.)

Let us recall that a function is quasiplurisubharmonic (qpsh) if it is locally given
as the sum of a plurisubharmonic function and a smooth function.

Theorem 1.2. Any quasiplurisubharmonic function is in L1(σ− ∧ ω). In particular
σ− does not charge the hyperplane at infinity.

Proof. Let ϕ be a qpsh function and let ϕε be a smooth regularization of ϕ. Without
loss of generality we can assume ϕ, ϕε ≤ 0 and ddcϕ, ddcϕε ≥ −ω. Let β be a smooth
positive closed form of bidegree (1, 1) on Pk vanishing in W0 such that ω = β + ddcχ
with χ ≥ 0 on Pk. By Stokes theorem, we have
∫

(−ϕε)σ− ∧ ω =

∫
(−ϕε)σ− ∧ β +

∫
(−ϕε)σ− ∧ ddcχ

=

∫
(−ϕε)Θ ∧ β +

∫
ddc(−ϕε) ∧ R∞ ∧ β +

∫
ddc(−ϕε) ∧ χσ−

≤
∫

(−ϕε)Θ ∧ β +

∫
ω ∧ R∞ ∧ β +

∫
ω ∧ χσ−,

since R∞ ∧ β ≥ 0, χσ− ≥ 0 and −ddcϕε ≤ ω in Pk. Letting ε → 0 we get

0 ≤
∫

(−ϕ)σ− ∧ ω ≤
∫

(−ϕ)Θ ∧ β +

∫
ω ∧ R∞ ∧ β +

∫
ω ∧ χσ− < +∞,

since ϕ is integrable with respect to any smooth probability measure. In particular,
when ϕ = log |t| − log ‖[z : t]‖ is a potential of the current of integration along the
hyperplane at infinity, this shows that the trace measure σ− ∧ ω puts no mass on
(t = 0), hence σ− has full mass in C

k. �

1.2. Dynamical Lelong number. Let S be a positive closed current of bidegree
(1, 1) and unit mass on Pk, so S = ω + ddcϕ for some qpsh function ϕ. It follows
from Theorem 1.2 that the probability measure S ∧ σ− := ω ∧ σ− + ddc(ϕ σ−) is well
defined.

Definition 1.3. The generalized Lelong number of S with respect to the invariant
current σ− is ν(S, σ−) := S ∧ σ−({X+}).
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The following convergence result will help to compute generalized Lelong numbers.

Theorem 1.4. Let S be a positive closed current of bidegree (1, 1) on Pk. Then

S ∧ σ
(n)
− → S ∧ σ−,

in the weak sense of measures on Pk.

Proof. We can assume S has mass 1, hence S = ω + ddcϕ, where ϕ ≤ 0 is qpsh. We

are going to show that ϕσ
(n)
− → ϕσ− in Pk \ X+.

Observe first that the currents ϕσ
(n)
− have uniformly bounded mass in Pk: arguing

as in the proof of Theorem 1.2, we get

0 ≤
∫

(−ϕ)σ
(n)
− ∧ ω ≤

∫
(−ϕ)Θ ∧ β +

∫
ω ∧ Rn ∧ β +

∫
ω ∧ χσ

(n)
− ≤ C < +∞

since Rn increases to R∞ in Pk \ W0 and σ
(n)
− has bounded total mass.

Let ν be a cluster point of {ϕσ
(n)
− }. Let {ϕε} be a sequence of smooth qpsh functions

decreasing pointwise to ϕ. Then ϕσ
(n)
− ≤ ϕεσ

(n)
− , hence ν ≤ ϕεσ−. Letting ε → 0

yields ν ≤ ϕσ−. To get equality, it suffices to show that the total mass of (−ϕ)σ−

dominates that of −ν. Recall that σ
(n)
− = Θ + ddcRn, where Rn =

∑n−1
j=0 λ−j(f−j)∗R,

and R is smooth in Pk \ {X+}. Up to now, we have chosen R ≥ 0 in Pk \ W0. Here
it is actually more convenient to choose a negative potential. Set T = R − Cωk−2,

where C is a positive constant so large that T ≤ 0 in Pk \W0. Then σ
(n)
− = Θ+ddcTn,

where Tn =
∑n−1

j=0 λ−j(f−j)∗T is a sequence of negative currents in Pk \W0 decreasing
to T∞. Set

T̂n :=
∑

j≥n

1

λj
(f−j)∗T ≤ 0 in P

k \ W0,

so that σ− − σ
(n)
− = ddcT̂n. Let β be a smooth closed form of bidegree (1, 1) on Pk

vanishing in W0 and strictly positive in Pk \ W0. Using −T̂n ∧ β ≥ 0 in Pk, we get
∫

(−ϕε)σ− ∧ β =

∫
(−ϕε)σ

(n)
− ∧ β +

∫
(−ϕε)ddcT̂n ∧ β

=

∫
(−ϕε)σ

(n)
− ∧ β +

∫
ddcϕε ∧ (−T̂n) ∧ β

≥
∫

(−ϕε)σ
(n)
− ∧ β −

∫
ω ∧ (−T̂n) ∧ β.

As ε → 0 ∫
(−ϕ)σ− ∧ β ≥

∫
(−ϕ)σ

(n)
− ∧ β +

∫
ω ∧ T̂n ∧ β.

Now T̂n → 0 as n → +∞, hence
∫

(−ϕ)σ−∧β ≥
∫

(−ν)∧β. This shows that ν = ϕσ−

in Pk \ W0, hence in Pk \ X+ since W0 is an arbitrarily small neighborhood of X+.

It follows that S ∧ σ
(n)
− → S ∧ σ− in Pk \ X+. Since these are all probability

measures, we actually get S ∧ σ
(n)
− → S ∧ σ− on P

k. �
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Example 1.5. If µn = σ
(n)
− ∧ [t = 0] then lim sup µn({X+}) ≤ ν([t = 0], σ−) ≤ 1

by Theorem 1.4. Now µn({X+}) = 1 because σ
(n)
− clusters at infinity only at X+.

Therefore ν([t = 0], σ−) = 1, i.e. [t = 0] ∧ σ− is the Dirac mass at the point X+. At
the other end, observe that T+ vanishes in a neighborhood of X+ which is an attracting
fixed point, so ν(T+, σ−) = 0.

Regular automorphisms were introduced by Sibony [S] and studied in [S], [GS].
These are automorphisms such that I+ ∩ I− = ∅. In this case f−1 is algebraically
stable, so there is a well defined invariant Green current T− for f−1 (see [S]).

Proposition 1.6. Assume f is a regular automorphism. Then σ− = T k−1
− , so

ν(S, σ−) is the Demailly number of S with respect to the weight T−. In this case,

ν(S, σ−) > 0 if and only if ν(S, X+) > 0,

where ν(S, X+) denotes the standard Lelong number at the point X+.

Proof. When f is a regular automorphism as defined in [S], the inverse f−1 has first
algebraic degree d− such that dk−1

− = λ (recall that X+ is a point), and λ2(f) = dk−2
− <

λ. Note also that in this case I+ = X− is an f−1-attracting set. We refer the reader
to [S] for the construction of T− = ω + ddcg−, the Green current of bidegree (1, 1) for
f−1. It follows from the extension of the Bedford-Taylor theory of Monge-Ampère
operators that T k−1

− is well defined and equals lim λ−n(f−n)∗(ωk−1) (see [D], [S]). Thus
T k−1
− = lim λ−n(f−n)∗Θ = σ− since Θ = ωk−1 + ddcα, where α is a smooth form of

bidegree (k − 2, k − 2), hence ‖(f−n)∗(α)‖ = O(d
n(k−2)
− ) = o(λn). Note also that T k

−

is well defined and equals the Dirac mass at the point X+ = I−. This is a situation
where the Jensen type formulas of Demailly simplify and give a nice understanding
of the generalized Lelong numbers ν(S, T k−1

− ).
The potential g− of T− is obtained as g− =

∑
n≥0 d−n

− φ− ◦f−n, where d−1
− (f−1)∗ω =

ω + ddcφ−. Observe that g− has positive Lelong number at X+ = I−, hence g−(z) ≤
γ1 log dist(z, X+) + C.

We also have control from below, γ2 log dist(z, X+)−C ≤ g−(z). This follows from
a Lojasiewicz type inequality, since

φ−(z) = 2−1 log[|Q0(z)|2 + . . . + |Qk(z)|2] + smooth term near X+,

where Qj are polynomials such that
⋂

Q−1
j (0) = X+. It follows from the Null-

stellensatz that |Q0(z)|2 + . . . + |Qk(z)|2 ≥ dist(z, X+)α near X+ for some expo-
nent α > 0. As X+ is an attracting fixed point for f , we get dist(f(z), X+) ≤
c dist(z, X+) for all z ∈ Ck, hence dist(f−n(z), X+) ≥ c−ndist(z, X+). Therefore
g−(z) ≥ γ2 log dist(z, X+) − C with γ2 = 2−1αd−/(d− − 1).

We conclude by the first comparison theorem of Demailly [D] that ν(S, σ−) > 0 if
and only if ν(S, X+) > 0. �

Remark 1.7. For regular automorphisms T k
− is the Dirac mass at the point X+ = I−,

thus ν(T−, σ−) = 1. It is an interesting question to characterize the closed positive
currents S ∼ ω such that ν(S, σ−) = 1.
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Theorem 1.8. Let S be a positive closed current of bidegree (1, 1) on Pk.
1) The sequence of currents S ∧ Rn is well defined and convergent in C

k. Set
S ∧ R∞ := lim S ∧ Rn in Ck. Then

S ∧ σ− = S ∧ Θ + ddc(S ∧ R∞) in C
k.

2) Assume Sn → S, where Sn are positive closed currents of bidegree (1, 1) on
P

k. Then Sn ∧ σ− −→ S ∧ σ− in C
k. Moreover when I+ is f−1-attracting, then

Sn ∧ σ− −→ S ∧ σ− on Pk.

Corollary 1.9. If I+ is f−1-attracting, the mapping S 7→ ν(S, σ−) is upper semicon-
tinuous.

Proof. Let Sn → S. Then Sn ∧ σ− → S ∧ σ− on Pk, so lim sup Sn ∧ σ−({X+}) ≤
S ∧ σ−({X+}). �

Lemma 1.10. Let S be a positive closed current of bidegree (1, 1) on Pk and let θ be
a positive closed current of bidimension (1, 1) which is smooth in an open subset Ω of
Pk. Then

0 ≤
∫

Ω

S ∧ θ ≤ ‖S‖ · ‖θ‖,

where ‖S‖ =
∫

Pk S ∧ ωk−1 and ‖θ‖ =
∫

Pk θ ∧ ω.

Proof. Since Pk is homogeneous (i.e. Aut(Pk) acts transitively on Pk), we can reg-
ularize S in the following sense: there exist smooth positive closed currents Sε of
bidegree (1, 1) on P

k such that ‖Sε‖ = ‖S‖ and Sε → S on P
k (see [H]). Therefore

Sε ∧ θ → S ∧ θ in Ω, hence

0 ≤
∫

Ω

S ∧ θ ≤ lim inf
ε→0

∫

Ω

Sε ∧ θ ≤ lim inf
ε→0

∫

Pk

Sε ∧ θ = ‖S‖ · ‖θ‖.

�

Proof of Theorem 1.8. Let S be a positive closed current of bidegree (1, 1) on Pk.

Recall that σ− = Θ+ddcR∞, where R∞ = Rn+R̂n = lim Rn, Rn =
∑n−1

j=0 λ−j(f−j)∗R

being smooth in Ck. Therefore S ∧ Rn is a well defined current of bidimension (1, 1)
which is positive in Ck \W0. We estimate its mass in Ck \W0: if Sε is a regularization
of S as in the proof of Lemma 1.10, then

0 ≤
∫

Ck\W 0

S ∧ Rn ∧ ω ≤ lim inf
ε→0

∫

Ck\W 0

Sε ∧ Rn ∧ ω ≤

C lim inf
ε→0

n−1∑

j=0

1

λj

∫

Pk

Sε ∧ (f−j)∗ωk−2 ∧ ω ≤ C‖S‖
∑

j≥0

δ2(f
j)

λj
< +∞,

where C > 0 is a constant depending on the fixed neighborhood W0. This shows that
the increasing sequence {S∧Rn} is convergent in Ck \W 0. Observe that the sequence

{Rn − Rp}n≥p is positive and increasing in Ck \ f p(W0). Thus S ∧ Rn converges in
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Ck \ f p(W0), for all p, hence in Ck, as f p(W0) ց X+. Set S ∧ R∞ := lim S ∧ Rn in
Ck. Then

S ∧ Θ + ddc(S ∧ R∞) = lim[S ∧ Θ + ddc(S ∧ Rn)] = lim S ∧ σ
(n)
− = S ∧ σ−,

by Theorem 1.4. This proves 1).
Let now Sn, S be positive closed currents of bidegree (1, 1) on Pk such that Sn → S.

Since RN is smooth in Ck, we get Sn∧RN → S∧RN for all fixed N . We want to show
that Sn ∧ R∞ → S ∧ R∞. It is sufficient to get an estimate on ‖Sn ∧ R̂N‖Ck\fN (W0)

which is uniform in n. This is the following

0 ≤
∫

Ck\fN (W0)

Sn∧R̂N ∧ω ≤ C lim inf
ε→0

∑

j≥N

1

λj

∫

Pk

Sε
n∧(f−j)∗ωk−2∧ω ≤ C ′

∑

j≥N

δ2(f
j)

λj
,

where Sε
n is a regularization of Sn and the last inequality follows from Lemma 1.10 and

the fact that the sequence of norms ‖Sε
n‖ = ‖Sn‖ is bounded. Therefore Sn ∧ R∞ →

S ∧ R∞ in Ck, hence

Sn ∧ σ− = Sn ∧ Θ + ddc(Sn ∧ R∞) → S ∧ σ− in C
k.

When I+ is f−1-attracting, the current σ− clusters at infinity only at X+. Since
Sn∧σ− and S∧σ− are positive measures on Pk supported in Supp σ− and ‖Sn∧σ−‖ =
‖Sn‖ → ‖S ∧ σ−‖, we infer in this case that Sn ∧ σ− → S ∧ σ− on Pk. 2

1.3. Invariant measure. In this section we introduce and study a dynamically in-
teresting probability measure.

Definition 1.11. We write T+ = ω + ddcg+ and set

µf = T+ ∧ σ− := ω ∧ σ− + ddc(g+σ−).

Note that this measure is well defined thanks to Theorem 1.2. It is clearly a
probability measure since

∫
Pk ω ∧ σ− = 1.

We have T+ = 0 in the basin of attraction of X+. If I+ is f−1-attracting then the
support of σ− intersects (t = 0) only at X+ (see Remark 1.1). It follows that in this
case µf has compact support in Ck and it is invariant, i.e. f∗µf = µf .

When f is a regular automorphism, we have σ− = T k−1
− , so PSH(Ck) ⊂ L1(µf), by

the Chern-Levine-Nirenberg inequalities. More generally, when there exists partial
Green functions for f−1, one also gets PSH(Ck) ⊂ L1(µf) (see section 4.2 in [GS]).
This requires however delicate estimates on the growth of f−1 near I+. We now
establish in the spirit of [G2] the following integrability result:

Theorem 1.12. If I+ is f−1-attracting and ϕ is a quasiplurisubharmonic function
on Pk, then ϕ ∈ L1(µf).

Proof. We can assume without loss of generality that ϕ < 0 and ddcϕ ≥ −ω. Let
ϕε < 0 be qpsh functions which decrease pointwise to ϕ such that ddcϕε ≥ −ω. The
current T+ = ω + ddcg+ has potential g+ < 0 which is continuous in Pk \ I+. Since
I+ is an attracting set for f−1, the current σ− vanishes in a neighborhood V0 of I+.
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If A = ‖g+‖L∞(Pk\V0) then (g+ + A)σ− ≥ 0 on Pk. We get
∫

(−ϕε)dµf =

∫
(−ϕε)ω ∧ σ− +

∫
(−ϕε)ddc((g+ + A)σ−)

=

∫
(−ϕε)ω ∧ σ− +

∫
ddc(−ϕε) ∧ ((g+ + A)σ−)

≤
∫

(−ϕε)ω ∧ σ− +

∫
(g+ + A)ω ∧ σ− ≤ A +

∫
(−ϕε)ω ∧ σ−.

The conclusion follows by letting ε → 0 and using Theorem 1.2. �

Remark 1.13. If u is a plurisubharmonic (psh) function defined in a neighborhood of
the support of µf , then |u|α ∈ L1(µf) for every α ∈ (0, 1/k). Indeed, by Theorem 1.12
psh functions of logarithmic growth are integrable with respect to µf . The claim is
straightforward using the following result of El Mir and Alexander-Taylor (see [AT]):
If u ≤ −1 is psh in a ball B(z0, R) ⊂ Ck and r < R, 0 < ǫ < 1/k, then there exists a
psh function v on Ck of logarithmic growth such that v ≤ −|u|1/k−ǫ on B(z0, r).

2. Equidistribution towards T+

The purpose of this section is to prove Theorem 1 stated in the Introduction.

Proof. The proof of the theorem is divided into four steps.

Step 1: Normalization of potentials. By Siu’s theorem, we can write

1

λn
(fn)∗S = cn[t = 0] + (1 − cn)Sn,(1)

where cn ∈ [0, 1], and Sn are positive closed currents of bidegree (1, 1) and unit
mass which do not charge (t = 0). Since f ∗[t = 0] = λ[t = 0], the sequence {cn}
is increasing. Let cS denote its limit. If cS = 1 the convergence statement of the
theorem is proved, so we assume hereafter that cS < 1.

We write S = ω + ddcv0, where the potential v0 is uniquely determined up to
additive constants. Using Theorem 1.12, we can normalize it so that

∫
v0dµf = 0.

Similarly, we fix potentials Sn = ω+ddcvn, T+ = ω+ddcg+, [t = 0] = ω+ddcϕ∞ such

that
∫

vndµf =
∫

g+dµf =
∫

ϕ∞dµf = 0. If λ−n(fn)∗ω = ω + ddcg
(n)
+ ,

∫
g

(n)
+ dµf = 0,

then g
(n)
+ → g+ in L1(Pk) and λ−n(fn)∗ω → T+. The desired convergence follows if

we show that λ−nv0 ◦ fn → cS(ϕ∞ − g+) in L1(Pk).
Pulling back (1) (with n = p) by fn yields

1

λn+p
(fn+p)∗S = cp[t = 0] + (1 − cp)

1

λn
(fn)∗Sp

= cp[t = 0] + (1 − cp)
1

λn
(fn)∗ω + (1 − cp)ddc

(
1

λn
vp ◦ fn

)
.

Using our normalization and the fact that µf is invariant, we infer

1

λn+p
v0 ◦ fn+p = cp(ϕ∞ − g

(n)
+ ) + (g

(n)
+ − g

(n+p)
+ ) + (1 − cp)

1

λn
vp ◦ fn.(2)
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Step 2: Control of the Lelong numbers. Since fn is a biholomorphism in Ck, it
follows from (1) that for all n ∈ N and z ∈ C

k,

ν((1 − cn)Sn, z) =
1

λn
ν((fn)∗S, z) =

1

λn
ν(S, fn(z)) ≤ 1

λn
,

hence supz∈Ck ν(Sn, z) ≤ (1 − cS)−1λ−n → 0.
Pulling back (1) by f we get

1

λ
f ∗Sn =

cn+1 − cn

1 − cn
[t = 0] +

1 − cn+1

1 − cn
Sn+1.(3)

Since Sn+1 does not charge (t = 0), we have for a generic point z ∈ (t = 0)

ν(Sn, X+) = ν(Sn, f(z)) ≤ ν(f ∗Sn, z) = λ
cn+1 − cn

1 − cn
≤ λ

cS − cn

1 − cS
.

If z ∈ (t = 0) \ I+, it follows from [F] and [K] that there is an upper estimate
ν(f ∗Sn, z) ≤ cf,zν(Sn, f(z)), where z 7→ cf,z is locally upper bounded. Fix V0 a small
neighborhood of I+ and set CV0

= supz∈(t=0)\V0
cf,z. Using (3) again, we get for all

z ∈ (t = 0) \ V0,

1 − cn+1

1 − cn

ν(Sn+1, z) ≤ 1

λ
ν(f ∗Sn, z) ≤ CV0

λ
ν(Sn, X

+) ≤ CV0

cS − cn

1 − cS

.

We conclude that supz∈Pk\V0
ν(Sn, z) → 0 as n → +∞.

Step 3: Volume estimates. We have to prove that

wn := λ−nv0 ◦ fn → cS(ϕ∞ − g+).

Observe first that the sequence {wn} is relatively compact in L1(Pk). Indeed

λ−n(fn)∗S = λ−n(fn)∗ω + ddc(wn) = ω + ddc(g
(n)
+ + wn),

so wn + g
(n)
+ are qpsh functions whose curvature is uniformly bounded from below

by −ω. Since g
(n)
+ → g+ and wn ≤ Cλ−n, the sequence {wn + g

(n)
+ } is uniformly

upper bounded on Pk. So either this sequence converges uniformly to −∞, or it
is relatively compact in L1(Pk) (see Appendix in [G1]). The former cannot happen

since
∫

(wn + g
(n)
+ )dµf = 0. Thus it suffices to show that wn converges in measure to

cS(ϕ∞ − g+). It follows from (2) that

wn+p − cS(ϕ∞ − g+) =

(cp − cS)(ϕ∞ − g
(n)
+ ) + cS(g+ − g

(n)
+ ) + (g

(n)
+ − g

(n+p)
+ ) + (1 − cp)λ

−nvp ◦ fn.

Let ε > 0. Choose a small neighborhood V0 of I+ and fix p so large that

sup
z∈Pk\V0

ν(Sp, z) ≤ ε2 and |cp − cS|‖ϕ∞ − g
(n)
+ ‖L1(Pk) < ε2, ∀n ∈ N.

By Chebyshev’s inequality Vol(|(cp − cS)(ϕ∞− g
(n)
+ )| > ε/3) < 3ε. Since g

(n)
+ → g+ in

L1(Pk), we have for n large Vol(|cS(g+ − g
(n)
+ ) + (g

(n)
+ − g

(n+p)
+ )| > ε/3) < ε. Observe
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that

Vol(|wn+p − cS(ϕ∞ − g+)| > ε) ≤ Vol(|(cp − cS)(ϕ∞ − g
(n)
+ )| > ε/3)+

Vol(|cS(g+ − g
(n)
+ ) + (g

(n)
+ − g

(n+p)
+ )| > ε/3) + Vol((1 − cp)|λ−nvp ◦ fn| > ε/3),

Since vp is bounded above on Pk, it remains to show that

Vol(|λ−nvp ◦ fn| > ε/3) = Vol(λ−nvp ◦ fn < −ε/3) < Cε,

for all n sufficiently large.
Since I+ is f−1-attracting, there exist arbitrarily small neighborhoods V0 of I+ such

that f(Pk \ V0) ⊂ Pk \ V0. Set

Ωε
n := {z ∈ P

k \ V0 : λ−nvp ◦ fn(z) < −ε/3}.
We have fn(Ωε

n) ⊂ {z ∈ Pk \ V0 : vp(z) < −ελn/3}. It follows from [G1] that there
exists C1 > 0 such that

Vol(fn(Ωε
n)) ≥ exp

(
− C1λ

n

Vol(Ωε
n)

)
.

On the other hand, by Skoda’s integrability theorem (see [K]) there exists Cε > 0
such that

Vol
(
{z ∈ P

k \ V0 : vp(z) < −ελn/3}
)

≤ Cε exp

(
− ελn

3 supz∈Pk\V0
ν(Sp, z)

)

≤ Cε exp

(
−λn

3ε

)
.

Thus Vol(Ωε
n) ≤ 4C1ε for all n > N(ε).

We conclude that wn → cS(ϕ∞−g+) in measure on Pk\V0. As V0 was an arbitrarily
small neighborhood of I+, the convergence in measure holds on P

k.

Step 4: Interpretation of cS. We have shown that λ−n(fn)∗S → cS[t = 0] + (1 −
cS)T+. It follows from [G1] that cS > 0 if and only if ν(S, X+) > 0. Assume now
that I+ is f−1-attracting. We show below (Proposition 2.1) that ν((fn)∗S, σ−) =
λnν(S, σ−). It then follows from Example 1.5 that

ν(S, σ−) = ν(λ−n(fn)∗S, σ−) = cn + ν(Ŝn, σ−),

where Ŝn = (1 − cn)Sn → (1 − cS)T+. Since ν(T+, σ−) = 0, we infer from the upper

semicontinuity property (Corollary 1.9) that ν(Ŝn, σ−) → 0, hence cS = ν(S, σ−). �

Proposition 2.1. (Transformation rule) ν(f ∗S, σ−) = λν(S, σ−).

Proof. Let Sj be a sequence of smooth closed positive currents of bidegree (1,1) with
smooth potentials which decrease pointwise to a potential of S. Let W be a small
neighborhood of X+ so that f(W ) ⊂⊂ W . Note that f(W ) = f(W ∩ Ck) ∪ X+.
Since f ∗Sj is smooth in W and σ− does not charge (t = 0) (Theorem 1.2) we have
∫

W

f ∗Sj ∧ σ− =

∫

W∩Ck

f ∗Sj ∧ σ− =

∫

f(W )∩Ck

Sj ∧ (f−1)∗σ− = λ

∫

f(W )

Sj ∧ σ−.
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By the monotone convergence theorem, one has Sj ∧ σ− → S ∧ σ− and f ∗Sj ∧ σ− →
f ∗S ∧ σ−. We infer

∫
W

f ∗S ∧ σ− ≤ λ
∫

W
S ∧ σ−, hence ν(f ∗S, σ−) ≤ λν(S, σ−).

For the opposite inequality, observe that the restriction of f−1 : K− → K− extends
continuously at infinity by setting f−1(X+) = X+. This shows f is an open mapping
on K−, so there is a ball B ⊂ W centered at X+ such that K−∩B ⊂ f(W ). Therefore∫

W
f ∗Sj ∧ σ− ≥ λ

∫
B

Sj ∧ σ−, which yields
∫

W

f ∗S ∧ σ− ≥ λ

∫

B

S ∧ σ− ≥ λν(S, σ−).

The desired inequality follows by shrinking W ց X+. �

Remark 2.2. We showed in the proof of Theorem 1 that if S = ω + ddcv0 then
λ−nv0◦fn → cS(φ∞−g+) in L1(Pk). Let G+(z, t), (z, t) ∈ Ck+1, be the logarithmically
homogeneous Green function of f . The function h[z : t] = log |t| − G+(z, t) is well
defined on P

k and h = φ∞ − g+ + c for some constant c. Since h ◦ f = λh and
f∗µf = µf we have

∫
h dµf = 0, so φ∞ − g+ = h.

Remark 2.3. The convergence λ−n(fn)∗S → cS[t = 0] + (1 − cS)T+ holds without
the hypotheses λ > λ2(f) and I+ is f−1-attracting. A proof can be given in the basin
of X+ by a similar argument, and on the complement of this basin one can conclude
as in the proof of Theorem 2.7 in [G1]. However in this case we do not have an
interpretation for cS. As an example, our convergence theorem holds for the maps f
and f−1, where f(x, y, z) = (P (y) + az, Q(y) + bx, y), deg(P ) = deg(Q) = 2, ab 6= 0.

3. Quadratic polynomial automorphisms of C3

Let f be a quadratic polynomial automorphism of C3. Using the classification of
Fornæss and Wu [FW], we show that -up to conjugacy- f or f 2 (or f−1) is weakly
regular. Moreover I+ (resp. I−) is f−1-attracting (resp. f -attracting) except for
certain mappings in the classes 4 or 5 below. Note that λ1(f

−1) = λ2(f) since we are
working in C3. Here λ1(f) is the first dynamical degree of f , λ1(f) = lim[δ1(f

n)]1/n,
where δ1(f

n) is the first algebraic degree of fn (see [S]).

Theorem 3.1. Let f be a quadratic polynomial automorphism of C
3 with λ1(f) 6=

λ1(f
−1). Then one of the following holds:

1) f is conjugate to a regular automorphism with X− reduced to a point. In this
case λ1(f) = 2 < 4 = λ1(f

−1) and I− is f -attracting.
2) f 2 or f−2 is conjugate to a mapping from 1).
3) f is conjugate to

f(x, y, z) = (y[αx + βy] + cx + dy + az, y2 + x, y)

where aα 6= 0. In this case f−1 is weakly regular with X− = [0 : 0 : 1 : 0], λ1(f
−1) =

3 > 2 = λ1(f), and I− is f -attracting.
4) f or f−1 is conjugate to

g(x, y, z) = (x2 − xz + c + y, az, bx + c′),

with ab 6= 0. In this case g is weakly regular with X+ = [1 : 0 : 0 : 0], λ1(g) = 2 >
λ1(g

−1) = (1 +
√

5)/2, and I+ is g−1-attracting if and only if |b| < 1.
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5) f is conjugate to

f(x, y, z) = (x[y + αx] + az + c, x2 + dx + c′ + by, x)

where ab 6= 0. In this case f−1 is weakly regular, X− = [0 : 0 : 1 : 0], λ1(f
−1) = 3 >

2 = λ1(f), and I− is f -attracting if and only if |b| > 1.

Proof. The quadratic polynomial automorphisms of C3 are classified into seven classes,
up to affine conjugacy [FW]. The growth of the degree of their forward iterates is
studied in [BF]. Two classes consist of affine and elementary automorphisms f , so
λ1(f) = λ1(f

−1) = 1. We consider the remaining five classes H1, . . . , H5 [FW].
The classes H1 and H2. By considering the degrees of forward and backward

iterates of the maps H in these classes, it is easy to see that λ1(H) = λ1(H
−1) ∈ {1, 2}.

The class H3. This class contains maps H of the form

H(x, y, z) = (P (x, z) + a′y, Q(x) + z, x), max{deg(P ), deg(Q)} = 2, a′ 6= 0.

We let h = F ◦ H ◦ F−1, where F (x, y, z) = (x, y − Q(z), z). Then

h(x, y, z) = (αx2 + α′xz + α′′z2 + c1x + c2z + c3 + a′y, z, x).(4)

The inverse map is

h−1(x, y, z) =

(
z,

1

a′

(
x − αz2 − α′yz − α′′y2 − c1z − c2y − c3

)
, y

)
.

Using the change of variables (x, y, z) → (y, x, z) we see that h−1 is conjugated to h,
and the role of the coefficients α, α′′ interchanges. We have the following cases:

Case A. α 6= 0 6= α′′. Then deg(hn) = deg(h−n) = 2n, so λ1(h) = λ1(h
−1) = 2.

Case B. α 6= 0, α′′ = 0, α′ 6= 0. Then as before deg(hn) = 2n and λ1(h) = 2. The
degrees of the backward iterates dn = deg(h−n) are given by Fibonacci’s numbers,
dn+2 = dn+1 + dn. So λ1(h

−1) = (1 +
√

5)/2. Using the change of variables

F (x, y, z) = (αx + v, αa′y + s,−α′z + r), v = c2α/α′, r = 2v − c1, s = −αa′r/α′,

we see that F ◦ h ◦ F−1 = g, the map from 4). We have I+(g) = {t = x = 0} ∪ {t =
x − z = 0} and g({t = 0} \ I+) = X+ = [1 : 0 : 0 : 0]. If c = c′ = 0 and a = b2

the line τ(ζ) = (ζ, bζ, ζ) is g-invariant and g(τ(ζ)) = τ(bζ). So in this case I+ is
not g−1-attracting if |b| ≥ 1. We show in Lemma 3.2 following this proof that I+ is
always g−1-attracting if |b| < 1.

Case C. α 6= 0, α′′ = α′ = 0. Then h2 is regular, λ1(h
2) = 4, λ1(h

−2) = 2, and
X+ = [1 : 0 : 0 : 0].

Case D. α′′ 6= 0, α = 0, α′ 6= 0. This is similar to Case B, with the roles of h and
h−1 interchanged, λ1(h) = (1 +

√
5)/2 and λ1(h

−1) = 2.
Case E. α′′ 6= 0, α = α′ = 0. As in Case C, h2 is regular, λ1(h

2) = 2, λ1(h
−2) = 4,

and X− = [0 : 1 : 0 : 0]. The fact that I− is attracting for f holds for any regular
automorphism f .

Case F. α = α′′ = 0, α′ 6= 0. As in Cases B and D, λ1(h) = λ1(h
−1) = (1 +

√
5)/2.

Case G. α = α′′ = α′ = 0. Then h is linear, λ1(h) = λ1(h
−1) = 1.
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The class H4. The maps H in this class have the form

H(x, y, z) = (P (x, y) + az, Q(y) + x, y), max{deg(P ), deg(Q)} = 2, a 6= 0,

H−1(x, y, z) =
(
y − Q(z), z,

x

a
+ P̃ (y, z)

)
, P̃ (y, z) = −1

a
P (y − Q(z), z).

We write P (x, y) = c1x
2 + c2xy + c3y

2 + l.d.t., Q(y) = c4y
2 + l.d.t..

Case A. c4 6= 0 6= c1. H is regular, λ1(H) = 2, λ1(H
−1) = 4, X− = [0 : 0 : 1 : 0].

Case B. c4 6= 0, c1 = 0, c2 6= 0. Then H is conjugated to the map f of 3), λ1(f) = 2,
λ1(f

−1) = 3, f−1 is weakly regular, X− = [0 : 0 : 1 : 0], I− is f -attracting (see [C]).
Case C. c4 6= 0, c1 = c2 = 0. By [CF] (p.446) either H2 is regular, λ1(H

2) = 4,
λ1(H

−2) = 2, X+ = [c3 : c4 : 0 : 0], or we have deg(H±n) = 2n.
Case D. c4 = 0. If F (x, y, z) = (x + Q(y), z, y), F ◦ H ◦ F−1 is the map from (4).
The class H5. The maps H in this class have form

H(x, y, z) = (P (x, y) + az, Q(x) + by, x), max{deg(P ), deg(Q)} = 2, a 6= 0 6= b,

H−1(x, y, z) =

(
z,

y − Q(z)

b
,
x

a
+ P̃ (y, z)

)
, P̃ (y, z) = −1

a
P

(
z,

y − Q(z)

b

)
.

Let P (x, y) = c1x
2 + c2xy + c3y

2 + d1x + d2y + d3, Q(x) = c4x
2 + e1x + e2.

Case A. c4 6= 0 6= c3. H is regular, λ1(H) = 2, λ1(H
−1) = 4, X− = [0 : 0 : 1 : 0].

Case B. c4 6= 0, c3 = 0, c2 6= 0. Then deg(Hn) = 2n and deg(H−n) = 3n. If

F (x, y, z) = (px + q, c2y + r, pz + q), p2 = c2c4, q = pd2/c2, r = d1 − 2qc1/p,

then F ◦H ◦F−1 is the map f from 5), I− = {t = z = 0}, f−1({t = 0} \ I−) = X− =
[0 : 0 : 1 : 0]. If |b| > 1 it is shown in [GS] that I− is f -attracting. If |b| ≤ 1 and if f
fixes the origin, then f(0, y, 0) = (0, by, 0), so I− is not f -attracting.

Case C. c4 6= 0, c3 = c2 = 0. The inverse map is

H−1(x, y, z) =

(
z,

y − c4z
2 − e1z − e2

b
,
x

a
+

γz2

a
− d2y

ab
+ L(z)

)
,

where γ = (d2c4/b)− c1 and deg(L) ≤ 1. If c1 6= 0 6= γ then λ1(H) = λ1(H
−1) = 2. If

c1 6= 0 and γ = 0 then d2 6= 0 and H2 is regular, λ1(H
2) = 4, λ1(H

−2) = 2. If c1 = 0
and d2 6= 0 then H2 is regular, λ1(H

2) = 2, λ1(H
−2) = 4. If c1 = d2 = 0 then the

degrees of all iterates are bounded by 2.
Case D. c4 = e1 = 0. If c1 6= 0 then λ1(H) = λ1(H

−1) = 2. If c1 = 0 then
deg(H±n) ≤ n + 1, so λ1(H) = λ1(H

−1) = 1.
Case E. c4 = 0, e1 6= 0. We have that F ◦ H ◦ F−1 is the map h from (4), where

F (x, y, z) =
(
e1x + by + e2 +

e2

b
,−e1z

b
+

y

b
, y +

e2

b

)
.

�

Lemma 3.2. If g(x, y, z) = (x2 − xz + c + y, az, bx + c′) is the map from Theorem
3.1, case 4), and |b| < 1, then I+ is g−1-attracting.

Proof. The inverse of g has the form

g−1(x, y, z) = (x1, y1, z1) =
(z

b
+ c′′,

z

b

(y

a
− z

b

)
+ L(y, z) + x,

y

a

)
,
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where c′′ ∈ C and deg(L) ≤ 1. Recall that I+ = {t = x = 0} ∪ {t = x − z = 0}. We
let α = |b|/(4|a|) and define for R > 1

VR =
{
(x, y, z) ∈ C

3 : max{2α|y|, |z|} > max{2R, R1/3|x|}
}

,

WR =
{
(x, y, z) ∈ C

3 : max{α|y|, |x|} > max{R, R1/3|x − z|}
}

.

Since |b| < 1 we can find ε > 0 such that |b| < (1 − 2ε)/(1 + ε). The lemma follows
if we show that for all R sufficiently large we have

g−1(VR) ⊂ V2R ∪ W2R , g−1(WR) ⊂ V2R ∪ W(1+ε)R.(5)

We denote in the sequel by Cg all constants which depend only on the coefficients
of g. For the first inclusion of (5), let (x, y, z) ∈ VR. We have two cases:

Case A. 2α|y| ≥ |z|, so |y| > R/α, |y| > R1/3|x|/(2α). We show that in this case
g−1(x, y, z) ∈ V2R. If |y|/|a| > 4R1/3|z|/|b| then

2R1/3|x1| ≤ 2R1/3 |z|
|b| + 2|c′′|R1/3 < |z1| , |z1| >

R

α|a| > 4R.

If |y|/|a| ≤ 4R1/3|z|/|b|, using |z|/|b| ≤ 2α|y|/|b| = |y|/(2|a|), we get

|y1| ≥
|z|
|b|

( |y|
|a| −

|z|
|b|

)
− |x| − |L(y, z)| ≥ Cg|y|2

R1/3
> max{4R, 2R1/3|x1|}.

Case B. 2α|y| < |z|, so |z| > 2R, |z| > R1/3|x|. If |x1| > 2R1/3|x1 − z1| then
g−1(x, y, z) ∈ W2R, since |x1| ≥ |z|/|b| − |c′′| > 2R. If |x1| ≤ 2R1/3|x1 − z1| then
|z/b − y/a| ≥ Cg|z|/R1/3, so |y1| > Cg|z|2/R1/3 and g−1(x, y, z) ∈ V2R.

To prove the second inclusion of (5), let (x, y, z) ∈ WR and consider two cases:
Case A. α|y| ≥ |x|, so |y| > R/α, |y| > R1/3|x − z|/α. If |z1| > 2R1/3|x1| then

g−1(x, y, z) ∈ V2R, since also |z1| = |y|/|a| > 4R. If |z1| ≤ 2R1/3|x1| then

|z|
|b| ≥

|y|
2|a|R1/3

− |c′′| ≥ |y|
3|a|R1/3

, |z| ≤ |z − x| + |x| ≤ α|y|
R1/3

+ α|y| < 2α|y|.

It follows that g−1(x, y, z) ∈ V2R, since

|y1| ≥
|y|

3|a|R1/3

( |y|
|a| −

2α|y|
|b|

)
− Cg|y| >

Cg|y|2
R1/3

.

Case B. α|y| < |x|, so |x| > R, |x| > R1/3|x − z|. There exists a large constant M
depending only on g, such that if |z/b − y/a| ≥ M then g−1(x, y, z) ∈ W2R. Indeed,
if R is large we have ||z| − |x|| < |x|/100, so

α|y1| >
|x|
5|a|

∣∣∣
y

a
− z

b

∣∣∣− Cg|x| ≥
|x|
6|a|

∣∣∣
y

a
− z

b

∣∣∣ ,

provided that M = Mg is sufficiently large. Therefore

α|y1| >
RM

6|a| ≥ 2R , (2R)1/3|x1 − z1| ≤ 2R1/3
∣∣∣
y

a
− z

b

∣∣∣ < α|y1|,
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so g−1(x, y, z) ∈ W2R. Finally, we assume that |z/b− y/a| < M . For R large we have
||z| − |x|| < ε|x|, so |x1| ≥ |z|/|b| − |c′′| > (1 − 2ε)|x|/|b| > (1 + ε)|x|. Since |x| > R
and |x1 − z1| ≤ M + |c′′|, we conclude that in this case g−1(x, y, z) ∈ W(1+ε)R. �
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