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Abstract 

We propose a test for the stability over time of the covariance matrix of multivariate time 

series. The analysis is extended to the eigensystem to ascertain changes due to instability in the 

eigenvalues and/or eigenvectors. Using strong Invariance Principle and Law of Large Numbers, 

we normalize the CUSUM-type statistics to calculate their supremum over the whole sample. 

The power properties of the test versus local alternatives and alternatives close to the 

beginning/end of sample are investigated theoretically and via simulation. The testing procedure 

is validated through an application to 18 US interest rates over 1997-2011, finding instability at 

the end-2007/beginning-2008. 
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1 Introduction

In this paper, we propose a testing procedure to evaluate the structural stability of the covariance

matrix of multivariate time series. A large amount of empirical evidence shows that the issue

of changepoint detection in a covariance matrix and in its eigensystem is of great importance.

A classical example is the application of Principal Component Analysis (PCA) to the term

structure of interest rates, with the three main principal components interpreted as �slope�,

�level� and �curvature� (Litterman and Scheinkman, 1991). Bliss (1997), Bliss and Smith

(1997) and Perignon and Villa (2006) show that the principal components of the term change

substantially over time. Similar �ndings, using a di¤erent methodology, are in Audrino et al.

(2005). Another popular �eld of application of PCA is the prediction of mortality rates based

on the Lee-Carter model (Lee and Carter, 1992; Hyndman and Ullah, 2007). Yang et al. (2010)

show that the second principal component of the log mortality rates is subject to changes over

time. PCA is also widely used in macroeconometrics, for instance to forecast in�ation (Stock

and Watson, 1999, 2002, 2005). Finally, the importance of verifying the stability of a covariance

matrix is also evident in the context of VAR forecasting: Castle et al. (2010) show that changes

in the smallest eigenvalue of the covariance matrix of the error term have a large impact on

predictive ability.

Despite the relevance of the topic, these studies either assume stability as a working assump-

tion without testing for it, or the testing is carried out by splitting the sample, thus assuming

knowledge of the break date a priori. This calls for a rigorous testing procedure to estimate

the location of the changepoint when breaks are detected. Further, a typical requirement of

�classical�PCA is that the data are i.i.d. and Gaussian (Flury, 1984, 1988; Perignon and Villa,

2006). This assumption is unsuitable for �nancial data, which, in general, are serially depen-

dent, heterogeneous, and for which it is di¢ cult to make distributional assumptions. Thus,

testing procedures cannot rely on assuming i.i.d. normal data. Audrino et al. (2005) accommo-

date for serial dependence through �ltering, but this is done at the price of losing the classical

interpretation of principal components.

The theoretical apparatus developed in this paper builds on a plethora of results for the

changepoint problem available in statistics and in econometrics. Existing testing procedures
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(see e.g. the reviews by Csorgo and Horvath, 1997 and Perron, 2006) are typically based on

taking the supremum (or some other metric - see Andrews and Ploberger, 1994) of a sequence of

CUSUM-type statistics, thus not requiring prior knowledge of the breakdate. In particular, Aue

et al. (2009) develop a test for the structural stability of a covariance matrix, based on minimal

assumptions. However, a feature of this test is that, by construction, it has power versus breaks

occurring at least (respectively, at most) O
�p

T
�
time periods from the beginning (resp. to the

end) of the sample. Lack of power versus alternatives close to either end of the sample is a typical

feature in this literature (see also Andrews, 1993), which somewhat limits the applicability of

the test. Situations whereby breaks are due to recent events, like e.g. the 2008 recession, are

left out of the analysis. Our contribution overcomes this limitation.

The main contribution of this paper is twofold. First, we extend testing for changepoints

to PCA; this is useful e.g. when studying the stability of the term structure. In addition,

the extension to testing for the stability of principal components is useful for the purpose of

dimension reduction. Our simulations show that tests for the stability of the whole covariance

matrix have severe size distortions in �nite samples. Contrary to this, testing for the stability of

eigenvalues is found to have the correct size and good power even for relatively small samples. As

a second contribution, our testing procedure is able to detect breaks occurring up to O (ln lnT )

periods to the end of the sample. This is achieved by proving a Strong Invariance Principle

(SIP) and a Strong Law of Large Numbers (SLLN) for the partial sample estimators of the

covariance matrix, and by using these results to normalize the CUSUM-type test statistic, using

a Darling-Erdos limit theory (see Csorgo and Horvath, 1997; Horvath, 1993).

The theory derived in our paper is validated through an application to the US term structure

of interest rates, in a similar spirit to Perignon and Villa (2006). As expected, we �nd evidence

of changes in the volatility and in the loading of the principal components of the term structure

around the end of 2007/beginning of 2008.

The paper is organized as follows. Section 2 contains the SIP and its extension to the

eigensystem. The test statistic and its distribution under the null (as well as its behaviour

under local-to-null alternatives) is in Section 3. Monte Carlo evidence is in Section 4, and the

application to the term structure of interest rates is in Section 5. Section 6 concludes.
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A word on notation. Limits are denoted as �!�(the ordinary limit); � p!�(convergence in

probability); � d!�and (convergence in distribution). Orders of magnitude for an almost surely

convergent sequence (say sT ) are denoted as Oa:s: (T &) and oa:s: (T &) when, for some " > 0 and

~T <1, P
h
jT�&sT j < " for all T � ~T

i
= 1 and T�&sT ! 0 almost surely respectively. Orders of

magnitude for a sequence converging in probability (say s0T ) are denoted as Op (T
&) and op (T &)

when, for some " > 0, �" > 0 and ~T" <1, P [jT�&s0T j > �"] < " for all T > ~T" and T�&s0T ! 0

in probability respectively. Standard Wiener processes and Brownian bridges of dimension q are

denoted as Wq (�) and Bq (�) respectively; kAk denotes the Euclidean norm of a matrix A in Rn,

and j�jp the Lp-norm; the integer part of a real number x is denoted as bxc.

2 Theoretical framework

Let fytgTt=1 be a time series of dimension n. We assume, without loss of generality, that yt

has zero mean and covariance matrix � � E (yty
0
t). This section contains the asymptotics of

the partial sample estimates of �; the results are used in Section 3 in order to construct the

CUSUM-type test statistic to test for breaks in � and its eigensystem. Speci�cally, we derive a

SIP for the partial sample estimators of � and an estimator of the long run covariance matrix

of the estimated �, say V�; and we extend the asymptotics to PCA. All results are derived for

n <1.

Strong Invariance Principle and estimation of V�

Let �̂ be the sample covariance matrix, i.e. �̂ = T�1
PT

t=1 yty
0
t. For a given � 2 [0; 1],

we de�ne a point in time bT�c, and we use the subscripts � and 1 � � to denote quantities

calculated using the subsamples t = 1; :::; bT�c and t = bT�c+1; :::; T respectively. In particular,

we consider the sequence of partial sample estimators �̂� = (T�)�1
PbT�c

t=1 yty
0
t, and similarly

�̂1�� = [T (1� �)]�1
PT

t=bT�c+1 yty
0
t. Finally, henceforth we extensively use the notation wt =

vec (yty
0
t) and �wt = vec (yty

0
t � �).

In the sequel, we need the following assumption.

Assumption 1 (i) suptE kytk2r < 1 for some r > 2; (ii) yt is L2+�-NED (Near Epoch

Dependent) for some � > 0, of size � 2 (1;+1) on a strong mixing base fvtg+1t=�1 of size
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�r= (r � 2) and r > 2��1
��1 ; (iii) letting V�;T = T�1E

��PT
t=1 �wt

��PT
t=1 �wt

�0�
, V�;T is positive

de�nite uniformly in T , and as T ! 1, V�;T ! V� with kV�k < 1; (iv) letting �wit be the

i-th element of �wi and de�ning SiT;m �
Pm+T

t=m+1 �wit, it holds that T
�1 jE [SiT;mSjT;m]�$ij j �

MT� , for all i and j and uniformly in m, with M a constant and  > 0.

Assumption 1 speci�es the moment conditions and the memory allowed in yt; no distri-

butional assumptions are required. According to part (i), at least the 4-th moment of yt is

required to be �nite, similarly to Aue et al. (2009). As far as serial dependence is concerned,

the requirement that yt be NED is typical in nonlinear time series analysis (see Gallant and

White, 1988) and, in essence, it implies that yt is a mixingale (Davidson, 2002a). Many of the

DGPs considered in the literature generate NED series - examples include GARCH, bilinear and

threshold models (see Davidson, 2002b). Part (ii) illustrates the trade-o¤ between the memory

of yt (i.e. its NED size �), and its largest existing moment: as � (the memory of yt) approaches

1, r has to increase. Other types of dependence could be considered, e.g. assuming a linear

process for yt - an IP for the sample variance is in Phillips and Solo (1992, Theorem 3.8). Part

(iv) is a bound on the growth rate of the variance of partial sums of �wt, and it is the same as

equation (1.5) in Eberlein (1986); see also Assumption A.3 in Corradi (1999). Although it is not

needed to prove the IP for the partial sum process of �wt, it is a su¢ cient condition for the SIP.

Theorem 1 contains the IP and the SIP for the partial sums of �wt.

Theorem 1 Under Assumption 1(i)-(iii), as T !1

1p
T

bT�cX
t=1

�wt
d! [V�]

1=2Wn2 (�) ; (1)

uniformly in � . Rede�ning �wt in a richer probability space, under Assumptions 1(i)-(iv)

bT�cX
t=1

�wt =

bT�cX
t=1

Xt +Oa:s:

�
bT�c

1
2
��
�
; (2)

uniformly in � , where Xt is a zero mean, i.i.d. Gaussian sequence with E (XtX
0
t) = V� and

� > 0.
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Remarks

T1.1 Equation (1) is an IP for �wt (i.e. a weak convergence result), which is su¢ cient to use the

test statistics discussed e.g. in Andrews (1993) and Andrews and Ploberger (1994).

T1.2 Equation (2) is an almost sure result, which also provides a rate of convergence. The

practical consequence of (2) is that the dependent, heteroskedastic series �wt can be replaced

with a sequence of i.i.d. normally distributed random variables, with the same long run

variance as �wt. The rate � could, in principle, be derived under di¤erent assumptions on

the dependence of yt. A typical �nding is � = 1
2

�
1� 1

r

�
- see Shorack and Wellner (1986).

We now turn to the estimation of V�. If no serial dependence is present, a possible choice is

the full sample estimator V̂� = 1
T

PT
t=1wtw

0
t �

h
vec

�
�̂
�i h

vec
�
�̂
�i0
. Alternatively, one could

use the sequence of partial sample estimators

V̂�;� =
1

T

TX
t=1

wtw
0
t �
�
�
h
vec

�
�̂�

�i h
vec

�
�̂�

�i0
+ (1� �)

h
vec

�
�̂1��

�i h
vec

�
�̂1��

�i0�
:

To accommodate for the case 	l � E
�
�wt �w

0
t�l
�
6= 0 for some l, we propose a weighted sum-of-

covariance estimator with bandwidth m:

~V� = 	̂0 +

mX
l=1

�
1� l

m

�h
	̂l + 	̂

0
l

i
; (3)

or ~V�;� =
�
	̂0;bT�c + 	̂0;1�bT�c

�
+
Pm

l=1

�
1� l

m

� h�
	̂l;bT�c + 	̂

0
l;bT�c

�
+
�
	̂l;1�bT�c + 	̂

0
l;1�bT�c

�i
,

where 	̂l;bT�c =
1
T

PbT�c
t=l+1

h
wt � vec

�
�̂�

�i h
wt�l � vec

�
�̂�

�i0
, and similarly for 	̂l;1�bT�c.

In order to apply equation (14) in Theorem 3 below, when using V̂� (or ~V�), it must hold

that
V̂� � V� = op

�
1p
ln lnT

�
. Similarly, when using the partial sample estimator V̂�;� (or

~V�;� ), it must hold that supbT�c
V̂�;� � V� = op

�
1p
ln lnT

�
.

To derive the asymptotics of V̂�;� and ~V�;� , consider the following assumption:

Assumption 2. (i) either (a) 	l = 0 for all l or (b)
P1

l=0 l
s k	lk < 1 for some s � 1;

(ii) suptE kytk4r < 1 for some r > 2; (iii) letting 
T = T�1E
nPT

t=1 vec [ �wt �w
0
t � E ( �wt �w0t)]

vec [ �wt �w
0
t � E ( �wt �w0t)]

0	, 
T is positive de�nite uniformly in T , and 
T ! 
 with k
k <1.
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Assumption 2 encompasses various possible cases. Part (i)(a) considers the basic, non au-

tocorrelated case, for which V̂�=V̂�;� are a valid choice. Part (i)(b) considers the possibility

of non-zero autocorrelations. Intuitively, the assumption that the 4-th moment of yt exists, as

in Assumption 1(i), entails, through a Law of Large Numbers (LLN), the consistency of V̂�;� .

Part (ii) supersedes Assumption 1(i), by requiring the existence of moments up to the 8-th.

Intuitively, this implies that an IP holds for the partial sums of vec [ �wt �w0t � E ( �wt �w0t)].

The consistency of V̂�;� and of ~V�;� is in Theorem 2:

Theorem 2 Under H0, as T !1:

if Assumptions 1(i)-(iii) and 2(i)(a) hold:

sup
1�bT�c�T

V̂�;� � V� = op

�
1

T �
0

�
; (4)

if Assumptions 1(i)-(iii) and 2(i)(b) hold:

sup
1�bT�c�T

 ~V�;� � V� = Op

�
1

m

�
+Op

�
m

T �
0

�
; (5)

if Assumptions 1(i)-(iii) and 2(i)(b)-(ii)-(iii) hold:

sup
1�bT�c�T

 ~V�;� � V� = Op

�
1

m

�
+Op

�
mp
T

�
; (6)

where �0 > 0. The same rates hold for V̂�/ ~V�.

Remarks

T2.1 Equation (4) is based on a SLLN for the case of no autocorrelation in wt - see also Ling

(2007). In principle, �0 can be determined. For example, upon strengthening certain

parts of Assumption 1 (chie�y, the L2+�-NED, assuming L4-NED), a Law of the Iterated

Logarithm for mixingales (Hall and Heyde, 1980, Th. 2.21) could be proved.

T2.2 In case of serial dependence, (5) states that it is possible to construct an estimator

of V� which has the required rate of convergence as long as both ln lnT=m ! 0 and

m ln lnT=T �
0 ! 0; a possible choice would be e.g. m = O (lnT ).

7



T2.3 The convergence rate in (5) can be re�ned as in (6). Assumptions 2(ii)-(iii) allow for

an IP to hold for partial sums of vec
�
�wt �w

0
t�l � E

�
�wt �w

0
t�l
��
, whence the Op

�
T�1=2

�
con-

vergence rate, uniformly in � . Thus, supbT�c
 ~V�;� � V� = op

h
(ln lnT )�1=2

i
as long as

p
ln lnT=m! 0 and m

p
ln lnT=T !1.

Estimation of the eigensystem

In this section, we extend the asymptotics derived above for the partial sample estimates of

the whole � to the eigensystem of �.

Let the i-th eigenvalue-eigenvector couple be de�ned as (�i; xi); the eigenvectors are de�ned

as an orthonormal basis, i.e. x0ixj = �ij , where �ij is Kronecker�s delta. Since �xi = �ixi,

a natural estimator for (�i; xi) is the solution to �̂x̂i = �̂ix̂i, where �̂i and x̂i denote the

estimates of �i and xi respectively. Similarly, the partial sample estimators of the eigenvalues

and eigenvectors are the solutions to �̂� x̂i;� = �̂i;� x̂i;� .

Consider the following assumption.

Assumption 3. The matrix � has distinct eigenvalues.

Assumption 3 is typical of PCA and it allows to use Matrix Perturbation Theory (MPT); the

assumption could be relaxed at the price of a more complicated analysis, still based on MPT.

In essence, the asymptotics of
�
�̂i;� ; x̂i;�

�
is derived by treating �̂� as a perturbation of �, thus

deriving the expressions for the estimation errors of �̂i;� and x̂i;� .

The extension of the IP and the SIP to the eigensystem of � is reported in Proposition 1:

Proposition 1 Under Assumptions 1 and 3, as T !1, uniformly in �

�̂i;� � �i =
�
x0i 
 x0i

�
vec

�
�̂� � �

�
+Op

�
T�1

�
; (7)

x̂i;� � xi =

24X
k 6=i

xk
�i � �k

�
x0k 
 x0i

�35 vec��̂� � ��+Op �T�1� (8)

= vx;ivec
�
�̂� � �

�
+Op

�
T�1

�
:

8



Remarks

P1.1 Proposition 1 states that the estimation errors �̂i;� � �i and x̂i;� � xi are, asymptotically,

linear functions of �̂� � �; thus, the IP and the SIP in Theorem 1 carry through to the

estimated eigensystem. The results in Proposition 1 can be compared to related results in

Waternaux (1976) and Tyler (1981).

P1.2 The asymptotic covariance matrix of
p
T (x̂i;� � xi) is vx;iV�v0x;i; in view of (8), it is

singular and has rank n � 1. In order to invert v̂x;i ~V�v̂0x;i, a Moore-Penrose generalised

inverse can be used. The validity of this approach can be shown based on Andrews

(1987). Since v̂x;i ~V�v̂0x;i
p! vx;iV�v

0
x;i, it holds that P

h
r
�
v̂x;i ~V�v̂

0
x;i

�
� r

�
vx;iV�v

0
x;i

�i
= 1

as T ! 1, where r (A) denotes the rank of A. Also, by construction and for any T ,

r
�
v̂x;i ~V�v̂

0
x;i

�
� n � 1. Thus, as T ! 1, P

h
r
�
v̂x;i ~V�v̂

0
x;i

�
= r

�
vx;iV�v

0
x;i

�i
= 1. This

is a su¢ cient condition that allows to use the Moore-Penrose inverse for vx;iV�v0x;i, e.g.

when computing quadratic forms.

P1.3 We show in appendix that

E
h
T
�
�̂i;� � �i

�i
=
X
k 6=i

(x0i 
 x0k)V� (xk 
 xi)
�i � �k

; (9)

as T !1. As far as the impact of n is concerned, V� is an n2-dimensional matrix; thus, in

general the quadratic form (x0i 
 x0k)V� (xk 
 xi) has magnitude of order O
�
n2
�
; also, due

to the summation on the right hand side of (9) involving n�1 elements, E
h
T
�
�̂i;� � �i

�i
= O

�
n3
�
. Thus, the asymptotic bias is of order O

�
n3

T

�
; a bias-corrected version is

~�i;� = �̂i;�� T�1
P

k 6=i [x̂
0
i 
 x̂0k]

~V�
�̂i��̂k

[x̂k 
 x̂i]. The bias is always positive for the largest

eigenvalue. This result is of independent interest. It could be useful e.g. when measuring

the percentage of the total variance of yt explained by each of its principal components.

Similarly, we show that

E [T (x̂i;� � xi)] =
X
k 6=i

X
j 6=i

�
x0k 
 x0j

�
V� (xj 
 xi)

(�i � �k) (�i � �j)
xk; (10)

which provides an expression to correct the bias of the estimated eigenvectors.

9



P1.4 One may also be interested in the principal components i � �
1=2
i xi. A typical interpre-

tation in the context of the term structure of interest rates (Litterman and Scheinkman,

1991; Perignon and Villa, 2006) is that �i is the �volatility� of i, and xi represents its

�loading�. It holds that

̂i;� = �̂
1=2

i;� x̂i;� = �
1=2
i

"
1 +

�̂i;� � �i
2�i

+ op

��̂i;� � �i�# [xi + (x̂i;� � xi)]
= �

1=2
i xi + �

1=2
i (x̂i;� � xi) +

�̂i;� � �i
2�
1=2
i

xi + op (1) :

Thus, ̂i;��i = v;ivec
�
�̂� � �

�
+op (1), with v;i = 1

2
xi

�
1=2
i

(x0i 
 x0i)+
P

k 6=i
�
1=2
i xk
�i��k (x

0
i 
 x0k).

Consider the following notation. De�ne � � [�1; :::; �n]
0 as the n-dimensional vector con-

taining the eigenvalues sorted in descending order; X � [x1j:::jxn], and � � [1j:::jn]; ẑ �h
�̂
0
; vecX̂ 0; vec�̂0

i0
with ẑ��z = D�xvec

�
�̂� � �

�
+op (1) andD�x � [x1 
 x1; :::; xn 
 xn; v0x;1;

:::; v0x;n; v
0
;1; :::; v0;n

�0.
The asymptotics of ẑ follows from Theorem 1 and Proposition 1, and we summarize it below.

Corollary 1 Under Assumptions 1 and 3, as T !1

p
T (ẑ� � z)

d! [Vz]
1=2Wn(2n+1) (�) ;

T (ẑ� � z) =
bT�cX
t=1

~Xt +Oa:s:

�
bT�c

1
2
��
�
;

uniformly in � , where Vz = D�xV�D
0
�x and ~Xt is a zero mean, i.i.d. Gaussian sequence with

E
�
~Xt
~X 0
t

�
= Vz and � > 0.

Corollary 1 entails that

p
T
�
�̂� � �

�
d! [V�]

1=2Wn (�) ;

p
Tvec

�
X̂� �X

�
d! [VX ]

1=2Wn2 (�) ;

p
Tvec

�
�̂� � �

�
d! [V�]

1=2Wn2 (�) ;
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with: V� a matrix with (i; j)-th element given by V �
ij = (x

0
i 
 x0i)V� (xj 
 xj); VX an

�
n2 � n2

�
-

dimensional matrix whose (i; j)-th n � n block (say V X
ij ) is de�ned as V

X
ij =

P
k 6=i
P

h 6=j
xkx

0
h

(�i��k)(�i��k) [x
0
i 
 x0k] V� [xj 
 xh]; V� is an

�
n2 � n2

�
-dimensional matrices whose (i; j)-th

n� n block is de�ned as V �ij = v;iV�v
0
;j .

3 Testing

This section studies the null distribution and the consistency of tests based on CUSUM-type

statistics.

Henceforth, we de�ne the CUSUM process S (�) =
PbT�c

t=1 vec (yty
0
t). In light of Corollary 1,

test statistics for � and its eigensystem can be based on

~S (�) = R�D�x �
�
S (�)� bT�c

T
S (T )

�
; (11)

with ~S (�) = 0 for � � 1
T or � 1�

1
T , and R a p�n (2n+ 1) matrix. For example, when testing

for the null of no changes in the �rst eigenvalue, R is the matrix that extracts the �rst element

of D�x �
h
S (�)� bT�c

T S (T )
i
. Thence, testing is carried out by using

�T (�) =

s
T

bT�c � bT (1� �)c �
h
~S (�)0 ~V �1z;�

~S (�)
i1=2

; (12)

with ~Vz;� = RD�x
~V�;�D

0
�xR

0.

Theorem 3 contains the asymptotics of supbT�c �T (�) under the null.

Theorem 3 Under Assumptions 1-3, as T !1

sup
bT�1c�bT�c�bT�2c

�T (�)
d! sup
�1����2

kBp (�)kp
� (1� �)

; (13)

where Bp (�) is a p-dimensional standard Brownian bridge and [�1; �2] 2 (0; 1). Also

P

(
aT

"
sup

p<bT�c<T�p
�T (�)

#
� x+ bT

)
! e�2e

�x
; (14)

11



where aT =
p
2 ln lnT and bT = 2 ln lnT+

p
2 ln ln lnT � ln �

�p
2

�
, with � (�) the Gamma function.

Remarks

Theorem 3 states that (12) can be used in two di¤erent ways:

T3.1 According to (13), the maximum is taken in a subset of [0; 1], namely [�1; �2]. This

approach requires showing an IP for S (�), and applying the Continuous Mapping The-

orem (CMT). As noted in Corollary 1 in Andrews (1993, p. 838), �T (�) is not con-

tinuous at f0; 1g and sup1�bT�c�T �T (�)
p! 1 under H0. Thus, trimming is neces-

sary in this case; alternatively, a weighted norm can be employed, de�ning ��2T (�) =
~S(�)0[R ~Vz;�R0]

�1 ~S(�)

T [�(1��)]� for � 2 [0; 1) (see Csorgo and Horvath, 1997, and Chen et al., 2005)

and taking sup1�bT�c�T �
�2
T (�).

T3.2 As an alternative approach, the SIP can be used: sums of �wt can be replaced by sums

of i.i.d. Gaussian variables, with an approximation error. Upon normalising �T (�) with

the appropriate norming constants, say aT and bT , an Extreme Value (EV henceforth)

theorem can be employed. Tests based on supp<bT�c<T�p [aT�T (�)� bT ] are designed to

be able to detect breaks close to the end of the sample.

Theorem 3 allows to test for breaks in � when n is �nite. As n passes to in�nity, Aue et al.

(2009) derive a �sequential limit�(see Phillips and Moon, 1999, for the de�nition of sequential

and joint convergence) result for �̂2T � sup1�bT�c�T T�1 ~S (�)
0
h
R ~Vz;�R

0
i�1

~S (�), showing that,

as T !1 followed by n!1, 4�
2
T�n2p
2n

d! N (0; 1).

The following corollary reports the result for (n; T )!1 jointly.

Corollary 2 Let Assumptions 1-3 hold, with supi;tE jyitj4r < 1 for r > 2, and de�ne ��2nT �

sup� ~�
2
nT (�), where ~�

2
nT (�) = T

bT�cbT (1��)c�
h
S (�)� bT�c

T S (T )
i0
~V �1�;�

h
S (�)� bT�c

T S (T )
i
. As

(n; T )!1 with n
T �
! 0, nmp

T
! 0 and n

m ! 0, it holds that

1p
2n

�
��2nT � n2

� d! N (0; 1) :

The Corollary states, in essence, that normality holds for large T and relatively small n.

The restriction n
T �
! 0 arises from the approximation error in the SIP. As far as both nmp

T
! 0

12



and n
m ! 0 are concerned, they come from the estimated long run covariance matrix, ~V�.

Heuristically, each element in ~V� has an error of magnitude Op
�
mp
T

�
+ Op

�
1
m

�
; each column

contains n2 elements, so that the contribution of the matrix estimation error is Op
�
n2mp
T

�
+

Op

�
n2

m

�
. This is then normalised by n, whence the restrictions.

Power/consistency of the test

We now turn to studying the behaviour of supp<bT�c<T�p �T (�) under alternatives. As a

leading example, we consider the case of testing for no change in � in presence of one abrupt

change

H(T )
a : vech(�t) =

8><>: vech (�) for t = 1; :::; k0;T

vech (�) + �T for t = k0;T + 1; :::; T
; (15)

where both the changepoint (k0;T ) and the size of the break (�T ) could depend on T . More

general alternatives could be considered (see e.g. Andrews, 1993; Csorgo and Horvath, 1997).

Theorem 4 illustrates the dependence of the power on �T and k0;T .

Theorem 4 Let Assumptions 1-3 hold, and de�ne c� such that under H0 it holds that Ph
supp<bT�c<T�p �T (�) � c�] = 1� � for some � 2 [0; 1]. If, under H(T )

a , as T !1

1

ln lnT

�
(T � k0;T ) k0;T

T
k�T k2

�
!1; (16)

it holds that

P

"
sup

p<bT�c<T�p
�T (�) > c�

#
= 1: (17)

Remarks

T4.1 Theorem 4 illustrates the impact of k0;T and �T on the power of the test. Particularly,

consider the two extreme cases:

T4.1.a k0;T = O (T ) - i.e. the break occurs in the middle of the sample. The test is powerful

as long as the size of the break is at least as big as O
�q

ln lnT
T

�
. When using trimmed

statistics such as in (13), the test is powerful versus mid-sample alternatives of size

13



O
�q

1
T

�
: when no trimming is used, there is some, limited loss of power versus

mid-sample alternatives.

T4.1.b k�T k = O (1), i.e. �nite break size. In this case, the test has power as long as

k0;T is at least as big as O (ln lnT ). This can be compared with tests based on

sup1�bT�c�T T�1 ~S (�)0 ~V �1z;�
~S (�). Using similar algebra as in the proof of Theorem

4, it can be shown that the noncentrality parameter of supbT�c T
�1 ~S (�)0 ~V �1z;�

~S (�) is

proportional to k�T k2
k20;T
T . Under k�T k = O (1), this entails that nontrivial power

is attained as long as k0;T = O
�p

T
�
.

T4.2 The test can be used in presence of multiple breaks also. Although this goes beyond the

scope of this paper, the sequential procedure discussed by Bai (1997) can be used. Upon

�nding evidence of one break, its date can be estimated as [bT�c = T� arg supbT�c �T (�);

this estimator is such that [bT�c � bT�c = Op (1). The sample can be then split around

[bT�c, and testing can be applied to each subsample.

T4.3 The presence of �large�breaks in � is bound to a¤ect inference on the eigensystem - see

e.g. Stock and Watson (2002). Consider, as a leading example, �̂i. From Proposition 1,

the long-run variance of the estimated eigenvalues is estimated by (x̂0i 
 x̂0i) ~V� (x̂i 
 x̂i),

thus depending on x̂i. In presence of a break of magnitude k�T k = O (1), xi is es-

timated by x̂i with an error of magnitude Op (1), as a consequence of Proposition 1.

Thus, (x0i 
 x0i)V� (xi 
 xi) is estimated with an error of the same order of magnitude as

kx̂i � xik4
 ~V� � V�. Since �̂ � � = Op (1), both kx̂i � xik and

 ~V� � V� are Op (1),
which ensures that (x̂0i 
 x̂0i) ~V� (x̂i 
 x̂i) is bounded in probability. This entails that the

power of tests based on supbT�c �T (�) does not vanish asymptotically.

4 Monte Carlo evidence

In this section we discuss: (a) the calculation of critical values, and (b) size and power of the

test.

There are two possible approaches to the computation of critical values: using the EV
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distribution in (14), or using the approximation proposed in Csorgo and Horvath (1997, ch.

1.3.2).

Direct computation of critical values c� for a test of level � is based on c� = a�1T
�
bT � ln

�
�1
2

ln (1� �)]g. Thus, critical values only depend on p and T . It is well known that convergence

to the EV distribution is usually very slow, which hampers the quality of c�. Simulations also

show that, for large n, c� becomes unreliable. Alternatively, critical values can be simulated

from

P

8<: sup
hT+

p
T
���1�(hT+ p

T )

"
pX
i=1

B21;i (�)

� (1� �)

#1=2
� c0�

9=; = 1� �; (18)

where the B1;i (�)s are independent, univariate, squared Brownian bridges, generated over a grid

of dimension T . We set T � hT = [ln (T )]
1+ln ln lnT . We report here a table containing critical

values c0� for several combinations of p and T .

[Insert Table 1 somewhere here]

4.1 Finite sample properties of the test

We evaluate size and power through a Monte Carlo exercise. As a leading example, we consider a

test for a change in the �rst eigenvalue of the covariance matrix: thus, the number of constraints

is p = 1. Unreported simulations show that the �nite sample performance of tests for changes in

the other eigenvalues are very similar. In order to evaluate the impact of large p on �nite sample

properties, we also report a smaller Monte Carlo exercise (only for the i.i.d. case) applied to

testing for changes in the whole covariance matrix �.

Data are generated as follows. In order to avoid dependence on initial conditions, T + 1000

data are generated, discarding the �rst 1000 observations. We carry out our simulations for

T = f50; 100; 200; 500g and n = f3; 4; 5; 6; 7; 10; 15; 20g. Serial dependence in yt is introduced

through an ARMA(1,1) process:

yt = �yt�1 + et + �et�1; (19)
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where et � N (0; In) (see below for more details about simulations under the alternative). We

conduct our experiments for the cases (�; �) = f(0; 0) ; (0:5; 0) ; (0; 0:5) ; (0;�0:5) ; (0:5; 0:5)g. Ev-

idence from other experiments shows that little changes when the covariance matrix of et is non-

diagonal, or when it has di¤erent elements on the main diagonal. Finally, all experiments have

been conducted using the long run variance estimator in (3), based on full sample estimation of

the autocovariance matrices with m = T 2=5. Other simulations show a heavy dependence of the

results on m; in general, the larger m, the more conservative the test.

Finally, the number of replications is 2000; all routines are written using Gauss 10.

Size

We calculate the empirical rejection frequencies for tests of level 5%. Unreported results

based on supp<bT�c<T�p �T (�) show that the empirical size overstates the nominal size level in

small samples. To attenuate this, we propose to increase the trimming at each end of the sample

as

sup
t��bT�c�T�t�

�T (�) ; (20)

where t� =
j
(lnT )1+ln ln lnT

k
- this is a slowly varying function of T , which we have found to

work well for all the cases considered. Whilst this no longer yields power versus breaks occurring

O (ln lnT ) periods from the beginning or the end of the sample, however the test retains power

versus breaks occurring O (lnT ) periods from the beginning/end of sample.

[Insert Table 2 somewhere here]

The test is oversized in small samples; this tends to disappear as T increases, with empirical

rejection frequencies belonging, in general, to the interval [0:04; 0:06] with few exceptions. The

test has the correct size for large samples. Considering the i.i.d. case, the nominal size level

is attained for T = 200 or larger. In general, as far as the presence of time dependence is

concerned, this does not seem to a¤ect the size properties of the test in a strong way, as it only

makes the size slightly worse (always with a tendency towards oversizement). The table also
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shows that n does not seem to play a role in a¤ecting the behaviour of the size - this can be

compared with Table 4 below, which illustrates the impact of p.

Power

We conduct our simulations under alternatives de�ned as8><>: � for t = 1; :::; k

�+� for t = k + 1; :::; T
(21)

with k =
�
T
2

�
and

� =

r
ln lnT

T �
� In: (22)

We set � =
�
2
3 ;
1
2

	
in Table 3a. In Table 3b, we also report power versus alternatives close to

the beginning of the sample, with k = 2� [ln (T )]1+ln ln ln(T ) and � = In.

[Insert Tables 3a-3b somewhere here]

Considering mid-sample alternatives, the test has nontrivial power versus �local�alternatives

(represented here by the case � = 2
3), and good power when � =

1
2 ; the power becomes higher

than 50%, in general, when T is larger than 200. As n increases, the test becomes increasingly

powerful for all the cases considered (sample size T and dynamics in the error term); in general,

the power of the test is not a¤ected by the presence of AR or MA disturbances, although a

reduction in power is seen in the ARMA(1,1) case.

Table 3b reports the power under the alternative that the breakdate is close to the boundary.

As predicted by the theory, there is power versus such alternatives. Referring the i.i.d. case as

a benchmark, the power becomes higher than 50% when T = 500. As also observed in Table

3a, as n increases the power slightly increases. As opposed to the results in Table 3a, the power

deteriorates in presence of AR roots, which is even more evident in the ARMA case; a less

dramatic power reduction is also observed in presence of MA roots. As a guideline for empirical

applications, this entails that if an AR structure is found in the data, pre-whitening should be

applied.
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Testing for the constancy of �: the role of p

We report a simulation exercise for the null of no change in �. The alternative is the same as

in (21). Data are generated as i.i.d. Gaussian with � = In. Thus, the number of hypotheses is

p = 1
2n (n+ 1); in this setup, we report results for n = f3; 4; 5; 6; 7g and T = f50; 100; 200; 500g.

Tests are found to be grossly oversized, in small samples, when trimming is done according

to (20). Thus, we propose to trim away a larger portion of the data, namely

t� = p� [ln ln (T )� 1] + [ln (T )]1+ln ln ln(T ) ;

which is the same as in (20), plus the extra term p�[ln ln (T )� 1]. This yields a more conservative

test. When generating data under the alternative, this is de�ned as in (21) and (22). In the last

column, k� = p� [ln ln (T )� 1]+ [ln (T )]1+ln ln ln(T ) and � = In.

[Insert Table 4 somewhere here]

Table 4 illustrates the role played by p. As p increases, the test becomes increasingly conser-

vative in �nite samples. As T !1, the empirical rejection frequencies approach their nominal

values. Tables 2 and 4 show that size distortion arises from p rather than n itself, and this can

be resolved with appropriate trimming. Although this hinders the ability of the test to detect

changes closer to either end of the sample, however, as T increases, the amount of trimming is

lower than when using the 15%-from-each-end rule (Andrews, 1993) - in some cases, decidedly

lower (e.g. when T = 1000 and n = 3, trimming at t� would entail eliminating 60 datapoints,

whilst 300 would be eliminated with the 15% rule).

The power of the test is hampered by the trimming - see the cases n = 6 and n = 7 when

T = 50 or 100. When considering mid-sample alternatives, the power increases monotonically

with T as expected, and it does not seem to be a¤ected by p in a signi�cant way for large samples

(T = 500). For �nite samples, where the e¤ect of the trimming is more severe, p does have a

signi�cant impact and the power decreases as p increases. Slightly di¤erent considerations seem

to apply to the case of breaks closer to the beginning of the sample, i.e. the last column of Table
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4. In this case, as p increases, so does the power, which could also re�ect the fact that, as p

increases, the location of the simulated changepoint approaches the middle of the sample.

5 The time stability of the covariance matrix of interest rates

In this section, we apply the theory developed above to test for the stability of the covariance

matrix of the term structure of interest rates, and to infer the sources of instability if present.

Our analysis is motivated by the study in Perignon and Villa (2006), and follows similar steps.

As a �rst step, we investigate whether the �volatility curve�(i.e. the term structure of the

volatility of interest rates) changes over time; this corresponds to testing for the stability of the

main diagonal of the covariance matrix. Further, we verify whether the whole covariance matrix

changes. This could be done by directly testing for the constancy of the matrix. Alternatively,

in order to reduce the dimensionality of the problem, one could check whether the main three

principal components (level, slope and curvature) are stable through time. We choose the latter

approach, verifying separately, for each principal component, whether sources of time variation

are in the loadings (i.e. the eigenvectors) or in the volatility (i.e. the eigenvalues), or both.

Previous studies have found evidence of changes in the yield curve. Using a descriptive

approach based on splitting the sample at some predetermined points in time, indicated by

stylised facts, Bliss (1997) �nds that the eigenvectors of the covariance matrix of interest rates

are quite stable, although the eigenvalues di¤er across subsamples. Perignon and Villa (2006),

under the assumption that data are i.i.d. Gaussian, �nd evidence of changes in the volatilities

(eigenvalues) of the principal components across four di¤erent subperiods (chosen a priori) in

the time interval January 1960 - December 1999.

We conduct a similar exercise to Perignon and Villa (2006), relaxing the assumptions of

i.i.d. Gaussian data, and avoiding the a priori selection of breakdates which could be rather

arbitrary. We apply our test to US data, considering monthly and weekly frequencies, spanning

from April 1997 to November 2010 (monthly - the sample size is Tm = 164) and from the second

week of February 1997 to the last week of February 2011 (weekly - the sample size is Tw = 733);

the number of maturities which we consider is n = 18, corresponding to (1m, 3m, 6m, 9m, 12m,

15m, 18m, 21m, 24m, 30m, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y). Figure 1 reports the term structure
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in the period considered.

[Insert Figure 1 somewhere here]

Preliminary analysis shows that yields are highly persistent. Therefore, we use returns, which

are found to be much less autocorrelated (particularly, they have no autocorrelation pattern for

higher maturities). Table 5 shows some descriptive statistics for both monthly and weekly data;

it is interesting to note how the large values of skewness and kurtosis of each maturity lead to

reject the assumption of normality.

[Insert Table 5 somewhere here]

As far as the notation is concerned, yt denotes, henceforth, the demeaned 18-dimensional

vector of �rst-di¤erenced maturities. Preliminary evidence based on the autocorrelation func-

tion of the squared returns shows that there is very little serial dependence, and, with higher

maturities, no dependence at all. In light of this, we set the bandwidth, for the estimation of

the long-run variance, as m =
p
lnT (see equation (3)).

The �rst step of our analysis is an evaluation of the stability of the variances of the �rst

di¤erenced maturities, i.e. of the elements on the main diagonal of � = E (yty
0
t). Instead of

checking for the stability of the whole main diagonal, we test the volatilities one by one; this

approach should be more constructive if the null of no changes were to be rejected, in that it

would indicate which maturity changes and when. In order to control for the size of this multiple

comparison, we propose a Bonferroni correction. We calculate the critical values for each test

as �I =
�P
n , where �P is the size of the whole procedure. Using these critical values yields,

approximately, a level �P not greater than 1%, 5% and 10% corresponds to conducting each

test at levels �I = 0:056%, 0:28% and 0:56% respectively.

Critical values for individual tests of levels �I = 1%, 5% and 10%, and for procedure level

�P = 1%, 5% and 10%, are in Table 6.
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[Insert Table 6 somewhere here]

As a second step, we verify whether slope, level and curvature are constant over time. Par-

ticularly, we carry out separately the detection of changes in the volatility of the principal

components (verifying the time stability of the three largest eigenvalues, say �1, �2 and �3), and

in their loading (verifying the stability of the eigenvectors corresponding to the three largest

eigenvalues, denoted x1, x2 and x3). As far as eigenvectors are concerned, (8) ensures that,

when running the test, the CUSUM transformation of the estimated xis has the same sign

for all values of � , thus overcoming the issue of the eigenvectors being de�ned up to a sign.

The singularity of the covariance matrix of the estimated eigenvectors is addressed by using a

Moore-Penrose inverse - see also Remark P1.2.

Results for both experiments, at both frequencies, are reported in Table 7.

[Insert Table 7 somewhere here]

It is well known that controlling the procedure-wise error by a Bonferroni correction can be

rather conservative. In our case, the values of test statistics (Table 7) can be contrasted with

the critical values to be used for single hypothesis testing (reported in Table 6 as cv1), which

is the least conservative approach. When using a 5% level, results are exactly the same. The

only exception is the test for the stability of the second eigenvector, x2, when using weekly data,

where the null of no change is now rejected at 5%. A marginal discrepancy can be observed in

the �rst panel of Table 7, when testing for the constancy of the diagonal elements of � with

weekly data. When using cv1 as critical values, two maturities (the 30 months and the 3 years

ones) now appear to have a break. The rest of the results (especially the absence of breaks in

monthly data) is the same as when using a Bonferroni correction.

Table 7 shows an interesting discrepancy between monthly and weekly data. Monthly data,

as a whole, have a stable covariance structure over time: no changes are present either in the

volatilities of the maturities, or in any of the principal components. The only exception is �3, the

volatility of the curvature, which has a break signi�cant at 10%. The second and third panel of

the table show that the principal component structure has a change in the size of the curvature,
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signi�cant at 5%. The corresponding estimated breakdate, selected, according to Remark T4.2,

as the maximizer of the CUSUM statistic, is January 2008. Table 8 and Figure 2 report the

proportion of the total variance explained by each principal component before and after this

date, and the eigenvectors of the �rst and third principal component, before and after mid-April

2008, respectively.

[Insert Table 8 and Figure 2 somewhere here]

As far as weekly data are concerned, there is evidence of instability in the covariance struc-

ture. At a �macro� level, the variances of longer maturities (from 4 years onwards) change,

whilst the variances of shorter maturities are constant. For most maturities, the breakdate is

around the �rst week of December 2007. This is expected, since December 2007 is generally

associated with the deepening of the recent recession. It is interesting to note that the longest

maturity, the 10-year one, has a break at around the last week of August 2008. As far as prin-

cipal components are concerned, the second panel of Table 7 shows that whilst the volatility

of slope and curvature does not change over time, the loading of the level changes at the �rst

week of December 2007, consistently with the �ndings for the variances. As the third panel of

the table shows, the loadings of principal components are subject to change: the eigenvectors

corresponding to level and curvature change signi�cantly around the third and the last weeks

of March 2008 respectively (possibly due to an �attraction�e¤ect of the variance of the 10-year

maturity). The loading of the second principal component has a change, signi�cant at 10%, at

around the last week of June 1999. A closer look at the target FED fund rate reveals that June

1999 was the �rst time since 1995 (with an exception in 1997) that the FED increased the rate,

starting a trend that would continue until late 2000. This does not rule out the possibility that

other, less impactful breaks exist. The presence of signi�cant changes in the loadings of each

principal component as a result of the 2008 recession is a di¤erent feature to what Perignon

and Villa (2006) found in the time period they consider, when eigenvectors were not subject to

changes over time.
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6 Conclusions

This paper proposes a test for the null of no breaks in a covariance matrix and its eigensystem.

The assumptions under which we derive our results are su¢ ciently general to accommodate for

a wide variety of datasets. We show that our test is powerful versus alternatives as close to the

boundaries of the sample as O (ln lnT ). Results are extended to testing for the stability of the

eigensystem. We also derive a correction for the �nite sample bias when estimating eigenvalues

and eigenvectors, which can be relatively severe for large n or small T . As shown in Section

4, the large sample properties for the test are satisfactory: the correct size is attained under

various degrees of serial dependence, and the test exhibits good power. As far as the small

sample performance is concerned, some trimming at the beginning/end of sample is required

in order for the test to have the correct size, at least in �nite samples. Finally, our theory is

applied to the US term structure of interest rates, using 18 maturities and monthly and weekly

data. We �nd evidence of instability in the volatility of the level factor, and in the loadings of

all factors, during the �rst half of 2008.

The results in this paper suggest several avenues for research. The test discussed here is

a stability test for the null of no change in a covariance matrix. However, we can extend our

framework to the case of multiple breaks, along the same lines as in Bai (1997). The test can

be applied sequentially, i.e. by splitting the sample around an estimated breakdate and test for

breaks in each subsample. Also, results are derived under the minimal assumption that the 4-th

moment exists. Aue et al. (2009) provide a discussion as to how to proceed if this is not the case,

which involves fractional transformations of the series, viz. y�it for some � 2 (0; 1), although

the optimal choice of � is not straightforward. An open issue, moreover, is the impact of the

dimensionality, p/n, on the properties of the test. Corollary 2 is a �rst step in this direction.

Finally, the issue of controlling the size is important, since our procedure involves n tests for

eigenvalues and for eigenvectors. We address this in Section 5 by proposing a Bonferroni-type

correction. Alternative methodologies could be explored (see e.g. Lehmann and Romano, 2005).

These issues are currently under investigation by the authors.
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Appendix A: Preliminary Lemmas

Lemma 1 Let B and � be non-negative random variables, with jBjq�=q�1 < 1 and j�jq� < 1,

where q� = q
�
1 + �

2

�
, q � 1 and � > 0. Assume jB�jr <1 for r > 2 + �. Then

jB�j2+� �
h
j�jr�2q� jBjr�2q�=q�1

i1=2(r�1)
� (23)�

jB�j[2r(1+�)��r
2]=[2+�]

r + jB�jrr
�1=2(r�1)

:

Proof. The proof is fairly similar to Gallant and White (1988; see Davidson, 2002a, p. 271).

Let C =
h
j�jq� jBjq�=q�1 jB�j

�r
r

i 1
1�r
, and de�ne B1 = IfB��CgB. By construction, jB�j2+� �

jB1�j2+� + j(B �B1) �j2+�. We have

jB1�j2+� =

�Z
B��C

(B�)2+� dP

� 1
2+�

� C1=2
�Z

B��C
(B�)

2+�
2 dP

� 2
2+�

1
2

� C1=2
h
j�jq� jBjq�=q�1

i1=2
;

where the last passage follows from Holder�s inequality. Also, since r > 2 and (B�)r > Cr,

j(B �B1) �j2+� =

�Z
B�>C

(B�)2+� dP

� 1
2+�

� C1�
r
2

�Z
B�>C

(B�)r dP

� r
2+�

1
r

� C1�
r
2 jB�j

r
2+�
r :

Substituting for C gives (23).

Remarks

1. The Lemma is an extension of Lemma 4.1 in Gallant and White (1988, p. 47). Their

result is derived for the L2-norm, and the method of proof here is exactly the same.

2. Equation (23) is very similar to Lemma 17.15 in Davidson (2002a, p. 271). Particularly,

j�jr�2q� , for some q
� < 2, is raised to the power of r � 2: this is exactly the same as in
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Lemma 17.15 in Davidson (2002a). This is an important consequence of the Lemma.

Given a non-Lipschitz transformation of a NED sequence ut, say � (ut), setting umt =

E [utjut�m; :::; ut+m], one would look for a bound to j� (ut)� � (umt )j2+�. This would be

majorized by some suitably chosen jB (ut; umt ) � (ut; umt )j2+�; since normally one would

choose � (ut; umt ) as the taxicab distance, it is j�j
r�2
q� that gives the size of � (ut).

Lemma 2 Under Assumption 1, wt is L2+�-NED of size �0 > 1
2 on fvtg

+1
t=�1.

Proof. The proof follows similar passages as in Example 17.17 in Davidson (2002a, p. 273);

for simplicity, assume n = 1. Let xat = wt and xbt = E [wtjwt�m; :::; wt+m]; and de�ne, in a

similar fashion, yat = yt and ybt = E [ytj yt�m; :::; yt+m]. Then

���xat � xbt���
2+�

�
����jyat j+ ���ybt ���� ����yat � ybt �������

2+�

=
���B �yat ; ybt� ��yat ; ybt����

2+�
= jB�j2+�

Lemma 1 entails that
��xat � xbt��2+� is bounded by �j�jr�2q� jBjr�2q�=q�1

�
jB�j[2r(1+�)��r

2]=[2+�]
r + jB�jrr

��1=2(r�1)
.

It holds that j�jr�2q� < 1 for q� � 2r, and thus for q < 2r; also, jBjr�2q�=q�1 < 1 if q� � 4
3 , i.e.

q > 4
3 . Since, for q

� � 2, j�jq� � j�j2 � M�, where M is a constant, we have
��xat � xbt��2+� =

jxat � E [wtjwt�m; :::; wt+m]j2+� � M 0 ��r�2�1=2(r�1) = M 0�0. Assumption 1(ii) entails that

�0 > 1
2 .

Lemma 3 Under Assumption 1, vec
�
�wt �w

0
t�l � E

�
�wt �w

0
t�l
��
is L1+�=2-NED of size �0 on fvtg+1t=�1,

for every l.

Proof. The Lemma is an application of Theorem 17.9 in Davidson (2002a, p. 268), where

L1- and L2-norms are replaced, respectively, by L1+�=2- and L2+�-norms.

Lemma 4 Under Assumption 1 and 2(i)(b)-(ii), vec [ �wt �w0t � E ( �wt �w0t)] is L2+�-NED of size �0

on fvtg+1t=�1.
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Proof. The proof is very similar to that of Lemma 2. Assuming n = 1 and letting !t = w2t

���!at � !bt���
2+�

�
����xat + xbt��xat � xbt����

2+�

=

�����jyat j3 + ���ybt ���3 + jyat j2 ���ybt ���+ jyat j ���ybt ���2�����yat � ybt �������
2+�

=
���B �yat ; ybt� ��yat ; ybt����

2+�
= jB�j2+� ;

so that the Lemma follows from Assumption 2(ii) and Lemma 1.
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Appendix B: Proofs

Proof of Theorem 1. The proof of (1) is essentially based on checking the validity of the

assumptions in Theorem 29.6 in Davidson (2002a, p. 481) for the normalized sequence �wT;t =

V
�1=2
�;T �wt. In light of Lemma 2, �wT;t, for given values of � and r in Assumption 2, is L2-NED on

the strong mixing base fvtg+1t=�1 with size �0 > 1
2 , which entails the validity of Assumption (c)

in Davidson (2002a; Theorem 29.6). Assumption 1(ii) implies that E ( �wT;t) = V
�1=2
�;T E ( �wt) = 0.

Assumption (b) in Theorem 29.6 in Davidson (2002a, p. 482) follows from Assumption 1(ii)

and from noting that, in light of Assumption 1(i), suptE
�
k �wtkr=2

�
<1. Assumptions (d) and

(f) in Theorem 29.6 in Davidson (2002a) are implied by Assumption 1(iii). Finally, Assumption

(e) follows from the LLN entailed by Assumptions 1(iii). Thus, (1) holds.

As far as (2) is concerned, its proof is based on Eberlein (1986). Lemma 2 entails that �wt is

a zero-mean L2+�-mixingale of size �00 > 1
2 . Letting =m = f �w1;:::; �wmg and STm �

Pm+T
t=m+1 �wt,

(2) follows if kE [STmj =m]k2 < 1 and kE [SiTmSjTmj =m] � E [SiTmSjTm]k1 = O
�
T 1��

�
for

� > 0 and all i, j. Both conditions can be proved following the same passages as in Corradi

(1999, pp. 651-652).

Proof of Theorem 2. The proof is similar to the proof of Lemma 2.1.1 in Csorgo and

Horvath (1997, p. 74-75). In view of Lemma 3, a SLLN holds (see Ling, 2007, Theorem 2.1),

whereby for all l

	̂l;bT�c �	l =
1

bT�c

bT�cX
t=1

vec
�
�wt �w

0
t�l � E

�
�wt �w

0
t�l
��
= oa:s:

 
1

bT�c�
0

!
;

similarly, �̂� �� = oa:s:

�
bT�c��

0�
, since wt also satis�es the assumptions needed for Theorem

2.1 in Ling (2007). This entails that, for any " > 0 and "0 > 0, there is an integer gT = gT ("; "
0)

such that

P

"
sup

gT�bT�c�T

1

bT�c�
0

	̂l;bT�c �	l > "

#
� "0;

P

"
sup

1�bT�c�T�gT

1

bT�c�
0

	̂l;bT�c �	l > "

#
� "0:
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These yield sup1�bT�c�T
	̂l;bT�c �	l = op

�
1
T �

0

�
. This proves (4).

In order to prove (5), write

sup
1�bT�c�T

 ~V�;� � V� � sup
1�bT�c�T

V̂�;� � V�
+2 sup

1�bT�c�T

mX
l=0

�
1� l

m

�	̂l;bT�c �	l + 	̂l;1�bT�c �	l
+2

mX
l=1

l

m
k	lk+ 2

1X
l=m+1

k	lk

= I + II + III + IV: (24)

Assumption 2(i)(b) entails IV = o (m�s). Equation (4) ensures that I = op

�
T��

0
�
; as far as

II is concerned, this is of the same order as

max
1�l�m

E

"
sup

1�bT�c�T

	̂l;bT�c + 	̂l;1�bT�c �	l
#

mX
l=1

�
1� l

m

�
= O

�
1

T �
0

�
O (m) ; (25)

�nally, in light of Assumption 2(i)(b), III = 2m�1O (1) = O
�
m�1�. Thus, (5) follows.

Consider (6). We still use (24) in our proof. The orders of magnitude of I, III and IV are

the same as above. Turning to II, similar passages as in the proofs of Theorem 1 yield an IP

for each l, so that sup1�bT�c�T
	̂l;bT�c �	l = Op

�
T�1=2

�
. Thus (25) becomes

max
1�l�m

E

"
sup

1�bT�c�T

	̂l;bT�c + 	̂l;1�bT�c �	l
#

mX
l=1

�
1� l

m

�
= O

�
1p
T

�
O (m) :

Putting all together, (5) follows.

Proof of Proposition 1. The estimation error in �̂ can be represented as a small pertur-

bation of �, with �̂� = � +
�
�̂� � �

�
. Recall that in light of Theorem 1, supbT�c

�̂� � � =
Op
�
T�1=2

�
. The eigenvalue problem for the perturbed matrix is

h
�+

�
�̂� � �

�i
[xi + (x̂i;� � xi)] =

h
�i +

�
�̂i;� � �i

�i
[xi + (x̂i;� � xi)] : (26)

After expanding the product, consider the terms
�
�̂� � �

�
(x̂i;� � xi) and

�
�̂i;� � �i

�
(x̂i;� � xi).

It holds that �̂i;� � �i = Op
�
T�1=2

�
uniformly in � . This is because � is symmetric, and there-

32



fore Corollary 6.3.4 in Horn and Johnson (1995, p. 367) entails that
����̂i;� � �i��� � �̂� � �.

Equation (1) yields the result. Also, it holds that x̂i;��xi = Op
�
T�1=2

�
uniformly in � . This fol-

lows from the sin� Theorem in Davis and Kahan (1970),whereby
X̂� �X

 � kXk �̂� � �.
Thus,

�
�̂� � �

�
(x̂i;� � xi) and

�
�̂i;� � �i

�
(x̂i;� � xi) are Op

�
T�1

�
uniformly in � ; omitting

them, (26) can be written as

� (x̂i;� � xi) +
�
�̂� � �

�
xi = �i (x̂i;� � xi) +

�
�̂i;� � �i

�
xi: (27)

The xis are a complete (and orthonormal) basis. Thus, given an arbitrary set of constants

�j;� , it holds that x̂i;� � xi =
Pn

j=1 �j;�xj . Recalling that �xi = �ixi, and premultiplying (27)

by x0i we obtain �i�i;� +x
0
i

�
�̂� � �

�
xi = �i�i;� +

�
�̂i;� � �i

�
, which entails (7). To prove

(8), one can multiply (27) by any x0k, whence �k�k;� + x0k

�
�̂� � �

�
xi = �i�k;� . This yields

�k;� =
x0k(�̂���)xi

�i��k , under Assumption 2 which stipulates that �i 6= �k for all i 6= k. From

x̂i;� � xi =
Pn

j=1 �j;�xj we obtain x̂i;� � xi =
P

k 6=i
x0k(�̂���)xi

�i��k xk + �i;�xi; (8) follows from

setting �i;� = 0.

We now turn to deriving the bias for �̂i;� � �i, presented in (9). Expanding (26) and

premultiplying by x0i we obtain

�̂i;� � �i = x0i

�
�̂� � �

�
x+i �

�
�̂i;� � �i

�
x0i (x̂i;� � xi) + x0i

�
�̂� � �

�
(x̂i;� � xi)

= x0i

�
�̂� � �

�
xi � I + II:

From (8), I = x0i
P

k 6=i
x0k(�̂���)xi

�i��k xk = 0. Also (focusing on �rst order terms only):

II =
�
x0i 
 (x̂i;� � xi)

0� vec��̂� � ��
=

24x0i 
X
k 6=i

x0k
�i � �k

x0k

�
�̂� � �

�
xi

35 vec��̂� � ��
=

X
k 6=i

�
x0i 


x0k
�i � �k

� h
vec

�
�̂� � �

�i h
vec

�
�̂� � �

�i0
[xk 
 xi] :
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The bias of �̂i;� � �i is given by II, with

E
h
Tx0i

�
�̂� � �

�
(x̂i;� � xi)

i
(28)

=
X
k 6=i

�
x0i 
 x0k
�i � �k

�
E

�h
vec

�
�̂� � �

�i h
vec

�
�̂� � �

�i0�
[xk 
 xi]

=
X
k 6=i

(x0i 
 x0k)V� (xk 
 xi)
�i � �k

:

The bias for x̂i;� �xi can be derived from (8) following similar passages. Using (26), �k�k;�+

x0k

�
�̂� � �

�
xi +x

0
k

�
�̂� � �

�
(x̂i;� � xi) = �i�k;�+

�
�̂i;� � �i

�
�k;� , whence

�k;� =
x0k

�
�̂� � �

�
x+i + x

0
k

�
�̂� � �

�
(x̂i;� � xi)

�i � �k +
�
�̂i;� � �i

�
=

x0k

�
�̂� � �

�
xi + x

0
k

�
�̂� � �

�
(x̂i;� � xi)

(�i � �k)
+ op (1) :

Thus, since x̂i;��xi =
P

k 6=i �k;�xk, it holds that x̂i;��xi =
P

k 6=i
x0k(�̂���)xi

�i��k xk+
P

k 6=i
x0k(�̂���)(x̂i;��xi)

�i��k xk

+op (1). The bias is given by the second term, with

E

24TX
k 6=i

x0k

�
�̂� � �

�
(x̂i;� � xi)

�i � �k
xk
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=
X
k 6=i

X
j 6=i

�
x0k 
 x0j

�
E

�
T
h
vec

�
�̂� � �

�i h
vec

�
�̂� � �

�i0�
(xj 
 xi)

(�i � �k) (�i � �j)
xk

=
X
k 6=i

X
j 6=i

�
x0k 
 x0j

�
V� (xj 
 xi)

(�i � �k) (�i � �j)
xk:

Proof of Theorem 3. The proof of (13) follows from (1), Theorem 2 and the CMT.

As far as (14) is concerned, the proof is based on the proof of Theorem A.4.1 in Csorgo and

Horvath (1997, p. 368-370). Here we summarize the main steps, using, as a leading exam-

ple, _� (�) = 1p
T�(1��)

h
�S (�)0 ~V �1�;�

�S (�)
i1=2

, where �S (�) = S (�) � bT�c
T S (T ). We also de�ne

�� (�) = 1p
T�(1��)

�
�S (�)0 V �1�

�S (�)
�1=2

; further, letting B1i (�) be a sequence of standard, inde-
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pendent Brownian bridges for i = 1; :::; n2, we de�ne M (�) =
hPn2

i=1
B21i(�)
�(1��)

i1=2
. The Darling-

Erdos Theorem (see e.g. Corollary A.3.1 in Csorgo and Horvath, 1997, p. 366) states that

P
h
aT sup 1

T
���1� 1

T
M (�) � x+ bT

i
= e�2e

�x
, where the norming constants aT and bT are de-

�ned in the Theorem. The proof of (14) is based on showing that

����� sup
1
T
���1� 1

T

_� (�)� sup
1
T
���1� 1

T

M (�)

����� = op

�
1p
ln lnT

�
: (29)

We �rst note that, since, in view of Theorem 2, supbT�c
 ~V�;� � ~V�

 = op

�
1p
ln lnT

�
, (29) can

be rewritten as ����� sup
1
T
���1� 1

T

�� (�)� sup
1
T
���1� 1

T

M (�)

����� = op

�
1p
ln lnT

�
: (30)

In order to show (30), note �rst that (2) yields the (weak) result

sup
1
T
���1� 1

T

����� (�)�M (�)
��� = op

�p
ln lnT

�
: (31)

Indeed, (2) entails

sup
u(T;")��� 1

2

[bT�c]�
����� (�)�M (�)

��� = op (1) ; (32)

sup
1
2
���1�u(T;")

[bT (1� �)c]�
����� (�)�M (�)

��� = op (1) ; (33)

for all sequences u (T; ") such that u (T; ") ! 0 and Tu (T; ") ! 1 as T ! 1; here, " is a

number between 0 and 1. Choosing Tu (T; ") = e(lnT )
"
, and applying Theorem A.3.1 in Csorgo

and Horvath (1997, p. 363) it holds that

1p
2 ln lnT

sup
1
T
���u(T;")

M (�)
p!
p
"; (34)

1p
2 ln lnT

sup
1�u(T;")���1� 1

T

M (�)
p!
p
":
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Hence, from (31)

1p
2 ln lnT

sup
1
T
���u(T;")

�� (�)
p!
p
";

1p
2 ln lnT

sup
1�u(T;")���1� 1

T

�� (�)
p!
p
":

De�ning � (T ) and � (T ) as sup1�bT�c�T M (�) = M [� (T )] and sup1�bT�c�T �� (�) = �� [� (T )],

the relationships above entail P [Tu (T; ") � � (T ) ; � (T ) � 1� u (T; ")] = 1 as T ! 1. Us-

ing (34) as an illustrative example, this follows from the fact that sup1�bT�c�Tu(T;")M (�) is

essentially �1 since, as T !1 and "! 0

P

"
aT sup

1
T
���u(T;")

�� (�)� bT � �K
#
= P

��p
"� 1

�
ln lnT � �K

�
= 0;

for some K > 0. Hence, (32) and (33) entail

sup
1
T
���1� 1

T

����� (�)�M (�)
��� = op

�
e�� ln

" T
�
;

and since
���sup 1

T
���1� 1

T

�� (�)
���� sup 1

T
���1� 1

T
M (�)

��� � sup 1
T
���1� 1

T

����� (�)�M (�)
���, (30) fol-

lows in view of
p
ln lnT e�� ln

" T ! 0.

Proof of Corollary 2. Consider T�1
h
S (�)� bT�c

T S (T )
i0
~V �1�;�

h
S (�)� bT�c

T S (T )
i
. It

holds that ~V �1�;� = V �1� � V �1�

�
~V�;� � V�

�
V �1� +o

� ~V�;� � V��; thence
1

T

�
S (�)� bT�c

T
S (T )

�0
~V �1�;�

�
S (�)� bT�c

T
S (T )

�
=

1

T

�
S (�)� bT�c

T
S (T )

�0
V �1�

�
S (�)� bT�c

T
S (T )

�
+

1

T

�
S (�)� bT�c

T
S (T )

�0
V �1�

�
V̂�;� � V�

�
V �1�

�
S (�)� bT�c

T
S (T )

�
= I� + II� :

Write I� =
Pn2

i=1w
2
i;� , where wi;� is de�ned as the i-th element of V

�1=2
�

h
S (�)� bT�c

T S (T )
i
.

The 8-th moment condition on yt in Assumption 2(ii) entails, through Lemma 4, that a SIP

holds whereby the wi;� s can be approximated, uniformly in � , by an i.i.d. normal sequence, say
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w�i;� , with zero mean and unit variance, and approximation error of order Oa:s:
�
T��

�
. Thus

1p
2n

n2X
i=1

�
w2i;� � 1

�
=

1p
2n

n2X
i=1

�
w�2i;� � 1

�
+

1p
2n

n2X
i=1

�
w2i;� � w�2i;�

�
= Ia;� + Ib;� :

Remark 2.1 in Aue et al. (2009) states that supbT�c Ia;� = Op (1). From the SIP, supbT�c Ib;� =

nOp

�
T��

0
�
. We now turn to II� =

Pn2

i=1

Pn2

j=1wi;�wj;�aij;� ; aij;� is element in position (i; j) of

matrix V �1=2�

�
~V�;� � V�

�
V
�1=2
� . Theorem 2 states that aij;� = Op

�
mp
T

�
+ Op

�
1
m

�
, uniformly

in � . For some constant M , supbT�c II� � supbT�c
Pn2

i=1

Pn2

j=1 jwi;�wj;� j jaij;� j � max1�i;j�n

supbT�c jaij;� j supbT�c
Pn2

i=1

Pn2

j=1 jwi;�wj;� j � max1�i;j�n supbT�c jaij;� j supbT�c
�Pn2

i=1 jwi;� j
�2
�

M max1�i;j�n supbT�c jaij;� j supbT�c
Pn2

i=1w
2
i;� =

h
Op

�
mp
T

�
+Op

�
1
m

�i
Op
�
n2
�
. Thus,

�p
2n
��1

supbT�c II� = Op

�
nmp
T

�
+ Op

�
n
m

�
.

Proof of Theorem 4. In order to prove (17), we �rst show that, under H(T )
a , sup1�bT�c�TV̂�;� � V� = op (1). For simplicity, we focus on Assumption 2(i) and on the full sample

estimator V̂�. Consider �̂; it holds that vec
�
�̂
�
= vec (�t)+

h
T�k0;T

T � I (t � k0;T )
i
�T +op (1),

where the op (1) term comes from a LLN. Therefore

V̂� =
1

T

TX
t=1

�wt �w
0
t �

1

T

TX
t=1

�wt

�
T � k0;T

T
� I (t � k0;T )

�
�0T

� 1
T

TX
t=1

�
T � k0;T

T
� I (t � k0;T )

�
�T �w

0
t

+
1

T

TX
t=1

�
T � k0;T

T
� I (t � k0;T )

�2
�T�

0
T

= I + II + III + IV:

The LLN entails that I
p! V�; II and III have the same order of magnitude. Particularly, sincePT

t=1 �wt

h
T�k0;T

T � I (t � k0;T )
i
= Op

�p
T
�
, II = Op

�
k�T kp

T

�
. Finally

1

T

TX
t=1

�
T � k0;T

T
� I (t � k0;T )

�2

=
1

T

TX
t=1

�
T � k0;T

T

�2
� 2 1

T

�
T � k0;T

T

�2
+
1

T

TX
t=1

I (t � k0;T )

=
k0;T
T

T � k0;T
T

;
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thus, IV = Op

�
k0;T
T k�T k2

�
, which is op (1) under H

(T )
a .

After showing the consistency of V̂�, we turn to �2T (�). Set, for simplicity, V� = In2 , so that

�2T (�) =
T

bT�cbT (1��)c
~S (�)0 ~S (�) +op (1). Under H

(T )
a

s
T

bT�c bT (1� �)c
~S (�) =

s
T

bT�c bT (1� �)c

24bT�cX
t=1

�wt �
bT�c
T

TX
t=1

�wt

35
+�T

s
T

bT�c bT (1� �)c

24bT�cX
t=1

I (t � k0;T )�
bT�c
T

TX
t=1

I (t � k0;T )

35 = I + II;

where I (�) is the indicator function. The sequence �wt is zero mean, and it satis�es the assump-

tions relevant for Theorem 1; thus, I follows the null distribution as T ! 1. As far as the

non-centrality parameter II is concerned,

II = �T

s
T

bT�c bT (1� �)c

��
bT (1� �)c

T
k0;T

�
I (k0;T < bT�c) +

�
T � k0;T

T
bT�c

�
I (k0;T � bT�c)

�
;

(35)

with

sup
1�bT�c�T

�T

s
T

bT�c bT (1� �)c

��
bT (1� �)c

T
k0;T

�
I (k0;T < bT�c)

+

�
T � k0;T

T
bT�c

�
I (k0;T � bT�c)

�
= �T

s
k0;T

�
T � k0;T

T

�
= O

�
�T

p
k0;T

�
:

Let �0 denote a random variable with the same distribution as supp�bT�c�T�p �T (�) under H0.

Under H(T )
a

P

"
sup

p�bT�c�T�p
�T (�) > c�

#
= P

"
�0 > c� � k�T k

s
k0;T

�
T � k0;T

T

�#
;

by de�nition, as T !1, c� =
p
ln lnT +o

�p
ln lnT

�
. If (16) holds, c���T

r
k0;T

�
T�k0;T

T

�
!

�1 as T !1, whence (17) follows.
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p 1 2 3 5 10 20
T

50
2:656
2:919
3:423

3:156
3:398
3:898

3:459
3:705
4:212

3:980
4:211
4:649

4:935
5:191
5:610

6:230
6:444
6:940

100
2:759
3:035
3:524

3:234
3:476
3:945

3:590
3:832
4:295

4:094
4:332
4:779

5:032
5:271
5:690

6:361
6:575
6:956

200
2:852
3:128
3:700

3:287
3:499
4:023

3:655
3:901
4:347

4:152
4:376
4:849

5:098
5:311
5:761

6:439
6:642
7:006

500
2:917
3:187
3:682

3:399
3:664
4:119

3:736
3:958
4:395

4:256
4:495
4:908

5:163
5:374
5:728

6:518
6:718
7:153

1000
2:969
3:229
3:711

3:441
3:688
4:119

3:795
4:010
4:444

4:274
4:510
4:965

5:246
5:462
5:906

6:529
6:751
7:157

2000
3:306
3:287
3:762

3:483
3:714
4:213

3:826
4:057
4:502

4:364
4:588
5:025

5:266
5:460
5:935

6:604
6:823
7:203

p 30 40 50 75 100 200
T

50
7:273
7:471
7:861

8:084
8:281
8:698

8:846
9:046
9:481

10:440
10:676
11:094

11:797
12:001
12:391

15:941
16:167
16:554

100
7:369
7:576
7:961

8:198
8:417
8:853

8:950
9:154
9:566

10:542
10:738
11:082

11:898
12:111
12:483

16:019
16:205
16:611

200
7:445
7:641
8:071

8:272
8:480
8:920

9:028
9:267
9:594

10:616
10:818
11:241

11:934
12:155
12:532

16:099
16:270
16:644

500
7:500
7:707
8:078

8:367
8:581
8:944

9:089
9:283
9:637

10:700
10:915
11:282

12:045
12:238
12:618

16:180
16:385
16:751

1000
7:544
7:746
8:170

8:421
8:604
9:027

9:165
9:353
9:771

10:729
10:956
11:352

12:095
12:277
12:711

16:197
16:383
16:786

2000
7:595
7:770
8:188

8:436
8:636
9:009

9:186
9:377
9:750

10:783
10:968
11:374

12:117
12:307
12:690

16:251
16:456
16:830

p 300 400 500 750 1000
T

50
19:103
19:296
19:702

21:787
21:971
22:401

24:127
24:344
24:701

29:167
29:373
29:735

33:420
33:628
34:009

100
19:199
19:416
19:828

21:893
22:070
22:458

24:231
24:446
24:856

29:280
29:466
29:845

33:507
33:703
34:119

200
19:288
19:486
19:855

21:972
22:152
22:581

24:292
24:498
24:870

29:351
29:539
29:915

33:575
33:779
34:144

500
19:357
19:565
19:945

22:026
22:232
22:589

24:377
24:538
24:922

29:400
29:583
29:899

33:636
33:832
34:225

1000
19:382
19:587
19:918

22:081
22:273
22:617

24:415
24:604
24:954

29:461
29:636
30:018

33:685
33:868
34:233

2000
19:407
19:607
20:021

22:125
22:291
22:701

24:463
24:643
25:021

29:500
29:666
30:008

33:724
33:906
34:289

Table 1. Approximated critical values c0�. We report 90% , 95% and 99% quantiles, computed using (18). In the
computations, 5000 replications are used; critical values could be calculated for all combinations of p (number of hypotheses
under the null), and T (sample size). The code is available upon request.
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n T

(�; #) (0; 0) (0:5; 0) (0; 0:5) (0;�0:5) (0:5; 0:5)

3

50

100

200

500

0:094

0:060

0:055

0:055

0:125

0:075

0:063

0:062

0:118

0:065

0:059

0:047

0:114

0:082

0:064

0:045

0:118

0:075

0:058

0:064

4

50

100

200

500

0:090

0:057

0:048

0:046

0:122

0:076

0:070

0:055

0:108

0:070

0:060

0:048

0:108

0:073

0:049

0:059

0:121

0:077

0:105

0:059

5

50

100

200

500

0:087

0:055

0:051

0:057

0:109

0:086

0:063

0:060

0:103

0:069

0:058

0:050

0:098

0:085

0:055

0:054

0:105

0:078

0:064

0:066

6

50

100

200

500

0:085

0:062

0:052

0:062

0:103

0:078

0:067

0:065

0:098

0:075

0:069

0:053

0:110

0:075

0:050

0:050

0:099

0:077

0:069

0:069

7

50

100

200

500

0:082

0:061

0:056

0:057

0:109

0:070

0:067

0:067

0:108

0:061

0:060

0:057

0:105

0:069

0:055

0:047

0:101

0:069

0:065

0:065

10

50

100

200

500

0:104

0:070

0:046

0:043

0:121

0:076

0:059

0:052

0:112

0:066

0:047

0:050

0:103

0:059

0:041

0:046

0:115

0:082

0:066

0:051

15

50

100

200

500

0:090

0:067

0:045

0:045

0:113

0:071

0:066

0:066

0:093

0:064

0:064

0:052

0:099

0:067

0:046

0:053

0:101

0:075

0:076

0:061

20

50

100

200

500

0:083

0:066

0:044

0:042

0:104

0:068

0:070

0:060

0:087

0:060

0:060

0:046

0:100

0:071

0:046

0:057

0:108

0:076

0:072

0:056

Table 2. Empirical rejection frequencies for the null of no changes in the largest eigenvalue of �. Data are

generated according to (19). The empirical sizes reported here have con�dence interval [0:04; 0:06].
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n
T

�
=

v u u u tl
n
ln
(
T
)

T
2
=
3

�
=

v u u u tl
n
ln
(
T
)

T
1
=
2

(
�
;
#
)

(
0
;
0
)

(
0
:5
;
0
)

(
0
;
0
:5
)

(
0
;
�
0
:5
)

(
0
:5
;
0
:5
)

(
0
;
0
)

(
0
:5
;
0
)

(
0
;
0
:5
)

(
0
;
�
0
:5
)

(
0
:5
;
0
:5
)

3

5
0

1
0
0

2
0
0

5
0
0

1
0
0
0

0
:0
5
8

0
:1
0
7

0
:2
0
0

0
:3
6
3

0
:5
7
8

0
:0
7
2

0
:0
9
3

0
:1
4
9

0
:2
2
4

0
:3
6
0

0
:0
6
5

0
:0
9
4

0
:1
5
9

0
:2
9
1

0
:4
3
8

0
:0
7
0

0
:0
9
5

0
:1
5
4

0
:2
8
0

0
:4
4
9

0
:0
8
9

0
:0
9
0

0
:1
2
0

0
:1
7
5

0
:2
8
0

0
:0
7
5

0
:1
9
1

0
:4
2
8

0
:8
4
7

0
:9
7
8

0
:0
8
6

0
:1
3
2

0
:2
7
5

0
:5
7
4

0
:8
4
3

0
:0
7
3

0
:1
4
9

0
:3
3
8

0
:7
0
9

0
:9
2
3

0
:0
8
1

0
:1
5
0

0
:3
2
7

0
:7
0
4

0
:9
2
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n T � = 0 � =
q

ln ln(T )
T 4=5

� =
q

ln ln(T )
T 2=3

� =
q

ln ln(T )
T 1=2

k = k�

3

50

100

200

500

0:075

0:070

0:060

0:057

0:073

0:126

0:189

0:271

0:106

0:207

0:365

0:666

0:175

0:434

0:825

0:996

0:052

0:066

0:094

0:467

4

50

100

200

500

0:051

0:046

0:066

0:066

0:027

0:096

0:187

0:150

0:041

0:171

0:404

0:755

0:083

0:408

0:864

1:000

0:030

0:051

0:145

0:778

5

50

100

200

500

0:018

0:030

0:051

0:057

0:010

0:072

0:162

0:326

0:019

0:156

0:401

0:789

0:046

0:388

0:896

1:000

0:023

0:077

0:251

0:965

6

50

100

200

500

0:005

0:016

0:027

0:051

0:000

0:040

0:159

0:343

0:000

0:090

0:381

0:818

0:002

0:290

0:887

1:000

0:005

0:108

0:453

1:000

7

50

100

200

500

0:000

0:004

0:018

0:050

0:000

0:022

0:108

0:319

0:000

0:046

0:318

0:832

0:000

0:186

0:873

1:000

0:000

0:149

0:721

1:000

Table 4. Empirical rejection frequencies and power for the null of no change in �. Data

are generated as i.i.d. normal with E (yty
0
t) = In under H0, and using equation (19) and

(22) under Ha.
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monthly data weekly data

mean std. dev skew kurt AR(1) ARCH(7) mean std. dev skew kurt AR(1) ARCH(7)

1m -0.035 0.438 -0.481 25.266 -0.129 0.000��� -0.007 0.159 0.119 66.052 0.151 0.000���

3m -0.035 0.366 -0.030 24.291 0.097 0.000��� -0.008 0.121 -0.664 46.650 0.324 0.000���

6m -0.036 0.295 -1.591 15.137 0.209 0.011�� -0.008 0.108 -1.525 21.640 0.215 0.000���

9m -0.037 0.274 -1.624 10.921 0.257 0.668 -0.008 0.121 -1.301 14.454 0.035 0.000���

12m -0.037 0.262 -1.188 8.251 0.286 0.989 -0.008 0.136 -1.252 16.110 -0.098 0.000���

15m -0.038 0.267 -0.851 6.835 0.268 0.972 -0.008 0.130 -0.883 9.984 -0.049 0.000���

18m -0.038 0.273 -0.549 5.589 0.242 0.957 -0.008 0.127 -0.474 6.827 -0.014 0.000���

21m -0.038 0.282 -0.323 4.695 0.210 0.962 -0.008 0.129 -0.138 5.693 -0.003 0.000���

24m -0.038 0.294 -0.160 4.086 0.172 0.974 -0.008 0.134 0.026 5.298 -0.012 0.000���

30m -0.038 0.303 -0.043 3.937 0.146 0.984 -0.008 0.139 0.080 4.930 -0.022 0.000���

3y -0.038 0.314 0.052 3.982 0.118 0.980 -0.007 0.144 0.101 4.741 -0.029 0.000���

4y -0.036 0.319 0.060 4.198 0.073 0.970 -0.007 0.149 0.041 4.560 -0.045 0.000���

5y -0.035 0.323 0.116 4.706 0.037 0.988 -0.006 0.152 0.007 4.486 -0.051 0.000���

6y -0.033 0.321 0.140 5.151 0.033 0.994 -0.006 0.152 -0.029 4.555 -0.052 0.000���

7y -0.032 0.320 0.144 5.560 0.023 0.995 -0.005 0.152 -0.028 4.596 -0.049 0.000���

8y -0.031 0.318 0.138 5.868 0.017 0.994 -0.005 0.152 -0.033 4.776 -0.044 0.000���

9y -0.030 0.318 0.112 6.251 0.009 0.992 -0.005 0.151 -0.063 4.968 -0.047 0.000���

10y -0.030 0.318 0.048 6.653 -0.001 0.990 -0.005 0.151 -0.059 4.946 -0.046 0.000���

Table 5. Descriptive statistics for monthly and weekly data. We report the mean of the returns, the

standard deviation, the skewness and the kurtosis, the AR(1) coe¢ cient and the p-value of the ARCH(7)

test for the returns - �, ��, and ��� denote rejection of the null of no ARCH e¤ectes at 10%, 5% and 1%

levels respectively.
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level 10% 5% 1%

(T; p)

cv1 2:8044 3:0716 3:5758

(163; 1) cv3 3:1987 3:4222 3:9344

cv18 3:7843 3:9690 4:1273

cv1 2:9471 3:1891 3:6379

(732; 1) cv3 3:3266 3:5153 3:8789

cv18 3:7779 4:0051 4:5603

cv1 6:1897 6:4075 6:7747

(163; 18) cv3 6:5068 6:6486 7:0053

cv1 6:3066 6:5202 6:9209

(732; 18) cv3 6:6288 6:8040 7:1498

Table 6. Critical values. In the Table, the notation cvN refers to the critical value to be used when N

hypotheses are being tested for, in order to have a procedure-wise level of 10%, 5% and 1% respectively.

The panels with (T; p) = (163; 1) and (732; 1) contain critical values for unidimensional tests (monthly and

weekly frequencies respectively), and therefore are used to test for changes in eigenvalues or when

verifying the stability of the diagonal elements of � one at a time. Panels where (T; p) = (163; 1) and (732; 1)

contain critical values for tests with 18 hypotheses under the null, and thus are designed for tests for the

stability of one eigenvector.
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H0 : �ii constant H0 : �i constant H0 : xi constant

i

monthly weekly monthly weekly monthly weekly

1m 2:6989 2:8136

3m 2:7656 3:7004 �1 1:6921
3:7156��

[1st week, 12/2007]
x1 4:2950

7:1268��

[3rd week, 03/2008]

6m 2:7394 3:1770

9m 2:3924 2:3132 �2 2:5513 2:8518 x2 4:6617
6:7893�

[last week, 06/1999]

12m 1:5350 3:1266

15m 1:4991 2:8294 �3
3:4328��

[01/2008]
2:7495 x3 5:0185

7:0000��

[last week, 03/2008]

18m 1:6467 2:9063

21m 1:8065 3:0928

24m 1:9827 3:1274

30m 2:0718 3:3169

3y 2:0815 3:5926

4y 1:9314
4:0180��

[3rd week, 09/2007]

5y 1:8964
4:1170��

[1st week, 12/2007]

6y 1:8369
4:2779��

[1st week, 12/2007]

7y 1:7677
4:2595��

[1st week, 12/2007]

8y 1:9601
4:3342��

[1st week, 12/2007]

9y 2:1046
4:3549��

[1st week, 12/2007]

10y 2:1967
4:4386��

[last week, 08/2008]

Table 7. Tests for changes in the variances of the term structure; in the volatilities of each principal

component; and in the loadings of each principal component. Rejection at 10%, 5% and 1% levels are

denoted with �, �� and ��� respectively. Where present, numbers in square brackets are the estimated

breakdates, de�ned as in Remark T4.2.
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monthly data weekly data

1st subsample 2nd subsample 1st subsample 2nd subsample

�1 0.790 0.729 �1 0.737 0.780

�2 0.163 0.214 �2 0.164 0.142

�3 0.029 0.047 �3 0.056 0.056

Table 8. Proportion of the total variance explained by principal components (�1, �2 and �3 refer to the

level, slope and curvature respectively) for each subsample. The samples are split based on the results in

Table 7. When considering monthly data, the sample was split at January 2008; when using weekly data,

at the �rst week of December 2007.
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Figure 1. Term structure of the US interest rates. M aturities correspond to 1m , 3m , 6m , 9m , 12m , 15m , 18m , 21m , 24m ,
30m , 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y over the period April 1997-November 2010.

F igure 2: Loadings (eigenvectors) of the �rst and third principal components, b efore and after m id-April 2008.
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