
Syracuse University Syracuse University 

SURFACE SURFACE 

Economics - Faculty Scholarship Maxwell School of Citizenship and Public 
Affairs 

11-28-2005 

Results on the Bias and Inconsistency of Ordinary Least Squares Results on the Bias and Inconsistency of Ordinary Least Squares 

for the Linear Probability Model for the Linear Probability Model 

William C. Horrace 
Syracuse University 

Ronald L. Oaxaca 
University of Arizona 

Follow this and additional works at: https://surface.syr.edu/ecn 

 Part of the Economics Commons 

Recommended Citation Recommended Citation 
Horrace, William C. and Oaxaca, Ronald L., "Results on the Bias and Inconsistency of Ordinary Least 
Squares for the Linear Probability Model" (2005). Economics - Faculty Scholarship. 10. 
https://surface.syr.edu/ecn/10 

This Article is brought to you for free and open access by the Maxwell School of Citizenship and Public Affairs at 
SURFACE. It has been accepted for inclusion in Economics - Faculty Scholarship by an authorized administrator of 
SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/ecn
https://surface.syr.edu/maxwell
https://surface.syr.edu/maxwell
https://surface.syr.edu/ecn?utm_source=surface.syr.edu%2Fecn%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=surface.syr.edu%2Fecn%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/ecn/10?utm_source=surface.syr.edu%2Fecn%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Results on the bias and inconsistency of ordinary least squares for

the linear probability model

William C. Horrace a,T, Ronald L. Oaxaca b

a Department of Economics, Syracuse University, Syracuse, NY 13244, USA and NBER, United States
b Department of Economics, University of Arizona, Tucson, AZ 85721, USA and IZA, United States

Received 10 January 2005; received in revised form 28 June 2005; accepted 30 August 2005

Available online 28 November 2005

Abstract

This note formalizes bias and inconsistency results for ordinary least squares (OLS) on the linear probability

model and provides sufficient conditions for unbiasedness and consistency to hold. The conditions suggest that a

btrimming estimatorQ may reduce OLS bias.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Limitations of the Linear Probability Model (LPM) are well-known. OLS estimated probabilities are

not bounded on the unit interval, and OLS estimation implies that heteroscedasticity exists. Conventional

advice points to probit or logit as the standard remedy, which bound the maximum likelihood estimated

probabilities on the unit interval. However, the fact that consistent estimation of the LPM may be

difficult does not imply that either probit or logit is the correct specification of the probability model; it

may be reasonable to assume that probabilities are generated from bounded linear decision rules.

Theoretical rationalizations for the LPM are in Rosenthal (1989) and Heckman and Snyder (1977).
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Despite the attractiveness of logit and probit for estimating binary dependent variable models, OLS

on the LPM is still used. Recent applications include Klaassen and Magnus (2001), Bettis and Fairlie

(2001), Lukashin (2000), McGarry (2000), Fairlie and Sundstrom (1999), Reiley (2005), and Currie

and Gruber (1996). Empirical rationales for the LPM specification are plentiful. McGarry appeals to

ease of interpretation of estimated marginal effects, while Reiley cites a perfect correlation problem

associated with the probit model. Fairlie and Sundstrom prefer LPM because it implies a simple

expression for the change in unemployment rate between two censuses. Bettis and Farlie choose LPM

because of an extremely large sample size and other simplifications implied by it. Lukashin uses the

LPM, because it lends itself to a model selection algorithm based on an adaptive gradient criterion.

Currie and Gruber state that logit, probit, and OLS are similar for their data and only report LPM

results.

Other rationales for the OLS on the LPM are complications of probit/logit models in certain contexts.

Klaassen and Magnus cite panel data complications in their tennis example and select OLS. OLS is

perhaps justified in simultaneous equations/instrumental variable methods. The presence of dummy

endogenous regressors is problematic if the DGP is assumed to be probit or logit; these problems were

first considered by Heckman (1978). While perhaps less popular than logit and probit, OLS on the LPM

model still finds its way into the literature for various reasons.

Some well-known LPM theorems are provided in Amemiya (1977). Econometrics textbooks (e.g.,

Greene, 2000), acknowledge complications leading to biased and inconsistent OLS estimates.

Nevertheless, the literature is not clear on the precise conditions when OLS is problematic. This note

rigorously lays out these conditions, derives the finite-sample and asymptotic biases of OLS, and

provides additional results that highlight the appropriateness or inappropriateness of OLS estimation of

the LPM. Finally, we suggest a trimmed sample estimator that could reduce OLS bias.

2. Results

Let yi be a discrete random variable, taking on the values 0 or 1. Let xi be a 1�k vector of

explanatory variables on R
k, b be a k�1 vector of coefficients, and ei be a random error. Define

probabilities over the random variable xibaR.

Pr xibN1ð Þ ¼ p;
Pr xiba 0; 1½ �ð Þ ¼ c
Pr xibb0ð Þ ¼ q;

where p+c+q=1. Consider a random sample of data: ( yi, xi); iaN; N={1, . . . , n}. Define the data

partition:

jc ¼ ijxiba 0; 1½ �f g;
jp ¼ ijxibN1f g; ð1Þ

implying

Pr iajpð Þ ¼ p;
Pr iajc
� �

¼ c;
Pr igjc [ jp
� �

¼ q:
ð2Þ
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The LPM DGP is:

yi ¼ 1for iajp; ¼ xib þ ei for iajc; ¼ 0 otherwise: ð3Þ

The conditional probability of yi is:

Pr yi ¼ 1jxi; iajpð Þ ¼ 1;
Pr yi ¼ 1jxi; iajc
� �

¼ xib;
Pr yi ¼ 0jxi; iajc
� �

¼ 1� xib;
Pr yi ¼ 0jxi; igjc [ jp
� �

¼ 1:

ð4Þ

Therefore, yi traces the familiar ramp function on xib with error process:

ei ¼ 0 for iajp; ¼ yi � xib; i a jc; ¼ 0 for igjc [ jp;

and probabilities

Pr ei ¼ 0jxi; iajpð Þ ¼ 1;
Pr ei ¼ 1� xibjxi; iajc
� �

¼ xib;
Pr ei ¼ � xibjxi; iajc
� �

¼ 1� xib;
Pr ei ¼ 0jxi; igjc [ jp
� �

¼ 1:

ð5Þ

OLS proceeds as:

yi ¼ xib þ ui; iaN ;

where ui is a zero-mean random variable, independent of the xi. Notice that the OLS error term, ui,

differs from ei:

ui ¼ 1� xib for iajp; ¼ yi � xib for iajc; ¼ � xib for igjc [ jp;

with probability function:

Pr ui ¼ 1� xibjxi; iajpð Þ ¼ 1;
Pr ui ¼ 1� xibjxi; iajc
� �

¼ xib;
Pr ui ¼ � xibjxi; iajc
� �

¼ 1� xib;
Pr ui ¼ � xibjxi; igjc [ jp
� �

¼ 1:

ð6Þ

The distinction between ui and ei induces problems in OLS.

Theorem 1. If cb 1, then Ordinary Least Squares estimation of the Linear Probability Model is

generally biased and inconsistent.

Proof. Eq. (6) implies:

E uijxi; iajpð Þ ¼ 1� xib;
E uijxi; iajc
� �

¼ 0;
E uijxi; igjc [ jp
� �

¼ � xib:

Therefore, the conditional expectation of the OLS error, ui, is a function of xi with probability (1�c).
Hence, OLS is biased and inconsistent, if cb1. 5
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Hence, only observations iajg possess mean-zero errors, so OLS with igjg is problematic.

Remark 2. If ncpN, then OLS estimation is biased and inconsistent. That is, if the sample used to

estimate b contains any igjg, then cb1, so OLS is problematic.

Also:

Remark 3. If c=1, then OLS is unbiased and consistent, because p=q=0, E(ui |xi)= 0 for all iaN,

and:

E yijxið Þ ¼ Pr yi ¼ 1jxið Þ ¼ xib; iaN :

Define random variables zi and wi:

zi ¼ 1for iajc;
¼ 0 otherwise:

wi ¼ 1for iajp;
¼ 0 otherwise:

Hence, Pr(zi =1)=c and Pr(wi=1)=p. Alternative representation of Eq. (3) is:

yi ¼ wi þ zixib þ uizi; iaN ; ð7Þ
making explicit that ui is not the correct OLS error. Notice,

uizi ¼ 0for igjc; ¼ 1� xib for yi ¼ 1; iajc; ¼ � xib for yi ¼ 0; iajc;

so the conditional probability function of uizi is the same as that of ei. Therefore, E(uizi |xi)=0, and Eq.

(7) has a zero-mean error, independent of xi. Taking the unconditional mean of Eq. (7):

E yið Þ ¼ p þ E zixið Þb þ E uizið Þ ¼ p þ cE zixijzi ¼ 1ð Þb þ cE ziuijzi ¼ 1ð Þ ¼ p þ clxcb; ð8Þ

where lxg=E(xi | zi=1). Eq. (8) will be used in the sequel. The OLS estimator is:

b̂bn ¼
X
iaN

xiVxi

" #�1X
iaN

xiVyi:

Substituting Eq. (7):

b̂bn ¼
X
iaN

xiVxi

" #�1X
iaN

xiV wi þ zixib þ uizið Þ: ð9Þ

Partitioning the data by jg and jk, and taking into consideration zi and wi in each regime:

b̂bn ¼
X
iaN

xiVxi

" #�1 X
igjc[jp

xiV 0ð Þ þ
X
iajc

xiV xib þ uið Þ þ
X
iajp

xiV 1ð Þ
" #

¼
X
iaN

xiVxi

" #�1 X
iajc

xiVxib þ
X
iajc

xiVui þ
X
iajp

xiV

" #
:
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Hence:

E b̂bnjxi
� �

¼
X
iaN

xiVxi

" #�1 X
iajc

xiVxib þ
X
iajc

xiVE uijxi; iajc
� �

þ
X
iajp

xiV

" #

¼
X
iaN

xiVxi

" #�1 X
iajc

xiVxib þ
X
iajc

xiV 0ð Þ þ
X
iajp

xiV

" #

¼
X
iaN

xiVxi

" #�1 X
iajc

xiVxib þ
X
iaN

xiVxi

" #�1 X
iajp

xiVpb; ð10Þ

which is generally biased and asymptotically biased, because cb1. When c=1, jg=N, the first term on

the RHS is b, the second term is 0, and b̂n is unbiased.

The inconsistency of b̂n follows in a similar fashion. Letting C denote the cardinality operator, define

nk=C(jk), ng=C(jg) and nU=n�nk�ng. Let plim denote the probability limit operator as nYl.

Assume plim [n�1P
iaN xiVxi]=Q and plim [ng

�1 P
iang xiVxi]=Qg where Q and Qg are finite, (non-

singular) positive definite. Assume plim [nk
�1 P

iank xiV]=lxkV , plim [n�1 P
iaN xiV]=lxV and plim [ng

�1P
iang xiVui]=0, where lxkV and lxV are finite vectors. Assume plim [n�1nk]=p and plim [ngn

�1]=c.
Then:

plim b̂bn

� �
¼ Q�1 Qcbc þ plVxp

� �
pb:

Even if c and p were known, b̂n could not be bias corrected, yet Eq. (8) seems to imply that if c and p
were known, an OLS regression of ( yi�p) on (cxi) might be unbiased. Define transformed OLS

estimator:

b̂b*n ¼
X
iaN

c2xiVxi

" #�1X
iaN

cxiV yi � pð Þ: ð11Þ

Theorem 4. b̂n* is biased and inconsistent for b.

Proof. Eq. (11) implies

b̂b*n ¼ 1

c

X
iaN

xiVxi

" #�1 X
iaN

xiVyi �
1

c

X
iaN

xiVxi

" #�1X
iaN

xiVp ¼ 1

c
b̂bn �

p
c

X
iaN

xiVxi

" #�1 X
iaN

xiV:

Hence,

E b̂b*n jxi
� �

¼ 1

c
E b̂bnjxi
� �

� p
c

X
iaN

xiVxi

" #�1X
iaN

xiVpb: 5
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Thus, knowledge of p and c does not ensure an unbiased OLS estimator of b, and the bias will persist
asymptotically. Moreover, it does not facilitate consistent estimation. The problem with b̂n and b̂n* is not

that c and p are unknown but that jg is unknown. If we knew jg, we could perform OLS only on

observations iajg. Therefore:

Remark 5. Sufficient information for unbiased and consistent OLS estimation is knowledge of jg.

Also, if jg=N, then:X
iajc

xiVxi ¼
X
iaN

xiVxi; and
X
iajp

xiV¼ 0:

Therefore, Eq. (10) becomes:

E b̂bnjxi
� �

¼
X
iaN

xiVxi

" #�1 X
iaN

xiVxib þ
X
iaN

xiVxi

" #�1

0ð Þ ¼ b;

unbiased for jg=N. A similar argument can be made for consistency. If c= 1, then jg=N. Therefore:

Remark 6. Without knowledge of jg and jk, a sufficient condition for unbiased OLS when cb 1 is

jc =N.

jg=N is a weaker sufficient condition than c=1, but probably unlikely in large samples. For any

given random sample, Pr[jg=N]=cn, so

lim
nYl

Pr jcpN
	 


¼ lim
nYl

1� cnð Þ ¼ 1:

Remark 7.Without knowledge of jg and jk, if cb1 and jg=N, then as nYl, jgpN with probability

approaching 1, and b̂n is asymptotically biased and inconsistent.

Therefore, as N grows, once the first observation xibg [0, 1] appears, then jgpN and unbiasedness is

lost. Oddly, the estimator b̂n could be reliable in small samples yet unreliable in large samples.

3. Conclusions

Although it is theoretically possible for OLS on the LPM to yield unbiased estimation, this generally

would require fortuitous circumstances. Furthermore, consistency seems to be an exceedingly rare

occurrence as one would have to accept extraordinary restrictions on the joint distribution of the

regressors. Therefore, OLS is frequently a biased estimator and almost always an inconsistent estimator

of the LPM. If we had knowledge of the sets jg and jk, then a consistent estimate of b could be based

on the sub-sample iajg. This is tantamount to removing observations igjg, suggesting that trimming

observations violating the rule ŷi =xib̂na [0, 1] and re-estimating the OLS model (based on the trimmed

sample) may reduce finite sample bias. This seems to hold in simulations, but formal proof of this result

is left for future research.
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