
Syracuse University Syracuse University

SURFACE SURFACE

School of Information Studies - Dissertations School of Information Studies (iSchool)

8-2012

Community Interest as An Indicator for Ranking Community Interest as An Indicator for Ranking

Xiaozhong Liu
Syracuse University

Follow this and additional works at: https://surface.syr.edu/it_etd

 Part of the Library and Information Science Commons

Recommended Citation Recommended Citation
Liu, Xiaozhong, "Community Interest as An Indicator for Ranking" (2012). School of Information Studies -
Dissertations. 73.
https://surface.syr.edu/it_etd/73

This Dissertation is brought to you for free and open access by the School of Information Studies (iSchool) at
SURFACE. It has been accepted for inclusion in School of Information Studies - Dissertations by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/it_etd
https://surface.syr.edu/ischool
https://surface.syr.edu/it_etd?utm_source=surface.syr.edu%2Fit_etd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=surface.syr.edu%2Fit_etd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/it_etd/73?utm_source=surface.syr.edu%2Fit_etd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Community Interest as An Indicator for Ranking

By
Xiaozhong Liu

xliu12@syr.edu

School of Information
Studies Syracuse University

Dissertation

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Information

Science and Technology in the Graduate School of Syracuse University

Advisor: Prof. Elizabeth Liddy

Committee members: Prof. Nancy McCracken
Prof. Jian Qin

Prof. Howard Turtle

Inside Reader: Prof. Bei Yu
Outside Reader: Prof. Jamie Callan

Committee Chair: Prof. Shui-Kai Chin

Acknowledgements

Doing research in information retrieval and natural language processing has always been

interesting. Writing dissertation, however, is not always enjoyable. Thanks to my family,

my wife Miao Chen, my parents and my lovely cat, who supported me a lot throughout

this process. Their substantive help is a key reason I could accomplish this dissertation

research.

I want to give my special appreciation to my knowledgeable advisor, Professor Elizabeth

D. Liddy. She always took time for my research, however busy she might have been.

During the past four years, she gave me incredible support and suggestions on my

research. Meanwhile, she always encouraged me to find my own research topic, and so I

can enjoy lots of academic freedom.

Professor Howard Turtle, my distinct committee member, gave me comprehensive help

for my dissertation experiment. His expertise and experience in information retrieval

contributed a lot to my dissertation experiment, from design to evaluation. His thoughtful

comments and suggestions were really valuable for my dissertation and future research.

Professor Jian Qin is not only my academic committee member, but she also taught me

what is research and how to become a real academic scholar. Her enthusiastic help was

very important for my research.

I also would like to say thank you to my Yahoo! mentors Vadim von Brzeski and Reiner

Kraft. I appreciate the great opportunity they offered to launch my preliminary

experiment at their group.

At least, I want express my thanks to Professors Nancy McCracken, Bei Yu, and Jamie

Callan. Your professional and thoughtful comments are important for my dissertation

research.

Abstract

Ranking documents in response to users' information needs is a challenging task, due, in

part, to the dynamic nature of users' interests with respect to a query. We hypothesize that

the interests of a given user are similar to the interests of the broader community of which

he or she is a part and propose an innovative method that uses social media to

characterize the interests of the community and use this characterization to improve

future rankings. By generating a community interest vector (CIV) and community interest

language model (CILM) for a given query, we use community interest to alter the ranking

score of individual documents retrieved by the query. The CIV or CILM is based on a

continuously updated set of recent (daily or past few hours) user oriented text data. The

interest based ranking method is evaluated by using Amazon Turk to against relevance

based ranking and search engines’ ranking results. Overall, the experiment result shows

community interest is an effective indicator for dynamic ranking.

TABLE OF CONTENTS

Chapter 1: Statement of the problem...1
1.1 Problem and Motivation...1
1.2 Contribution..8
1.3 Research questions and goals of this thesis..9
1.4 Limitation of thesis..11

Chapter 2: Literature review...13
2.1 Introduction...13
2.2 Information need and query (!) ..14
2.2.1 User information need and query in information retrieval...15
2.2.2 Feedback...18
2.2.3 Automatic query optimization..22
2.3 Information retrieval model (") ..23
2.3.1 Retrieval models...24
2.3.2 Vector space model...25
2.3.3 Language model..27
2.4 Ranking methodology (#) ..28
2.4.1 Popularity based ranking..29
2.4.2 Comparison of relevance and popularity based ranking..35
2.5 Topic modeling ..36
2.5.1 Word clustering and topic..36
2.5.2 Latent Semantic Indexing...39
2.5.3 Latent Dirichlet Allocation...42
2.6 Evaluation methodology..43
2.7 Conclusion...46

Chapter 3: Methodology..47
3.1 Introduction..47
3.2 Community Interest Generation...48
3.2.1 Definition of community interest..48
3.2.2 User generated textual data and community interest..51
3.3 Community Interest Ranking..54
3.3.1 Community interest topic space extraction..54
3.3.2 Community interest topic space parameter setting..57
3.3.3 Community Interest Vector (CIV) ranking..60
3.3.3.1 Community interest vector generation..60
3.3.3.2 CIV based ranking...68
3.3.4 Community Interest Language Model (CILM) ranking...68
3.4 Evaluation..72
3.4.1 Evaluation method...73

Chapter 4: Experiment..77
4.1 Introduction..77
4.2 Data collection ..77
4.2.1 Query collection..77
4.2.2 Blog posting collection..79
4.2.3 Ranking results collection..80
4.2.4 User judgments collection...81
4.3 Experiment setup...85
4.3.1 Experiment design..85
4.3.2 Algorithm parameter training..87

4.3.3 Re-ranking with baseline and community interest algorithms....................................88
4.4 Evaluation result...88
4.4.1 Parameter training result..88
4.4.2 Web search evaluation..101
4.4.3 News search evaluation..102

Chapter 5: Future Work...105
5.1 Introduction... 105
5.2 Results analysis... 105
5.2.1 Training parameter setting analysis... 105
5.2.2 Ranking performance analysis..108
5.2.3 Evaluation method analysis..112
5.3 Conclusion..114

Chapter 6: Future work...117
6.1 Introduction... 117
6.2 Future work... 117
6.2.1 Query level interest parameter setting.. 117
6.2.2 Interest training data... 117
6.2.3 Community based ranking.. 118
6.2.5 Automatic evaluation.. 119

REFERENCES..121!

!"
""

!"#$%&'()*(+%#%&,&-%(./(%"&(0'.12&,(

1.1 Problem and Motivation

With the exponential growth of the web in the past decades, we are facing a flood of information.

As a consequence, the increasing challenge of locating target information in cyberspace makes it

important to design efficient and effective information retrieval systems.

Information retrieval (IR) is typically a two-step process. First, potentially relevant documents are

identified through different retrieval models from collections, and then the retrieved documents

are ranked by algorithm(s) based on different ranking mechanisms (Trotman, 2005).

In an ideal scenario, a user types a query in a traditional IR system, and he or she may either “find

the target information” or “fail to find the target information” from the retrieved results. The two

likelihoods can be expressed as {search = success} and {search success}. Intuitively, the

probability of search success may depend on the following three essential factors:

(1) The likelihood that users can generate a high quality query to address their
information need; e.g., given an information need, the probability that the user can
generate a high quality query (query quality = high),

!: P (query quality = high | information need) (1-1)

(2) The likelihood that the system can present relevant results based on the (high
quality) query; e.g., given a query, the probability that the system can find the high
quality results (result quality = high),

": P (result quality = high | query quality = high) (1-2)

(3) The likelihood that users can find needed information in the (high quality) retrieved
results; e.g., given retrieved results, the probability that the user can locate the
needed information (search = success),

#: P (search = success | result quality = high) (1-3)

If we assume !, ", # are independent factors, the probability of achieving a successful search could

be estimated by:

#"
""

P ({search = success} | information need) $! ·"· # (1-4)

While " is fully controlled by the system, ! and # are dependent on the user side, although the

system may assist the user implicitly or explicitly to improve ! and # based on user or community

knowledge. For example, in order to improve !, a system may use automatic query expansion or

query recommendations to change the original query to better represent the user’s information

need; in the same way, other techniques, such as ranking, clustering or personalization, will

change the format or ranking of the retrieved results and help users to better locate the target

information, which will improve #.

Most research in the information retrieval field can be classified into three types based on ! " and

#. Some existing representative research topics are listed in the following table:

 Definition Controlled by Example Research Topics

! Probability of a high quality query given
an information need.

User, system Feedback, context search, query
expansion

" Probability of high quality results given
a query.

System Retrieval models (e.g. vector space
model, language model)

Probability that the user can find needed
information given retrieved results.

User, system Ranking, result visualization,
clustering, personalization

Table 1-1. Three essential factors affecting IR performance

For a given query, we could calculate the probability that result quality = high (") by employing

standard IR evaluation methods for an IR system. For instance, if we use F1 score1 (considering

both precision and recall) as the judgment of the retrieved results, it can be defined:

Retrieved result quality = high ……………. !"#$%!! !"#!$"%"&!!"#$%& ! !!

Retrieved result quality = medium ………… !! ! !"#$%!! !"#!$"%"&!!"#$%& ! !!

Retrieved result quality = low …………….. !"#$%!! !"#!$"%"&!!"#$%& ! !!

!!!"!!!"#$%!! !
! ! !"#$%&%'(! !"#$%%
!"#$%&%'(! !"#$%% !!!!!!!!"#!!!!!!! ! !!!

"" """""""""""""""""""" "
!" $%&'()*"+())",%"-%.(%+%/"(0"&1%"*%230/"21'4&%-"

5"
""

where !! and !! are the thresholds to categorize retrieved result quality.

Similarly, precision-at-document-n (Anh & Moffat, 2002) can be used as an indicator to estimate

the probability that the user can find the needed information given retrieved (and ranked) results

(#). That is, if top ranked documents are relevant (score of precision-at-document-n is high, e.g.

larger than !!!), the user is highly likely to find the needed information. Otherwise (e.g.

precision-at-document-n is smaller than !!!), # will be low.

Compared with " and #, in equation 1-4, ! is the most difficult factor because the query is the only

evidence to estimate the information need, and the “user information need” is almost

immeasurable. Moreover, the qualities of queries across different “information needs” are

incomparable. Belkin, Oddy, and Brooks (1982), for instance, suggested that the user is part of an

IR system and they asserted that the representation of the anomalous state of knowledge (ASK) is

the key component in understanding user’s information needs.

If “user information need” is defined as a perfect or optimized query, ! can be estimated by using

the distance between !"#$% and !"#$%!"#$%&'. According to Gerard Salton and Buckley (1990)

the optimal query could be defined as:

!"#$%!"#$%&' ! !
!

!!
!!!!!"#"!!"#$

! !
!!!

!!
!!!!!"#$%&%!!"#$

 (1-5)

where N is the total number of documents in the collection, n is the number of relevant documents

(N-n is the total number of non-relevant documents) and |D| is the length of the document. If a

user can input such an optimal query, it will maximize the effect of the relevant document

collection while minimizing the non-relevant document collection. This conceptually optimized

query is based on two conditions: first, formula 1-5 is a system-based (not user oriented) perfect

query for a given collection (with N documents), and second, the relevant document sub-collection

should be a known parameter (with n documents). The !"#$%!"#$%&' will lead to the best

retrieval performance given the detailed knowledge of the retrieval task and collection make-up.

In terms of Salton’s optimal query model, ! can be estimated by:

! ! !"#$%&'(!!"#$%!!"#$%!"#$%&'! (1-6)

6"
""

Figure 1-1. Distance between query and information need

Relevance feedback is the first retrieval and ranking mechanism that involved users and relevance

judgments (relevant and non-relevant information) directly. However, identifying the entire

relevant document sub-collection for !"#$%!"#$%&' is an impossible task. Existing relevance

feedback algorithms learn retrieval functions and additional query features or feature weightings

from retrieved results, and typically require training data generated from relevance judgments by

experts or users, which makes relevance feedback difficult and expensive to apply (Joachims,

2002). As a result of all of these factors, ! inevitably becomes the most challenging component

among these three factors.

From the classical IR perspective, a robust retrieval model could improve the probability of

acquiring relevant results from the system side (improve ") while an effective ranking algorithm

could help to improve the probability of locating the needed information from the user side

(improve #). As the following diagram shows:

Figure 1-2. Three fundamental problems in classical IR

In practice, ! and # are closely related to each other. Intuitively, improving !, for example, by the

!"#$%"&"'(

)*+,-".#/(

!0.1"'(

)*+,-".#/(

2/"$(

3,"$4(

!: P (query quality = high | information need)(

": P (result quality = high | query quality =
high) (

 #: P (search = success | result quality = high)(

7"
""

user’s addition of informative query terms, helps the system to generate better ranked results and

eventually improve #. Ranking performance is highly dependent on the quality of the query, as

most relevance-based ranking functions (e.g., vector space model) employ two parameters, as in

the following equation:

!"#$%#&!!"#$%!!!"#$%!!"#! ! !"#"$%&'"!!"#! !"#$%! (1-7)

In equation 1-7, IR systems rank documents by their estimation of the relevance of candidate

documents for a given user query by assigning numeric scores to each of them (such as a

probability or similarity score) (Singhal, 2001), and relevance based methods integrate retrieval

and ranking components (" and #) together. Nevertheless, as mentioned earlier, this ranking

function ignores the gap between the user information need and the query (! effect). Moreover,

for most existing web search engines or general information retrieval systems, users tend to input

short keyword queries instead of long ones (Jansen, Spink, Bateman, & Saracevic, 1998; Craig

Silverstein, Marais, Henzinger, & Moricz, 1999), and when they do use longer queries, the

query formulation process is not transparent to the users. In particular, without detailed knowledge

of the retrieval task, collection make-up, and the retrieval environment, most users can hardly

propose or update optimized query terms to satisfy the requirements of the ranking algorithms

(Salton & Buckley, 1990), and this will result in a low quality query as well as low ! and #

probability scores.

To address this problem, some more recent ranking algorithms employ statistical user centric data

(to represent user or community preferences), such as (blog) citations, page hyperlinks,

clickthrough and user search behavior data, to improve ranking performance. In these algorithms,

the ranking score is partly assigned by the popularity of the results (retrieved documents) given

statistical user data. And unlike the relevance based method, popularity based ranking (#) is

separate from the retrieval component (").

!"#$%#&!!"#$% !"#$"! !"#$% ! !"#$%&!"#$!"#! !!"#"! !"#$"!!"#"! (1-8)

As equation 1-8 shows, some new ranking algorithms use the popularity of retrieved documents to

provide user oriented ranked results, namely query-independent ranking models. A successful case

is the PageRank algorithm (Page, Brin, Motwani, & Winograd, 1998), which employs a web

hyperlink structure as an indicator to “vote for” the popularity of each page. Similarly, click

8"
""

through data, and other implicit or explicit user behavior data, are also widely used by search

engines to compute the popularity of each page (Agichtein, Brill, & Dumais, 2006; Fox, Karnawat,

Mydland, Dumais, & White, 2005; Joachims, 2002).

However, there are also some limitations to these algorithms. For instance, for a blog search

engine, a blog posting getting a high number of citations or clicks (statistical votes), may be due to

two different reasons:

1. The content of the posting is relevant and interesting (it deserves a high rank), or

2. The blogger (author of the posting) is popular in a local community (the content may be

pedestrian and does not deserve a high rank outside of this local community)

The contexnt-free (statistical user data base) ranking algorithm will favor these postings no matter

which scenario they belong to, and the ranking training data could be biased. Meanwhile, some

statistical data on user behavior, such as click through data or dwell time, are only indirectly

related to the target query.

Theoretically, choosing or integrating a popularity or relevance based ranking method is a

challenging task. When ! is low (the user cannot generate an accurate query), popularity based

ranking is more effective because of its query-independent nature. Relevance based ranking makes

more sense when ! is relatively high (the user can propose a high quality query to address her

information need, e.g., the query is similar to 1-5). Query-dependent and query-independent

ranking models are like two sides of the same coin, and because ! is an unpredictable and

intangible factor, it’s not easy to choose the most appropriate solution for each query

automatically.

If we want to improve existing ranking algorithms as well as solve the dilemmas between

relevance and popularity based ranking mechanisms, we could update the ranking function by

integrating user provided information, along with the query and documents, for example by using

relevance feedback (Rocchio, 1971), and focus on improving ! and # simultaneously, as shown in

the ranking function 1-9:

!"#$%#&!!"#$% ! !"#$%#&!!"#$%&'#! !"#! !"#$%! !"#$!!!!!!!!!!!!!!!!!!(1-9)

9"
""

Considering user based information, the query and documents the proposed ranking model has the

following merits:

1. This ranking function (1-9) considers the gap between query and user information needs,

which can improve ! and solve the problem of relevance based ranking.

2. This is a query-dependent ranking model, which computes the ranking score in terms of

query and solves the problem of popularity based ranking. (The problems associated with

relevance based and popularity based ranking will be discussed further in the next

chapter.)

Based on these assumptions, in this thesis, an exploratory investigation into how to use “user

interest”, or more generally, use “community interest” as an indicator to calculate the ranking

score of the candidate retrieved documents is proposed. Because user or community interest may

dynamically change over time, ranking, in this research, uses a computed measure of the interest

level in the global (or local) community in a specific retrieved document for a given query at a

given time.

!"#$%#&!!"#$%&'# !"#! !"#$%! !"#$! !"#$! !!"#$%$&#!!"#!!"#$%! !"##$%&'(! (1-10)

As equation 1-10 shows, the ranking score in this thesis is represented by the current interest

score of the document for a given query and community.

Community interest is not the same as popularity ranking. There are three key differences between

popularity and interest ranking. First, while most popularity algorithms are based on user

generated statistical data, we view community interest as being representeded by the content

(topics) of the candidate document as judged from a community perspective. Second, unlike most

user behavior ranking algorithm, e.g. Agichtein et al. (2006), an interest based ranking model is

query dependent. Last but not least, a community interest model is time-dependent as compared

with the popularity model, which is based on past user behavior.

Obviously, the most challenging part in the ranking function is “community,” which varies with

the query and the retrieval system. Community interest is a dynamic variable, as community

interest toward a query may change from time to time. In this thesis, we will use the chronological

:"
""

user oriented textual data, specifically blog data, and various statistical models to estimate

real-time community interest toward a query as well as evaluate its impact on ranking

performance.

1.2 Contribution

From a system perspective, community interest, in this research, is defined as a dynamic topical

probability distribution, which is trained from query dependent chronological user centric text data

(like blogs) with the goal of improving #. To date, there has been little research to study IR

ranking from a dynamic community interest perspective. This thesis is expected to make both

theoretical and practical contributions to information retrieval ranking methodology research, with

particular contribution regarding real-time ranking.

At the theoretical level, this study aims to make two contributions:

First, from a user perspective, community interest is an innovative search context, which mirrors

real-time user topical preference. Modeling community interest will help systems better

understand a query and improve probability of !.

Second, this research will build the implicit relationships among ranking, community interest and

user generated text data for real-time interest modeling as well as fill the gap between a query

string and a user’s information needs by ranking from a community interest point of view.

Specifically, as the following diagram shows, this research demonstrates whether we can use user

generated text data to estimate real time community interest by mathematical modeling and if

computational community interest can be used as an indicator to improve ranking performance.

;"
""

Figure 1-3. Relationships among ranking, community interest and user generated text data

In this thesis, as compared to traditional IR, the user oriented real-time text data, instead of the

document collection, is used as the training collection for extracting the dynamic community

interest.

At the practical level, this thesis aims to improve ranking performance compared with existing

popular ranking algorithms, such as vector space, BM25 and language model. Real world user

evaluations are used to compare the new ranking algorithm to the ranking results from popular

search engines, such as Yahoo or Google, which rely on, in part, complex statistical user behavior

data. Standard information retrieval ranking evaluation methodology, normalized discounted

cumulative gain (NDCG), is used in this thesis to analyze user judgments.

1.3 Research questions and goals of this thesis

This thesis is intended as exploratory work, investigating an innovative ranking method from a

community interest perspective. More specifically, the goals are to:

1. Develop the interest-based ranking mechanisms for real-time information retrieval systems.

2. Generate the real-time user oriented topical representation as a computational model for

community interest, as well as use the real time interest model to rank or re-rank the retrieved

results for a given query at a given time.

3. Evaluate the new ranking algorithm by comparing it with existing popular ranking algorithms

and search engine ranking results.

Meanwhile, the research questions are:

RQ1: What is community interest? And can we extract and model real time computational

community interest from user textual data?

User or community interest has been studied by (Kim & Chan, 2008; Qiu & Cho, 2001; White,

Bailey, & Chen, 2009) and these studies focus on personalized search as well as user profiling. In

this thesis, the community is defined as a dynamic probability distribution over topics or words for

each target query, and each topic or word interest probability is normalized by historical user

!<"
""

oriented text data.

RQ2: In what ways can real-time community interest be used to rank the retrieved results?

Ranking is the critical problem for information retrieval. In this thesis, we propose the innovative

interest based ranking method by using community interest extraction (from RQ1). Two different

ranking models are introduced in this research:

1. Community interest vector ranking, in that a community’s interest is defined toward each

query as a vector, and each component of the vector represents a (normalized) topic or

word interest score related to the target query.

2. Community interest language model ranking. Based on classical language modeling, the

retrieved documents are ranked based on the probability generated from the most recent

community interest topic or word distribution, and this probability is then smoothed by

historical community interest snapshots.

RQ3: How can we evaluate the real-time community interest ranking results? And can the

community interest based ranking method improve rankings over existing methods.

The evaluation of a ranking algorithm is difficult, especially for the real-time ranking task, which

cannot employ existing test collections such as TREC. Precision-at-document-n (Anh & Moffat,

2002) is currently a good measure for the web, as most users will be focusing on only the very !rst

page of n results. Normalized Discount Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002)

works when user judged relevance data is available.

For this thesis, the most important contribution is to employ dynamic community interest as an

innovative indicator for ranking. Since community interest may change from time to time, a

real-world, real-time evaluation with users based on selected queries over a period of time was

conducted. The questions for the user focused on “Are you interested in this document based on

the query right now?” This question contains two meanings: 1. whether this document is relevant

or not; and 2. whether user is interested in this document currently or not.

"

!!"
""

1.4 Limitation of thesis

There are two limitations to this research.

First, training data is critically important for dynamic community interest modeling (RQ1), but

only a limited amount of data suitable for training is available for this research, and even with this

limited data, some useful properties of the user data are inaccessible. This thesis uses blog data (a

user oriented chronological text data set). Ideally, up-to-date blog data would provide the best data

for training an interest model. However, existing large blog corpuses, such as the TREC blog

dataset, represent are static and not up-to-date (when we launched the experiment). A compromise

approach is to collect blog data from a blog search engine, but blog search engine may take some

time (i.e. hours) to index the most recent blog postings thereby introducing a delay. In addition,

the notion of “community” is variable, depending on the focus of a query, collection and the

specific group of users searching. The community can be defined by any number of characteristic

features such as geographic location, gender, occupation or hobby. Each community is likely to

have different interests, corresponding to different interest topic distributions and different interest

models. The blog data available does not, however, include such information as blogger, IP

address, or location, and thus no analysis along these local community perspectives can be carried

out. As a result, in this thesis, the studies will concentrate on the “global community”, instead of a

specific community, interest modeling for ranking. Work targeting a specific community is the

subject of future work.

Second, the lack of comprehensive empirical evaluation (related to RQ3) is another major

limitation for this thesis. Mentioned in section 1.1, overall, there are two different kinds of ranking

algorithms, relevance based ranking and popularity based ranking. Most of the popularity based

ranking algorithms are based on statistical user data, such as clickthrough data, dwell time and

universal hyperlinks. This data is not available and without such data, it is difficult to implement

those algorithms and use them as the baseline to judge the performance of the new ranking

algorithm. The compromise is to compare the new ranking algorithm with existing web search

engines’ (such as Google and Yahoo) ranking results, an imperfect compromise, as these search

engines’ ranking mechanisms are usually a combination of different existing ranking algorithms,

!#"
""

proprietary and not open to inspection. "

"

!5"
""

!"#$%&'(3*(45%&'#%6'&(7&85&9(

2.1 Introduction

Information retrieval has been studied since the 1950s. According to Mooers’ definition (Mooers,

1952), information retrieval is the name of the process or method by which a prospective user of

information is able to convert his or her information need into an actual list of citations to

documents in storage. Luhn (1957) was the first researcher to suggest using a statistical approach

for retrieval and ranking tasks to address some of the existing retrieval problems. Since then,

Luhn’s statistical approach has proved to be the most successful method in this field. In more

recent modern information retrieval studies, three basic components have been studied (Croft,

1993), as the model in Figure 2-1 shows.

Figure 2-1. Information retrieval process

In this model, the user’s initial information need is represented by a natural language statement,

which is referred to as the query formulation process. Documents and collections are indexed by a

list of features, such as bag-of-words, which assumes that the semantics within a text can be

represented by an unordered collection of words. Last, the query is compared against the

document representation resulting in a ranked candidate relevant document list.

For most web retrieval systems, a very large number of documents are indexed, and the ranking

5.6*$-0#%*.(.""'(

3,"$4(

!"#$%"&"'('*+,-".#/(

)*+,-".#/(

)*+,-".#(%.'"7(

$"8$"/".#($"8$"/".#(

+*-80$"(

6""'90+1(

!6"
""

model is the central problem. An effective ranking algorithm can position the most relevant

documents somewhere at the top of the ranking list, which will reduce the time users invest to find

the needed information. For some methods, such as classical vector space (Salton, Wong, & Yang,

1974) or language model (Ponte & Croft, 1998b), retrieval and ranking are the same step, while

some other algorithms, such as PageRank (Page, et al., 1998) or HITS (Kleinberg, 1999), employ

a two-step process. First, potentially relevant documents are identified through retrieval

algorithms, and then the retrieved documents are ranked with a ranking algorithm by estimating

their degree or probability of importance to the user. In this thesis, an innovative ranking method

is explored and community interest is used as the new indicator for ranking the retrieved

documents for a given query at a given time.

Chapter 2 consists of three main parts that review the theoretical and practical research

methodologies in the information retrieval and text mining fields that are the background of this

research. In sections 2.2, 2.3 and 2.4, some of the most influential models, theories and algorithms

will be reviewed targeting the three main challenges (", # and $) mentioned in the first chapter. In

section 2.5, topic extraction and topical representation related methods, used to represent

community interest in this thesis, will be covered. Lastly, evaluation methodologies, especially

web based ranking related evaluation, will be reviewed.

2.2 Information need and query (")

As stated in the first chapter, the unpredictable gap between the user information need and the user

generated natural language query is the first challenge for information retrieval. The probability

based gap between the information need and query can be defined as follows:

The likelihood that users can generate a high quality query to address their information need; e.g.,

given the information need, the probability that users can generate a high quality query (query

quality = high),

!: P (query quality = high | information need) (2-1)

The definition of " enables us to characterize the distance between query and information need.

However, first, the distance between query and information need is almost immeasurable, as the

information need is not a measurable variable. Second, in most cases, " is smaller than 1 and, for

!7"
""

most users, without knowledge of the collection, relevant documents and the retrieval task, " can

be a very small number. Last, even with an initial query formulation process on the user side,

researchers in information retrieval have found a number of techniques to improve " automatically

or semi-automatically. In this section, some of the most influential works that focus on improving

" will be reviewed.

2.2.1 User information need and query formulation in information

retrieval

User query formulation is known to be a hard problem. For most ad-hoc retrieval system users, the

query formulation process may result in a vast amount of information, and lead to an

overwhelming feeling of being lost in conceptual space (Hofstede, Proper, & van der Weide,

1996). In the web search environment, very short queries are challenging existing retrieval and

ranking methodologies, given the truth that query length in information retrieval systems is well

known to be positively related to effectiveness of retrieve results (Belkin, et al., 2003). Existing

attempts on increasing query length mainly focusing on automatic pseudo feedback, while some

researches increase query length by encouraging users to input additional query terms (Karlgren &

Franzén, 1997; Belkin, et al., 2002), which will be mentioned in the next section.

From retrieval perspective, query formulation is closely related to retrieval or ranking

performance. Cronen-Townsend, Zhou & Croft (2002) developed the method to predict query

performance by using relative entropy between query and collection language models. The

experiment on TREC collection achieved positive result. In the web search environment,

collection is more heterogeneous than other experimental text collection. The similar query

prediction algorithm applied on GOV2 (web collection) shows that it is different to predict query

performance in a large web collection (Carmel, et al 2006). Another similar experiment by Zhou

& Croft (2007) first divided web query into content-based and named-page finding groups, and

then different prediction methods were applied to those query categories, which resulted in better

precision.

Some researchers have studied the user query formulation process (given the information need)

from the user behavior perspective (Lau & Horvitz, 1999; Maglio & Barrett, 1997; Marchionini,

!8"
""

1997; Thomas & Fischer, 1996). For instance, Lau and Horvitz (1999) analyzed one day’s web

query log, and carried out an experiment to study how users refined their own queries. Users were

identified by the similarities in time and topic of an information need and identified by a GUID

(globally unique identifier). They found that a user’s initial queries poorly represented their

information needs. Based on user changes to the original query, they identified six different query

refinement classes:

! New: A query for a topic not previously searched for by this user within the scope of the

dataset.

! Generalization: A query on the same topic as the previous query, but seeking more general

information than the previous query.

! Specialization: A query on the same topic as the previous query, but seeking more specific

information than the previous query.

! Reformulation: A query on the same topic that can be viewed as neither a generalization nor

a specialization, but a reformulation of the prior query.

! Interruption: A query on a topic searched on earlier by a user that has been interrupted by a

search on another topic.

! Request for Additional Results: A request for another set of results on the same query from

the search service. Duplicate queries appear in the data when a person requests another set of

results for the query.

By studying users’ self-refinement of queries, we know users normally input the first search action

based on their search goal, which, sometimes, does not meet the system’s requirements or satisfy

their own goals. After a certain time interval, they are likely to re-send a follow up search action

based on the same search goal, and they could learn from the initial search action. Similar query

formulation studies were run by Maglio & Barrett (1997). Given a low quality query, query

refinement and relevance feedback are frequently used to automatically assist users to accomplish

the abovementioned steps by learning the possible relevant knowledge from a query or retrieved

result perspective.

Query formulation studies have also focused on mining and analyzing a large quantity of query

logs (Beitzel, Jensen, Chowdhury, Grossman, & Frieder, 2004; Jansen, et al., 1998; Silverstein,

!9"
""

Henzinger, Marais, & Moricz, 1998; Silverstein, et al., 1999). Large scale query log analysis

results show in web search engines, users tend to input very short queries. For instance Silverstein,

et al. (1999) showed that 87.4% of the user typed queries used three or fewer terms, with an

average number of 2.35 terms per query. Query length is an important indicator of the quality of a

query, Anh and Moffat (2002) experimented with forty-nine TREC queries of two to six terms.

Their findings show that the probability of finding matching results increases dramatically as the

length of the query increases and concluded that short queries do not work well within the

traditional retrieval models, such as vector space framework.

Second, most users using web search engines are not expert searchers and they have limited

knowledge for characterizing their information need. For example, users seldom use advanced

query features such as utilizing Boolean operators in their queries.

Third, the distribution of queries and query terms are skewed. Users are interested in certain

queries and query terms more than others, and query repetition is a common phenomenon.

Moreover, within a specified period of time, such as an hour or a day, a users’ query distribution

over specific topics is quite stable.

The first two findings challenge the existing retrieval and ranking algorithms, because of the large

gap between query and information need and the small value of ". The last finding tells us that

users’ interest over some queries and topics can be stable and it is thus possible to employ an

up-to-date and query-dependent community interest model as an indicator to improve ranking

performance as well as to shorten the distance between query and information need.

Integrating user and community preferences into retrieval and ranking models to fill the gap " has

been studied since the 1970s. Generally, extracted computational user preference or community

preference is used for three different but related purposes in the existing research:

1. Improving query quality by leveraging user relevance or non-relevance judgments, which

helps the system better understand a user’s information need. An example of this is relevance

feedback (Rocchio, 1971; Salton & Buckley, 1990).

2. Updating the original user query or changing the weight of the existing query terms from

query logs or documents, as in the work of (Baeza-Yates, Hurtado, & Mendoza, 2004b; Kwok,

!:"
""

1996).

3. Ranking or re-ranking the retrieved results based on user, community or global preferences,

which are extracted from different search related resources. Examples of this are linkage

based (Page, et al., 1998), click based (Joachims, 2002), behavior based (Agichtein, et al.,

2006) and context based (Kraft, Chang, Maghoul, & Kumar, 2006) ranking methodologies.

2.2.2 Feedback

Relevance feedback, introduced by Rocchio (1971), was the first retrieval and ranking mechanism

that effectively involved users and relevance judgments directly. In most retrieval systems, the

query formulation, or reformulation process is a user controlled, manual process (Salton &

Buckley, 1990), and it was found that users have difficulty entering high quality query terms to

satisfy the existing retrieval and ranking algorithms. For instance, in order to formulate a high

quality query, users need to predict terms appearing in the relevant document. In addition, they

have to avoid using ambiguous terms that may appear in irrelevant documents, but such tasks may

be very difficult for most users (Vélez, Weiss, Sheldon, & Gifford, 1997). To assist, we can utilize

a user’s direct relevance or non-relevance judgments to modify their initial queries to increase

probability ".

Relevance feedback, introduced in the mid 1960s, is a controlled and automatic process for query

reformulation, and it has been proven an easy and effective method (Rocchio, 1971; Salton &

Buckley, 1990). The basic process of relevance feedback is shown as follows. First, if the initial

query is a term based vector:

 (2-2)

where q1 to qn is the weight of each term in the query, then the document collection can be

classified into relevant and non-relevant groups. The optimal query (leading to the best match

where α ! !) could be (Salton & Buckley, 1990):

(2-3)

where N is the number of total documents in the collection, n is the number of relevant documents

)...2,1(qnqqQinitial =

!!
""

#
"

"#=
DocstNonrelevan i

i

Docslevant i

i
optimal D

D
nND

D
n

Q
||

1
||

1
Re

!;"
""

(N - n is the total number of non-relevant documents) and |D| is the length of the document. If the

user can input an optimal query, it will maximize the effect of the relevant document collection

while minimizing the non-relevant document collection in the retrieved results. However, we

know that n is an unknown parameter as we cannot identify the relevant document collection

based on the initial query. If there is an existing subset of relevant documents (!!), and another set

of non-relevant documents (!!), we can write a new query to estimate the optimal query based on

existing information (Rocchio, 1971):

(2-4)

For a subset of documents judged by the user, the weight of the relevant document vector will

positively affect the query vector; similarly, the non-relevant document vector will negatively

affect the initial query. In this way, the probability of ". will be improved by leveraging the user’s

relevance judgment.

In real world systems, relevance feedback is always desirable to improve probability!!; however,

users may not want to provide explicit relevance judgments on the initial retrieval result. The

compromise is a pseudo feedback method. The basic idea is to assume a small number of

top-ranked documents from the initial retrieved result to be relevant documents, and use them to

expand or update the weight of the initial query (Tao & Zhai, 2006; Xu & Croft, 2000). The

process of pseudo feedback is shown in Figure 2-2. While existing relevance feedback algorithms

learn retrieval features and functions from retrieved results, they typically require training data

generated from relevance judgments by experts and users, which makes relevance feedback

difficult and expensive to apply. Only a small percentage of users would likely provide the

explicit feedback (Joachims, 2002). Compared with that, pseudo feedback, which assumes that the

top k documents in the retrieved results are relevant to the original query, and uses them to change

the query for ranking, is easier and cheaper to use.

!! "#"+=

tNonrelevan
Known i

i

levant
Known i

i
initialnew D

D
nD

D
n

QQ
||2

1
||1

1

Re

#<"
""

"

Figure 2-2. Relevance feedback and Pseudo feedback

The drawback for fully automatic relevance feedback is that some added terms may have different

meanings from the user’s intended meaning (the polysemy effect), which leads to a degradation of

precision (Sparck Jones, 1972). So, each time the expansion algorithm brings a new term to the

query, we have to take the risk of negatively affecting the original query vector.

An alternative feedback method is the probabilistic feedback model first introduced by (Robertson,

Rijsbergen, & Porter, 1980). The difference is that it applies a probabilistic model to create the

relevance model, and it calculates the ratio of the relevant probability and non-relevant probability

of each candidate feedback term, as in the following ranking method:

!"# !!!"!"!!"#"$%&'!
!!!"#$!!"!!!"#"$%&'!

(2-5)

A language model (the details of which will be reviewed in the next section) can also be used for

feedback. From the classical language model perspective, the query is regarded as a sample of a

query language model. It is hard to interpret query expansion or modification by adding

additional terms or adjusting the initial query (Zhai, 2008). To address this problem, the

Kullback-Leibler (KL) divergence retrieval model measures the distance of the document

language model and the query language model (Lafferty & Zhai, 2001). In this KL model, this

distance defines the score of a document D with respect to a query Q by:

3,"$4()*+,-".#(:*;;"+#%*.(
/"0$+<(

!0.1"'(!"/,;#/(

2/"$(!";"&0.+"(=,'>-".#/(

/"0$+<(?($0.1(

,/"$(@,'>"(

8/",'*(6""'90+1(

!";"&0.+"(6""'90+1(

#!"
""

! !!! ! !! !!!!!! ! ! ! !! !"#! ! !! ! ! ! !! !"#! ! !!!!!!!! (2-6)

So, the remaining problem is to estimate !! and !!. As mentioned earlier, !! can be estimated

from a traditional language model. However, !! estimation offers the opportunity for relevance

feedback. For instance, for given feedback documents collection F, the new !!
′ could be:

! ! !!
′ ! ! ! ! ! ! !! ! !" ! !! (2-7)

Modeling !! is another challenging task, and the words in feedback documents F include two

kinds of words: background words and topical words. While the first part can be explained by

P(w|C), the second part could be interpreted as the target, ! ! !! . In order to discriminate the

topical words (by assigning higher probability score) from others. (Zhai & Lafferty, 2001)

proposed two methods to estimate !!. For the first method, the log likelihood function is:

!"#! ! !! ! ! !!!
!!!

!"#!!! ! !! ! ! !! ! !! ! ! !!!!!!!!!!!!!!!! ! !!

λ, from 0 to 1, is the parameter that controls the contribution of background terms (smoothing),

and 1-!λ is the contribution of ! ! !! to the function value. The other method employed

is the Expectation-Maximization (EM) algorithm, which involves the KL-divergence between the

language models of background, !! , and each individual document in the F, !!.

Meanwhile, other language model based feedback algorithms have been used for optimizing

smoothing parameters or query term re-weighting, for example Croft, Cronen-Townsend, &

Larvrenko (2001), Hiemstra (2001), Ng (2000), and Shen & Zhai (2005).

Another related research is query expansion from document the side. One of the earliest studies in

query expansion is the work of Spärck Jones (1971), who used word clusters extracted from

documents to expand an initial query. More recently, Qiu and Frei (1993) studied query expansion

by using concepts extracted from the document collection. Similar research can be found in

Deerwester, Dumais, Furnas, Landauer, & Harshman (1990). Kwok (1996) and Xu and Croft

(1996) compared the retrieval performance of local document based query expansion (e.g., pseudo

feedback) and global document based query expansion (e.g., query expansion from an entire

document collection). Based on the TREC experiments, they found that performance using local

##"
""

document analysis on top ranked retrieved documents can be better than global document analysis

(that is, on the corpus).

In this thesis, a key step is to estimate community interest from a collection of user generated

(real-time) text data. As for documents, there are also two kinds of information in the collection:

user interest topic words and background topic words; meanwhile, the ranking algorithm also

needs to discriminate the current user topic words from historical user topic words. In section 3,

we will propose a method to estimate the community interest language model based on the work

of Zhai & Lafferty (2001). Community interest based ranking can be viewed as a type of user

interest based automatic feedback.

2.2.3 Automatic query optimization

In contrast to relevance feedback, query optimization, such as query suggestion, query expansion

or query term re-weighting, is frequently used by web search engine systems to modify original

user queries by looking at query logs or user sessions instead of looking at documents. A central

problem of query suggestion is how to model the information needs associated with a query, given

existing knowledge (Baeza-Yates, et al., 2004b). Basically, there are two different methods: get the

related terms from user query logs, or get the related terms from the search results or collection.

For a query log based approach, the basic logic of query suggestion is to calculate the similarities

between different queries. If two queries are close enough, then there is high probability that they

can provide term suggestions to each other that may serve the same information need. Calculating

query similarity is the central problem. (Wen, Nie, & Zhang, 2001) suggested that query similarity

can be defined as 1) keywords in the query, 2) a string match of whole queries, 3) common clicked

URLs, and 4) the distance of the clicked documents in the result collection. For example, D(p) and

D(q) are the document collections presented to the user by query q and p, and !!!!!! and

!!!!!! are the document collections selected by user. If !!!!!! ! !!!!!! !!, then the shared

documents represent the similarity between q and p:

 (2-9)))(),((
),(),(_ qrdprdMax
qpRDqpSimilarity doccross =

#5"
""

where rd() is the number of clicked documents for a query, and RD(p, q) is the number of

document clicks in common. Similarly, Zhao et al. (2006) used query session and calculated

similarity between two queries by measuring their popularity over time. Fonseca, Golgher, Moura,

and Ziviani (2003) used association rules to discover the relatedness and similarity between

queries by using query logs and query sessions. However, these methods (based on user sessions)

are only useful when the target queries are popular, requiring a great number of clicks. In order to

remedy this drawback, Zhao et al., (2006) computed the similarities by comparing two queries’

results ranking. The assumption is that if the queries are similar, their resulting documents’

rankings should be similar.

Since (short) queries in ad-hoc retrieval systems do not adequately represent the user information

need and are usually “flat”, that is, without frequency information to help differentiate important

terms from others (Kwok, 1996), query term re-weighting and query expansion are used to update

initial queries by using evidence from the document side.

Kwok (1996) deduced query term importance weighting from the document collection using

different methods, such as average within-document term frequency and inverse log document

frequency with cut-off and “peaking” adjustments. The experimental results on TREC data

showed that the re-weighted query could significantly improve retrieval performance.

In other research, a domain specific knowledge based thesaurus is used to expand queries in

specialized retrieval systems. Aronson and Rindflesch (1997), Hersh, Price, and Donohoe (2000)

used UMLS in the medical domain for query expansion. But this ontology base query expansion

technique is not popular in general domain search engines, which must support queries in various

and limitless topics.

2.3 Information retrieval model (#)

The retrieval model is the core of information retrieval from a systems point of view. Most

retrieval models work solely on the system side and they calculate the degree or probability that a

document is relevant to a given query. Based on the definition in the first chapter, " is:

The likelihood that the system can present relevant results based on the (high quality) query; e.g.

#6"
""

given query, the probability that the system can find the high quality results (result quality =

high),

": P (result quality = high | query) (2-10)

In this section, we will first briefly review different types of retrieval models and then focus on

two kinds of models, which are used in this thesis: the vector space model (Salton, et al., 1974)

and the language model (Zhai & Lafferty, 2001).

2.3.1 Retrieval models

The basic question for retrieval is: given a query q, how can we know if a document d is relevant

to q? If we integrate the ranking part; the question can be changed into: given a query q, how can

we know if a document d1 is more relevant to q when compared with document d2?

There are three basic approaches for retrieval.

Similarity approach: this approach is used to find the similarity between the query and the

retrieved document to represent the degree of relevance. Examples are the vector space model

(Salton, et al., 1974) and the probability distribution model (Wong & Yao, 1989). The basic

assumption is that if a document uses more query terms (thus more similar to the query), the

document is more likely to be relevant to the target query. In this approach, the document and

query are represented in the same way and they are key in deciding how to define the similarity

function.

Probability approach: this approach computes the probability of relevance given a document and

a query P(relevant | doc, query). The generative model is the main method for this approach.

Examples are the classical probability model (Robertson & Jones, 1976), which computes

document generation probability given query P(doc | query), the language model (Ponte & Croft,

1998a), which calculates the query generation probability P(query | doc), and BM25 (Robertson,

1997), which ranked the document by the log-odds of their relevance.

Probabilistic inference approach: in this approach, the retrieval task is stated as an inference or

evidential reasoning process. For instance, Turtle and Croft (1991) proposed the inference network

model. The documents and queries are represented as a hierarchical reference network, while the

#7"
""

information need is the root node in the network.

In this section, two major retrieval models, the vector space model and the language model, will

be reviewed. They are used in this thesis as methods to extract the dynamic community interest

model for ranking. The third approach, inference network, can be combined with language model

into a single framework (Metzler and Croft 2004). As a result, if we prove that the language model

can be successfully used to extract community interest then the inference network approach may

also potentially be useful in solving this problem.

2.3.2 Vector space model

Following Luhn’s retrieval criterion (Luhn, 1957), the words appearing in both queries and

documents are the key feature in designing a retrieval system. The remaining question is: how can

we know if one document is more relevant than another? Intuitively, if document A contains more

query terms, or more important query terms, than B does, then A is more likely to be judged

relevant than B, and the ranking score is based on the estimated likelihood of relevance, as the

following formula shows:

!"#$%#&!!"#$% !"#! !"#$% ! !"#"$%&'"!!"#! !"!"#! (2-11)

Based on this hypothesis, Salton, et al. (1974) proposed a vector space model (VSM), which

indexes documents and queries as vectors and each component is associated with a term’s weight

in the document or query:

!"# ! !!!!!!!!!!!!"

!!!"#$! !!!!!!!!!!!!!"! (2-12)

The degree of relevance in VSM can be calculated by the cosine similarity between query and

document vectors:

!"#"$%&'"!!"#$%!!"#! ! !!"!!!!!"
!!!"!!!!! !!!"!!

 (2-13)

The remaining problem is how to weight each term in the vector to optimize the ranking

#8"
""

performance. There are two reasons for term weighting in information retrieval and ranking: 1)

terms likely to be relevant to the user’s need should be retrieved, and 2) terms likely to be

extraneous should be rejected or penalized (Salton & Buckley, 1988). Term frequency (TF)

weighting was used in the earliest retrieval systems, which resulted in good recall, but very low

precision, because most high frequency terms are not only concentrated in few documents, but the

whole collection. The well-known solution is to use inverse document frequency (IDF) (Spärck

Jones, 1972). Compared with various TF functions, the definition of IDF is quite uniform, as the

following formula shows:

!"# ! ! !"#!!!!! (2-14)

where N is the number of total documents in the collection and k is the number of documents

containing term t. The weight of the term is then calculated by TF*IDF. For a specific term, if it

appears in almost all the documents in the collection, !"#!!!!! will be almost 0 (as ! ! !), and

the weight of this term will be almost 0. IDF is a very effective method to filter terms that do not

discriminate documents in the collection for ranking and retrieval. In the Language Model,

smoothing has the same effect from the probability perspective (Zhai, 2008), and it models the

background language model by using !!!"#$!!!.

IDF effect based noisy modeling is a very important concept for this thesis. Community interest in

this research is represented by a topic distribution that represents the current probability of

interests. However, there are two kinds of topics (from a topic extraction algorithm), community

interest topics and background topics. Community interest topics are those a community is likely

to be interested in, such as the breaking news about the query topic. But a community’s interest

toward background topics could be stable. From an IDF perspective, if user’s information need is

quite dynamic (i.e. a news event’s recent change), these background topics should be identified

and penalized by the ranking algorithm.

The vector space model is one of the most successful retrieval models. According to (Baeza-Yates

& Ribeiro-Neto, 1999), even detailed information retrieval ranking algorithms used by major

search engines are not publicly available, however, it seems that most use term weighting or

variations of vector space models.

#9"
""

One of the major limitations of vector space models is on the query side, where the users’ query

terms may fall short of representing their information need (result in a low !). Anh and Moffat

(2002) said that “Users of web search engines are notoriously parsimonious in their use of search

terms, and search effectiveness has tended to be relatively poor on the resulting short queries,

especially when compared against the good performance attained by recent systems when working

with long TREC-Iike queries.” As a result, we need better techniques to rank the documents, given

an unpredicted query.

2.3.3 Language model

Unlike vector space, the language model calculates the probability of relevance of a document doc

with respect to a query q by estimating the likelihood of generating q from doc. This was first

introduced by Ponte and Croft (1998a), and can be described as the following formula:

!"#"$%&'" !"#! ! ! ! !! !!"#! (2-15)

In the past decade, a remarkably large number of publications cite cases in which statistical

language models are used to compute the ranking scores of retrieved documents in a given query.

The experimental results show that language models are effective and robust retrieval models, and

that the use of language models can be flexible.

The language model based retrieval and ranking function is described by Zhai (2008). Given each

document in the collection, a two-step statistical model defines the probability of generating the

user query. Documents are then ranked according to this probability. When a query is entered, the

system first uses the query formulation model to hypothesize the terms that might be generated for

each word in the request. This results in a structured query that represents all queries that might

have generated the request. In a second step, the system uses the matching model of each

document to calculate the probability that the document generated any of the queries represented

by the structured query.

A major challenge for language models is how to accurately estimate the document language

model. The most straightforward method is to use the document as direct evidence for estimation.

However, a single document is only a small sample, and usually a smoothed estimate of the

#:"
""

document models based on the background collection term frequencies is used to adjust the

document language model.

Hiemstra (1998) introduced ranking based on a mixture of global and local probability

distributions that are the logic of language model smoothing. Smoothing is one of the most

important components of the language model, which refers to the adjustment of the maximum

likelihood estimator of a language model to make the query generation probability more accurate.

Smoothing has two different functions (Zhai, 2008):

! First, it addresses the data sparseness problem. As a document is only a very small sample,

the probability P (qi | Doc) could be zero for those unseen words (Zhai & Lafferty, 2004).

! Second, smoothing helps to model the background (non-discriminative) words in the

query.

Compared with TF-IDF weighting parameters, the smoothing parameter is more meaningful from

the point of view of statistical estimation (Zhai, 2008).

Miller, Leek, and Schwartz (1999) use hidden Markov models for ranking, including the use of

bi-grams to model two word phrases and a method for performing blind feedback. Song and Croft

(1999) used a model which includes bi-grams and introduced Good Turing re-estimation to

smooth the document models.

2.4 Ranking methodology ($)

Ideally, an optimized information retrieval system should present the important documents high in

the ranking results, with less important documents following below to minimize the time users

invest in interpreting the retrieved results. However, it is necessary to first define what an

“important” retrieval result is.

The likelihood that users can find needed information from the (high quality) retrieved results; e.g.
given retrieved results, the probability that a user can locate the needed information (search =
success)

#: P (search = success | result quality = high) (2-16)

In web information retrieval systems, exponential growth of the number of documents makes

#;"
""

ranking the most important component. Ranking will directly help users to access their needed

information effectively, and it plays the decisive role in predicting probability $ in the web search

environment. If users’ needed information (most relevant document) is on the top of the ranked

list, users are highly likely to find the information. If not, the search task is more likely to fail.

According to the (Jansen, et al., 1998) experiment on query sessions (for general web search),

analysis shows that most users, 58%, did not access any results beyond the first page; this is likely

representative of search behavior and does not necessarily mean users are satisfied with the top

ranked retrieved results.

2.4.1 Popularity based ranking

As shown in the last section, in classical IR, relevance based computation between a query and a

retrieved document, such as similarity based relevance (Salton, et al., 1974), probability based

relevance (Robertson, 1977) and language model based relevance (Ponte & Croft, 1998a) is used

to rank the result collection. In these ranking mechanisms, the ranking and retrieval modules could

be one and the same, namely, they both identify the candidate documents to be retrieved and score

the degree or probability of relevance for each of them.

In web retrieval systems, where documents are rich in links, tags and user behavior data, there is

increasing use of ranking algorithms that rank the documents based on their own importance. The

most well-known algorithm is PageRank (Page, et al., 1998), which employs the hyperlink

structure of the web pages for ranking. Clickthrough or other implicit user behavior data are also

frequently used as the ranking parameters by current search engines (Agichtein, et al., 2006; Fox,

et al., 2005; Joachims, 2002).

In this section, some well-established popularity based ranking methods will be reviewed.

The web is an example of a social network. Social network analysis has been extensively

researched since the 1950s, long before the advent of the web (Scott, 1988). Social network

analysis is concerned with properties related to connectivity and distances in graphs, with diverse

applications like epidemiology, espionage, citation indexing, and so on (Chakrabarti, 1999).

There are two well established algorithms based on web linkage and social networks: PageRank,

5<"
""

and HITS. PageRank is the trademark ranking algorithm of Google (Page, et al., 1998). Generally

speaking, PageRank relies on the uniquely democratic nature of the web by using its vast link

structure as an indicator of an individual page's value; it is a probability distribution used to

represent the likelihood that a person randomly clicking on links will arrive at any particular page.

PageRank interprets a link from page A to page B as a vote (by page A, for page B), and for each

page (node) on the network, there will be incoming links and outgoing links, which are the

parameters of page importance.

 (2-17)

Above is the formula of the PageRank algorithm. For the entire web page (or document) collection

indexed in the database, assuming that there are n documents that have hyperlinks (or citations)

pointing to page A, as T1 … Tn, and the count of link in each page is C(T1) … C(Tn), then

recursively, each page that links to page A will vote for the popularity of A. The vote score will be

normalized by the number of links on the page.

The HITS (Hypertext Induced Topic Selection) algorithm (Kleinberg, 1999) is another popularity

based algorithm for ranking, which can replace the PageRank algorithm in a web search engine for

ranking purposes. For the HITS algorithm, each page has two different popularity scores:

Authority and Hub, which possesses mutual recursion. The underlying assumption is that a good

authority is pointed to by many good hubs and a good hub points to many good authorities.

From the above two ranking algorithms, it has been found that hyperlink based social network

structure is a significant characteristic in the web environment, and calculating popularity score

based on networks can effectively improve the ranking performance for a web information

retrieval system. Other related web media can also get benefits from these kinds of ranking

algorithms.

For instance, a blog is an extension medium of the traditional web (namely, blogs inherit all the

properties of the web), and the relatedness between blogs are not just limited to hyperlink based

citation. Instead, much richer types of links or relationships exist, like the blogroll (relatedness

between blogs), permalink (a pointer or reference ID for the specific posting), comments,

)
)(
)(...

)2(
)2(

)1(
)1(()1()(

TnC
TnPR

TC
TPR

TC
TPRddAPR +++!+"=

5!"
""

trackback (an automatic communication that occurs when one weblog references another), and

cross-media (reference of other user-oriented media outside blogosphere). The Blog track was

introduced in 2006 as part of the TREC evaluation corpus, for instance Blog track in TREC 2006

(Ounis et al. 2007) and TREC 2007 (Macdonald, Ounis, & Soboroff 2008). In Blog track,

traditional relevance judgments were provided, and innovative tasks were provided such like

sentiment analysis, which are based on new web elements of blog (i.e. comments or permalink).

As a blog is employed in this research, more investigation is needed in this area for social network

based blog retrieval and ranking.

Since the blogosphere is a sub-class of cyberspace, most web-structure based ranking algorithms

can be directly applied to blog ranking, such as PageRank and HITS. Some recent studies have

used updated web algorithms to improve their performance in the blog context. For instance,

Fujimura, Inoue, and Sugisaki (2005) proposed the EigenRumor algorithm in the blog context.

The EigenRumor design is based on the logic of the PageRank and HITS algorithms, which deal

with hub score and authority, but also add a new reputation score to better satisfy the

characteristics of blogospace.

In the EighnRumor algorithm, each blogger is an information provider, namely an agent, while

each blog posting is an information object. Two kinds of relationships exist between agent and

object: information provisioning (agents write postings) and information evaluation (agents write

comments). Extending the HITS algorithm, EighnRumor defines three different popularity scores:

! Authority score (agent property). This indicates to what level agent i provided objects

(postings) in the past that agreed with the community direction. The higher the score, the

better the ability of the agent to provide objects to the community.

! Hub score (agent property). This indicates to what level agent i submitted comments

(evaluation) that agreed with the community direction regarding other past objects. Similar to

authority, the higher the score, the better the ability of the agent to contribute evaluations to

the community.

! Reputation score (object property). This indicates the level of support object j received from

the agents, i.e., the degree to which j agrees with the community direction. Again, the higher

5#"
""

the score, the better the object conforms to the community direction.

As a result, the algorithm provides us three different vectors instead of two vectors like HITS.

These vectors tell us how a blogger contributes to the posting as well as how a posting gets credits

from the blogger. Similar to PageRank and HITS algorithms, EighnRumor has the following

assumptions underlying computation of the popularity scores:

Assumption 1: The objects that are provided by a “good” authority will follow the

direction of the community.

Assumption 2: The objects that are supported by a “good” hub will follow the direction of

the community.

Assumption 3: The agents that provide objects that follow the community direction are

“good” authorities of the community.

Assumption 4: The agents that evaluate objects that follow the community direction are

“good” hubs of the community.

Another blog ranking algorithm named iRank was created by Adar, Zhang, Adamic, and Lukose

(2004). This algorithm is the updated version of PageRank. As the first attempt to implement

PageRank in the context of blogs, this algorithm allows the most cited blogs to become the hub of

the blog environment and get higher popularity scores. Furthermore, pages containing popular

postings would also be ranked high.

A more recent blog ranking implementation is the B2Rank algorithm (Tayebi, Hashemi, &

Mohades, 2007). B2Rank works like the PageRank algorithm, but it assigns two scores to each

blog: a personality score and an operation score. The most interesting part of this algorithm is that

it uses two different types of links within the blogosphere, the blogroll and the permalink. If blog

A has blog B on the blogroll list, it means that blog A believes blog B is an interesting blog and

votes for it. A permalink is a citation for blog postings; it means that the author is only interested

in specific postings, but perhaps not the whole blog.

Another contribution of B2Rank is that it defines the weight of links between blogs. For a blogroll

network, the weight of each link is defined by the probability of moving from one page to another.

55"
""

The weight of each link corresponds to two factors of linked blogs, including updating rate and

average number of comments. They are both necessary to calculate the personality score. For a

permalink network, the weights are computed according to the number of comments on linked

posts and the delay time of the citation. The hypothesis is that a blog posting that gets more

comments and earlier citation has a higher probability to be selected by a surfer. The operation

score of a specific blog is the average of all its posting scores. So, the final rank score of each blog

is:

 (2-18)

where PE(x) is the personality score and the EAR(x) is the operation score. PE(x) calculation is

very similar to the PageRank algorithm:

 (2-19)

This is also a recursive definition, just like PageRank. That is, the personality score of blog x is

defined by all the blogs that have links to it. NB(y, x) is the probability that a reader moves from

blog x to blog y. Similarly, the operation score calculates the posting relationships; the only

difference is that this score should be normalized by the number of postings within a certain blog:

 (2-20)

Similar to linkage data, statistical user behavior data (such as clickthrough, dwell time and scroll

time data) have been used and prove to be an effective indicator to compute a popularity score for

ranking. The relationship between the explicit ratings of user satisfaction and the implicit

measures of user interest was studied by Fox, et al. (2005). Two different Bayesian models were

built to correlate different kinds of implicit measures and explicit relevance judgments for

individual page visits and entire search sessions. The experiment shows that implicit behavior

measures are strongly associated with users’ satisfaction. Joachims (2002) employed clickthrough

data to learn ranking function by using SVM, and his work proved that clickthrough data is a

significant predictor of user interest. This work is based on the assumption that, in most cases,

)()()(2 xEARxPExRankB !=

)1())),()((()(dxyNByPEdxPE !+"= #

)(__
)(

)(

)1())),()((()(

xpostingofnum
eEB

xEAR

debNBbEBdeEB

!
!

=

"+#=

56"
""

user click behavior is not random, but based on a clear informed choice. Meanwhile, clickthrough

data is available in abundance and can be recorded at very low cost. Similarly, Agichtein et al.,

(2006) incorporated noisy user behavior data into the search process, and the user data was used to

train the ranking functions. In this approach, user interest is partially represented by statistical user

behavior data.

Most existing popularity research and algorithms are based on PageRank, HITS algorithms and

user behavior data. However, that causes some limitations:

! Too much focusing on timeline and the link structure of web pages may result in ignoring the

important information within the content of queries and documents. This problem is

especially important when a user cannot formulate a high quality query to represent his or her

information need.

! Blog linkages (hyperlinks in web pages or relationships between blogs and postings) are

different than in the traditional web medium. For instance, a blogger creates a link (blogroll

or permalink or comment) probably for two different reasons: 1) the blogger is interested in

the content of the target blog or posting, or 2) the blogger has a close relationship (e.g.,

friends) with the author (Furukawa, Matsuzawa, Matsuo, Uchiyama, & Takeda, 2006).

Currently, little research clearly separates these two kinds of links.

! Mishne and de Rijke (2006) find that some web retrieval users (such as bloggers) are

interested in context queries and news-related named entities, but they may be only interested

in a specific aspect of this named entity. For example, with the name entity “Barack Obama,”

users may be interested in “his Chicago house” or “his book, The Audacity of Hope” for each

time period. Some users cannot formulate a high quality query to express his or her interested

topics, and popularity based ranking algorithms cannot catch these subtleties in users’

interests.

Overall, we improve existing ranking algorithms to better satisfy user needs, as well as identify

change in user interest over time.

57"
""

2.4.2 Combining relevance and popularity based ranking

Given the relevance and popularity based ranking algorithms, we need to answer two different

questions:

1. How do we choose between relevance and popularity ranking for different queries?

2. How do we combine these two approaches to create a better ranking function?

In recent years, leveraging the machine learning framework became the most popular way to

combine different ranking algorithms. This method is known as ‘learning to rank.’ Several

candidate ranking algorithms were aggregated using machine learning to build more effective

ranking models (Bartell, Cottrell, & Belew, 1995; Burges, Ragno, & Le, 2007; Burges et al., 2005;

Cao et al., 2006). A standard query level evaluation corpus, such as TREC, was utilized as the

training data.

As the following diagram shows (Liu, 2009), in the learning to rank framework, the training set

consists of a set of n training queries with their associated documents represented by feature

vectors!!!!! with their relevance judgments. Then one or more learning algorithms are used to

learn the new ranking model or train the unknown parameter(s). It was found that the new ranking

model can be used to predict the rank results of the new queries for testing purpose.

 Training

 Testing Prediction

!!
!!!!!
!!!!!
!

!!!!!

!!
!!!!!
!!!!!
!

!!!!!

!!
!!!!!
!!!!!
!

!!!!!

Learning Component

q
!!!
!!!
!
!!!
?

Ranking Component

Ranking Model

q
!!!
!!!
!
!!!
h(x)

58"
""

Figure 2-3. Learning to Rank Framework (T. Liu, 2009)

Trotman (2005) found two better ranking functions by aggregating well established ranking

algorithms, including inner product (Witten, Moffat, & Bell, 1994), cosine (Harman, 1992),

probability (Robertson & Spärck Jones, 1976) and BM25 (Robertson, Walker, Jones,

Hancock-Beaulieu, & Gatford, 1995).

Learning to rank is an effective empirical methodology for integrating a list of different ranking

algorithms from a machine learning perspective. Nevertheless, from a theoretical perspective,

combining relevance and popularity ranking methods approaches is still a challenging task.

2.5 Topic modeling

Topic, defined as group or probability distribution of words or phrases, is frequently used in

information retrieval and text mining research. In this thesis, the community interest model is built

on a query and time dependent probability distribution over a list of topics. The topics on the

“community interest topical space” can be very dynamic, due to the nature of users.

To address this dynamic characteristic, a topic extraction algorithm is used in this thesis, and the

related topic extraction methods will be reviewed in this section.

2.5.1 Word clustering and topic

The earliest topic extraction methods extracted statistical topics by means of clustering algorithms.

For instance, Lewis (1992) experimented with the performance of grouping those unambiguous,

but semantically related indexing terms into clusters for classification tasks. An earlier similar

experiment by Sparck Jones (1973) found that small clusters of low frequency terms were most

effective, regardless of the clustering method used.

Topic models are a popular approach for representing the content of documents and collections

from a semantic perspective. This approach stems from cluster hypothesis (Jardine & Rijsbergen,

1971), and a document is assumed to draw its words and phrases from one or more topics. Each

topic is generally defined as the probability distribution, ! ! ! , over all of the words or phrases.

59"
""

! ! ! ! ! ! ! ! ! ! !
!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!

The popular word cluster methods are reviewed as follows:

Mutual information and entropy are frequently used to compute the relatedness between words by

using their textual context. In these methods, the similarity of words is based on the co-occurrence

data in the context, for example verb and noun pairs. (Brown, Pietra, deSouza, Lai, & Mercer,

1992) propose use of an algorithm based on Maximum Likelihood Estimation (MLE), that

performs a merge that would result in the least reduction in average mutual information, while (Li,

2002) employed the Minimum Description Length (MDL) principle. These methods use a

probability model that computes the probable existence of the co-occurrences among words or

classes of words, for example, verb (v) occurrence with the noun (n):

)()(),(),(vnvn CvPCnPCCPvnP !!= (2-22)

For any two words in the context, we can build the context vectors and define a distance metric

based on the distance of the vectors in terms of (minimal loss of) Average Mutual Information

(AMI), where AMI is the value of averaging the mutual information of individual word pairs. The

idea at the basis of their clustering method is to find groups in which the loss of AMI is small. In

general, the loss is smaller when the members of the group have similar vectors.

Alternatively, a taxonomy-based approach can be used for word clustering. Semantic similarity

between words will be in respect to hierarchically structured lexical resources, namely IS-A or

hypernymy / hyponymy relations, such as are used in WordNet (Fellbaum, 1998). Semantic

similarity is evaluated in terms of the distance between the words (nodes on the tree structure) in

the taxonomy: the shorter the path from one node to another, the more similar they are. Given

multiple paths, the shortest path is understood as involving a stronger similarity.

In a real WordNet taxonomy environment, it has been noted that the “distance” covered by

individual taxonomic links is variable, due to the fact that certain sub-taxonomies are much denser

than others. To overcome this problem, the system normalizes the synset by using the maximum

depth (from the lowest node to the top) in the taxonomy in which both words co-occur (Warin,

2004).

5:"
""

The easiest implementation is the Leacock-Chodorow method (Leacock and Chodorow, 1998).

The similarity between the two concepts a and b equals the number of nodes along the shortest

path between them, divided by double the maximum depth (from the lowest node to the top) in the

taxonomy in which a and b occur.

]
2

),(
logmax[),(

D
balengthbaSimLCH !=

(2-23)

Similar methods including Wu-Palmer method (Wu and Palmer, 1994) and Lin algorithm (Lin,

1998), which compute the similarity between words and phrases by leveraging lowest common

subsumer (LCS, the lowest node subsuming / dominating them both concepts in the hierarchy):

]
)),((2),(

)),((2max[),(
baLCSdepthbalength

baLCSdepthbaSimWup !+
!

=

(2-24)

]
)(log)(log
)),((log2max[),(
bpap
baLCSpbaSimLin +

!
=

Natural Language Processing (NLP) is also used for word clustering and topic extraction,

especially for defining the syntactic relatedness between words within the sentences. For instance,

Jacquemin (1999) studied paradigmatic and syntagmatic relatedness between words. For

paradigmatic, two words can be similar if they can substitute for each other in a particular context

without violating any semantic rules of the sentence. For syntagmatic, the similarity is based on

typically co-occurring terms within the same context. By using this method, nouns, verbs and

noun + verb pairs could be clustered to create semantic topics.

Word and document clustering is a popular technique in information retrieval research. For

instance, in the earlier stage, Voorhees (1985) used clustering for basic retrieval experiments to

test clustering hypothesis for information retrieval task, but the results are inconsistent. Liu and

Croft (2004), Xu & Croft (1999) used clustering in a different way, which integrated cluster based

topics with language modeling and smoothing, which achieved positive results. Evans, Huettner,

Tong, Jansen, and Bennett (1999) used clustering for interactive relevance feedback. Existing

studies show that word or document based clustering can be an effective method to improve

retrieval performance.

5;"
""

2.5.2 Latent Semantic Indexing

Traditional information retrieval or text mining systems use bag-of-words or phrases as the

features to represent each document in the collection, and the multinomial word distribution has

long been used to describe the content of the query, document or collection. However, word level

document indexing is more like a type of statistical representation, instead of semantic

representation. Meanwhile, the fundamental deficiency of systems’ ability to deal with synonymy

and polysemy effects (Deerwester, et al., 1990) may threaten the performance of retrieval system,

because bag-of-words indexing assumes that each word is independent from the others.

Latent semantic indexing (LSI) was first introduced by Deerwester, et al. (1990), and can

effectively find the relatedness between words by using the observed occurrence information in

the corpus matrix. LSI uses the high dimensional word frequency document vector space

representation matrix as input and then employs the linear dimension reduction, Singular Value

Decomposition (SVD), to project the high dimensional matrix into a lower dimensional one. The

new reduced lower dimensional matrix is called latent semantic space, namely, each component in

the new matrix can be used as a latent semantic topic for retrieval usage.

! ! !! ! !! ! !!!

Figure 2-4 LSI Model

For LSI, the rectangular word-document matrix is decomposed into three matrices as the above

diagram and formula shows. !!!!"#!!! have orthonormal columns and !! is a diagonal matrix.

Word – Doc
Matrix

Orthogonal

Singular
values

Singular
values

(diagonal
matrix)

6<"
""

If only the largest k singular values (in !!) are considered, the model !!can be reduced into !,

which reflects the most important information and associative patterns in the corpus (e.g. the

relatedness between words) while filtering the noisy information in the data. The LSI model can

tell the relationships between words, documents and word document pairs. For instance, the dot

product between two rows of the matrix ! reflects two terms having a similar context of

occurrence across the document; similarly, the dot product of two columns in ! reflects the

relationship between two documents.

LSI also performs noise reduction and has the potential benefit to detect synonymy and polysemy

as well as words that refer to the same topic by using the context information in the corpus matrix.

It has been applied by different fields related to information retrieval, such as Foltz (1990) for

information filtering, Praks, Dvorsky, and Sná=el (2003) for image retrieval, and Dumais, Letsche,

Littman, and Landauer (1997) for cross language retrieval.

In many applications, LSI has proven to result in more robust word and topic processing than

bag-of-words, especially when there is little overlap between queries and documents. However, it

also has a number of deficits, for instance, when integrating LSI to traditional vector space model,

it is hard to express negations and hard to use Boolean conditions. Meanwhile, employing the

latent relatedness between words in retrieval may result in higher recall but lower precision.

In contrast to standard Latent Semantic Indexing, the probabilistic variant has a more solid

statistical foundation based on latent random variables. Hofmann (1999) defines a generative

model based on LSI called Probabilistic Latent Semantic Indexing (PLSI). Retrieval and text

mining experiments on a number of test collections and tasks indicate substantial performance

improvements over classical LSI.

A generative model for documents is based on the assumption that each document in the

collection is a mixture of a list of topic probability distributions and the simple probabilistic

sampling rules that describe how words in documents and collections might be generated on the

basis of latent random variables (Steyvers & Griffiths, 2007). The most important steps for PLSI

are to model the topic-word distributions !!and the topic distributions % given a document. In the

progress of training a generative model, the goal is to find the best set of latent variables that can

6!"
""

best explain the observed data, for instance, observed words in document or collection, assuming

that the model actually generated the data. The extracted model, such like topic probability

distribution, can be used to infer the unobserved data.

PLSI is a proper generative model, as the following diagram shows, between document and words,

if we assume there is another latent variable as topic z, with the conditional independence

assumption on the latent class z,

Figure 2-5. Probabilistic Latent Semantic Indexing (PLSI)

the document generation probability of a word given a document can be written as (2-21),

! ! ! ! ! ! ! ! ! ! ! ! !! !In this formula, ! ! ! is the word probability given a topic and

! ! ! is the topic probability given a document. Given the likelihood principle, for all the

documents in the corpus, the maximization of the log likelihood function can be written as

! ! ! ! !!! ! !"#$!!! !!!!!!!!!!!!!!!!!!!!!!!!! ! !"!
!!

While, given latent topic variable, !!!!!! can be:

!!!!!! ! ! ! ! ! ! ! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!! ! !"!
!

The Standard Expectation Maximization (EM) (Dempster, Laird, & Rubin, 1977) is used for the

procedure for maximum likelihood estimation. The EM algorithm performs the estimation process

iteratively, which can be used for unobserved data.

Overall, PLSI, based on the latent variable topic with a better statistical process, outperforms the

LSI model (Hofmann, 1999). For IR studies, Azzopardi, Girolami, and Van Rijsbergen (2004)

used PLSI to construct thesauri through automatic synonym acquisition.

The extracted topics can be used to describe the contents of a document or collection: the high

probability topics and words within the topics can be viewed as a loose description of the

document and collection, and the more sophisticated topic models can provide better descriptions

A(B()(

6#"
""

(Yi & Allan, 2009). In the meantime, some researchers have claimed that topic models can

improve information retrieval by matching queries to documents at a semantic level, such as

(Steyvers & Griffiths, 2007).

2.5.3 Latent Dirichlet Allocation

PLSI is the first statistical generative topic modeling algorithm based on the hypothesis that a

document is a mixture of latent variables. However, the PLSI model does not make any

assumptions about how the mixture weights %, e.g. topic distribution over documents, are

generated, making it difficult to test the generalizability of the model to new documents and

making the parameters training process difficult (Steyvers & Griffiths, 2007).

Blei, Ng, and Jordan (2003) proposed Latent Dirichlet Allocation (LDA), which is a generative

probabilistic model in the hierarchical Bayesian framework. LDA extends PLSI by introducing the

Dirichlet prior on %, the new generative model called LDA. As a conjugate prior for the

multinomial topic distribution, the Dirichlet distribution assumption has some advantages, which

can simplify the problem. The probability density of a T dimensional Dirichlet distribution over

the multinomial distribution ! = (!!,!!! …, !!), where !! ! !, is defined by:

!"# !!!!!! !! ! !! !!! !
!!!!!!

!!
!!!!

!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!! ! !"!

where !!,!!! …, !! are the parameters of Dirichlet distribution, which can be simplified by a

single value !!"# . The value of !!"# is dependent on the number of topics K. Each

hyperparameter !! can be the prior observation for the number of times topic j is sampled in a

specific document before having observed any actual words from that document. Similarly, the

Dirichlet distribution on !!!"#! prior on , e.g. the word distribution over topics, the

hyperparameter !!"# can be interpreted as the prior observation count on the number of times

words are sampled from a specific topic before any word from the collection is observed. The

LDA topic modeling process is shown as the following diagram. The common settings of

symmetric Dirichlet priors in the LDA estimation with !!"# = 50 / k and !!!"# = 0.01 will be

65"
""

used for this thesis, and according to Wei and Croft >2006), the retrieval performance is not very

sensitive to the values of these parameters.

Fig 2-6 LDA topic extraction

Figure 2-6. LDA

LDA is the most popular topic extraction algorithm in recent years and it has been successfully

used in information retrieval and text mining research to effectively characterize the content of a

document or a collection. For instance, Zhou, Bian, Zheng, Zha, and Giles >2008) proposed a

generative model for social annotations based on LDA topic models. Sivic, Russell, Efros,

Zisserman, and Freeman >2005) used LDA for image retrieval. Titov and McDonald >2008)

implemented the new model for opinion analysis based on LDA.

LDA is also frequently used in current information retrieval related research. For example,

Azzopardi, et al. (2004), Wei and Croft >2006) improved on the classical language model from

topic modeling smoothing by integrating LDA topic component.

2.6 Evaluation methodology

In this section, we will briefly introduce the popular evaluation measures in traditional and web

based information retrieval contexts.

Most experimental information retrieval studies focus on developing innovative methods and

algorithms to better match and rank the retrieved results, and it is critically important to utilize

scientific evaluation criteria to judge if one method is significantly better than another. Among

popular evaluation methodologies, there are several basic rules (Buckley & Voorhees, 2000):

! The test collection should have a reasonable number of testing queries. Sparck Jones and

van Rijsbergen (1976) suggest a minimum of seventy-five queries, while the TREC

A(B(!!!!"#

!(!!"#!

66"
""

program committee has used twenty-five queries as a minimum and fifty queries as the

norm (Voorhees & Harman, 2000).

! The experiment should use a reasonable evaluation measure. The common evaluation

metrics include average precision, R-precision, precision-at-(top) n documents, and

normalized discounted cumulative gain (NDCG).

! The conclusions of whether retrieval performance improves or not should be based on a

reasonable notion of difference. Sparck Jones (1974) suggested that a difference in the

scores between two different algorithms should be greater than 5% to be noticeable.

Precision and recall have been used as the key metrics to evaluate information retrieval systems

and algorithms for a long time. Most existing precision and recall based ranking evaluation is

based on binary relevance judgments, namely every, or a subset of, retrievable documents are

recognizably “relevant” or “not relevant.” The precision and recall rate in information retrieval is

defined by the following formulas:

!"#$%&%'(! !"#"$%&'!!"#$%&'() ! !"#$%"&"'!!"#$%&'()
!"#$%"&"'!!"#$%&'() !!!!!!!!!!!!!!!!!!!

!"#$%% ! !!"#"$%&'!!"#$%&'() ! !"#$%"&"'!!"#$%&'()!
!!"#"$%&'!!!"#$%&'()! !!!!!!!!!!!! ! !"!

Intuitively, recall in IR is the measure of the completeness of retrieval, while precision describes

the purity and effectiveness of retrieval. Even though achieving high precision and recall

simultaneously is preferable, empirical studies of information retrieval show that a tradeoff

between precision and recall is unavoidable with a tendency for precision to decline as recall

increases (Buckland & Gey, 1999). The relationship between precision and recall has been studied

since the 1970s (Bookstein, 1974; Buckland & Gey, 1999; Cleverdon, 1972; Gordon & Kochen,

1989; Heine, 1973; S. E. Robertson, 1975). F-measure is frequently used to quantify retrieval

performance by combining precision and recall.

!! !
!! ! !!!!"#$%&%'(! !"#!""
!! ! !"#$%&%'(! !"#$%% !!!!!!!!!!!!!!!!!!!!!!!! ! !"!

When recall and precision are evenly weighted, " = 1, it is known as F1 measure.

In most IR evaluation methods, we need to evaluate more than one query, and mean average

67"
""

precision (MAP) is one of the most stable metrics. MAP across different testing query set (size =

Q) is defined as:

!"# !
!"#$%&#'$#()*)+,!!!!

!!!
! !!!!!!!!!!!!!!!!!!!!!!!! ! !"!

Where average precision for each query q is defined as:

!"#$%&#'$#()*)+,!!! ! !!!!! ! !"#!!!!!!!!
!"#$%&!!"!!"#"$!"#!!"#$!!!!!!!!!!!!!!!!!!!!!!!! ! !"!

In formula 2-31 average precision is defined by each of the relevant documents in the ranked list.

P(r) in the formula is the given cut-off rank and rel(r) is the binary relevance judgment for

document at rank r.

Traditionally, the recall-precision plot is often employed to characterize performance of the

information retrieval system and algorithm performance. For very large and dynamic document

collections, such as the web search environment, it becomes impossible to get accurate recall

estimates, since they require relevance judgments for a large document collection (Joachims,

2002). For this reason, we need another evaluation methodology to satisfy the requirement of

search engines.

In the web environment, users tend to peruse the first page of retrieved pages, but rarely move to

the second and almost never look at the third. Anh and Moffat (2002) proposed

Precision-at-document-n, which focuses on the precision of the top n rank results in the result

collection.

The Discounted Cumulative Gain (DCG) ranking evaluation (Järvelin & Kekäläinen, 2002) is

another good indicator to evaluate ranking result. DCG is a measure that gives more weight to

highly ranked documents and allows incorporation of different relevance levels (highly relevant,

relevant, and not relevant) by giving them different gain values. The formula for this is:

!"#! ! !!"#!!!
!"#! !!!!!

!
!!! !! ! !"!

Choosing the right evaluation method and reasonable testing query collection size is important for

evaluating the new algorithm. In Buckley and Voorhees’s (2000) work, they evaluated different

evaluation methods by calculating the error rate while verifying topic set size. The evaluation

68"
""

methods they analyzed include precision-at-n, recall (1000), precision at 0.5 recall, R-precision

and average precision. In their experiment, they found that:

1. Twenty-five topics are just barely enough for an experiment, but fifty topics are stable

with the error rate less than 2-3%.

2. This suggests that 100 queries is a good target number for an experiment measuring

Precision-at-20.

A similar experiment has been implemented by Sakai (2006).

However, most existing evaluation methodologies are designed for static evaluation purposes,

which means user’s relevant judgment doesn’t change very often. For this thesis, a dynamic

community interest model is extracted to satisfy a user’s up-to-date information needs, but an

updated (dynamic) evaluation method is also needed to judge the new ranking algorithms.

2.7 Conclusion

Since this thesis is attempting to improve ranking performance by leveraging dynamic community

interest, it is helpful to understand the existing ranking methodologies. It is encouraging to know

that statistical user or community information has been successfully employed to improve ranking

performance.

The community interest in this thesis is defined as a degree or a probability distribution of a list of

real-time query centric topics. The use of topic extraction is an important component of the

experiments. Based on recent studies in information retrieval (Wei & Croft, 2006), LDA is an

effective topic modeling algorithm, which can be integrated with well-established retrieval model,

such as language model.

However, few of the earlier studies have explicitly used community interest in order to improve

ranking. This thesis attempts to make use of dynamic computational community interest model

extracted from blog data to better understand users’ real-time preferences given a query and

improve ranking performance.

"

69"
""

!"#$%&'(:*(;&%".<.2.=>(

3.1 Introduction

As stated in Chapter 1, the area of inquiry in this thesis is the innovative community interest based

ranking method. Three research questions derived from the research goals have focused the

inquiry:

RQ1: What is community interest? And can we extract and computationally model real time

community interest from user textual data?

RQ2: In what ways can real-time community interest be used to rank the retrieved results?

RQ3: How can we evaluate real-time community interest ranking results? And can the

community interest based ranking method improve results over existing ranking methods?

In this chapter, we will explain the research methodology in detail. In section 3.2, how to utilize

user-oriented text corpus to represent real-time user interest and how to effectively extract the

statistical community interest topic model within the user-oriented text data is discussed (RQ1). In

section 3.3, the community interest model (extracted from RQ1) used as an indicator to rank the

retrieved results will be discussed. Two ranking methods will be introduced: Community Interest

Vector (CIV) and Community Interest Language Model (CILM). And last, an innovative

evaluation method will be explored in section 3.4 to evaluate the dynamic ranking results, and a

preliminary experiment with evaluation results will be analyzed.

In section 3.2, we will mainly address the problem of what is community interest and the method

to model community interest. However, it is difficult to directly evaluate if the extracted

community interest model is an accurately representation of community interest. So, we will

combine this question with RQ3 and hypothesize that, if the community interest model is

accurate, the ranking result based on the likelihood of interest will be positively evaluated by user

and the interest based ranking should be better than the baseline ranking methods.

As mentioned in the first chapter, currently there are two different approaches for information

retrieval ranking methodologies: relevance based ranking and popularity based ranking. In this

6:"
""

thesis, another ranking method based on user (community) dynamic interest over the content of

the documents is proposed. In Table 3-1, these three ranking approaches are compared.

Ranking Method Query Community or User Time

Popularity Independent Dependent Semi- Dependent

P (popular | doc) e.g. PageRank, ClickThrough, behavior based ranking

Relevance Dependent Independent Independent

P (relevance | doc, query) e.g. VSM, language model, BM25

Interest Dependent Dependent Dependent

P (interest | doc, query, time, community)

Table 3-1. Comparison of three different ranking methodologies

The interest based ranking method is dependent on a query, the community/user, and time.

Extracting and modeling community interest is a challenging task. Since users create millions of

pieces of textual information every hour, such data is available in abundance. In the rest of this

chapter, the method of building a community interest model for ranking by utilizing user-oriented

real-time text data will be explained.

3.2 Community Interest Generation

3.2.1 Definition of community interest

In the existing information retrieval research, user need has been studied by the different methods

outlined in Table 3-2.

Obviously, a user’s query provides the most direct evidence of a user’s information need.

However, as mentioned in Chapter One, the gap between a keyword query and an information

need, represented by !, is an intangible factor which is difficult to measure. Because of the

challenge of factor !, most existing retrieval and ranking algorithms rely solely on the query to

6;"
""

model a user’s information need. However, since a query is often extremely short, the user model

constructed based on a keyword query is inevitably impoverished.

Method Describe Example

Feedback
Explicitly or implicitly add additional terms to the

query based on previously identified relevant or

non-relevant results

Salton and Buckley,

>1990)

Query-log
analysis User generated query log is the representation of the

information need for query recommendation or

clustering purposes

Baeza-Yates, et al.,

(2004b)

Collaborative
filtering Recommend the information by discovering the

similar users in certain community

Breese, Heckerman,

and Kadie (1998)

Personalization
Personalize the search or rank result based on an

existing user profile

Qiu and Cho (2001)

Table 3-2. Existing research for user requirements in IR

As background for this study, user or community interest can be viewed as a kind of dynamic

information need or context for an information retrieval task and each community interest model

can be used as the user-oriented search context for the target query. Users input the same query

(especially for short queries) at different times (different months, days or hours), often for

different reasons, and the corresponding relevance judgments, interest judgments and ideal

ranking result might change over time. For instance, if a user is interested in news about the

playoff chances of her favorite sports team, news of today's win will be of interest today but may

well not be of interest next week and the ideal rank list of documents may change over time even

though neither the document nor the information need has changed. For these kinds of information

needs, dynamic or time variant ranking functions would be desirable.

Another example, “Obama” was a popular query in 2008 and 2009 query logs, but user or United

7<"
""

States community interest toward this query may change, as Table 3-3 shows.

Query Time Community’s Interest (topics)

“Obama”

August, 2008 Presidential candidate competition within Democrats…

October, 2008
Presidential candidate competition between Democrats and
Republicans…

December, 2008 Plan for economic crisis and bailout…

Table 3-3. Community interests change over time for query “Obama”

If we are to effectively extract community interest toward each query, for example by extracting

real-time interest models at a regular time interval, i.e. every thirty minutes, especially for short

and ambiguous queries, the gap between the query string and users’ information needs will be

lessened, as the following diagram depicts:

Figure 3-1. Community interest context for query

In order to characterize community interest, it is necessary to introduce query specific community

interest topic space, which is defined as follows:

Community interest topic space (query specific): a list of current topics that a

community is likely interested in for a given query.

“Community interest topic space” is a sub-collection of “fact topic space” for a given query. If a

query is the “protagonist” of a given set of news, we could find the corresponding topic(s) of the

news in the “fact topic space”, but the community may or may not be interested in a given topic

(event), and this specific topic may or may not appear in the “community interest topic space”.

The protagonist is the main actor in a posting. In this thesis, a protagonist is not necessarily a

7!"
""

person; instead, it is a query, which could be a person, a location, an event or something else.

For a given time and a given query, the community may be interested in more than one topic (with

different degrees of interest), and the community’s interest can be defined as follows:

Community interest: a distribution of the degree or probability of interest in the

community interest topic space for a given query at a given time; each point in this

distribution mirrors the current real-world community’s interest toward a specific topic

relative to the target query.

Figure 3-2 Community interest (distribution) for query X, time Y

As Figure 3-2 shows, the community interest for a specific query X at time Y is defined as a

distribution over the community interest topic space, and the point in this diagram demonstrates

the probability (or degree) that a community takes interest in Topic 2. Based on this definition,

there are two essential steps in order to extract community interest. First, the community interest

topic space should be identified; and secondly, the probability or degree of each topic in the

community interest topic space should be computed to estimate real time interest distribution.

Both the community interest topic space and community interest distribution can be dynamic and

change frequently.

3.2.2 User generated textual data and community interest

Based on the definition of community interest, there are five fundamental components to modeling

Topic1 Topic2 Topic 3 Topic n

7#"
""

the interest: query, community, time, topic, and weight or probability (of the topic). In existing IR

research, most user or community ranking models are trained by statistical user behavior data,

such as clickthrough, hyperlink network or dwell time. The dynamic community interest model

and interest distribution for information retrieval ranking is trained using real-time user-generated

textual data.

In the Web 2.0 context, users may generate different kinds of chronological text data, such as

blogs, selected news, or comments to express their opinions. A hypothesis of this study is that a

large amount of user-oriented chronological textual data can represent the overall opinion and

interest of the community of a target query. A simple example is the 2008 presidential election. As

the following diagram shows, the number of blog postings containing “Obama” and “McCain”

changed over time (data from Yahoo! Buzz, http://buzz.yahoo.com, from 2008-10-11, before the

election, to 2008-11-10, after the election). In this case, “Obama” and “McCain” were the

protagonists of the dynamic blog posting collections, and these collections reflect the interest

change over the query “Obama” and “McCain”.

Figure 3-3. 2008 US president candidates related blog postings

It is shown in Figure 3-3 that, before election day (11/4/2008), the numbers of postings about the

two candidates were almost equal, but after the election, because of the result, the gap between the

winner and the loser significantly increased, and represented real world interest. Similar blog

research about the 2004 presidential election can be found in Adamic and Glance >2005).

C(

DCC(

ECCC(

EDCC(

FCCC(

FDCC(

G90-0(

H+:0%.(

75"
""

Compared with statistical user data, such as query log and search session data, user generated

chronological textual data has the following advantages:

1. User generated chronological textual data contains sufficient semantic content for topic

extraction as well as the generation of community interest topic space.

2. User generated chronological textual data is time dependent, and it can be classified into

“current collection” and “historical collection,” representing “current community

interest” and “historical community interest.” For some other time oriented dataset, like

query log, we can hardly extract the subtle interest change from semantic perspective.

3. Compared with statistical user behavior data (such as hyperlink and clickthrough), user

generated textual data may be less noisy, resulting in higher representayion fidelity.

But user generated chronological textual data also have some disadvantages:

1. Compared with statistical data, textual data is difficult to analyze, and extracting

semantics (topics) from text data is not an easy task.

2. User generated chronological textual data is used to train the community interest model

which is then used to rank the documents. However, some user oriented text data (e.g.

blog postings) are written in informal/colloquial language. The gap between colloquial

and formal language may negatively affect the performance of ranking because of some

low quality features in the community interest topic space. For instance, taking news

ranking as a case, user currently interested in topic X, but the word distribution of topic X

in news corpus and blog corpus may or may not be same.

For a specific piece of user oriented textual data, such as a blog posting P, if query X is the

protagonist of this posting at time Y, we can assume that P is a sample of community interest for

query X at time Y, and P can be used as an unit to train the community interest model.

In the ideal world, determining if a blog posting is mainly focused on the target query may

increase the accuracy of the interest model by filtering out the noisy data. For instance, the word

“Obama” shown in one posting does not necessarily mean that “Obama” is the protagonist of the

76"
""

posting. However, removing the noisy data will also significantly reduce the size of the training

data. Some relevant posting data could be inevitably filtered out. In preliminary experiments, we

found that training data size is very important for community interest modeling (detailed in section

3.4). As a result, this thesis makes the assumption that if the target query appears in a posting, this

posting may have a strong semantic relationship with the query, and this posting can be used to

train the community interest model.

3.3 Community Interest Ranking

3.3.1 Community interest topic space extraction

As defined in section 3.2.1, community interest topic space is a list of query-specific topics that a

community is highly likely interested in at the current moment. This section will explain the

method of extracting topics from user oriented text by using topic extraction algorithm.

In classical information retrieval and text mining systems, the bag-of-word assumption is

frequently used as the basic feature to index text data, and both query and document are

represented as empirical unigram distributions over the vocabulary. Recently, more and more

researchers have begun to add topic modeling in order to represent the content of the document

and collection in information retrieval studies. In this study, the topic is defined as a probability

distribution over the vocabulary, and the topic model can be used to characterize the content of

one or multiple documents or collections (Yi & Allan, 2009).

Based on the definition of community interest space, the most current topics can be extracted from

recent (e.g. the past few hours or today) user generated text documents. In this thesis, users’ blog

postings are used as the training data, and are separately indexed from (retrieval system) document

collection. Because community interest topic space and the community interest model are query

dependent, the most current blog postings containing the target query string are used as the

training corpus, and the query in each posting in this corpus can be viewed as the protagonist (as

mentioned in last section). CQC (Current Query-centric Collection) is used to represent this

(current) training blog posting collection for each target query.

If we assume that the postings in the CQC incorporate a fixed number of latent topics, we can

77"
""

proceed to extract these topics for community interest space. There are various techniques to

perform this topic modeling step, and we chose an off-the-shelf public domain algorithm Latent

Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003). In a nutshell, LDA is similar to

probabilistic Latent Semantic Analysis (Thomas Hofmann, 1999) in that it decomposes the

posting-by-features matrix into a document-by-topics, matrix-!, and a topics-by-features, matrix-",

illustrated in Figure 3-4. Azzopardi, Girolami, and Rijsbergen (2004), Wei and Croft (2006) have

shown that using the LDA model for information retrieval tasks is feasible with suitable parameter

settings, and LDA topic modeling performance consistently outperforms the traditional cluster

based approach, illustrated by Liu and Croft >2004).

Figure 3-4. LDA topic modeling

LDA is a generative probabilistic model in the hierarchical Bayesian framework, and the topic

proportions are randomly drawn from a Dirichlet distribution. As the above diagram shows,

traditional document indexing systems represent each document as a vector of features, e.g.

bag-of-words or entities. By using LDA, the document-feature matrix can produce two different

matrices: matrix-! contains the document (posting) – topic probability distributions, i.e. each row

represents the probability of the topic given the posting P (topic | posting). Matrix- ! contains

the topic-feature probability distributions, i.e. each row represents the probability of each feature

given the topic P (feature | topic).

In the LDA model, the document corpus is generated by the following process:

1. For z = 1: k, where k is the fixed number of latent topics, draw parameters for a

multinomial distribution z for each topic z from a Dirichlet distribution with

hyperparameters ". z models the relative frequencies of features in topic z.

78"
""

2. For each document d, draw parameters for a multinomial distribution d from a Dirichlet

distribution with hyperparameter !. d models the relative frequencies of topics in

document d.

3. For each feature (e.g. word) w in document d,

a. Draw one topic indicator !! from the multinomial distribution d.

b. Given !!, draw a feature (word) w from the multinomial distribution !!.

The following table is an example of LDA topic model (topics-by-features probability distribution,

matrix-#) from a user blog posting collection:

!"#$$#%&'()*#+' ,-..#/'0/1'()*#+' 23$%/.4'()*#+'
?(21'%)@A1%)4*" <B<#6#9;" C%3-D('" <B<<:;87" E(FG(0" <B<!!85;"

A1%)4*" <B<!9;!5" HF**('" <B<<9;5;" I'*&('@E(FG(0" <B<!!687"

J+(KK(0D" <B<!!9:7" *4'0(*1" <B<<7;:" CLK0'*&" <B<!<;67"

C3)/@K%/')" <B<!!5:9" -F**('" <B<<77!5" J1'+0@M310*30" <B<<;68;"

J+(KK(0D" <B<!<!!6" +'-" <B<<7<69" CLK0'*&(2*" <B<<9869"

#<<K" <B<<;5;:" C%3-D('@NBJB@*&'&%" <B<<58!!" M310*30" <B<<787"

J+(K" <B<<;5;:" *&'&%*" <B<<558:" OD%" <B<<7699"

H%23-/" <B<<:665" -F**('0" <B<<#56#" I'*&('" <B<<6:8;"

A1%)4*" <B<<:665" D%3-D('0" <B<<#56#" CLK0'*&" <B<<69:#"

?%&%-" <B<<:<67" ,F*1" <B<<##6:" P3-0" <B<<5:#:"

Q-%%*&L)%" <B<<96<;" C%3-D%@RB@PF*1" <B<<#<8#" S3F0D" <B<<5789"

R3-)/@-%23-/" <B<<8#!7" *3.(%&" <B<<!;8:" 1&&4" <B<<5789"

H%)'L" <B<<7<#!" 0(0D" <B<<!;8:" R3K%0*" <B<<55<9"

R'&%-" <B<<6<88" T(D1&" <B<<!9:#" 0'*&('" <B<<55<9"

-%,%22'@*30(" <B<<588:" /(/" <B<<!9:#" U)/" <B<<5##"

!<<K" <B<<57<;" J4'(0" <B<<!9:#" Q'&1%-" <B<<5##"

J+(KK%-" <B<<57<;" (-'V" <B<<!8::" 21(0%*%@DLK0'*&*" <B<<5##"

?%/)%L@*+(K" <B<<57<;" 3()" <B<<!7;7" S%'-*" <B<<5!55"

HL'0@E321&%" <B<<57<;" -F**('*" <B<<!7;7" N0%.%0@,'-*" <B<<#;7"

M30%*" <B<<5#9!" *3F&1" <B<<!7<#" CLK0'*&(2*" <B<<#9:8"

Table 3-4. Three topic distribution for query the “Olympic” on 2008-08-11

The above table shows three sample topics extracted from the 2008-08-11 blog posting collection

(1086 blog postings, number of topic N = 30, query = “Olympic”). An named entity recognition

algorithm (Brzeski et al 2007) is used to identify phrases as feature. Each topic is represented by

features (bag-of-words and entities), and the probability of the feature given topic P (feature |

79"
""

topic). The top 20 features of each sample topic are printed in the table.

Based on the topic-feature probability distribution, the learned LDA model (from blog data) can

be used to infer the topic distribution in a new document, and this is important for ranking, by, for

example, projecting a candidate retrieved document into the community interest topic space to

represent the probability that the community is interested in this document. Given a new unseen

document, by inverting the LDA generative process, we can obtain the topic probability

distribution of the new document. Each dimension represents the relative degree (or probability)

for each topic that the community is interested in given a document:

!" !"#! ! ! !"#$%! !"#! !! !"#$%! !"#! !!!!!"#$%!!!"#!! !!!!!!!!!!!!!!!!(3-1)

TV!!"#!! is the topic vector of the given document X, while the !!!"#$%!!!"#!! score

represents the probability that !"#$%!!is a correct descriptor of the given document.

3.3.2 Community interest topic space parameter setting

Using a real-time blog posting collection as the community interest training corpus has some

advantages as mentioned in the last section, however, finding the optimized parameter settings is

challenging and important in this research. In most existing information retrieval research,

automatic evaluation is used to train the parameters. But in this thesis, the dynamic community

interest model is used to rank real-time retrieval, and evaluation is expensive to apply.

The first question for this research is how often does a retrieval system need to update the

community interest model for ranking? As the LDA based topic modeling is employed by this

study, complexity is a big concern because of its high computational costs. Meanwhile, because

community interest models are query dependent, the number of community interest training

corpora correspond to the number of the queries. Queries have differing numbers of blog postings

in a certain period of time, which results in different training corpus sizes. So, another related

question is how many training postings should each query use?

If query X is very popular in the community blogospace, it may have a large number of postings

for a short period of time, and this query community interest model should be updated after a

relatively short period of time. For those queries in the experiment, the maximum number

7:"
""

(!"#!"#) of postings in the training corpus is fixed, and when the number of daily (past 24 hours)

postings of a query is larger than !"#!"# , the training size is fixed to !"!!"# ! which

corresponds to the past t hours and where t < 24.

Another parameter used is !"#!"#, which describes the minimum number of required postings

for the training corpus. There are two reasons to employ !"#!"#. First, most topic modeling

algorithms, such as LDA, need a reasonable number of documents to train the topic model.

Second, too few postings do not satisfy the required sampling of community interest for the target

query.

In sum:

!"!!"#!"#!"#$! !!"#!"# ! !!!"!!"#$% ! !"#!"#; !!"#$%= !!!"#!"#!

!"!!"#!"# ! !!"#!"#!"#$! !!"#!"# ! !!!"#!"#$% ! !"#!"#!"#$; !!"#$% ! !"

 !"!!"#!"#!"#$! !!"#!"# ! !!!!"#$%!!"##!!"!!"#$%&' (3-2)

If there is only a small number of blog postings (!"#!"#!"#$! !!"#!"#) for the target query in

the past 24 hours, this query is ignored by the current interest based ranking algorithm, because it

is important to sample enough data to generate an accurate community interest model, and we are

targeting on the subtle user interest change over a short amount of time (i.e. 24 hours). In actuality,

it is possible to deal with this problem by using a “pseudo query” as the protagonist to train the

target interest model. For instance, a query clustering algorithm was studied by Baeza-Yates,

Hurtado, and Mendoza (2004a), Beeferman and Berger (2000), Liu, Qin, Chen, and Park (2008),

Wen, Nie, and Zhang (2002), and it was found that the query cluster can be used as a “pseudo

query.” In this way, the interest model corresponds to the “pseudo query” instead of a single query,

and the number of training postings of the query cluster is significantly increased. However, some

popular query cluster algorithms, e.g. Wen, Nie, and Zhang (2002), are based on the user session

and clickthrough data, which are hard to access. Despite some studies on pseudo queries, more

research needs to be done, and this thesis only focuses on the query level interest model based

ranking method.

In a preliminary experiment, nine popular queries were sampled from the top queries in the Yahoo

7;"
""

query log (2008 October and November query log from Yahoo web search). The blog training

data was collected from Yahoo Buzz2, a user-generated news-related blog service. Once again,

because of real-time user evaluation purpose, we were not using a standard dataset, such as TREC

blog and New York Times Data. When !"#!"# ! !!!!!! and !"#!"# ! !"#, the size of an

average training corpus is as listed in the table below (data collected in the second week of

November 2008).

In Table 3-5, two queries, “economy” and “Obama,” are very popular in the blogospace and the

average corpus size (for 24 hours) is more than 1,000 (!"#!"#) for the five experiment days. As

a result, their interest training corpus size was limited to 1,000. Their average interest model

coverage times correspond to 18.3 hours and 16.1 hours.

Query: Average Training Size Average cover time
PF*1" 7!9B9"43*&(0D*" #6"13F-*"

5+)%)$3' 6777'*).4#%&.' 689:';)-1.'

<=/$/' 6777'*).4#%&.' 6>96';)-1.'

?2W'(0" #67B5"43*&(0D*" #6"13F-*"

R'))"J&-%%&" 6<7B5"43*&(0D*" #6"13F-*"

X-'V" #7:B9"43*&(0D*" #6"13F-*"

C33D)%" #:6B5"43*&(0D*" #6"13F-*"

?(2-3*3T&" !99B8"43*&(0D*" #6"13F-*"

?3.(%" 66<B9"43*&(0D*" #6"13F-*"

Table 3-5. Average training corpus size & training average time

Another set of parameters is found in the LDA-related topic extraction part, which is closely

related to community interest topic space generation. In LDA, the parameters !!"#! !!!"# are the

Dirichlet distribution priors for multinomial topic and document distributions. The common

settings of symmetric Dirichlet priors in the LDA estimation with !!"# = 50 / K and !!!"# =

0.01 is used in this research. According to Wei and Croft (2006), the retrieval performance is not

very sensitive to the values of these parameters.

Compared with !!"#!!"#!!!"#, the number of topics, K, is important in order to extract an

accurate community interest topic space. Based on the definition, community interest topic space

is composed of a list of threads of interests (topics) with respect to the target query. One of the key
"" """""""""""""""""""" "
#" !"##$%&'(($)(*"

8<"
""

questions in this thesis is, “How many latent topics exist for each query at a given time?” The

easiest way to know this is to fix the number of topics (e.g. K = 30), and then it is possible to

optimize parameter K with evaluation data.

However, theoretically, the number of topics should be both query and time dependent. From a

topic extraction perspective, the number of mixture components (topics) is unknown a priori and

is to be inferred from the data. Some existing research studied the number of topics problem by

using the Chinese Restaurant Process (Blei, Griffiths, Jordan, & Tenenbaum, 2004; Teh, Jordan,

Beal, & Blei, 2006), which is a relatively complex process. In this thesis, to make the process

easier, and due to the large variation between different queries, dynamic training corpus size is

used to identify the number of topics. We assume that a larger training corpus may incorporate a

larger number of topics. So, if r is the ratio between the training corpus size and the number of

topics, K =!!"#!"#$%!!!!. It is also possible to train r by using the ranking evaluation for this task.

Both methods can be tested in the ranking task with the real-world evaluation.

3.3.3 Community Interest Vector (CIV) ranking

This section and the next explain the methodological stages of community interest based ranking.

The central task for the new ranking algorithm is community interest modeling. Mathematical

modeling is frequently used with the objective to understand, explain, reason and predict behavior

or phenomenon in the real world (Hiemstra, 2001).

The first ranking algorithm introduced is community interest vector (CIV) ranking, stemming

from the classical vector space model (Salton, Wong, & Yang, 1975).

3.3.3.1 Community interest vector generation

As mentioned in section 3.3.1, community interest topic space is extracted from real-time user

generated blog postings, and, as Figure 3-2 shows, community interest is defined as a distribution

of degree or probability of interest in the community interest topic space for a given query at a

given time.

For CIV ranking, community interest can be used as a dynamic vector, and each component of the

8!"
""

vector represents a (normalized) topic related to the target query, representing the degree of that

community currently interested in this topic for the given query. This query interest vector may

change in two different ways over time:

1. Vector space change (community interest space change) – Since each dimension in

the vector represents a topic of interest about the target query, a change in the vector

space demonstrates that either a brand new interest topic appeared or an existing

interest topic faded out.

2. Weight change only – This means that the community’s interest topics themselves are

stable, but the degree of interest (weight) changes over time. In other words, the

community’s interests shift from one topic to another.

If we use the query “Obama” as an example (as shown in table 3-2), when K = 3, the CIV of

“Obama” for the 1st of Aug, Oct, and Dec of 2008 may look like the following:

 Aug 1st, 2008 Oct 1st, 2008 Dec 1st, 2008

Figure 3-5. Three-dimensional interest topic space and weight change

In August, the community was interested in three different topics about the query “Obama:” 1)

Obama’s campaign, 2) the relationship between Obama and Clinton, and 3) the relationship

between Obama and McCain. The weight of the second topic is larger than the other two, since the

community was more interested in this topic compared with the other ones. In October, these

topics may exist, but the weights of the first and third topic have increased, while the weight of the

second has decreased (weight change). In December, after the election, the third topic is replaced

by the “economy,” and the weight of each topic changes (interest vector space change).

Vector space dimensionality change can be identified by updating the query dependent training

corpus (up-to-date blog postings) with LDA topic modeling, and it is very important to weight and

G90-0(:0-80%>.(

(

(((((((((((((((((((

(:;%.#*.(

((((((((I+*.*-4(

((

G90-0(:0-80%>.(

(

(

((((((((((((((((((:;%.#*.(

(

H+:0%.(

(G90-0(:0-80%>.(

(

((((((((((((((((((((

((((((((((((((((((:;%.#*.(

H+:0%.(

(

8#"
""

characterize each topic to capture the topic weight change. The weight of each topic measures the

degree of community interest in this topic at the current moment. Overall, there are four different

kinds of topics found in the preliminary experiments:

1. Background topic (stoptopic): the topic covers the very basic background features of the

protagonist. Those words, entities and concepts (high probability occurring within topic)

can be treated as a protagonist specific stopword list.

2. Hot topic: there are two types of hot topics for the community. The first is a topic in which

the community is continuously and increasingly focused (but not the background topic, as

this kind of topics can be distinguished from longer historical data, and user’s interest

toward this kind of topics should be increasing over time), and the second is a topic

related to breaking news surrounding the query, and which is of sudden great interest in

the community.

3. Diminishing topic: the topic is no longer popular in the community; the community’s

interest is shifting to other topic(s).

4. Regular topic: The rest of the topics.

In information retrieval, it is hard to compute the weight of each term in a specific document

without modeling the background information of the collection, such as its IDF (inverse document

frequency) effects (Spärck Jones, 1972). Similarly, the interest degree of different topics can

hardly be measured simply from current training data CQC itself. The popularity of the topic

(interest based weighting) can be determined by using historical interest data. The reason for using

historical interest data is illustrated by the following example: when the number of topics K = 3,

three topics can be extracted from CQC, and the weight of topic !! could be simply weighted by

!!!!! ! !!!!!!"!!, shown in the following chart:

85"
""

Figure 3-6 an example of topic weights extracted only from CQC

From CQC itself, it is clear that the Topic 2 score is lower than Topic 1 and Topic 3, which means

that Topic 2 is highly likely to be an unpopular topic in this case. However, if historical interest

data were taken into consideration, in the past few days or hours, the weight of Topic 2 could be a

very small number or almost zero. In this scenario, Topic 2 could be the breaking news about the

target query, and it is possible that the community is going to be aware of the importance of this

topic; in the next time segment, the community will likely show high interest in this topic. So,

Topic 2 could become a hot topic with a higher weight than the other topics. But to know this, we

need to use historical data.

To use the historical data, it is necessary to define:

Historical Query-centric Collection (HQC): the historical blog postings collection to

represent a snapshot of historical community interest at a given time.

To better represent historical community interest, there could be more than one HQC used to

weight each topic, just as the following diagram shows:

Figure 3-7. CQC (current interest) & HQCs (historical interest)

As the above diagram shows, the current interest model of the target query is represented by CQC,

J*8%+(E(J*8%+(F(J*8%+(K(

"#" $#"% $#"& $#"'((($#")

Current Interest Historical Interest

86"
""

and, considering past n time segments (e.g. past n hours or past n days), historical community

interest snapshot models can be represented by !"#!, !"#!… !"#!. The weight of topic i,

given !"#!, community interested in topic i at the t snapshot, can be represented by:

!!!!!!! ! ! !! !"#! ! ! !! !"#$%&'!!"#$%&'!!!"#!
! (3-3)

In this formula, the weight of topic i given !"#! is represented by ! !! !"#! , which is the

sum of the probability of !! !given each posting in !"#!, ! !! !"#$%&'! , divided by the total

number (N) of postings in !"#!.

Based on this definition, the input of this algorithm is the current interest (extracted from CQC)

and historical interest models (extracted from HQC[n]), and the output should be the interest

vector where each topic is weighted to mirror the degree of real world interest.

The most straightforward method is to compute a list of topic models for each training corpus

(CQC and HQCs) for a specific period of time, and then compute the similarity of those topics,

and also weight each current topic for ranking. However, there are two major limitations. First, the

computational cost is very high, as we need to train several LDA models and compute

feature-topic distribution distance for each topic pair. Second, this is not an accurate way to

compute weights when similarity across topics is low.

In order to avoid those limitations, the learned CQC topic model is used to infer the topics in the

historical protagonist corpuses. The algorithm is as follows:

87"
""

As mentioned above, from the LDA model, two probability distributions were obtained: !!"# -

the probability of topic given the posting P (topic | posting;--and !!!"#!and the probability of each

feature given the topic P (feature | topic). Based on these distributions, “Current_topic_score[k]”

is computed by summing the posting vectors from !!"# and dividing by the number of postings.

The LDA model is also run against historical data (past n time segments, n corpuses) and infers

the topic distributions !!"# in the historical data. Because the LDA model is built using the CQC,

the historical postings (HQC) can be viewed as unseen data. For each posting, the inference result

(LDA based topic representation) is:

!"#$%&'!!"# ! ! !! !"#$%&'! !! !! !"#$%&'! !! !! !! !"#$%&'! >5Y6Z

For each Query

*+,-)-)./"#"/012-3/415678! ! ! ! ! ! ! ! ! ! ! ! ! 99:!012-3;!

"<++6)0/012-3/;31+6=:>!?!!513<46)0/012-3/5-;0=:>9@8!

993142<06!0A6!"#"!012-3!;31+6!BC!;<44-).!6,3A!513D012-3!5-;0+-B<0-1)!-)!"#"!

"142<06!$-;01+C/012-3/;31+6=)>=:>! !

99E)F6++-).!2,;0!)!5,C;!G1+!A1<+;H!012-3!5-;0+-B<0-1)!B,;65!1)!"#"!012-3!41567!

!

"EI=:>!?!J8! ! 99"144<)-0C!E)06+6;0!I6301+K!6,3A!;31+6!-;!0A6!L6-.A0!1F!0A6!012-3!

M1+!6,3A!012-3!N!

! ! ! ! ! ! ! ! ! ! ! ! ! ! "142<06!O6,)!,)5!P0,)5,+5/56Q-,0-1)!GP05H!F1+!A-;01+C!012-3!;31+68!

! ! ! ! ! ! ! ! ! ! ! ! ! ! EF!G"<++6)0/012-3/;31+6=N>!R!O6,)!S!P05H!

! "EI=N>!?!BT"<++6)0/012-3/;31+6=N>TG"<++6)0/012-3/;31+6=N>9O6,)H8!

! 99$10!012-3K!B!-;!0A6!UB1)<;V!2,+,4606+!B!R!%!

! ! ! ! ! ! ! ! ! ! ! ! ! W7;6!EF!G"<++6)0/012-3/;31+6=N>!X!O6,)!D!P05H!

! "EI=N>!?!2T"<++6)0/012-3/;31+6=N>TG"<++6)0/012-3/;31+6=N>9O6,)H8!

! 99Y-4-)-;A-).!012-3K!2!-;!0A6!U26),7-Z6V!2,+,4606+!2!X!%! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! W7;6! !

! "EI=N>!?!"<++6)0/012-3/;31+6=N>8!

! 99[6.<7,+!012-3!

! W)5!EF!

! ! ! ! ! ! ! ! ! ! ! ! ! ! W)5!EF!

@6\0!012-3!

Fig 3-8. CIV building algorithm

88"
""

which indicates the probability of each specific topic in the unseen document from the current

perspective. For each past day or hour, by summing these topic probability vectors together, we

can obtain a “History_topic_score[i][k],” which reflects, from the current viewpoint (topic model),

the probability that in the past ith time segment (day or hour) ago, the community (represented by

the !"#!) is interested in topic k. By comparing the mean and the standard deviation of specific

topics’ scores for a window of past n time segments, we can decide if the topic is a “hot topic,”

“diminishing topic,” or “regular topic,” as shown in the algorithm:

!"# ! !

! ! !"##$%!!"#$!!"#$% ! !
!"##$%&!!"#$%!!"#$%!!!

!"#$!%# !!"#$%!!"#$!!"#$% ! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!"!!"#$%

! ! !"##$%&!!"#$%!!"#$%!!! ! !"##$%&!!"#$%!!"#$%!!!
!"#$!%#!!!"#$%&!!"#$%!!"#$%!!!!!!!! !"#"!"#!!"#!!"#$%

!"##$%&!!"#$%!!"#$%!!! !! !"#$%&!!!"#$%
!!!

!! ! !"##$%&!!"#$%!!"#$%!!! !! !"#$%&'()*!!"#$%

(3-5)

In above formula, the popularity of topic j in CIV is calculated in four different categories, ordered

by hot topic, diminishing topic, regular topic and background topics (from top to bottom). The

hot-topic and diminishing-topic CIV scores were adjusted by the change rate of the current topic

score and the mean of the historical topic scores; a bonus parameter (b, b>1) and penalty

parameter (p, p<1) were used in the algorithm to update the topic weight. In the preliminary

experiments (Liu & Brzeski, 2009), b = 1.2, while p = 0.8. Because the topic category is identified

by mean and standard deviation of the history interest scores, the change rate of a hot-topic is

always > 1 and the change rate of a diminishing-topic is always < 1. In a preliminary experiment,

it was found that some topics’ mean probability score was significantly larger than all other topics

scores (at least 5 times larger), and these topics were defined as the “background topics.” Because

they are background topics, these topics’ weights were penalized by p’ (penalty parameter of

background-topic, current setting of p’ = 0.2). The background topic is mainly composed of a list

of general and domain specific “stopwords” (for instance query = “Obama,” the query specific

stopwords can be “Obama” “US” and “president”). Even though the background topics’ weights

are large in all the corpora, these topics are harmful for community interest based ranking.

The following diagrams are examples of CIV topic weighting. “Obama” is used as the example,

89"
""

and the experiment time (current community interest model) is Nov 5th 2008 14:00, one day after

the 44th presidential election. The training corpus is Yahoo! Buzz postings; and, the current query

training corpus size is 1,491 (user generated postings), and a list of historical training Buzz blog

corpuses were used (each more than 1,000 postings). We show the highest weighted “Hot topic,”

(Figure 3-9) which can be summarized as “Obama wins the election with a new record,” whose

top features are “Barack_Obama,” “Election,” “African_American,” “victory,”

“Victory_Records” and “first_black_president.” We also show the lowest weighted “Diminishing

topic,” (Figure 3-10) which can be characterized as “Sarah Palin and Hillary Clinton,” with top

features like “Sarah Palin,” “sarah,” “palin,” “Hillary Clinton,” “newsweek,” and “club.”

Figure 3-9. Nov 5th, Diminishing topic: “Sarah Palin & Hillary Clinton”

Figure 3-10. Nov 5th, Hot topic: “Obama win president election”

C(

CLCD(

CLE(

CLED(

CLF(

CLFD(

CLK(

CLKD(

C
ur

re
nt

 w
ei

gh
t

C
IV

 w
ei

gh
t

History weight (n = 30)

-30 -15 current

C(

CLE(

CLF(

CLK(

CLM(

CLD(

CLN(

C
IV

 w
ei

gh
t

C
ur

re
nt

 w
ei

gh
t

History weight (n = 30)

-30 -15 current

8:"
""

In the example (Figures 3-9 and 3-10), the community interest topic space was trained using the

current “Nov 5th” corpus, CQC, about “Obama,” and then it was used to infer topic distributions,

! !! !"#! , in the past 30 days (from Oct 5th to Nov 4th, HQC[30]). By computing the mean and

the standard deviation of the topic probability scores, hot and diminishing topics can be identified

by their final weights in the CIV. In the diagram, the second bar on the right is the initial (current)

topic weight, and the last bar on the right is the final adjusted weight of the topic in the CIV.

3.3.3.2 CIV based ranking

When a query is equal to a CIV protagonist, the current Community Interest Vector can be used to

bias the ranking result. For any given retrieved document collection R = (!"#!! !"#!!!! !"#!),

based on the topic model (!!"#, topic-feature distribution), each document in the search results

can be represented with a topic distribution vector, !"!!"#!!, in the community interest topic

space by inferring the topic model as mentioned earlier. Because the topic vector of each retrieved

document in the search results is in the same vector space as CIV, we can compute the final

document interest ranking score by cosine vector similarity:

 (3-8)

Since the CIV represents the community’s current interest with respect to each query, the final

ranking score can be viewed as a pseudo-voting from a community interest perspective, where the

user oriented text data serves as a proxy for the votes. Thus, the ranking score can

represent!!!"##$%&'(!!"#$%$&#!!"#!!, the probability that a community is interested in a given

retrieved document.

3.3.4 Community Interest Language Model (CILM) ranking

The language model is another effective probability ranking model first introduced by (Ponte &

Croft, 1998b). In this retrieval model, the documents in the retrieved result are ranked by query

likelihood scores. The query likelihood method not only performs well empirically, but also has a

!!

!

==

=

"

"
=

=

n

i
ix

n

i
i

n

i
ixi

xx

topicdocTVtopicCIV

topicdocTVtopicCIV

docTVCIVSimdocscoreranking

1

2

1

2

1

),()(

),()(

))(,()(_

8;"
""

solid relevance-based foundation (Zhai, 2008). The language model ranking mechanism is

described as follows:

1. Estimate the language model for each document in the collection

2. Rank the documents by the likelihood of query given the estimated language model,

!!!!"#$%!!!"#!

Based on this definition, both query and document are assumed to be samples of words drawn

from the (query and document) language models. One of the key problems for the language model

is how to estimate !!!"# given a document and collection; Zhai (2002), Zhai and Lafferty (2004)

found that the retrieval and ranking performance is sensitive to smoothing methods.

One assumption behind language model ranking and query likelihood is that if the document

author is represented by the document language model: What is the likelihood that she (document

language model) proposes the target query in the retrieval system?

The objective of this study is to rank the retrieved documents for a given current community

interest model. If community interest is defined as a dynamic community interest language

model!!!", the assumption can be made that each term or (latent) topic in a retrieved document

might be generated from !!!" ! which is the document likelihood given the interest language

model. If the retrieved document is ranked partially by this probability score, the language model

ranking function can be written by the linear combination of query likelihood given the document

language model !!"#, and the document likelihood, given interest language model !!!":

!! ! !!!!!!"#$%!!!"#! ! ! ! !!!"#!!!!"! (3-9)

Compared with the query, the document is a much larger sample for estimating what the author

had in mind, which enables the ranking algorithm to judge the user’s interest (in this document) by

leveraging!!!". As defined in the first chapter, the gap between the user information need and the

query string (!), is somehow unpredictable. However, since documents tend to be much longer, it

is highly likely that the document interest probability can be estimated from the query perspective

by leveraging an interest language model!!!", since each term or each topic in the document has a

different probability of interest to them.

9<"
""

The first part of this formula is the classical language model (query likelihood) score, while the

second part is the community interest based document likelihood score, which we will focus on in

the next section. Also discussed will be the estimation of !!".

From a language perspective, the most straightforward estimator of !!!"# is the maximum

likelihood based on the document itself, and smoothing the ML estimator is critically important in

the language model for two reasons (Zhai, 2008):

! First, it addresses the data sparseness problem. As a document is only a very small

sample, the probability P (qi | Doc) could be zero for those unseen words in the document

(Zhai & Lafferty, 2004).

! Second, smoothing helps to model the noisy (non-discriminative) words in the query.

For community interest computation in this thesis, the focus is on community interest topic space,

and the data sparseness problem will not matter because, in most cases, the inferred !"#$%$&'!"#

is a non-zero number. However, modeling noisy topics is critically important for ranking.

As mentioned in the last section, the topics in the community interest topic space include

background topic, hot topic, and diminishing topic, and for the CIV algorithm, trend analysis is

employed to classify the topics for weighting and ranking. In the language model, compared with

TF-IDF weighting parameters, the smoothing parameter is more meaningful from the point of

view of statistical estimation and it models the background language model by using

!!!"#$!!! (Zhai, 2008).

As formula 3-7 shows, community interest is composed of two different components: current

interest (extracted from CQC) and historical interest (extracted from a list of HQCs). Historical

community interest can help us weight topics. Similarly, in the community interest language

model, historical interest can help us model the noise in the community interest topic space for

ranking as the smoothing parameter, such as the following:

!"#!!!"#!!!"! ! !"# !!!"#!!!"!!"#!
!!"!!!!"#!!!"!!!"#$%&!

" " " " " " " (3-8)"

In the above formula, the probability that !!" generates the document can be computed by

dividing the probability of a document given !!"!!"# by the probability of a document given

9!"
""

!!"!!!"#$%&. So, if a document gets a high ranking score, it should have a high current interest

probability score (document topics of interest to the current community) with a low historical

interest probability score (document topics not of interest to the historical community).

!!" in the formula controls the amount of smoothing to estimate the interest language model !!".

In the classical language model, parameter !! is also used as a document-dependent constant

(Zhai & Lafferty, 2004) and it can be used to normalize for document length.

As stated earlier, each candidate document in the retrieved result collection can be represented in

the community topic space and ! !"# !!!"!!"# can be calculated by using the LDA topic

model of CQC. The remaining problem is how to calculate ! !"# !!!"!!!"#$%& by using a list of

HQCs (historical community interest snapshots).

Intuitively, historical community interest should be a decay function, as the more recent

community interest snapshots should have a larger contribution when comparing the interest

model with old snapshots. Based on this hypothesis, the following recursive function is employed

to define !!!"!!!"#$%& with the user interest decay parameter!!. :

!!"!! ! !! ; !!"!! !
!!!!!!!"!!!!!!

!!! (3-;)

In the formulas, !!"!! is the oldest community interest snapshot, and it is estimated by the

inferred topic probability distribution !! (from the LDA model). For any!!!"!!, it is defined

(normalized) by !! and !!"!!!!!! with an interest decay parameter!!. Based on this definition,

finally, the !!!"!!!"#$%&!is:

9#"
""

Figure 3-11. Historical interest modeling and decay function

So, !!"!! ! !!!"#$%& is composed by !!! !!! !! ! !! (all the historical HQC snapshots).

While !! is the oldest snapshot (the best representation of !!!"#$%&, and n is a parameter will

be trained later this chapter), the representability of !!!!! !!!!! !!!!! !! decreases, and the

decay parameter is !
!!!. When ! is small, the decay speed is fast, when ! is large, the decay

speed is slow. For instance, when ! = 0.1, the decay parameter is 0.0909; when ! = 10, the

decay parameter is 0.909. Finally, the retrieved documents are ranked by the real time community

interest generated probability scores. In this research, ! is a key parameter that needs to be

trained. Intuitively, in different types of searches, i.e. news search or web search, decay

functions should be different.

3.4 Evaluation

Evaluation is important for all empirical information retrieval studies, and in this study, evaluation

is more challenging due to the following reasons:

1. An interest based ranking method is very dynamic, so a traditional static relevance based

evaluation cannot be used, as a user’s interest toward each query and document may

95"
""

change over time and their interest judgment may also change from time to time.

2. Document (retrieved result) interest should not be simply classified into interest /

non-interest. Instead, the documents should be ranked by the degree of interest.

3. Some existing standard ranking test evaluation resources, such as used in TREC, cannot

be used directly in this experiment, because they are not dynamic evaluation collections.

In the next section, the evaluation method as well as the preliminary experiment and evaluation

result will be discussed.

3.4.1 Evaluation method

In modern information retrieval systems, retrieval and ranking algorithms tend to overwhelm

system users with a very large number of retrieved and ranked results. This requires evaluation

methodology to measure the top results with a document cut-off value (DCV). For this study,

Normalized Discount Cumulative Gain method is used:

Normalized Discount Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002) works when user

graded relevance data is available, which estimates the cumulative relevance gain the user receives

by examining the retrieval result up to a given rank on the list. NDCG is based on two facts: first,

highly relevant documents are more valuable than marginally relevant documents (graded

relevance judgment), and second, the lower the ranked position of a relevant document, the less

valuable it is for the user. A ranked vector V of results [!!"#$!!!!, !"#$!!!!!… !"#$!!!!!] can be

generated for each query q where each item in the vector is the judgment of degree of relevance

(e.g. 0 is not relevant and 5 is perfect relevant). With this vector, calculation of the Discount

Cumulative Gain (DCG) is possible:

!"#!! ! ! !
!"#! !!!

!!!"#$!!!!! ! !!!
!!! (3-!<)

The normalized DCG (NDCG) of V is defined as the DCG vector divided by the ideal permutation

of V.

NDCG is a good method to evaluate web based ranking algorithms, and it can be integrated with

significance tests to show the robustness of a new ranking algorithm.

96"
""

For this thesis, the most important contribution is to capture the time-dependent community

interest for ranking. As a result, it is necessary to conduct a real-world evaluation based on

selected queries over a period of time. Instead of using “relevance judgment,” the focus is on a

user’s judgment of the “degree of interest” for each top ranked retrieved document. In the

evaluation system, users access the top ranked documents and judge each of them with a

four-point scale for interest assessment:

Interesting and Hot (3): Very interesting retrieved result for the given query at the

moment. The user is highly likely to read the document immediately and the content of

the document is relevant to the target query.

Interesting (2): The content of the document is interesting to the target query, but not as

strongly as ”Interesting and Hot”.

Just OK (1): The content of the document is somehow interesting to the target query, but

the user may not willing to spend a long time reading it, or the topic of the document is

not up-to-date.

Not interesting or not relevant (0): The content of the document is tedious even though

the content may be relevant to the query or the content of the document does not match

the query at all.

When the user evaluation matrix is made available, NDCG is used to judge the effectiveness of

the new ranking algorithm by comparing it with a base line from existing ranking algorithms.

As stated in the first chapter, there are two kinds of ranking algorithms, relevance based ranking

and popularity based ranking. Most popularity based ranking algorithms employ statistical user

data, such as clickthrough, dwell time and universal hyperlinks, however, those data are hard to

access or collect and, as a result, it is hard to implement popularity based ranking algorithms

directly as a baseline for comparison.

The compromise is to compare the new ranking algorithm with existing search engines’ ranking

results, which has normally relied on a complex combination of popularity based ranking

algorithms.

97"
""

The following methods and parameters were evaluated:

1. Compared NDCG of CIV and CILM ranking algorithms with relevance based ranking

method (BM25, vector space model and language model with different smoothing

methods) and search engines’ ranking result (Google3 and Yahoo4). The results were

evaluated with statistical significance tests.

2. Community interest vector parameter setting was evaluated. Both the number of topics

setting, and the length of time for trend analysis was evaluated.

3. Community interest language model parameter setting was evaluated. To carry out the

evaluation, first, the number of topics setting, and then the length of time for historical

smoothing along with decay parameter ! was trained and optimized.

A real-world evaluation was launched using Amazon Mechanical Turk (MTurk)("Amazon

Mechanical Turk, https://www.mturk.com/,"). MTurk is a human based artificial artificial

intelligence system, also known as a social computing system, which can accomplish certain tasks

by means of collecting human judgments. MTurk has been used in information retrieval and text

mining related research (Alonso, Rose, & Stewart, 2008; Dakka, Gravano, & Ipeirotis, 2008;

Evans & Chi, 2008; Liu, Bian, & Agichtein, 2008; Yang, et al., 2009). These studies demonstrated

that MTurk is a promising method for evaluation.

From the developer and researcher (as requester) side, tasks can be submitted through a web

service or API to the Amazon Mechanical Turk. From the user (as worker or Turker) side, users

can sign in at the MTurk web site and work on selected project(s) while receiving payment for

their work. According to (Alonso, et al., 2008), there are over 200,000 registered workers from

over 100 countries, and millions of tasks have been completed.

In this thesis, the following steps were used for evaluation:

1. A list of hot queries was identified from recent query logs.

"" """""""""""""""""""" "
5" +++BC33D)%B23K"
6" +++BS'133B23K"

98"
""

2. For each query, a list of recent blogs (for at least 7 days) was collected. If a query’s daily

average number of blog postings was larger than!!"#!"#, this query was used for

evaluation.

3. A list of top ranked retrieved results (e.g. top 10 documents) was saved (with rank order

information). The saved results were re-ranked with community interest ranking

algorithms (CIV and CILM with most recent, e.g. past 1 hour, community interest model)

and relevance based ranking algorithms (vector space model, language model and

BM25).

4. For each candidate query, the saved results were uploaded to Amazon Mechanical Turk

in a random order; users evaluated the degree of interest of each result for the given

query within 5 hours (after the result was uploaded).

5. Based on the evaluation result, the performance of different ranking algorithms

(relevance, popularity and interest based ranking algorithms) was compared, and

different parameter settings were compared by using NDCG.

6. Statistical significance tests were used to test the significance of the results.

For this evaluation setup, when there are m queries and top n results retrieved every day, and the

experiment lasts for t days, the total evaluated number is!!!!!!. The evaluation stability issue

was studied by Buckley and Voorhees (2000). According to Spärck Jones and Rijsbergen (1976),

75 requests need to be judged. The TREC program committee used 25 topics as the minimum

while 50 topics is the norm (Voorhees & Harman, 2000). As a consequence, a reasonable number

of queries were evaluated to test this thesis’ hypothesis. Another limitation for this research is we

only re-rank the top 10 retrieved results from different search engines, because we have limited

resources (i.e. to pay Amazon Turkers). A more comprehensive evaluation is expected, which will

be mentioned in Chapter 6.

The detailed experiment steps will be described in next chapter, such as the number of queries,

method of data collection, inter-coder reliability.

"

99"
""

!"#$%&'(?*(@A$&'5,&-%(

 4.1 Introduction

This chapter describes the experiments that were run to test the performance of the innovative

ranking method with respect to real-time community interest, the evaluation process, and the

results. The next chapter will interpret the experimental results and their significance to

information retrieval.

Section 4.2 describes the data collection process and the use of the data, section 4.3 describes in

detail the experiments and evaluation process, and section 4.4 presents the evaluation result. The

interest based ranking algorithms will be evaluated by comparing their ranking results with those

of a variety relevance based ranking methods and search engines’ ranking results.

4.2 Data collection

The major goal of this experiment was to test the real-time interest based ranking performance of a

test query collection, in part, through the use of a large amount of user-generated real-time interest

judgments for the top retrieved results. The interest model was trained by a set of time-sensitive

blog postings.

In order to achieve this goal, four types of data were collected: the test queries, the blog postings,

daily or weekly rankings from popular search engines, and user oriented interest judgments. In this

section, each kind of data will be described.

 4.2.1 Query collection

As mentioned in the previous chapter, the TREC program committee used 25 topics as a minimum

for evaluating retrieval results while 50 topics is the norm (E. M. Voorhees & Harman, 2000). For

this experiment, 50 test queries were selected for experimenting and evaluation. The selected

queries, the popular ones during the time period of the evaluation, were chosen for two reasons.

First, popularity ensures that a reasonable amount of real time blog postings can be collected to

train the interest model for interest based ranking; and, second, users understand the queries well

9:"
""

and they can easily provide their relevance or interest judgments for the retrieved results given a

target query. In this experiment, a list of popular queries was identified by using “Google Insights

for Search” (http://www.google.com/insights/search/), which was also used to collect the query

terms.

“Google Insights for Search” was used in two ways:

1. The top searches (queries and query terms) and top rising searches (queries that were analyzed

as rapidly gaining popularity) for Google news search or Google web search for the past fixed

period of time, i.e. past 7 days or past 30 days are identified by the utility. The results can be

filtered by location and category. The following diagram shows the top 10 web search terms and

rising search terms for location United States for the past 30 days, selecting all categories. The

numbers on the graph are the normalized scores (0 to 100) that reflect how many searches have

been done for a particular term, relative to the total number of searches done on Google over time.

Figure 4-1. Top search index from Google Insights

2. The popularity hypothesis of a particular query or query terms given a period of time and a

category can be reviewed. For instance, the following diagram shows the normalized popularity

score of the query terms, “Obama” and “BP,” for the past 30 days in Google News Search for all

categories. Meanwhile, the search popularity trend also can be seen in the diagram.

9;"
""

Figure 4-2. Test query popularity with Google Insights

50 test queries were selected by using Google Insights. Some popular queries were ignored

because they do not reflect dynamic information needs and thus users’ interest toward these

queries may be stable. Examples include “YouTube”, “Facebook” and “Google”, which are used

primarily to identify a list of URLs not topics of interest. The selected queries can be categorized

into the following classes:

! Long-lasting popular news stories (14 queries) such as “Obama”, “Palin” and “Dow Jones”.

Users’ or community interest toward these queries may or may not change based on new

events.

! Recent popular news stories (17 queries). These are queries such as “oil spill”, “wikileaks”

and “NBA Trade”. Users’ or community interest toward these queries may change

dynamically in a short amount of time.

! World cup (soccer) (19 queries) related queries. Examples include 2010 South Africa World

Cup (from 11 June to 11 July 2010), “World Cup Netherlands”, “World Cup Final” and

“World Cup Championship.” Users’ or community interest with respect to these queries

changed a great deal (i.e. hourly) during the games.

4.2.2 Blog posting collection

:<"
""

In this thesis, real time global community interest is extracted from chronological user oriented

blog posting data. Google blog search5 was used to collect this query centric training data over a

period of four weeks. Because most of the queries were popular queries during the time of the

evaluation, a considerable number of blog postings were available and collected for interest model

training. For each query, an average of 28,773 postings (covering, on average, four weeks) was

indexed for training.

Queries that didn’t result in a minimum of 200 postings/day averaged over the collection time

period were ignored for the evaluation experiments. The blog postings were indexed by content

(title and content), URL, time (posting generation date and hour) and the target query.

A limitation of using Google Blog Search is that the retrieved result could be relevant to the query,

but the query is not necessarily the pseudo protagonist of the retrieved blog postings. For instance,

a posting that mentioned “Obama”, might be statistically relevant, but not about “Obama,” and

this could threaten the precision of the interest model for ranking.

4.2.3 Ranking results collection

As mentioned in the last section, for each query, blog postings were collected for 4 weeks after the

start of the experiment. The first 10 days’ postings were used only for historical community

interest inferencing (i.e. smoothing or trend analysis). From day 11, the ranking results from

search engines were collected for evaluation purposes. Because the goal was to test the

effectiveness of the innovative interest based ranking algorithm, it was important to set up the

re-ranking tasks across different kinds of search engines. In this thesis’ experiments, two types of

search were used – news search and web search from both Google and Yahoo, two of the most

popular search providers. It was expected that news ranking results would be more dynamic than

web ranking. Please note, even though this evaluation is a re-ranking task, community interesting

ranking algorithm can be used as a ranking algorithm, i.e. rank the retrieved documents by

probability of interest.

The top 10 ranked retrieval results were indexed for every query at 2:00PM. The ranking position
"" """""""""""""""""""" "
7" 1&&4[\\,)3D*%'-21BD33D)%B23K\"

:!"
""

of each news document was stored along with HTML content and experiment date. This process

lasted on average 10 days, depending on whether enough user judgment data was collected.

Similarly, the top 10 ranked retrieved results for each query from Google and Yahoo web search

were indexed twice a week. Since the ranking results from web search are more stable than news

search, only an average of 2 weeks’ worth of rankings were kept.

4.2.4 User judgments collection

In order to test the effectiveness of the innovative ranking algorithm, the community interest based

ranking result was evaluated against search engine rankings as well as against a variety of

relevance rankings based on different ranking algorithms. The differing algorithms were run on

the retrieved results from the daily top 10 ranked documents for both news and web search. In this

section, we describe the process of collecting users’ real-time interest judgments on the top ranked

documents.

Since users’ or community interest can be dynamic and the ranking results can change based on

the interest judgment, we need to collect users’ real time interest judgments, and use the averaged

user interest judgment as the gold standard for ranking algorithm evaluation. Immediately after the

rankings list from each search engine is indexed for each query, an evaluation task is setup by

using Amazon Turk, as shown in the following diagram:

:#"
""

Figure 4-3. Amazon Turk evaluation page

With instruction and examples, Amazon Turk users (known as turkers) are expected to provide the

real time interest and relevance judgments for retrieved documents given a query. As mentioned in

the last section, the ranking information on the top retrieved documents is collected from different

search engines at 2PM every day for news search, or twice a week for web search. At the same

time, the collected retrieved documents will be sent to Amazon Turk in a random order. For each

query, for one day, the documents are shown on one evaluation page, which is called an Amazon

Turk HIT. To minimize potential individual bias, up to 5 different turkers worked on each HIT.

The task needed to be completed within five hours after the HIT was created, as the user’s interest

could change too much after that. For any HIT, if there were fewer than three turkers working on

it, the HIT was deleted from the database and wasn’t used for evaluation.

In this evaluation, a reasonable and (researcher) affordable compensation rate is important to

attract turkers to work on the HIT within a limited time. In order to find enough turkers to

accomplish the task, we tried different compensation rates starting from $0.01. Not surprisingly, a

higher compensation rate is very helpful to attract more turkers, and we also found, when the

compensation rate was raised to $0.11, in most cases, we can accomplish the real-time evaluation

task within three hours. We assume the reason is that some turkers look for HIT jobs by searching

Instruction

Judgment

:5"
""

by price, and sometimes, they filter out HITs lower or equal to $0.10. At the same time, to find a

larger number of turkers, we provide a list of keywords to describe this evaluation task, such like

“evaluation”, “Google”, and “easy task”.

In preparation for this task, turkers were given three piece of information:

1. The basic instruction needed to finish this evaluation task:

2. The criteria by which a turker’s judgment was evaluated. A turker’s work could be rejected if

their judgment quality was found to be low.

3. Examples given to turkers to facilitate the judgment process. Turkers were encouraged to

provide their own judgments.

In this page, you will get a list of search results from search engines (i.e. 10 to 20 search results
from Google or Yahoo). Your task is to select one interest level out of four that best represents
your interest level for a search result for a given query.
It is possible that you can make your judgment by just reading the title and summary of the web
page (search result). Otherwise, you can also click the link on the title to access the actual page
to make your decision."

Your judgment should be your current interest level (i.e. given a target query if you are very
interested in this result or not interested in this result right now.)

Your judgments maybe evaluated by other experts and it can be rejected if you simply provide
random judgments.
If the search result is not relevant to the target query, you can choose "Not Interesting or Not
Relevant""

1. Given query: Obama, are you interested in:

Title: Barack Obama - Wikipedia

As this result is the background information about the target query, while may not provide
enough very interesting or up-to-date information, you may choose either "Just OK" or "Not
Interesting or Not Relevant"

2. Given query: Obama, are you interested in:

Title: Obama's remarks on the financial overhaul deal?

This is a news result about query "Obama", if this news is up-to-date and interests you well (i.e.
you would like to read or learn), you can choose either "Very Interesting" or "Interesting".
However, if this news is out of date or you don't interested in this news a lot (i.e. this news is
boring) you could choose either "Just OK" or "Not Interesting or Not Relevant""

:6"
""

In the judgment process, for each retrieved document, the HIT showed the following information:

the target query, highlighted in a different size and color; the title with a hyperlink to the actual

page in a different window; and a snippet from the search engine (Google or Yahoo). Turkers

chose one interest level from four listed choices as following:

Turkers were pre-selected using the following criteria: 1) they reside in the United States and are

proficient in English; 2) the turker’s pre-study abandonment rate was lower than 81%; and 3) the

turker’s pre-study approval rate was larger than 50%. While 2) and 3) are popular Amazon Turk

criteria, 50% pre-study approval rate is not high. However, this is a real-time evaluation task, and

we need a reasonable number of turkers work on each HIT in a short amount of time. So, we a

relatively loose pre-study approval rate in order to attract a sufficiently large pool of turkers.

There were 388 distinct turkers that participated in this evaluation. A total of 48,570 judgments

were collected over different query document pairs during the study. The size of the final query

dataset was 45. Not enough evaluation judgment data was collected for 5 additional queries and

they were ignored for the evaluation task.

In order to test the reliability of the turkers’ judgment data, we need to compute the inter-coder

reliability. We found a large percentage of turkers only worked on one or two HITs and then

left. So, we defined the reliability as:

Given query: unemployment, are you interested in:

Title: Unemployment Compensation

Summary: Welcome to the Unemployment Compensation Program in the Florida Agency for
Workforce Innovation. Unemployment insurance provides temporary wage replacement ...

" Very Interesting

" Interesting

" Just OK

" Not Interesting or Not Relevant

:7"
""

!"#$%&$#$'(!!"#$! ! !"# !"#!!"!!"#$%&'()!!"!!"#!!"#$%$&#!!"#"!
!"#!!"!!"#$%#&!!"#$%&'!!"!!"#!!"# !

!"#!!"#$!!"#
!!"#!!"!!"#$

In the above formula, the reliability is defined as the average agree rate for all the evaluation HITs.

For each HIT, !"# !"#!!"!!"#$%&'()!!"!!"#!!"#$%$&#!!"#"! is the number of majority turkers

votes a specific interest level. As mentioned earlier, in most cases, the number of turkers working

on each HIT is 5. Based on the formula, the reliability rate of this evaluation is 0.548, which

means most of turkers agree with each other when working on the same task, even if they were

encouraged to provide the judgments given their own opinion. This, in part, ensures that the

judgment data collected by Amazon Turk is reliable.

4.3 Experiment setup

4.3.1 Experiment design

In order to test the performance of the interest ranking algorithms, a list of relevance ranking

algorithms and search engine ranking results was used as the baseline for comparison. The

experiment was designed as follows:

:8"
""

Figure 4-4. Experiment workflow

First, the 45 popular test queries collected from Google Insight Search were used to collect the

blog postings for a month to train the real time interest model and ranking information along with

the top retrieved results from different search engines.

Second, the top retrieved documents were evaluated by Amazon Turk users for their degree of

interest based on the target given query.

oh the trained parameters were applied to the full dataset to build interest models for ranking.

News search and web search have different characteristics, and the parameter training processes

were run separately for each.

Last, community interest ranking algorithms’ (CIV and CILM) performance (NDCG@3,

NDCG@5 and NDCG@10) was tested against relevance ranking algorithms (vector space, BM25,

language model with linear smoothing, language model with Dirichlet smoothing and language

model with two stage smoothing) and against search provider’s rankings (Google or Yahoo

ranking).

:9"
""

4.3.2 Algorithm parameter training

Using the average interest level of turkers’ real time judgments (5 judgments for each document

and query pair), NDCG was used to train the parameters of CIV and CILM algorithms.

While different kinds of parameters could be trained for this research, such as LDA related

parameters, prior research, such as Wei and Croft (2006), have shown that some parameter setting

is not sensitive to the ranking performance. As a result the training was limited to three kinds of

parameters: number of topics, historical inference or smoothing length, and decay speed for

history smoothing CILM. Again, news search and web search have different natures, and their

training processes were separated.

In this thesis, given a small sample of testing query collection, cross folder validation was

employed to train and test the ranking performance for both news and web experiments. The 45

queries were randomly separated into three groups, and leave-one-out testing was used to train and

test. For instance, in the first round, group 1 and 2 (30 queries) were used for training, and the

optimized parameter setting was used to test the group 3 ranking performance.

Figure 4-5. (Cross Folder) Training news or web ranking parameters (first round)

For the community interest vector (CIV) algorithm, the number of topics (!!"#) and history

C-3F4"!"
>!7"VF%-(%*Z"

C-3F4"#"
>!7"VF%-(%*Z"

C-3F4"5"
>!7"VF%-(%*Z"

(

Training for optimized parameters

Testing set

::"
""

inference days (!!"#) were trained together and the optimized !!"# and !!"# combination were

identified.

For the community interest language model (CILM) algorithm, the number of topics (!!"#$) is

first identified from the training data with a fixed length of smoothing !!"#$ and decay factor !.

Then !!"#$ and the decay factor (!) was trained given the optimized number of topics.

In this thesis, the default units of !!"# and !!"#$ are “day”, a 24 hour time interval. In some

cases, there was not enough data, i.e. !!"#$ = 30, but with only 15 days training data available,

the training blog postings were cut into !!"#$ number of segments, while each segment

corresponded to x number of hours of community interest, where x < 24.

The training process compared NDCG10 from top retrieved documents for three groups. The

optimized parameter settings were used for the comprehensive re-ranking task.

4.3.3 Re-ranking with baseline and community interest algorithms

The re-ranking task was implemented based on the optimized parameters trained discussed in the

last section, meanwhile, the following relevance ranking algorithms were used as a baseline:

vector space model, BM25, language model (linear smoothing), language model (Dirichlet

smoothing) and language model (two stage smoothing).

Because almost all the relevance based ranking algorithms need to compute the corpus

background information, such as IDF or smoothing techniques, in this experiment, a 3GB corpus

from a web collection indexed from Google was used. The corpus is a mix of up-to-date web

pages and news collected during the evaluation period of time. A list of popular queries (including

some testing queries) was used for data collection, and some random retrieved results were

indexed (not necessary on the first few result pages) to reduce the bias. The relevance ranking

score was computed based on the corpus information. Lemur toolkit was used for this experiment

to compute the relevance ranking score for each retrieved document for a given query.

4.4 Evaluation result

4.4.1 Parameter training result

:;"
""

The first task was to train the number of CIV topics and length of time for trend analysis to build

the real time interest vector by using NDCG ranking performance. Please note that the number of

topics in this research is arbitrarily assigned to each test query because of limited training data,

and query specific topic number will be saved for future works, which will be mentioned in

Chapter 6. As abovementioned, cross folder validation was used by randomly dividing 45 queries

into three groups. The training process repeated for three times. Each time, two groups of queries

were used for training, and later the optimized parameter setting was used to test the ranking

performance for the third query group. For news search, the result is represented in the following

table:

Round

1

 day=16 day=18 day=20 day=22 day=24 day=26 day=28 day=30

t = 30 0.528205212 0.530545309 0.52873765 0.527733126 0.531673841 0.534865606 0.527929077 0.530839083

t = 40 0.543633681 0.543697741 0.546858536 0.547995524 0.546241615 0.545903873 0.549124882 0.534850995

t = 50 0.531381143 0.542011477 0.538148029 0.540770734 0.535724017 0.542340839 0.541887319 0.544354378

t = 60 0.541314072 0.542062366 0.543669953 0.545023127 0.544270464 0.545195867 0.543488641 0.545806876

t = 70 0.543646143 0.544995408 0.541416663 0.546860907 0.543318607 0.546784398 0.548367999 0.550609253

t = 80 0.543576899 0.544544535 0.541641336 0.544796446 0.54414449 0.546571395 0.544761565 0.546725711

Round

2

 day=16 day=18 day=20 day=22 day=24 day=26 day=28 day=30

t = 30 0.530858074 0.533767696 0.533158219 0.52986193 0.531794693 0.534624917 0.527537101 0.527251676

t = 40 0.537205613 0.540695088 0.540316766 0.541118562 0.541183922 0.538094572 0.542440563 0.536968343

t = 50 0.533537171 0.53474264 0.53244294 0.533260322 0.532174051 0.529850378 0.53013393 0.535423823

t = 60 0.536453295 0.53665808 0.53387245 0.536598327 0.534540396 0.536971858 0.535686255 0.535729852

t = 70 0.539919695 0.539892117 0.536277659 0.542273997 0.536777864 0.53908274 0.541269453 0.543697084

t = 80 0.540389442 0.537186595 0.534505271 0.539142568 0.537962097 0.538197836 0.538068046 0.53741228

Round

3

 day=16 day=18 day=20 day=22 day=24 day=26 day=28 day=30

t = 30 0.530968336 0.53288305 0.531830915 0.532988894 0.530681588 0.530011394 0.530981475 0.537460367

t = 40 0.54134811 0.545116296 0.543113075 0.542622667 0.549344178 0.549572719 0.546493045 0.551190925

t = 50 0.542241377 0.538098447 0.542192074 0.545962894 0.543926943 0.544087018 0.539839832 0.547274831

t = 60 0.546377591 0.544185106 0.546238903 0.549651079 0.546121206 0.549892971 0.5462577 0.549893154

t = 70 0.538746681 0.548195724 0.548162466 0.546303107 0.546050761 0.550609246 0.554837646 0.55533108

t = 80 0.542505187 0.541597341 0.542736175 0.545113674 0.55087115 0.544892065 0.552703625 0.554670785

Table 4-1. Training CIV for news search

Based on the result, the number of topics = 70 achieved best performance comparing with other

number of topics. Meanwhile, !!"# ! !" is better than other time, and the ranking performance

is increasing averagely when !!"# goes up (except round 2). The best NDCG score is highlighted

in the table. To better compare the ranking performance, the result is shown in the following

;<"
""

diagrams (for each training round).

Figure 4-6. NDCG10 for news training (CIV), round 1

Figure 4-7. NDCG10 for news training (CIV), round 2

CLDFD(

CLDK(

CLDKD(

CLDM(

CLDMD(

CLDD(

CLDDD(

'04OEN('04OEP('04OFC('04OFF('04OFM('04OFN('04OFP('04OKC(

#(O(KC(

#(O(MC(

#(O(DC(

#(O(NC(

#(O(QC(

#(O(PC(

CLDED(

CLDF(

CLDFD(

CLDK(

CLDKD(

CLDM(

CLDMD(

'04OEN('04OEP('04OFC('04OFF('04OFM('04OFN('04OFP('04OKC(

#(O(KC(

#(O(MC(

#(O(DC(

#(O(NC(

#(O(QC(

#(O(PC(

;!"
""

Figure 4-8. NDCG10 for news training (CIV), round 3

Similarly, the web search training result (by using web ranking data) is represented in the

following table, and the best performed NDCG scores were highlighted:

Round

1

" /'L]!8" /'L]!:" /'L]#<" /'L]##" /'L]#6" /'L]#8" /'L]#:" /'L]5<"

t = 30 0.432781 0.420947 0.43941 0.420351 0.440045 0.425112 0.420997 0.41781

t = 40 0.42209 0.429726 0.43476 0.420446 0.432658 0.428395 0.417642 0.41101

t = 50 0.425773 0.437622 0.45318 0.427727 0.412081 0.444762 0.438118 0.42876

t = 60 0.424103 0.412026 0.42595 0.430342 0.406717 0.426316 0.411313 0.40331

t = 70 0.403965 0.399901 0.40305 0.404173 0.392796 0.387161 0.389598 0.37806

t = 80 0.401345 0.399422 0.38867 0.387186 0.387518 0.377709 0.41263 0.40062

Round

2

" /'L]!8" /'L]!:" /'L]#<" /'L]##" /'L]#6" /'L]#8" /'L]#:" /'L]5<"

t = 30 0.485091 0.469388 0.4917 0.49241 0.488796 0.490229 0.480127 0.49374

t = 40 0.488381 0.50562 0.50873 0.503423 0.493126 0.497168 0.4805 0.48419

t = 50 0.518337 0.50297 0.52328 0.497814 0.496533 0.515392 0.500564 0.50097

t = 60 0.500171 0.51364 0.52954 0.511185 0.497746 0.51977 0.518056 0.48609

t = 70 0.493062 0.475814 0.48094 0.487427 0.485164 0.492568 0.485688 0.47061

t = 80 0.482775 0.477941 0.48387 0.471589 0.477722 0.467142 0.48028 0.48623

Round

3

" /'L]!8" /'L]!:" /'L]#<" /'L]##" /'L]#6" /'L]#8" /'L]#:" /'L]5<"

t = 30 0.499885 0.504103 0.50275 0.485871 0.5234 0.51075 0.500871 0.50362

t = 40 0.507652 0.50593 0.52311 0.510399 0.503105 0.508757 0.50012 0.50938

t = 50 0.548039 0.541408 0.54879 0.524043 0.526994 0.531059 0.534116 0.53059

t = 60 0.503093 0.506437 0.52656 0.501632 0.507682 0.506276 0.518057 0.49447

t = 70 0.498982 0.48029 0.49254 0.498065 0.486658 0.504606 0.506696 0.48629

t = 80 0.485799 0.487503 0.48199 0.477575 0.490782 0.47363 0.49805 0.48877

CLDFD(

CLDK(

CLDKD(

CLDM(

CLDMD(

CLDD(

CLDDD(

CLDN(

'04OEN('04OEP('04OFC('04OFF('04OFM('04OFN('04OFP('04OKC(

#(O(KC(

#(O(MC(

#(O(DC(

#(O(NC(

#(O(QC(

#(O(PC(

;#"
""

Table 4-2. Training CIV for web search

In the web training, we find the number of topics = 50 or 60 with !!"# ! !" work best

comparing with other parameter setting. Clearly, too large or too small number of topics will

threaten the ranking performance. A visualization of the above table is shown in the following

diagrams.

Figure 4-9. NDCG10 for web training (CIV), round 1

Figure 4-10. NDCG10 for web training (CIV), round 2

CLKF(

CLKM(

CLKN(

CLKP(

CLM(

CLMF(

CLMM(

CLMN(

'04OEN('04OEP('04OFC('04OFF('04OFM('04OFN('04OFP('04OKC(

#(O(KC(

#(O(MC(

#(O(DC(

#(O(NC(

#(O(QC(

#(O(PC(

CLMK(

CLMM(

CLMD(

CLMN(

CLMQ(

CLMP(

CLMR(

CLD(

CLDE(

CLDF(

CLDK(

CLDM(

'04OEN('04OEP('04OFC('04OFF('04OFM('04OFN('04OFP('04OKC(

#(O(KC(

#(O(MC(

#(O(DC(

#(O(NC(

#(O(QC(

#(O(PC(

;5"
""

Figure 4-11. NDCG10 for web training (CIV), round 3

Based on the training performance, for web search, the number of topics !!"# = 50 or 60

performs best. When the number of topics grows to 70 or 80, the NDCG scores significantly

dropped. Regarding the number of days (for trend analysis), for news search, !!"# = 30 days

empirically works best, while !!"# = 20 is optimal for web search. Meanwhile, for news search,

we found more training data can, overall, improve the ranking performance. For web search, !!"#

= 20 works best, and the ranking performance dropped when !!"# = 30. However, we didn’t find

clear trend of change when !!"# changes, as we cannot test !!"# ! !"!!" ! !". Because CIV

algorithm is depend on trend analysis with mean and standard deviation, and too small !!"# will

make the result not reliable. Detailed interpretation will be discussed in next chapter.

For CILM, the number of topics (!!!"#), the decay parameter (!) and length of time for smoothing

(!!"#$) was trained. Based on experience from CIV, we first trained the number of topics t by

using fixed ! = 1.0 and !!"#$ = 20 for query group 1 and 2.

CLMF(

CLMM(

CLMN(

CLMP(

CLD(

CLDF(

CLDM(

CLDN(

'04OEN('04OEP('04OFC('04OFF('04OFM('04OFN('04OFP('04OKC(

#(O(KC(

#(O(MC(

#(O(DC(

#(O(NC(

#(O(QC(

#(O(PC(

;6"
""

 News Web

NDCG3

!!"#$!30 0.349100 0.223699

!!"#$!40 0.346671 0.266725

!!"#$!50 0.366245 0.280963

!!"#$!60 0.369551 0.241847

!!"#$!70 0.366052 0.239529

!!"#$!80 0.357760 0.263981

NDCG5

!!"#$!30 0.397763 0.280128

!!"#$!40 0.404028 0.292131

!!"#$!50 0.413060 0.298544

!!"#$!60 0.416877 0.282540

!!"#$!70 0.424131 0.266671

!!"#$!80 0.411443 0.278771

NDCG10

!!"#$!30 0.541322 0.359471

!!"#$!40 0.542789 0.379861

!!"#$!50 0.549295 0.379421

!!"#$!60 0.554046 0.358029

!!"#$!70 0.551920 0.341951

!!"#$!80 0.548185 0.364787

Table 4-3. Training CILM for number of topics !!"#$

From the result, we find for news search, the number of topics = 60 or 70 performs best, which the

optimized number of topics for web search = 50. The result is similar with CIV training. The

result is visualized in the following diagrams:

Figure 4-12. NDCG3 for CILM number of topics training

CLF(

CLFF(

CLFM(

CLFN(

CLFP(

CLK(

CLKF(

CLKM(

CLKN(

CLKP(

#*8%+(O(KC(#*8%+(O(MC(#*8%+(O(DC(#*8%+(O(NC(#*8%+(O(QC(#*8%+(O(PC(

S"T/(

B"9(

;7"
""

Figure 4-13. NDCG5 for CILM number of topics training

Figure 4-14. NDCG10 for CILM number of topics training

Figures 4-12, 4-13, and 4-14 show that news search is not very sensitive to the number of topics,

and !!"#$ = 50, 60 and 70 are slightly better than other numbers of topics (30, 40 and 80). Web

search is more sensitive to the change in number of topics. Overall, when !!"#$ = 50, the ranking

performs best, which is same as CIV ranking algorithm training method. We may conclude that

the number of topic = 50 or 70 can be the optimized parameter to extract semantics of the interest

topical space. The possible reason for this will be analyzed in next chapter.

As a result, in the following experiment, we used !!"#$ = 70 for news ranking and !!"#$ = 50

CLFD(

CLFQ(

CLFR(

CLKE(

CLKK(

CLKD(

CLKQ(

CLKR(

CLME(

CLMK(

CLMD(

#*8%+(O(KC(#*8%+(O(MC(#*8%+(O(DC(#*8%+(O(NC(#*8%+(O(QC(#*8%+(O(PC(

S"T/(

B"9(

CLK(

CLKD(

CLM(

CLMD(

CLD(

CLDD(

CLN(

#*8%+(O(KC(#*8%+(O(MC(#*8%+(O(DC(#*8%+(O(NC(#*8%+(O(QC(#*8%+(O(PC(

S"T/(

B"9(

;8"
""

for web ranking as the optimized number to train other parameters and for other evaluation.

With !!"#$ = 70 or 50, the length of time for smoothing (!!"#$) and decay parameter (!) were

trained in the following tables. Please note !!"#$ ranges from 6 to 30, differing from !!"# (from

18 to 30), because for trend analysis, we need more data to compute mean and variation.

For the news ranking:

Round

1

 day=6 day=10 day=14 day=18 day=22 day=26 day=30

! = 0.5 0.53495116 0.540278287 0.544865278 0.537119993 0.547236695 0.541885536 0.545636498

! = 2.5 0.535634995 0.538641768 0.544170975 0.544293809 0.545094432 0.542862125 0.55336895

! = 4.5 0.531407423 0.539924238 0.544407154 0.548043193 0.544758153 0.54719369 0.551492839

! = 6.5 0.527693892 0.538461654 0.543251781 0.545417641 0.547679421 0.550084528 0.549541804

! = 8.5 0.532361512 0.537513328 0.54375911 0.542662566 0.549312178 0.549734659 0.548239541

! = 10.5 0.525126218 0.536678576 0.539883298 0.542773715 0.546954804 0.549027908 0.551055613

Round

2

 day=6 day=10 day=14 day=18 day=22 day=26 day=30

! = 0.5 0.530225163 0.5306119 0.535280872 0.524948819 0.524881162 0.531055106 0.533813375

! = 2.5 0.530163142 0.533706275 0.534724353 0.534415837 0.526426851 0.534148551 0.536799926

! = 4.5 0.525664721 0.536100427 0.539441197 0.540100824 0.534069676 0.536031182 0.53798796

! = 6.5 0.519276689 0.537436754 0.537311394 0.538589475 0.534594502 0.535514695 0.540418006

! = 8.5 0.521888719 0.531300828 0.53320116 0.536061855 0.534745713 0.535038446 0.538801014

! = 10.5 0.517126391 0.528845708 0.531876459 0.535094423 0.535138752 0.539877507 0.536905879

Round

3

 day=6 day=10 day=14 day=18 day=22 day=26 day=30

! = 0.5 0.539581064 0.538439219 0.550791611 0.540521535 0.549343588 0.55382362 0.544452161

! = 2.5 0.542769339 0.542309429 0.548173055 0.543631776 0.545621933 0.552734119 0.539953606

! = 4.5 0.531848967 0.542744547 0.549014896 0.551493254 0.544460259 0.55071074 0.543533437

! = 6.5 0.53456453 0.537097229 0.547916821 0.551204001 0.549774011 0.550698033 0.546404581

! = 8.5 0.533936132 0.53548348 0.545380452 0.550154495 0.551155048 0.55106356 0.555418275

! = 10.5 0.525539375 0.536154753 0.536697819 0.549073898 0.551059549 0.552010639 0.554766886

Table 4-4. Training CILM !!"#$ and ! for news search

Basically, it is a clear trend that the larger !!"#$ is, namely more historical training data, the

better ranking performance will achieve. It is hard to interpret such a large data map, so we first

visualize it into the following diagrams, with x-axis representing !!"#$.

;9"
""

Figure 4-15. NDCG10 for news training (CIV), round 1 (!!"#$ and !)

Figure 4-16. NDCG10 for news training (CIV), round 2 (!!"#$ and !)

Figure 4-17. NDCG10 for news training (CIV), round 3 (!!"#$ and !)

Based on the results, we find that the length of time for smoothing (!!"#$) is closely related to the

CLDF(

CLDFD(

CLDK(

CLDKD(

CLDM(

CLDMD(

CLDD(

CLDDD(

CLDN(

'04ON('04OEC('04OEM('04OEP('04OFF('04OFN('04OKC(

8%(O(CLD(

8%(O(FLD(

8%(O(MLD(

8%(O(NLD(

8%(O(PLD(

8%(O(ECLD(

CLDED(

CLDF(

CLDFD(

CLDK(

CLDKD(

CLDM(

CLDMD(

'04ON('04OEC('04OEM('04OEP('04OFF('04OFN('04OKC(

8%(O(CLD(

8%(O(FLD(

8%(O(MLD(

8%(O(NLD(

8%(O(PLD(

8%(O(ECLD(

CLDF(

CLDFD(

CLDK(

CLDKD(

CLDM(

CLDMD(

CLDD(

CLDDD(

CLDN(

'04ON('04OEC('04OEM('04OEP('04OFF('04OFN('04OKC(

8%(O(CLD(

8%(O(FLD(

8%(O(MLD(

8%(O(NLD(

8%(O(PLD(

8%(O(ECLD(

;:"
""

ranking performance. Generally, a longer time for smoothing could improve the news ranking

performance, especially for round 1 and 3 training. For the interest decay parameter (!), when !

is small (decay speed is fast) the ranking performance is good when n is large (e.g. ! !

!!!!!"!!!!), but the ranking performance may drop when n decreases. When ! is large (decay

speed slow), the ranking performance is more stable when !!"#$ > 10, e.g. ! ! !"!!!!"!!!!.

Overall, the decay speed training result is not consistent for three training sets. We used the

empirically found best performing parameter setting for the next experiment: round 1 days !!"#$

=30 with ! =2.5, round 2 days !!"#$ =30 with ! =6.5, round 2 days !!"#$ =30 with !

=8.5.

For web search ranking, the results were as follows:

Round

1

 day=6 day=10 day=14 day=18 day=22 day=26 day=30

! = 0.5 0.420975734 0.420717436 0.422772356 0.438123029 0.403661447 0.42615354 0.402951477

! = 2.5 0.408472977 0.41721966 0.407913184 0.413723573 0.419879904 0.423737832 0.397845105

! = 4.5 0.396747468 0.424784273 0.417278982 0.433162465 0.407985706 0.413598203 0.408817243

! = 6.5 0.406225346 0.418259059 0.407449943 0.423246204 0.415926863 0.402952781 0.414350631

! = 8.5 0.408613456 0.432391452 0.422104205 0.418756623 0.411444348 0.409314767 0.407049318

! = 10.5 0.415918252 0.423009299 0.41693525 0.422414768 0.41681032 0.417895663 0.403618745

Round

2

 day=6 day=10 day=14 day=18 day=22 day=26 day=30

! = 0.5
0.489592894 0.481738396 0.497397288

0.4888709

37
0.476453671 0.481739248 0.473006506

! = 2.5 0.478190406 0.476525526 0.49144487 0.484722468 0.484653402 0.472388027 0.476391197

! = 4.5 0.464122049 0.485585142 0.486792239 0.482324453 0.480251778 0.482462506 0.485787918

! = 6.5 0.469138786 0.483461001 0.484240516 0.479767497 0.48028572 0.483279615 0.48193821

! = 8.5 0.48476698 0.490701965 0.491080635 0.475635253 0.483298219 0.478460869 0.483060105

! = 10.5 0.485021252 0.480249331 0.487275247 0.485860785 0.485956685 0.488394287 0.484894734

Round

3

 day=6 day=10 day=14 day=18 day=22 day=26 day=30

! = 0.5 0.500695757 0.490400187 0.506865688 0.477989341 0.477952689 0.504586805 0.509518585

! = 2.5 0.495801464 0.494021096 0.505213204 0.492786033 0.483142028 0.491358515 0.518397812

! = 4.5 0.482594249 0.503709968 0.497318464 0.489044715 0.474182874 0.488852375 0.506867045

! = 6.5 0.480799928 0.496660665 0.498100507 0.484123928 0.47775395 0.476020785 0.499153967

! = 8.5 0.474790968 0.494147989 0.507664822 0.489629364 0.474808359 0.479087599 0.492598817

! = 10.5 0.46762839 0.469374624 0.489509126 0.491441156 0.478081881 0.487233194 0.489931175

Table 4-5. Training CILM !!"#$ and ! for web search

Unlike news ranking, web ranking is not very sensitive to the change of !!"#$, and larger !!"#$

does not necessarily lead to better NDCG score. Meanwhile, we find more “randomness” in the

;;"
""

ranking results. The results are visualized in the following diagrams:

Figure 4-18. NDCG10 for web training (CIV), round 1 (!!"#$ and !)

Figure 4-19. NDCG10 for web training (CIV), round 2 (!!"#$ and !)

CLKQ(

CLKP(

CLKR(

CLM(

CLME(

CLMF(

CLMK(

CLMM(

CLMD(

'04ON('04OEC('04OEM('04OEP('04OFF('04OFN('04OKC(

8%(O(CLD(

8%(O(FLD(

8%(O(MLD(

8%(O(NLD(

8%(O(PLD(

8%(O(ECLD(

CLMM(

CLMD(

CLMN(

CLMQ(

CLMP(

CLMR(

CLD(

'04ON('04OEC('04OEM('04OEP('04OFF('04OFN('04OKC(

8%(O(CLD(

8%(O(FLD(

8%(O(MLD(

8%(O(NLD(

8%(O(PLD(

8%(O(ECLD(

!<<"
"

Figure 4-20. NDCG10 for web training (CIV), round 3 (!!"#$ and !)

For web search, the result looks inconsistent for different parameter settings, especially for decay

speed !. But there are still some patterns. First, similar to news search, a larger ! makes the

ranking performance more stable over differing numbers of days for smoothing, while a smaller !

works well for some !!"#$. Second, unlike news search, a longer number of days for smoothing

doesn’t necessary benefit the ranking performance except for round 3. Based on the result, the

ranking result peaks when !!"#$ = 14, 18 and 30 while ! !0.5, 0.5 and 2.5 for these three

training folders.

Once again, we employed the empirically best parameter setting in the next experiment. For

instance, for round 1, the statistical optimized parameters were trained from query group 1 and 2,

and the parameters will be applied to query group 3 for evaluation. The optimized parameter

setting for each query group was listed in the following table. The detailed discussion will be

analyzed in the next chapter.

CLMM(

CLMD(

CLMN(

CLMQ(

CLMP(

CLMR(

CLD(

CLDE(

CLDF(

CLDK(

'04ON('04OEC('04OEM('04OEP('04OFF('04OFN('04OKC(

8%(O(CLD(

8%(O(FLD(

8%(O(MLD(

8%(O(NLD(

8%(O(PLD(

8%(O(ECLD(

!<!"
"

Testing Algorithm Ranking Parameter Setting

Query Group 1 CIV News t=70, !!"# !30
Web t=60, !!"# !20

CILM News t=70, !=6.5, !!"#$=30
Web t=50, !=0.5, !!"#$=18

Query Group 2 CIV News t=70, !!"# !30
Web t=50, !!"# !20

CILM News t=70, !=8.5, !!"#$=30
Web t=50, !=2.5, !!"#$=30

Query Group 3 CIV News t=70, !!"# !30
Web t=50, !!"# !20

CILM News t=70, !=2.5, !!"#$=30
Web t=50, !=0.5, !!"#$=14

Table 4-6. Statistical optimized parameter setting for each query testing group

4.4.2 Web Search evaluation

The trained parameters (in Table 4-6) were applied to each query testing group for both the

Google web search dataset (45 queries) and the Yahoo web search (45 queries).

The CIV and CILM ranking performance was compared to a list of relevance algorithms’ ranking

results along with Google or Yahoo ranking results. The results are shown in the following table

with t-test results (significance) indicated when the best ranking algorithm is significantly better

than other algorithms using the average of NDCG3, NDCG5 and NDCG10).

Google web NDCG3 NDCG5 NDCG10 t-test

CIV 0.37168329 0.420199822 0.500187376

CILM 0.356652652 0.387120299 0.483420045

Google 0.230423817 0.318737414 0.388792379 ***

TFIDF 0.27596245 0.333012091 0.437831859 **

BM25 0.284599431 0.336961764 0.436466778 **

LM (liner) 0.32558799 0.382113457 0.473992963

LM (dirichlet) 0.34665084 0.358128576 0.45150825

LM (twostage) 0.349735965 0.358725227 0.450046444 *

BEST1: CIV CIV CIV

BEST2: CILM CILM CILM

Significant test *** t < 0.05 ** t < 0.10 * t < 0.15

Table 4-7. Ranking performance comparison (Google Web Search)

!<#"
"

Yahoo_web NDCG3 NDCG5 NDCG10 t-test

CIV 0.32260902 0.376919597 0.484664526

CILM 0.391807685 0.40623334 0.492464858

Yahoo 0.288059321 0.326373542 0.410969176 **

TFIDF 0.24320988 0.282799657 0.404092457 ***

BM25 0.245263974 0.277579262 0.395953269 ***

LM (liner) 0.276208943 0.316889107 0.432428784 **

LM (dirichlet) 0.223253393 0.270017519 0.385936078 ***

LM (twostage) 0.219225991 0.266537146 0.384349848 ***

BEST1: CILM CILM CILM

BEST2: CIV CIV CIV

Significant test *** t < 0.05 ** t < 0.10 * t < 0.15

Table 4-8. Ranking performance comparison (Yahoo Web Search)

For the Google web collection, when relevance based ranking algorithms were applied to the top

retrieved documents, the ranking performance improved, especially for language model. CIV

algorithm works best for NDCG3, NDCG5, and NDCG10. The averaged CIV is significantly

better than BM25 (t < 0.15), vector space (t < 0.15), Google ranking (t < 0.10) and Language

Model with twostage smoothing (t < 0.10).

For the Yahoo web collection, CILM ranking achieved the best performance followed by CIV.

CILM ranking performance is significantly better than vector space, BM25, language model

(Dirichlet smoothing), language model (two stage smoothing) at t < 0.05, and language model

(linear smoothing) at t < 0.10.

4.4.3 News Search evaluation

Similar to web search ranking, trained parameters were applied to news search interest modeling.

The ranking results of CIV and CILM are compared in the following tables with other ranking

algorithms:

!<5"
"

Google news NDCG3 NDCG5 NDCG10 t-test

CIV 0.356490637 0.406718238 0.546777902 ***

CILM 0.363134762 0.408748121 0.547608992 ***

Google 0.414897946 0.453282795 0.574381182

TFIDF 0.358224206 0.409760281 0.548609575 *

BM25 0.382405788 0.431366158 0.557465133

LM (linear) 0.327940847 0.384583295 0.532979429 ***

LM (dirichlet) 0.398446677 0.451584299 0.568527226

LM (twostage) 0.399008856 0.453301336 0.568849791

BEST1: Google Google Google

BEST2: LM (twostage) LM (twostage) LM (twostage)

Significant test *** t < 0.05 ** t < 0.10 * t < 0.15

Table 4-9. Ranking performance comparison (Google News Search)

Table 4-10. Ranking performance comparison (Yahoo News Search)

Unlike the other groups, Google news result shows that Google news ranking itself is a robust

ranking method, performing significantly better than CIV, CILM and language model (linear

smoothing) at t < 0.05. Language model (two stage smoothing) achieved the second best

performance among the candidate ranking algorithms. In this experiment, CILM algorithm

ranking performance is better than vector space and language model (linear smoothing), but not

significantly. As mentioned earlier, the Google ranking methodology is a black box for us, but we

will try to interpret the possible reasons why interest based ranking algorithms fail for news search

in the next chapter.

Yahoo news NDCG3 NDCG5 NDCG10 t-test

CIV 0.38799418 0.44002231 0.567218049
CILM 0.396895839 0.441480612 0.570672097
Yahoo 0.357108756 0.408724494 0.553749542 **

TFIDF 0.362768014 0.404059938 0.555076813 ***

BM25 0.363704662 0.412726764 0.556132169 **

LM (linear) 0.36258229 0.40508942 0.553391554 ***

LM (dirichlet) 0.389559974 0.435801618 0.566983045

LM (twostage) 0.393606438 0.43828928 0.568684439

BEST1: CILM CILM CILM

BEST2: LM (twostage) CIV LM (twostage)

Significant test *** t < 0.05 ** t < 0.10 * t < 0.15

!<6"
"

For Yahoo news ranking, CILM achieved the best performance, followed by language model (two

stage smoothing). CILM ranking performance is significant better than Yahoo news ranking,

vector space, BM25 and language model (linear smoothing), t < 0.05 or t < 0.10.

A summary of the experimental results from the four groups of data are shown in the following

table (a total of 12 time results, each group analyzed at the three different ranking indicators,

NDCG3, NDCG5 and NDCG10). The numbers of the two top algorithms are listed. The best

performed ranking method was scored as a 3, while the second best ranking algorithm was scored

as a 1. The final scores were computed in the last column each line.

 BEST 1 BEST 2 Score

CIV 3 4 13

CILM 6 3 21

Provider (Google or Yahoo) 3 0 9

TFIDF 0 0 0

BM25 0 0 0

LM (linear) 0 0 0

LM (Dirichlet) 0 0 0

LM (twostage) 0 5 5

Table 4-11. Comparison for all ranking methods

The results show that CILM is the best ranking method in this evaluation, while CIV is the second

best method. The quality of Google ranking, especially for news, is also good in this test. Among

relevance based ranking algorithms, language model (two stage smoothing) works best. However,

the results are not completely consistent. Interest based ranking algorithms failed in Google news

ranking experiment.

"
"
"
"
"
"
"
"
"
"
"
"
"

!<7"
"

"
"

!"#$%&'(B*(C5DE6DD5.-(#-<(!.-E26D5.-((

5.1 Introduction

In essence, this thesis is trying to investigate if real time community interest can be modeled

(research question 1) and if real-time retrieval ranking can be improved by employing the query

specific computational community interest model (research question 2). The evaluation results

show positive but not consistent ranking performance across different datasets. In this chapter, we

will analyze and draw conclusions about the experiments’ results that are presented in Chapter 4.

5.2 Results analysis

In this section, we will analyze the experiments’ results. First, interest modeling with parameter

training will be investigated to response to research question 1, and then the evaluation results will

be interpreted to answer the second and third research questions. At last, we will discuss the

evaluation method.

5.2.1 Training parameter setting analysis

The first research question is: What is community interest? And can we extract and

computationally model real time community interest from user textual data? In this thesis, the

community interest is defined as a dynamic distribution of topics over a specific query. Because of

the limited size of the training data, we cannot train query specific parameters. For each interest

modeling algorithm, CIV or CILM, the optimized parameter setting is trained with news and web

search. The performance of the interest modeling will be evaluated by RQ2 and RQ3.

For parameter training, we find the number of topics is related to the ranking performance, as

shown, for instance, in Figures 4-12, 4-13, and 4-14. Numbers of topics that are either too large or

too small threaten the ranking performance, while number of topics = 60 or 70 leads to the best

NDCG scores for news search and number of topics = 50 works best for web ranking. Using the

!<8"
"

LDA algorithm, when the number of topics is large, the word distribution, P(word|topic), is dense,

and when the number of topics is small, the word distribution is sparse. The training results also

show that compared with news search, web search may be more sensitive to the change in the

number of topics. Observation suggests that the difference among top ranked web search

documents’ word distributions could be larger than those of news search (as the news retrieved

results are likely to be focusing on particular news events and web retrieved results could come

from different domains), so the web search ranking may be more sensitive to an optimized topic

model, and the interest probability score may be more sensitive to the performance of the

parameter setting of topic modeling.

Another important parameter in interest modeling is the length of time for trend analysis (!!"# for

CIV) or historical smoothing (!!"#$ for CILM). For instance, Figures 4-15, 4-16, and 4-17 show

that !!"#$ is closely related to the ranking performance. The longer the historical data used for

smoothing the better is the news ranking performance. Compared with news ranking, web ranking

performance (i.e. Figures 4-18, 4-19, and 4-20) is not closely related to the length of time, and the

ranking performance is somehow “flat” when !!"#$ changes. However, from practical

perspective, we don’t want n very large, i.e. more than 30, for a couple reasons. First, community

interest ranking is targets currently popular queries, and we cannot predict the popularity of the

current query using interest data from long ago. For instance, it would be difficult to predict if a

news event will be popular using interest data from before the event occurred. Second, IR system

needs to index additional user generated text to train interest model, and we don’t want a large

amount of historical training data to create too much system load.

Once again, we can interpret this effect with the different characteristics of web and news search.

From the language model perspective, the interest score is defined as:

!"# !!!"#!!!"!!"#!
!!!"#!!!"!!!"#$%&!

" " " " " " " " " " " " " " " " " " (5-1)"

where the smoothing factor is defined by a list of historical interest snapshots, which are trained

with blog posting data. As mentioned in sectioned 3.3.3, there are different kinds of topics in the

interest model. The ranking function attempts to boost the current “hot topic” while punishing the

“diminishing topic” or “background topic” by employing methods like IDF or smoothing. For

!<9"
"

news ranking, the distribution of current blog postings (!!"!!"#) and news documents are similar,

as they both target up-to-date news events given a query. As a result, the more data in the

smoothing part, !!"!!!"#$%& to reflect the longer history interest distribution (or reflect the longer

history semantics), the easier to discriminate the news document that fits the community’s current

interest. For web search, the web retrieved document distribution may differ from blog postings

(!!"!!"#) significantly, and the interest scores could be mainly defined by a few key words in the

documents, resulting in more “randomness”. On the other hand, if we use data from too long a

time period for smoothing, i.e. past 27 or 30 days, some “random” words representing more recent

interest, but which are still too old for currency in the model, e.g. the past 15 or 12 days, will be

chosen to boost the ranking score. This may threaten the ranking performance. As a result, a

smaller or reasonable number of !!"#$ or !!"# may help the interest ranking algorithm to pick

some distinctive words, if not the entire interest word collection, which likely represents the most

recent community preference. In brief, the news ranking score is mainly decided by the news

document distribution (more history data will help), while the web ranking score is decided by

some particular words (a reasonable !!"# or !!"#$ may help). This interpretation will need

more experimentation in the future.

The decay parameter ! controls the interest decay speed for smoothing in CILM, as shown in

Figure 3-11. In this experiment, we find that the larger ! will make the ranking performance

more stable (over different !!"#$ settings), but not necessarily make the ranking performance

better, as Figures 4-18, 4-19 and 4-20 show. This makes sense given the definition of the decay

parameter. When ! is small, the smoothing interest decay speed is fast, when ! is large, the

decay speed is slow. For instance, when ! = 0.1, the interest decay speed!! !!; when ! = 10,

the interest decay speed!! !!!. As a result, when ! is large all the history interest snapshots

make an almost even contribution to !!"!!!"#$%&. The advantage for a large ! is that the

!!"!!!"#$%& covers all the semantics for the past n days evenly, and the smoothing function

will identify the important words by contrasting them against all the past interest snapshots.

The limitation for a large ! is, sometimes a user’s interest will last for a while, such as 2 or 3

days. However, given a large !, the current interest (i.e. today) may be diluted by considering

too much for the most recent history (i.e. yesterday). A solution is to make ! smaller, which

!<:"
"

will make longer history more important to !!"!!!"#$%& compared with more recent historical

snapshots. In the experiment, nevertheless, we did not find significant or consistent

improvement by using a smaller !. One possible reason is that differences in the queries

should have different decay speeds. However, in this research, we do not have enough

training data to decide the query level or query cluster level !!. This work must be done in

the future.

5.2.2 Ranking performance analysis

Regarding the second research question, in what ways can real-time community interest be used

to rank the retrieved results?, and part of the third research question, can the community interest

based ranking method improve results over existing ranking methods?, the real-time interest

based ranking performance is compared to the rankings of other relevance algorithms and

against search engines’ rankings.

In the four groups of experiments, the community interest ranking method achieves the best

performance in three groups, and the CILM algorithm ranking performance is relative better

than CIV in three out of four groups. For web ranking, both Google and Yahoo evaluations

show that interest based ranking is an effective method. Meanwhile, in most cases, language

model (relevance based) can improve search engines’ ranking performance. As mentioned

earlier, web ranking is not as dynamic as the news ranking, and the content of top ranked web

documents can be different from the training blog postings. In most cases, the web ranking

score is defined by key words in the documents but not by the whole distribution.

One remaining question is why community interest does not work well for the Google news

search group. Why is the interest ranking better for Yahoo but worse for Google? That

suggests we should find out what kinds of queries are good for interest ranking and which are

not.

Recall that the 45 test queries were grouped into three sets based on the definition in 4.2.1.

For “World Cup” queries (11 queries in this group), we target the very short time periods for

user interest change (i.e. hourly or several hours of user interest). For “Recent Popular News

!<;"
"

Event” (15 queries), community interest is extracted based on very recent news events. For

“Long-lasting Popular News Stories” (19 queries), we target the long lasting popular news

stories or news protagonist. The testing queries were presented in Table 5-1

World Cup Queries

World Cup Italy World Cup Germany

World Cup Netherlands World Cup Final

South Africa World Cup Argentina

World Cup Championship World Cup Brazil

World Cup Spain World Cup North Korea

World Cup

Recent Popular News

Event Queries

Dow Jones Mel Gibson

unemployment stock market

Lebron Tiger Woods

Lady Gaga wikileaks

Lindsay Lohan Nasdaq

lohan BP

Oil spill NBA Trade

North Korea

Long-lasting

Popular News

Stories Queries

Soccer Obama

Car bullock

Kobe california

wall street American Idol

Yahoo Celtics

NBA Golf

Palin Economy

iPhone China

Nintendo Games

Movie

Table 5-1. Testing query categories

In the following tables, from the interest based ranking perspective, the number of positive

interest rankings (those that are better than Google or Yahoo rankings), and negative instance

rankings (those that are worse than Google or Yahoo rankings) percentages are illustrated:

Google News Rank Positive Negative Positive %

World cup 1 10 9.09%
Recent Popular News Event 9 6 60.00%
Long-lasting Popular News Stories 9 10 47.37%

Table 5-2. Positive and negative queries for Google News ranking

!!<"
"

Yahoo News Rank Positive Negative Positive %

World cup 4 7 36.36%
Recent Popular News Event 9 6 60.00%
Long-lasting Popular News Stories 16 3 84.21%

Table 5-3. Positive and negative queries for Yahoo News ranking

The above table (Table 5-3) shows the difference between the NDCG10 ranking score for

each individual query in three categories, using the difference between the interest based

ranking (CILM algorithm) and Google or Yahoo (search provider) ranking (!"#$!"!"#$!

!"#$!"!"#$%&'"). The score is negative for negative instances, while the score is positive for

positive instances.

Figure 5-1. Three categories’ performance for Google News ranking

UCLF(

UCLED(

UCLE(

UCLCD(

C(

CLCD(

CLE(

CLED(

CLF(

E(K(D(Q(R(EE(EK(ED(EQ(ER(FE(FK(FD(FQ(FR(KE(KK(KD(KQ(KR(ME(MK(MD(

World Cup Recent Long-lasting(

!!!"
"

Figure 5-2. Three categories’ performance for Yahoo News ranking

For the World Cup group, interest ranking performance is poor (only 9.09% positive for

Google and 36.36% positive for Yahoo). Interestingly, Google and Yahoo ranking evaluation

performance on Recent Popular News Event are equal, both achieved 60% positive. The main

difference exists in Long-lasting Popular News Stories group. For Google, there are only

47.37% positive queries, while for Yahoo there are 84.21% positive queries.

The results can be interpreted as following.

First, unlike our hypothesis, interest modeling is not effective for very short or very dynamic

(i.e. hourly) interest changes, such as for the World Cup group. A possible reason is that

bloggers do not have enough time to update their blog postings to reflect this very dynamic

interest change. The evaluation took place at 2:00pm every experimental day, which is the

extract time when world cup games began. The community’s interest can change dramatically

during the game. Meanwhile, the blog search engine may need some time to index those

up-to-date blog postings, delaying the interest modeling process, negatively affecting the

modeling accuracy. In order to solve this problem, the interest training text data should use a

more dynamic kind of real time textual data to train the user interest model, for example,

Twitter6 data. More details will be mentioned in the next chapter.

"" """""""""""""""""""" "
8" 1&&4[\\&+(&&%-B23K\"

UCLE(

UCLCD(

C(

CLCD(

CLE(

CLED(

CLF(

CLFD(

E(K(D(Q(R(EE(EK(ED(EQ(ER(FE(FK(FD(FQ(FR(KE(KK(KD(KQ(KR(ME(MK(MD(

World Cup Recent Long-lasting(

!!#"
"

Second, interest modeling is effective and reliable for recent popular news events as shown in

the evaluation results. Some recent popular queries are relatively new for search engines, such

like “BP” and “oil spill”, which may threaten some existing ranking methodologies, such like

clickthrough or user behavior. User interest may or may not change every day. Interest

modeling can help search engine better understand communities’ interest shift while

improving ranking.

Last but not least, Google and Yahoo evaluation results on long-lasting popular news stories

group are significantly different. While both search engines’ ranking mechanisms are black

boxes for us, we can try to analyze why this is the case. One possibility is that Google is the

world’s largest search engine, and may benefit from the huge amount of users in its ranking

function. For instance, a very large amount clickthrough data may help Google ranking

achieve a higher NDCG score in the top retrieved documents. Another possible reason is that

Google ranking may employ trustworthy news agencies to improve the ranking results. This

may be particularly helpful for those long-lasting news stories. However, without data or

experiments to support them, these conjectures will remain untested and unverified. We will

talk about it in next chapter.

5.2.3 Evaluation method analysis

The remaining research question is the first part of research question 3, how can we evaluate

real-time community interest ranking results? We can generalize this question as how can we

evaluate the real-time ranking method effectively with a low cost?

Obviously, the most accurate way is to use a large number of users for a real-time evaluation

focusing on each query and document pair. But the cost of this method is very high.

Meanwhile, the current automatic evaluation corpus cannot satisfy the data needs for this

dynamic evaluation task. The compromise is to use Amazon Turk for a user evaluation with a

reasonable number of queries. The limitation, as mentioned in the last chapter, is that the

quality of these turkers and their work cannot be tightly controlled.

In this evaluation, we employed a total of 388 turkers who worked on this task. In most cases,

!!5"
"

turkers were able to finish the task within a short amount of time, i.e. 3 to 5 hours, based on

requirements. This guaranteed that the interest judgments were up-to-date. But we found

these turkers may not be very reliable. A large percentage of turkers only worked on one or

two HITs and then left, and we are not sure if some of turkers just provided us “random

judgments”. In this thesis, we were only able to control for the turkers’ location (US turkers),

their pre-study abandonment rate and their approval rate. As mentioned earlier, in this research,

the average agreement rate of turkers on certain task is 0.548. It proves that a large number of

turkers agree with each other when provide their interest judgments.

In the preliminary evaluation, we tested 9 queries (listed in Table 3-5) with 5 high quality judgers

(experts). Before the evaluation began, we trained judgers about the evaluation, give them

examples of interesting documents and not interesting documents given a query, and give them

practice before the real evaluation. For the following 5 days, experts logged in to the evaluation

system, and provide their interest judgments given each query and document pair. The details of

this experiment can be found at (Liu & von Brzeski, 2009). The following table shows the

NDCG3 and NDCG5 performance for Yahoo news ranking and CIV ranking.

 NDCG@3 NDCG@5 Significant test

Yahoo 0.5740 0.7597 p < 0.05 significant

CIV 0.8619 0.8874 p < 0.1 significance

 Table 5-4. Preliminary evaluation with five experts

The results in Table 5-3 shows, comparing them with the Yahoo news ranking, that CIV can

significantly improve the ranking performance (significance analyzed with t-test). This result

is similar to the Amazon Turk evaluation over two weeks for 45 queries with a larger number

of judgers.

In sum, so far, the evaluation with Amazon Turk for the real-time tasks is effective for the

dynamic ranking problem and has a low cost. But we will be looking at other alternatives in

the future. Details will be mentioned in the next chapter.

!!6"
"

5.3 Conclusion

Community interest ranking can be categorized as a kind of feedback ranking methodology.

Unlike traditional relevance feedback ranking methodologies, the extracted real-time community

interest is used to provide additional ranking information for the short and popular queries for

news or web search engines. Please note that “interest” and “relevance” are related but different

for a given query, because a user is interested in a document only if this document is relevant to

the query, but interest is a kind of dynamic, user oriented information that comes from external

textual data (not retrieved documents). An advantage for this ranking method is we do not need to

ask users to provide interest judgments toward each query, which makes the ranking cost low. We

can refer to this method as “pseudo interest feedback”. Figure 5-3 shows the differences among

“pseudo interest feedback”, user feedback and pseudo relevance feedback. First, pseudo relevance

feedback gets the ranking information from retrieved results, while interest feedback gets the

ranking information from outside textual resource. Second, user feedback needs direct user

intervention and thus has a high cost, while interest feedback uses user generated real-time texts to

represent the user, that is to say interest feedback uses “pseudo users”.

Another advantage of the interest ranking model is that the computational community interest

model is extracted from chronological user generated textual data, such as blog postings, data that

is available without usage boundaries. This is very important for academic research and small

search engines without access to the large amount of user data. Last, this is a dynamic feedback

ranking method, as community interest changes over time.

!!7"
"

Figure 5-4. Compare three different feedbacks

As mentioned in the first chapter, a great challenge of IR is to figure out the distance between a

user’s information need and a query (distance !). As Figure 5-4 shows, if the user generated

chronological textual data can somehow represent a user’s information need (i.e. distance = x), the

original distance ! will be shortened. A better interest ranking algorithm or a higher quality

training data will result in a smaller ! while improving the ranking performance.

In this thesis, user interest is defined as a dynamic distribution or vector over topic space, while

the topic is defined as probability distribution over words. The advantage for topic modeling is

that it can help us to identify the topic(s) of the new words. This is especially helpful for news

ranking. If a news or web document concentrates on topic z, for instance, but the page includes a

list of new words that never appear in the interest training data, traditional ranking algorithms can

have difficulty computing the ranking score effectively. By using topic modeling algorithm, we

can infer the probability of z given a document by using other words in the document. However, in

the experiments, we also find that topic modeling itself is not perfect. The algorithm complexity

and challenges in parameter setting may result in unstable topic model precision, harming the

ranking performance. On the other hand, topic modeling algorithms, like LDA, need a large

amount of training data, which may not be available for some queries.

!!8"
"

As mentioned earlier in this chapter, it is an arbitrary decision to use unique parameter settings for

different queries for news or web ranking. The evaluation shows that different queries have

different natures, and ranking performance is likely to be improved by using different parameter

settings, such as different numbers of topics and different smoothing factors. However, the size of

the training data does not support training query level or category level parameters. This should be

saved for future work.

The evaluation results show that, overall, interest based ranking is an effective ranking method to

deal with both news and web ranking problems. Based on NDCG evaluation, interest ranking is

statistically better than other ranking methods (relevance ranking and search engine ranking),

except for the Google news group.

!!9"
"

!"#$%&'(F*(G6%6'&(9.'H((

6.1 Introduction

As mentioned above, while this thesis can make both theoretical and practical contribution to

information retrieval ranking research, there are also some limitations. In this chapter, we will

propose several possible directions for future research.

6.2 Future directions

6.2.1 Query level interest parameter setting

First, in these experiments, we found the characteristics of user’s interest toward different queries

may be relatively either dynamic or stable, which results in different parameter settings for

different queries or different query categories. We could train query level or query category level

parameters by implementing a more comprehensive evaluation.

In the error analysis part, i.e. Table 5-1 and 5-2, we found different kind of queries may have

different interest characters. For instance, for a sport related query, users’ interest may change

quickly when the game score is changing. On the contrary, a political query’s user interest may be

more stable. In order to better mirror the real world community interest change toward different

queries, we need to train different query level parameter such like query interest decay speed.

With more training data and specialized parameter setting, the ranking performance could be

further improved. However, user involved parameter training process is still too expensive. We

may need a more automatic method to train the interest parameters. For example, the speed of

topic change in social media toward the target query could be used as an indicator to reflect the

interest decay speed. This work should be saved for the future research.

6.2.2 Interest training data

We used dynamic blog postings for community interest training in this thesis. However, we found,

sometimes a blog is not good enough to mirror very dynamic user interest change, for instance, the

World Cup related queries in news search, where community interest may change every hour

!!:"
"

during the game, and users didn’t have enough time to update their blogs. As a result, more

dynamic user generated textual data could be used to train dynamic community change, i.e.,

Twitter and Facebook7 data.

However, employing other kind of training data also has to face some new challenges. Take

Twitter as an example, some typical characters of blog and Twitter data are compared in the

following table.

 Blog Twitter

Interest

Representation
Daily interest or weekly interest Hourly interest

Semantics Rich semantic, good for topic
training

Short message, can hardly extract
topics given existing algorithms

Noise Close to news distribution Noisy features…

 Table 6-1. Comparison of Blog and Twitter

The advantage of using Twitter data is we can extract very dynamic user interest (like hourly

interest) change toward the target query. However, there are two major limitations. First, unlike

blog postings, Tweets are very short messages, which are limited to 150 characters. We can hardly

use existing topic modeling algorithm to effectively extract interest topic space. Meanwhile,

Twitter is more noisy compared to blog. For instance, Twitter users uses informal language to

communicate and express their opinion. The extracted interest model (as a distribution over topics

or words) could be difficult to directly apply to the ranking function for the news or web retrieved

results, as the word distribution of news and web page is different from the interest model. If this

is the matter, we may have to add a middle layer between Twitter based interest model and

ranking module to translate the word distribution.

6.2.3 Community based ranking

The “community” needs to be better studied in the future.

In this research, global community interest is used for ranking experiments. However, we know

different community may have different kinds of interest over the target query. For instance, we

"" """""""""""""""""""" "
9" 1&&4[\\T'2%,33GB23K"

!!;"
"

can classify the retrieval system users into different virtual communities based on their gender,

location and profession. Different community should have different interest model alone with

communitized parameter setting when ranking. As a result the ranking function could be:

!"#$%#&!!"#$% ! !!"#$%$!"!!"#!!"#$%! !"##$%&'(! !"#$! (6-1)

In 6-1, the ranking score is represented by the probability that user is interested in a retrieved

document given the query, time and community. In order to achieve this ranking function, we

need to know two things: first, how to model community based interest, and how to decide if the

system user belongs to a specific community? The prior problem could be solved if we can access

user blogger information in this research. For instance, accessing IP address of blogger could help

us to generate community interest model for a city or for a country. The later question is hard to be

solved if evaluation is not launched by search provider. For a small scale evaluation, we could find

a group of users and divide them into different communities by using a simple survey. Later, we

could evaluate if applying communitized interest model will help system improve ranking

performance. But the cost of this evaluation will be higher than using Amazon Turk.

6.2.4 Automatic evaluation

Last but not least, a more automatic evaluation method can be used to judge the interest based

ranking performance. In this research, we used Amazon Turk to judge 45 test queries on different

days. It is always desirable to employ fully automatic evaluation processes as TREC does to

evaluate a ranking methodology.

The biggest challenge for evaluation is we need real-time user interest (or relevance) judgments,

because we assume that users’ interest may change over time and the optimized ranking should

change as well.

However, we have other opportunities to indirectly evaluate real-time interest based ranking

algorithm. For instance, news ranking data could be used to test the algorithm performance. Take

New York Times data and “page one rank” problem as an example. Recently, New York Times

released their annotated text corpus (Sandhaus, 2008) with print page information (e.g. a piece of

news text printed on the first or second page on a specific date). In most cases, an edit team work

!#<"
"

on this problem to decide if a specific news can be printed on the first page based on its

importance. This “page one rank” problem provides interest based ranking algorithm opportunity

for automatic evaluation. As the figure 6-1 shows:

Figure 6-1. Automatic evaluation with News Ranking corpus

We could use TREC blog data as interest model training corpus, and the extracted interest model

can be used to predict news ranking problem or to say “page one rank” problem. If interest model

is a robust and effective ranking model, it is possible that it can automatically predict the news

ranking information.

This evaluation remains two challenges. First, in this thesis, interest model is used for information

retrieval problem, and query level interest model is used for tanking. As a result, if we use “page

one rank” to evaluate this algorithm, a list of “pseudo queries” is necessary to build the interest

models. For example, news tags can be used as a kind of pseudo query. Second, some baseline

algorithms need to be chosen to judge the performance of the interest modeling ranking methods.

%.')F'&%/",L"

%^&-'2&%/"T-3K"_H`W"P)3D"

X0&%-%*&"
?3/%)"

I%+*"H'0G(0D"

!#!"
"

Reference
"

O/'K(2a" EB" OBa" b" C)'02%a" IB" >#<<7ZB" _1%" 43)(&(2')" ,)3D3*41%-%" '0/" &1%" #<<6" NBJB"

%)%2&(30["/(.(/%/"&1%L",)3DB"A-32%%/(0D*"3T"&1%"5-/"(0&%-0'&(30')"+3-G*134"30"

E(0G"/(*23.%-LB"

O/'-a" `Ba" c1'0Da" EBa" O/'K(2a" EBa" b" EFG3*%a" HB" >#<<6ZB" XK4)(2(&" *&-F2&F-%" '0/" &1%"

/L0'K(2*" 3T" ,)3D*4'2%B" RRR" #<<7" R3-G*134" 30" &1%" R%,)3DD(0D"

`23*L*&%KB"

OD(21&%(0a" `Ba" P-())a" `Ba" b" $FK'(*a" JB" >#<<8ZB" XK4-3.(0D" +%," *%'-21" -'0G(0D" ,L"

(023-43-'&(0D" F*%-" ,%1'.(3-" (0T3-K'&(30B" A-32%%/(0D*" 3T" &1%" #;&1" annual

international OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/" /%.%)34K%0&" (0"

(0T3-K'&(30"-%&-(%.')B"

O)30*3a"UBa"H3*%a"$B"`Ba"b"J&%+'-&a"PB">#<<:ZB"W-3+/*3F-2(0D"T3-"-%)%.'02%"%.')F'&(30B"

OW?"JXCXH"Q3-FK"6#>#Z"

OK'd30"?%21'0(2')"_F-Ga"1&&4*[\\+++BK&F-GB23K\B" "

O01a" eB" IBa" b" ?3TT'&a" OB" >#<<#ZB" XK4-3.%/" -%&-(%.')" %TT%2&(.%0%**" &1-3FD1" (K4'2&"

&-'0*T3-K'&(30B"A-32%%/(0D*"3T"&1%"!5&1"OF*&-')'*('0"/'&','*%"230T%-%02%B"

O-30*30a" OBa" b" H(0/T)%*21a" _B" >!;;9ZB" fF%-L" %^4'0*(30" F*(0D" &1%" N?EJ"

?%&'&1%*'F-F*B"A-32%%/(0D*"3T"&1%"OK%-(2'0"?%/(2')"X0T3-K'&(2*"O**32('&(30"

>O?XOZ"JLK43*(FKB"

Odd34'-/(a"EBa"C(-3)'K(a"?Ba"b"H(g*,%-D%0a"hB".B">#<<6ZB"_34(2",'*%/")'0DF'D%"K3/%)*"

T3-"'/"132" (0T3-K'&(30"-%&-(%.')B"A-32%%/(0D*"3T" &1%"#<<6" X```" X0&%-0'&(30')"

M3(0&"W30T%-%02%"30"I%F-')"I%&+3-G*B"

P'%d'YS'&%*a"HBa"iF-&'/3a"WBa"b"?%0/3d'a"?B">#<<6'ZB"fF%-L"2)F*&%-(0D"T3-",33*&(0D"

+%,"4'D%"-'0G(0DB"E%2&F-%"I3&%*"(0"W3K4F&%-"J2(%02%a"!86Y!97B"

P'%d'YS'&%*a"HBa"iF-&'/3a"WBa"b"?%0/3d'a"?B">#<<6,ZB"fF%-L"-%23KK%0/'&(30"F*(0D"

VF%-L")3D*"(0"*%'-21"%0D(0%*B"WF--%0&"_-%0/*"(0"$'&','*%"_%2103)3DL"Y"`$P_"

#<<6"R3-G*134*a"7::Y7;8B"

P'%d'YS'&%*a"HBa"b"H(,%(-3YI%&3a"PB">!;;;ZB"?3/%-0"(0T3-K'&(30"-%&-(%.')B"OW?"A-%**a"

I%+"S3-GB"

!##"
"

P'-&%))a"PBa"W3&&-%))a"CBa"b"P%)%+a"HB" >!;;7ZB"A-32%%/(0D*"3T" &1%"J+%/(*1"W30T%-%02%"

30"W300%2&(30(*KB"

P%%T%-K'0a" $Ba" b" P%-D%-a" OB" >#<<<ZB" ODD)3K%-'&(.%" 2)F*&%-(0D" 3T" '" *%'-21" %0D(0%"

VF%-L")3DB"A-32%%/(0D*"3T"&1%"8&1"OW?"JXCh$$"(0&%-0'&(30')"230T%-%02%B"

P%(&d%)a" JB" ?Ba" M%0*%0a" `B" WBa" W13+/1F-La" OBa" C-3**K'0a" $Ba" b" Q-(%/%-a" UB" >#<<6ZB"

i3F-)L" '0')L*(*" 3T" '" .%-L")'-D%" &34(2'))L" 2'&%D3-(d%/" +%," VF%-L")3DB"

A-32%%/(0D*" 3T" &1%" #9&1" O00F')" X0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

P%)G(0a" IBa" U//La" HBa" b" P-33G*a" iB" >!;:#ZB" OJh" T3-" (0T3-K'&(30" -%&-(%.')[" A'-&" XB"

P'2GD-3F0/"'0/"&1%3-LB"M3F-0')"3T"/32FK%0&'&(30a"5:>#Za"8!Y9!B"

P%)G(0a"IBa"W33)a"WBa"M%0Da"MBa"h%))%-a"OBa"h%))La"$B"h(Ka"MBa"E%%a"iBa"_'0Da"?B"b"SF'0a"jB"

>#<<#Z"HF&D%-*k"_H`W"#<<!"X0&%-'2&(.%"_-'2G"`^4%-(%"02%B"X0"`B?B"e33-1%%*"b"

$B?B" i'-K'0" >`/*BZ" _1%" &%0&1" &%^&" -%&-(%.')" 230T%-%02%a" _H`W" #<<!"

>44B687Y69#ZB"

P%)G(0a"IBa"h%))La"$Ba"h(Ka"CBa"h(Ka"MBa"E%%a"iBa"?F-%*'0a"CBa"_'0Da"?Ba"SF'0a"jB"b"W33)a"WB"

>#<<5ZB"fF%-L")%0D&1" (0" (0&%-'2&(.%" (0T3-K'&(30"-%&-(%.')B"A-32%%/(0D*"3T" &1%"

#8&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/"

/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

P)%(a" $Ba" IDa" OBa" b" M3-/'0a" ?B" >#<<5ZB" E'&%0&" /(-(21)%&" '))32'&(30B" _1%" M3F-0')" 3T"

?'21(0%"E%'-0(0D"H%*%'-21a"5a";;5Y!<##B"

P)%(a"$B"?Ba"C-(TT(&1*a"_B"EBa"M3-/'0a"?B"XBa"b"_%0%0,'FKa"MB"PB">#<<6ZB"i(%-'-21(2')"&34(2"

K3/%)*" '0/" &1%" 0%*&%/" W1(0%*%" -%*&'F-'0&" 4-32%**B" O/.'02%*" (0" 0%F-')"

(0T3-K'&(30"4-32%**(0D"*L*&%K*a"!8a"!<8B"

P33G*&%(0a"OB">!;96ZB"_1%"'03K')3F*",%1'.(3F-"3T"4-%2(*(30"(0"&1%"J+%&*"K3/%)a"'0/"

(&*"-%*3)F&(30B"M3F-0')"3T"/32FK%0&'&(30a"5<>6Za"596Y5:<B"

P-%%*%a" MBa" i%2G%-K'0a" $Ba" b" h'/(%a" WB" >!;;:ZB" `K4(-(2')" '0')L*(*" 3T" 4-%/(2&(.%"

')D3-(&1K*" T3-" 23))',3-'&(.%" T()&%-(0DB" A-32%%/(0D*" 3T" &1%" W30T%-%02%" 30"

N02%-&'(0&L"(0"O-&(T(2(')"X0&%))(D%02%B"

P-3+0a" ABa" A(%&-'a" eBa" /%J3Fd'a" ABa" E'(a" MBa" b"?%-2%-a" HB" >!;;#ZB" W)'**Y,'*%/" 0YD-'K"

K3/%)*"3T"0'&F-')")'0DF'D%B"W3K4F&'&(30')")(0DF(*&(2*a"!:>6Za"689Y69;B"

!#5"
"

PF2G)'0/a" ?Ba" b" C%La" QB" >!;;;ZB" _1%" -%)'&(30*1(4" ,%&+%%0" H%2'))" '0/" A-%2(*(30B"

M3F-0')"3T"&1%"OK%-(2'0"J32(%&L"T3-"X0T3-K'&(30"J2(%02%a"67>!Za"!#B"

PF2G)%La" WBa" b" e33-1%%*a" `B" ?B" >#<<<ZB" `.')F'&(0D" %.')F'&(30" K%'*F-%" *&',()(&LB"

A-32%%/(0D*" 3T" &1%" #5&1" O00F')" X0&%-0'&(30')" OW?" JXCXH" W30T%-%02%" 30"

X0T3-K'&(30"H%&-(%.')B"

PF-D%*a" WBa" H'D03a" HBa" b" E%a" fB" >#<<9ZB" E%'-0(0D" &3" -'0G" +(&1" 030*K33&1" 23*&"

TF02&(30*B"O/.'02%*"(0"0%F-')"(0T3-K'&(30"4-32%**(0D"*L*&%K*a"!;a"!;5B"

PF-D%*a"WBa"J1'G%/a"_Ba"H%0*1'+a"`Ba"E'd(%-a"OBa"$%%/*a"?Ba"i'K()&30a"IB"b"iF))%0/%-a"

CB">#<<7ZB"E%'-0(0D"&3"-'0G"F*(0D"D-'/(%0&"/%*2%0&B"A-32%%/(0D*"3T"&1%"##0/"

(0&%-0'&(30')"230T%-%02%"30"?'21(0%")%'-0(0DB"

W'3a"SBa"jFa" MBa" E(Fa"_Ba" E(a"iBa"iF'0Da"SBa"b"i30a"iB" >#<<8ZB"O/'4&(0D" -'0G(0D"Je?"&3"

/32FK%0&"-%&-(%.')B"A-32%%/(0D*"3T"&1%"#;&1"O00F')"X0&%-0'&(30')"OW?"JXCXH"

W30T%-%02%"30"X0T3-K'&(30"H%&-(%.')B"

W'-K%)a" $Ba" S3KY_3.a" `Ba" $'-)3+a" OB" b" A%))%Da" $B" >#<<8Z" R1'&" ?'G%*" '" fF%-L"

$(TT(2F)&la" A-32%%/(0D*" 3T" &1%" #;&1" '00F')" (0&%-0'&(30')" OW?" JXCXH"

230T%-%02%"30"H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

W1'G-','-&(a" JB" >!;;;ZB" H%2%0&" -%*F)&*" (0" 'F&3K'&(2" R%," -%*3F-2%" /(*23.%-LB" OW?"

W3K4F&(0D"JF-.%L*">WJNHZa"5!>6%*Za"!9B"

W)%.%-/30a"WB"RB">!;9#ZB"U0"&1%"X0.%-*%"H%)'&(30*1(4"3T"H%2'))"'0/"A-%2(*(30B"M3F-0')"

3T"/32FK%0&'&(30a"#:>5Za"!;7Y#<!B"

W-3T&a"PB" >!;;5ZB"h03+)%/D%Y,'*%/"'0/" *&'&(*&(2')" '44-3'21%*" &3" &%^&" -%&-(%.')B" X```"

`^4%-&a":>#Za":Y!#B"

W-3T&a" RBa" W-30%0Y_3+0*%0/a" JBa" b" E'-.-%0G3a" eB" >#<<!ZB" H%)%.'02%" T%%/,'2G" '0/"

4%-*30')(d'&(30[" O")'0DF'D%" K3/%)(0D" 4%-*4%2&(.%B" $`EUJ" R3-G*134["

A%-*30')(*'&(30"'0/"H%23KK%0/%-"JL*&%K*"(0"$(D(&')"E(,-'-(%*B"

W-30%0Y_3+0*%0/a" JBa" c13Fa" SBa"b" W-3T&a"RB" >#<<#ZB" A-%/(2&(0D" VF%-L" 4%-T3-K'02%B"

A-32%%/(0D*" 3T" &1%" #7&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

$'GG'a"RBa"C-'.'03a" EBa"b" X4%(-3&(*a" AB"CB" >#<<:ZB" O0*+%-(0D" D%0%-')" &(K%" *%0*(&(.%"

VF%-(%*B" A-32%%/(0D*" 3T" &1%" !9&1" OW?" 230T%-%02%" 30" X0T3-K'&(30" '0/"

!#6"
"

G03+)%/D%"K'0'D%K%0&B"

$%%-+%*&%-a"JBa"$FK'(*a"JB"_Ba"QF-0'*a"CB"RBa"E'0/'F%-a"_B"hBa"b"i'-*1K'0a"HB">!;;<ZB"

X0/%^(0D" ,L")'&%0&" *%K'0&(2" '0')L*(*B" M3F-0')" 3T" &1%" OK%-(2'0" J32(%&L" T3-"

X0T3-K'&(30"J2(%02%a"6!>8Za"5;!Y6<9B"

$%K4*&%-a" OBa" E'(-/a" IBa" b" HF,(0a" $B" >!;99ZB"?'^(KFK")(G%)(133/" T-3K" (023K4)%&%"

/'&'" .('" &1%" `?"')D3-(&1KB" M3F-0')" 3T" &1%"H3L')" J&'&(*&(2')" J32(%&LB" J%-(%*" P"

>?%&13/3)3D(2')Za"5;>!Za"!Y5:B"

$FK'(*a"JBa"E%&*21%a"_Ba"E(&&K'0a"?Ba"b"E'0/'F%-a"_B">!;;9ZB"OF&3K'&(2"2-3**Y)'0DF'D%"

-%&-(%.')" F*(0D")'&%0&" *%K'0&(2" (0/%^(0DB" OOOX" J4-(0D" JLK43*F(K" 30"

W-3**YE'0DF'D%"_%^&"'0/"J4%%21"H%&-(%.')a"!!7m!5#B"

`.'0*a"PB"?Ba"b"W1(a"`B"iB" >#<<:ZB"_3+'-/*"'"K3/%)"3T"F0/%-*&'0/(0D"*32(')" *%'-21B"

A-32%%/(0D*" 3T" &1%" OW?" 230T%-%02%" 30" W3K4F&%-" *F443-&%/" 2334%-'&(.%"

+3-GB"

`.'0*a" $Ba" iF%&&0%-a" OBa" _30Da" jBa" M'0*%0a" ABa" b" P%00%&&a" MB" >!;;;ZB" `TT%2&(.%0%**" 3T"

2)F*&%-(0D"(0"'/Y132"-%&-(%.')B"IXJ_"JA`WXOE"ANPEXWO_XUI"JAa"!65Y!6:B"

Q%)),'FKa"WB">!;;:ZB"R3-/I%&["O0"%)%2&-30(2")%^(2')"/'&','*%["?X_"4-%**"W'K,-(/D%a"

?OB"

Q3)&da"AB">!;;<ZB"N*(0D")'&%0&"*%K'0&(2"(0/%^(0D"T3-"(0T3-K'&(30"T()&%-(0DB"A-32%%/(0D*"

3T" &1%" OW?" JXCUXJ" '0/" X```" WJ" _WYUO" 230T%-%02%" 30" UTT(2%" (0T3-K'&(30"

L&%K*a"!!>#Y5Za"69B"

Q30*%2'a"PB"?Ba"C3)D1%-a"AB"PBa"?3F-'a"`B"JB"/Ba"b"c(.('0(a"IB">#<<5ZB"N*(0D"'**32('&(30"

-F)%*"&3"/(*23.%-"*%'-21"%0D(0%*"-%)'&%/"VF%-(%*B"A-32%%/(0D*"3T"&1%"!*&"E'&(0"

OK%-(2'0"R%,"W30D-%**B"

Q3^a"JBa"h'-0'+'&a"hBa"?L/)'0/a"?Ba"$FK'(*a"JBa"b"R1(&%a"_B">#<<7ZB"`.')F'&(0D"(K4)(2(&"

K%'*F-%*"&3"(K4-3.%"+%,"*%'-21B"OW?"_-'0*'2&(30*"30"X0T3-K'&(30"JL*&%K*"

>_UXJZa"#5>#Za"!69B"

QFg(KF-'a"hBa"X03F%a"_Ba"b"JFD(*'G(a"?B">#<<7ZB"_1%"%(D%0-FK3-"')D3-(&1K"T3-"-'0G(0D"

,)3D*B"RRR"R3-G*134"30"&1%"R%,)3DD(0D"`23*L*&%K["ODD-%D'&(30a"O0')L*(*"

'0/"$L0'K(2*B"

QF-FG'+'a"_Ba"?'&*Fd'+'a"_Ba"?'&*F3a"SBa"N21(L'K'a"hBa"b"_'G%/'a"?B">#<<8ZB"O0')L*(*"

!#7"
"

3T" N*%-n*" H%)'&(30" '0/" H%'/(0D" O2&(.(&L" (0" R%,)3D*B" E%2&F-%" I3&%*" (0"

W3K4F&%-"J2(%02%a"6<!#a"#:<B"

C3-/30a"?B"$Ba"b"h321%0a"?B">!;:;ZB"H%2'))Y4-%2(*(30"&-'/%Y3TT["'"/%-(.'&(30B"M3F-0')"

3T"&1%"OK%-(2'0"J32(%&L"T3-"X0T3-K'&(30"J2(%02%a"6<a"!67Y!7!B"

i%(0%a"?B"iB">!;95ZB"_1%"(0.%-*%"-%)'&(30*1(4"3T"4-%2(*(30"'0/"-%2'))" (0"&%-K*"3T"&1%"

J+%&*n"K3/%)nB"M3F-0')"3T"/32FK%0&'&(30a"#;a":!Y:6B"

i%-*1a" RBa" A-(2%a" JBa" b" $30313%a" EB" >#<<<ZB" O**%**(0D" &1%*'F-F*Y,'*%/" VF%-L"

%^4'0*(30" F*(0D" &1%" N?EJ" ?%&'&1%*'F-F*B" A-32%%/(0D*" 3T" &1%" OK%-(2'0"

?%/(2')"X0T3-K'&(2*"O**32('&(30">O?XOZ"JLK43*(FKB"

i(%K*&-'a" $B" >!;;:ZB" O")(0DF(*&(2'))L" K3&(.'&%/" 4-3,',()(*&(2" K3/%)" 3T" (0T3-K'&(30"

-%&-(%.')B"E%2&F-%"I3&%*"(0"W3K4F&%-"J2(%02%a"78;Y7:6B"

i(%K*&-'a"$B" >#<<!ZB"N*(0D")'0DF'D%"K3/%)*" T3-" (0T3-K'&(30" -%&-(%.')B"N0(.%-*(&L"3T"

_+%0&%B"

i3TK'00a"_B">!;;;ZB"A-3,',()(*&(2")'&%0&"*%K'0&(2"(0/%^(0DB"A-32%%/(0D*"3T"&1%"##0/"

'00F')"(0&%-0'&(30')"OW?"JXCXH"230T%-%02%"30"H%*%'-21"'0/"/%.%)34K%0&"(0"

(0T3-K'&(30"-%&-(%.')B"

Mo-.%)(0a" hBa" b" h%Go)o(0%0a" MB" >#<<#ZB" WFKF)'&%/" D'(0Y,'*%/" %.')F'&(30" 3T" XH"

&%210(VF%*B"OW?"_-'0*'2&(30*"30"X0T3-K'&(30"JL*&%K*">_UXJZa"#<>6Za"668B"

M'2VF%K(0a" WB" >!;;;ZB" JL0&'DK'&(2" '0/" 4'-'/(DK'&(2" -%4-%*%0&'&(30*" 3T" &%-K"

.'-('&(30B" A-32%%/(0D*" 3T" &1%'00F')" K%%&(0D" 3T" &1%" O**32('&(30" T3-"

W3K4F&'&(30')"E(0DF(*&(2*"30"W3K4F&'&(30')"E(0DF(*&(2*"

M'0*%0a" PB" MBa" J4(0Ga" OBa" P'&%K'0a" MBa" b" J'-'2%.(2a" _B" >!;;:ZB" H%')")(T%" (0T3-K'&(30"

-%&-(%.')["'"*&F/L"3T"F*%-"VF%-(%*"30"&1%"R%,a"OW?"JXCXH"Q3-FK["OW?"I%+"

S3-Ga"ISa"NJOB"

M'-/(0%a" IBa" b" .'0" H(g*,%-D%0a" WB" MB" >!;9!ZB" _1%" F*%" 3T" 1(%-'-21(2" 2)F*&%-(0D" (0"

(0T3-K'&(30"-%&-(%.')B"_1%"F*%"3T"1(%-'-21(2"2)F*&%-(0D"(0"(0T3-K'&(30"-%&-(%.')a"

9>7Za"#!9Y#6<B"

M3'21(K*a" _B" >#<<5ZB" `.')F'&(0D" -%&-(%.')" 4%-T3-K'02%"F*(0D" 2)(2G&1-3FD1"/'&'B" _%^&"

?(0(0DB"9;Y;8B"

M3'21(K*a"_B">#<<#ZB"U4&(K(d(0D"*%'-21"%0D(0%*"F*(0D"2)(2G&1-3FD1"/'&'B"Proceedings

!#8"
"

of the eighth OW?"JXCh$$"(0&%-0'&(30')"230T%-%02%"30"h03+)%/D%"/(*23.%-L"

'0/"/'&'"K(0(0DB"

M30%*a"hB"JB">!;9#ZB"O"*&'&(*&(2')"(0&%-4-%&'&(30"3T"&%-K"*4%2(T(2(&L"'0/"(&*"'44)(2'&(30"(0"

-%&-(%.')B"M3F-0')"3T"/32FK%0&'&(30a"#:>!Za"!!Y#!B"

M30%*a" hB" JB" >!;95ZB" W3))%2&(30" A-34%-&(%*" X0T)F%02(0D" OF&3K'&(2" _%-K"W)'**(T(2'&(30"

A%-T3-K'02%B"X0T3-K'&(30"J&3-'D%"'0/"H%&-(%.')a";>;Za"6;;Y7!5B"

M30%*a" hB" JBa" b" .'0" H(g*,%-D%0a" WB" MB" >!;98ZB" X0T3-K'&(30" -%&-(%.')" &%*&" 23))%2&(30*B"

M3F-0')"3T"$32FK%0&'&(30a"5#>!Za"7;Y97B"

h'-)D-%0a"MB"b"Q-'0dp0a"hB">!;;9Z"e%-,3*(&L"'0/"(0&%-T'2%"

/%*(D0B"H%&-(%.%/"30"!9"M'0F'-L"#<<#"'&["

1&&4[\\+++B)(0DB*FB*%*&'TT\T-'0d%0\(-(0&%-T'2%B1&K)"

h(Ka"iBHBa"b"W1'0a"AB"hB">#<<:ZB"E%'-0(0D"(K4)(2(&"F*%-"(0&%-%*&"1(%-'-21L"T3-"230&%^&"(0"

4%-*30')(d'&(30B"O44)(%/"X0&%))(D%02%a"#:>#Za"!75Y!88B"

h)%(0,%-Da"MB"?B">!;;;ZB"OF&13-(&'&(.%"*3F-2%*"(0"'"1L4%-)(0G%/"%0.(-30K%0&B"M3F-0')"

3T"&1%"OW?">MOW?Za"68>7Za"8<6Y85#B"

h-'T&a" HBa" W1'0Da" WB" WBa" ?'D13F)a" QBa" b" hFK'-a" HB" >#<<8ZB" J%'-21(0D" +(&1" W30&%^&B"

A-32%%/(0D*"3T"&1%"!7&1"X0&%-0'&(30')"R3-)/"R(/%"R%,"W30T%-%02%B"

h+3Ga" hB" >!;;8ZB" O" 0%+" K%&13/" 3T" +%(D1&(0D" VF%-L" &%-K*" T3-" '/Y132" -%&-(%.')B"

A-32%%/(0D*" 3T" &1%" !;&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')" "

E'TT%-&La" MBa" b" c1'(a" WB" >#<<!ZB" $32FK%0&")'0DF'D%"K3/%)*a" VF%-L"K3/%)*a" '0/" -(*G"

K(0(K(d'&(30" T3-" (0T3-K'&(30" -%&-(%.')B" A-32%%/(0D*" 3T" &1%" #6&1" '00F')"

(0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/" /%.%)34K%0&" (0"

(0T3-K'&(30"-%&-(%.')B" "

E'Fa"_Ba"b"i3-.(&da"`B">!;;;ZB"A'&&%-0*"3T"J%'-21["O0')Ld(0D"'0/"?3/%)(0D"R%,"fF%-L"

H%T(0%K%0&B"X0&%-0'&(30')"W30T%-%02%"30"N*%-"K3/%)(0DB"

E%+(*a"$B"$B">!;;#ZB"O0"%.')F'&(30"3T"41-'*')"'0/"2)F*&%-%/"-%4-%*%0&'&(30*"30"'"&%^&"

2'&%D3-(d'&(30"&'*GB"A-32%%/(0D*"3T"&1%"!7&1"'00F')" (0&%-0'&(30')"OW?"JXCXH"

230T%-%02%"30"H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

E(a" iB" >#<<#ZB" R3-/" 2)F*&%-(0D" '0/" /(*'K,(DF'&(30" ,'*%/" 30" 23Y322F--%02%" /'&'B"

!#9"
"

I'&F-')"E'0DF'D%"`0D(0%%-(0Da":><!Za"#7Y6#B"

E(0a"$B" >!;;:ZB" O0" (0T3-K'&(30Y&1%3-%&(2" /%T(0(&(30" 3T" *(K()'-(&LB" A-32%%/(0D*" 3T" &1%"

!7&1"X0&%-0'&(30')"W30T%-%02%"30"?'21(0%"E%'-0(0DB"

E(Fa"_B">#<<;ZB"E%'-0(0D"&3"-'0G"T3-"(0T3-K'&(30"-%&-(%.')B"Q3F0/'&(30*"'0/"_-%0/*"(0" "

X0T3-K'&(30"H%&-(%.')a"5>5Za"##7Y55!B"

E(Fa" jBa" b" P-d%*G(a" eB" .B" >#<<;ZB" W3K4F&'&(30')" 23KKF0(&L" (0&%-%*&" T3-" -'0G(0DB"

A-32%%/(0D" 3T" &1%" !:&1" OW?" W30T%-%02%" 30" X0T3-K'&(30" '0/" h03+)%/D%"

?'0'D%K%0&B"

E(Fa" jBa" b" W-3T&a" RB" PB" >#<<6ZB" W)F*&%-Y,'*%/" -%&-(%.')" F*(0D")'0DF'D%" K3/%)*B"

A-32%%/(0D*" 3T" &1%" #9&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

E(Fa"jBa"f(0a"MBa"W1%0a"?Ba"b"A'-Ga"MBYiB">#<<:ZB"OF&3K'&(2"*%K'0&(2"K'44(0D",%&+%%0"

VF%-L" &%-K*" '0/" 230&-3))%/" .32',F)'-L" &1-3FD1" F*(0D" R3-/I%&" '0/"

R(G(4%/('B"A-32%%/(0D*"3T"&1%"OK%-(2'0"J32(%&L"T3-"X0T3-K'&(30"J2(%02%"'0/"

_%2103)3DLa"67>!ZB"

E(Fa"SBa"P('0a" MBa"b"OD(21&%(0a"`B" >#<<:ZB"A-%/(2&(0D" (0T3-K'&(30"*%%G%-"*'&(*T'2&(30" (0"

23KKF0(&L"VF%*&(30"'0*+%-(0DB"A-32%%/(0D*"3T"&1%"5!&1"'00F')"(0&%-0'&(30')"

OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/" /%.%)34K%0&" (0" (0T3-K'&(30"

-%&-(%.')B"

EF10a" iB" >!;79ZB" O" *&'&(*&(2')" '44-3'21" &3" K%21'0(d%/" %023/(0D" '0/" *%'-21(0D" 3T"

)(&%-'-L" (0T3-K'&(30B" XP?" M3F-0')" 3T" -%*%'-21" '0/" /%.%)34K%0&a" !>6Za"

5<;Y5!9B"

?'2/30')/a"WBa"UF0(*a"XBa"b"J3,3-3TTa"XB">#<<:ZB"U.%-.(%+"3T"&1%"_H`WY#<<9"P)3D"_-'2GB"

X0"A-32%%/(0D*"3T"_H`W"#<<9B"

?'D)(3a" AB" ABa" b" P'--%&&a" HB" >!;;9ZB" i3+" &3" ,F()/"K3/%)(0D" 'D%0&*" &3" *F443-&"+%,"

*%'-21%-*B"W3F-*%*"'0/"E%2&F-%*YX0&%-0'&(30')"W%0&-%"T3-"?%21'0(2')"J2(%02%*a"

7Y!8B"

?'-21(30(0(a"CB" >!;;9ZB" X0T3-K'&(30"*%%G(0D" (0"%)%2&-30(2"%0.(-30K%0&*B"W'K,-(/D%"

N0(.%-*(&L"A-%**B"

?%&d)%-a" $Ba" b" W-3T&a" RB" >#<<6ZB" W3K,(0(0D" &1%")'0DF'D%" K3/%)" '0/" (0T%-%02%"

!#:"
"

0%&+3-G" '44-3'21%*" &3" -%&-(%.')B" X0T3-K'&(30" 4-32%**(0D" b" K'0'D%K%0&a"

6<>7Za"957Y97<B"

?(*10%a"CBa"b"/%"H(gG%a"?B">#<<8ZB"O"*&F/L"3T",)3D"*%'-21B"E%2&F-%"I3&%*"(0"W3K4F&%-"

J2(%02%a"5;58a"#:;B"

?33%-*a"WB" >!;7#ZB" X0T3-K'&(30" -%&-(%.')".(%+%/"'*" &%K43-')" *(D0')(0DB"A-32%%/(0D*"

3T"&1%"X0&%-0'&(30')"W30D-%**"3T"?'&1%K'&(2('0*B"

IDa"hB">#<<<ZB"O"K'^(KFK")(G%)(133/"-'&(3"(0T3-K'&(30"-%&-(%.')"K3/%)B"A-32%%/(0D*"

3T"&1%":&1"_%^&"H`&-(%.')"W30T%-%02%">_H`WY":Za"6:5m6;#B"

UF0(*a" XBa" /%" H(gG%a" ?Ba" ?'2/30')/a" WBa" ?(*10%a" CB" b" '0/" J3,3-3TTa" XB" >#<<9ZB"

U.%-.(%+3T"&1%"_H`W"#<<8"P)3D"_-'2GB"X0"A-32%%/(0D*"3T"_H`W"#<<8B"

A'D%a"EBa"P-(0a"JBa"?3&+'0(a"HBa"b"R(03D-'/a"_B">!;;:ZB"_1%"A'D%H'0G"W(&'&(30"H'0G(0D["

P-(0D(0D"U-/%-"&3"&1%"R%,B"J&'0T3-/"X0T3E',B"

A30&%a" MB"?Ba"b"W-3T&a"RB" PB" >!;;:ZB" O")'0DF'D%"K3/%)(0D" '44-3'21" &3" (0T3-K'&(30"

-%&-(%.')B" A-32%%/(0D*" 3T" &1%" #!*&" '00F')" (0&%-0'&(30')" O00F')" OW?"

W30T%-%02%"30"H%*%'-21"'0/"$%.%)34K%0&"(0"X0T3-K'&(30"H%&-(%.')B"

A-'G*a" ABa" $.3-*GLa" MBa" b" J0q=%)a" eB" >#<<5ZB" E'&%0&" *%K'0&(2" (0/%^(0D" T3-" (K'D%"

-%&-(%.')"*L*&%K*B"JXO?"E(0%'-"O)D%,-'"A-32%%/(0D*B"

f(Fa" QBa"b"W13a" MB" >#<<!ZB" OF&3K'&(2" (/%0&(T(2'&(30"3T" F*%-" (0&%-%*&" T3-" 4%-*30')(d%/"

%'-21B" A-32%%/(0D" 3T" &1%" !7&1" (0&%-0'&(30')" 230T%-%02%" 30" R3-)/" R(/%"

R%,B"

f(Fa"SBa"b"Q-%(a"iBAB">!;;5ZB"W302%4&",'*%/"VF%-L"%^4'0*(30B"A-32%%/(0D*"3T"&1%"!8&1"

'00F')"(0&%-0'&(30')"OW?"JXCXH"230T%-%02%"30"H%*%'-21"'0/"/%.%)34K%0&"(0"

(0T3-K'&(30"-%&-(%.')B"

H3,%-&*30a" JB" >!;;9ZB" U.%-.(%+" 3T" &1%" 3G'4(" 4-3g%2&*B" M3F-0')" 3T" /32FK%0&'&(30a"

75>!Za"5Y9B"

H3,%-&*30a" JB" `B" >!;97ZB" `^4)(2(&" '0/" (K4)(2(&" .'-(',)%*" (0" (0T3-K'&(30" -%&-(%.')" >XHZ"

L&%K*B"M3F-0')"3T"&1%"OK%-(2'0"J32(%&L"T3-"X0T3-K'&(30"J2(%02%a"#8>6ZB"

H3,%-&*30a" JB" `B" >!;99ZB" _1%" 4-3,',()(&L" -'0G(0D" 4-(02(4)%" (0" XHB" M3F-0')" 3T"

/32FK%0&'&(30a"55>6Za"#;6B"

H3,%-&*30a"JB"`Ba"b"M30%*a"hB"JB">!;98ZB"H%)%.'02%"+%(D1&(0D"3T"*%'-21"&%-K*B"M3F-0')"

!#;"
"

3T"&1%"OK%-(2'0"J32(%&L"T3-"X0T3-K'&(30"J2(%02%a"#9>5Za"!#;B"

H3,%-&*30a" JB" `Ba" H(g*,%-D%0a" hB" .Ba" b" A3-&%-a" ?B" QB" >!;:<ZB" A-3,',()(*&(2" K3/%)*" 3T"

(0/%^(0D" '0/" *%'-21(0DB" A-32%%/(0D*" 3T" &1%" 5-/" '00F')" OW?" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

H3,%-&*30a" JB" `Ba" b" J4o-2G" M30%*a" hB" >!;98ZB" H%)%.'02%" +%(D1&(0D" 3T" *%'-21" &%-K*B"

M3F-0')"3T"&1%"OK%-(2'0"J32(%&L"T3-"X0T3-K'&(30"J2(%02%a"#9>5Za"!#;B"

H3,%-&*30a"JB"`Ba"R')G%-a"JBa" M30%*a"JBa"i'0232GYP%'F)(%Fa"?Ba"b"C'&T3-/a"?B" >!;;7ZB"

UG'4("'&"_H`WY5B"X0"A-32%%/(0D*"3T"&1%"_1(-/"_%^&"H`&-(%.')"W30T%-%02%B"

H3221(3a" MB" MB" >!;9!ZB" H%)%.'02%" T%%/,'2G" (0" (0T3-K'&(30" -%&-(%.')B" _1%" J?OH_"

-%&-(%.')"*L*&%K["%^4%-(K%0&*"(0"'F&3K'&(2"/32FK%0&"4-32%**(0Da"5!5Y5#5B"

J'G'(a"_B">#<<8ZB"`.')F'&(0D"%.')F'&(30"K%&-(2*",'*%/"30"&1%",33&*&-'4B"A-32%%/(0D*"

3T" &1%" #;&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/"

/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B" "

J')&30a" CBa" b" PF2G)%La" WB" >!;::ZB" _%-KY+%(D1&(0D" '44-3'21%*" (0" 'F&3K'&(2" &%^&"

-%&-(%.')B"X0T3-K'&(30"4-32%**(0D"b"K'0'D%K%0&a"#6>7Za"7!5Y7#5B"

J')&30a" CBa" b" PF2G)%La" WB" >!;;<ZB" XK4-3.(0D" -%&-(%.')" 4%-T3-K'02%" ,L" -%)%.'02%"

T%%/,'2GB" M3F-0')" 3T" &1%" OK%-(2'0" J32(%&L" T3-" X0T3-K'&(30" J2(%02%a" 6!>6Za"

#::B"

J')&30a" CBa" R30Da" OBa" b" S'0Da" WB" JB" >!;97ZB" O" .%2&3-" *4'2%" K3/%)" T3-" 'F&3K'&(2"

(0/%^(0DB"W3KKF0(2'&(30*"3T"&1%"OW?a"!:>!!Za"8#<B"

J'0/1'F*a" `B" >#<<:ZB" _1%" I%+" S3-G" _(K%*" O003&'&%/" W3-4F*B" E(0DF(*&(2" $'&'"

W30*3-&(FKa"A1()'/%)41('B"

J23&&a"MB">!;::ZB"J32(')"0%&+3-G"'0')L*(*B"J32(3)3DLa"##>!Za"!<;B"

J1%0a" jBa" b" c1'(a" WB" >#<<7ZB" O2&(.%" T%%/,'2G" (0" '/" 132" (0T3-K'&(30" -%&-(%.')B"

A-32%%/(0D*" 3T" &1%" #:&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

J().%-*&%(0a"WBa"i%0d(0D%-a"?Ba"?'-'(*a"iBa"b"?3-(2da"?B">!;;:ZB"O0')L*(*"3T"'".%-L")'-D%"

O)&'e(*&'"VF%-L")3DB"JHW"_%210(2')"03&%a"!6a"!;;:B"

J().%-*&%(0a"WBa"?'-'(*a"iBa"i%0d(0D%-a"?Ba"b"?3-(2da"?B">!;;;ZB"O0')L*(*"3T"'".%-L")'-D%"

+%,"*%'-21"%0D(0%"VF%-L")3DB"OW?"JXCXH"Q3-FKa"55>!Za"8B"

!5<"
"

J(0D1')a"OB" >#<<!ZB"?3/%-0" X0T3-K'&(30"H%&-(%.')["O"P-(%T"U.%-.(%+B"PF))%&(0"3T" &1%"

X```"W3K4F&%-"J32(%&L"_%210(2')"W3KK(&&%%"30"$'&'"`0D(0%%-(0DB"

J(.(2a"MBa"HF**%))a"PBa"`T-3*a"OBa"c(**%-K'0a"OBa"b"Q-%%K'0a"RB">#<<7ZB"$(*23.%-(0D"3,g%2&"

2'&%D3-(%*"(0"(K'D%"23))%2&(30*B"X0&%-0'&(30')"230T%-%02%"30"23K4F&%-".(*(30B"

J4o-2G" M30%*a"hB" >!;9!ZB"OF&3K'&(2"h%L+3-/"W)'+(*2'&(30" T3-" X0T3-K'&(30"H%&-(%.')B"

A-32%%/(0D*"3T"'00F')" (0&%-0'&(30')"OW?"JXCXH"230T%-%02%"30"H%*%'-21"'0/"

/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

J4'-2G" M30%*a" hB" >!;96ZB" OF&3K'&(2" (0/%^(0DB" M3F-0')" 3T" $32FK%0&'&(30a" 5<>6Za"

5;5Y65#B"

J&%L.%-*a"?Ba"b"C-(TT(&1*a" _B" >#<<9ZB" A-3,',()(*&(2" &34(2"K3/%)*B"i'0/,33G"3T" E'&%0&"

J%K'0&(2"O0')L*(*a"6#6Y66<B"

_'3a" _Ba" b" c1'(a" WB" >#<<8ZB" H%DF)'-(d%/" %*&(K'&(30" 3T" K(^&F-%" K3/%)*" T3-" -3,F*&"

4*%F/3Y-%)%.'02%" T%%/,'2GB" A-32%%/(0D*" 3T" &1%" #;&1" '00F')" (0&%-0'&(30')"

OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/" /%.%)34K%0&" (0" (0T3-K'&(30"

-%&-(%.')B" "

_'L%,(a"?Ba"i'*1%K(a" JBa"b"?31'/%*a"OB" >#<<9ZB" P#H'0G["O0"O)D3-(&1K" T3-"H'0G(0D"

P)3D*" P'*%/" 30" P%1'.(3-')" Q%'&F-%*B" A-32%%/(0D*" 3T" &1%" X```\RXW\OW?"

X0&%-0'&(30')"W30T%-%02%"30"R%,"X0&%))(D%02%B"

_%1a" SBa" M3-/'0a" ?Ba" P%')a" ?Ba" b" P)%(a" $B" >#<<8ZB" i(%-'-21(2')" /(-(21)%&" 4-32%**%*B"

M3F-0')"3T"&1%"OK%-(2'0"J&'&(*&(2')"O**32('&(30a"!<!>698Za"!788Y!7:!B"

_%-"i3T*&%/%a"OBa" A-34%-a"iBa"b" .'0"/%-"R%(/%a" _B" >!;;8ZB"fF%-L" T3-KF)'&(30"'*" '0"

(0T3-K'&(30"-%&-(%.')"4-3,)%KB"_1%"W3K4F&%-"M3F-0')a"5;>6Za"#77Y#96B"

_13K'*a" WB" CBa" b" Q(*21%-a" CB" >!;;8ZB" N*(0D" 'D%0&*" &3" (K4-3.%" &1%" F*',()(&L" '0/"

F*%TF)0%**" 3T" &1%"R3-)/YR(/%"R%,B" A-32%%/(0D*"N?Y;8a" Q(T&1" X0&%-0'&(30')"

W30T%-%02%"30"N*%-"?3/%)(0DB"

_(&3.a" XBa" b" ?2$30')/a" HB" >#<<:ZB" ?3/%)(0D" 30)(0%" -%.(%+*" +(&1" KF)&(YD-'(0" &34(2"

K3/%)*B" Proceeding of the 17th international 230T%-%02%" 30" R3-)/" R(/%"

R%,B"

_-3&K'0a"OB">#<<7ZB"E%'-0(0D"&3"H'0GB"X0T3-K'&(30"H%&-(%.')a":>5Za"57;B"

_F-&)%a" iBa" b" W-3T&a"RB" >!;;!ZB" `.')F'&(30" 3T" '0" (0T%-%02%" 0%&+3-GY,'*%/" -%&-(%.')"

!5!"
"

K3/%)B"OW?"_-'0*'2&(30*"30"X0T3-K'&(30"JL*&%K*">_UXJZa";>5Za"!:9Y###B"

ep)%da"PBa"R%(**a"HBa"J1%)/30a"?B"OBa"b"C(TT3-/a"$B"hB">!;;9ZB"Q'*&"'0/"%TT%2&(.%"VF%-LB"

A-32%%/(0D*" 3T" &1%" #<&1" '00F')" (0&%-0'&(30')" OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

e33-1%%*a"`B">!;:7ZB"_1%"2)F*&%-"1L43&1%*(*"-%.(*(&%/B"Proceedings of the 8th annual

international OW?" JXCXH" 230T%-%02%" 30" H%*%'-21" '0/" /%.%)34K%0&" (0"

(0T3-K'&(30"-%&-(%.')B"

e33-1%%*a" `B" ?Ba" b" i'-K'0a" $B" >#<<<ZB" U.%-.(%+" 3T" &1%" *(^&1" &%^&" -%&-(%.')"

230T%-%02%">_H`WY8ZB"X0T3-K'&(30"A-32%**(0D"'0/"?'0'D%K%0&a"58>!Za"5Y57B"

R'-(0a" ?B" >#<<6ZB" N*(0D" R3-/I%&" '0/" J%K'0&(2" J(K()'-(&L" &3" $(*'K,(DF'&%" '0"

U0&3)3DLB"H%&-(%.%/"M'0F'-La"#7a"#<<:B"

R%(a" jBa" b" W-3T&a" RB" PB" >#<<8ZB" E$OY,'*%/" /32FK%0&" K3/%)*" T3-" '/Y132" -%&-(%.')B"

Proceedings of the 29th annual international OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B" "

R%0a"MBYHBa"I(%a"MBYSBa"b"c1'0Da"iBYMB">#<<!ZB"W)F*&%-(0D"F*%-"VF%-(%*"3T"'"*%'-21"%0D(0%B"

Proceedings of the 10th international R3-)/"R(/%"R%,"W30T%-%02%B" "

R%0a" MBa" I(%a" MBa" b" c1'0Da" iB" >#<<#ZB" fF%-L" 2)F*&%-(0D" F*(0D" F*%-")3D*B" OW?"

_-'0*'2&(30*"30"X0T3-K'&(30"JL*&%K*a"#<>!Za"7;Y:!B"

R1(&%a"HB"RBa"P'()%La"ABa"b"W1%0a"EB">#<<;ZB"A-%/(2&(0D"N*%-"X0&%-%*&*"T-3K"W30&%^&F')"

X0T3-K'&(30B"Proceedings of the 32nd international OW?"JXCXH" 230T%-%02%"

30"H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

R(&&%0a" XB"iBa"?3TT'&a"OBa"b"P%))a"_B"WB" >!;;6ZB"?'0'D(0D"D(D',L&%*["23K4-%**(0D"'0/"

(0/%^(0D" /32FK%0&*" '0/" (K'D%*[" ?3-D'0" h'FTK'00" AF,)(*1%-*" X02B" J'0"

Q-'02(*23a"WOa"NJOB"

R30Da"JBa"b"S'3a"SB">!;:;ZB"O"A-3,',()(&L"$(*&-(,F&(30"?3/%)"T3-"X0T3-K'&(30"H%&-(%.')B"

X0T3-K'&(30"4-32%**(0D"'0/"K'0'D%K%0&a"#7>!Za"5;Y75B"

jFa"MBa"b"W-3T&a"RB">!;;8ZB"fF%-L"%^4'0*(30"F*(0D")32')"'0/"D)3,')"/32FK%0&"'0')L*(*B"

Proceedings of the 19th annual international OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

jFa"MBa"b"W-3T&a"RB"PB">!;;;ZB"W)F*&%-Y,'*%/")'0DF'D%"K3/%)*"T3-"/(*&-(,F&%/"-%&-(%.')B"

!5#"
"

Proceedings of the 22th annual international OW?" JXCXH" 230T%-%02%" 30"

H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

jFa"MBa"b"W-3T&a"RB"PB">#<<<ZB"XK4-3.(0D"&1%"%TT%2&(.%0%**"3T"(0T3-K'&(30"-%&-(%.')"+(&1"

)32')"230&%^&"'0')L*(*B"OW?"_-'0*B"X0TB"JL*&Ba"!:>!Za"9;Y!!#B"

S'0Da"SBa"P'0*')a"IBa"$'GG'a"RBa"X4%(-3&(*a"ABa"h3F/'*a"IBa"b"A'4'/('*a"$B">#<<;ZB"fF%-L"

,L"/32FK%0&B"Proceedings of the Second OW?"X0&%-0'&(30')"W30T%-%02%"30"

R%,"J%'-21"'0/"$'&'"?(0(0DB"

S(a" jBa" b" O))'0a" MB" >#<<;ZB" O" W3K4'-'&(.%" J&F/L" 3T" N&()(d(0D" _34(2" ?3/%)*" T3-"

X0T3-K'&(30" H%&-(%.')B" Proceedings of the 31th `F-34%'0" W30T%-%02%" 30"

X0T3-K'&(30"H%&-(%.')B"

c1'(a"WB" >#<<#ZB"H(*G"K(0(K(d'&(30"'0/")'0DF'D%"K3/%)(0D" (0"&%^&"-%&-(%.')B"W'-0%D(%"

?%))30"N0(.%-*(&LB"

c1'(a" WB" >#<<:ZB" J&'&(*&(2')" E'0DF'D%" ?3/%)*" T3-" X0T3-K'&(30" H%&-(%.')" Y" O" W-(&(2')"

H%.(%+B"

c1'(a" WBa" b" E'TT%-&La" MB" >#<<!ZB" ?3/%)Y,'*%/" T%%/,'2G" (0" &1%")'0DF'D%" K3/%)(0D"

'44-3'21" &3" (0T3-K'&(30" -%&-(%.')B" Proceedings of the 10th X0&%-0'&(30')"

230T%-%02%"30"X0T3-K'&(30"'0/"G03+)%/D%"K'0'D%K%0&"

c1'(a"WBa"b"E'TT%-&La" MB" >#<<6ZB"O"J&F/L"3T"JK33&1(0D"?%&13/*" T3-"E'0DF'D%"?3/%)*"

O44)(%/"&3" X0T3-K'&(30"H%&-(%.')B"OW?"_-'0*'2&(30*"30" X0T3-K'&(30"JL*&%K*"

>_UXJZa"##>#Za"!9;Y#!6B"

c1'3a"fBa" i3(a" JB" WB" iBa" E(Fa" _BYSBa" P13+K(2Ga" JB" JBa" ELFa"?B" HBa"b"?'a"RBYSB" >#<<8ZB"

_(K%Y/%4%0/%0&" *%K'0&(2" *(K()'-(&L" K%'*F-%" 3T" VF%-(%*" F*(0D" 1(*&3-(2')"

2)(2GY&1-3FD1" /'&'B" Proceedings of the 15th international" 230T%-%02%" 30"

R3-)/"R(/%"R%,B"

c13Fa"$Ba"P('0a"MBa"c1%0Da"JBa"c1'a"iBa"b"C()%*a"WB">#<<:ZB"`^4)3-(0D"*32(')"'003&'&(30*"

T3-" (0T3-K'&(30" -%&-(%.')B"Proceeding of the 17th international 230T%-%02%"

30"R3-)/"R(/%"R%,B"

c13Fa" SB" b" W-3T&" RB" >#<<9Z" fF%-L" A%-T3-K'02%" A-%/(2&(30" (0" R%," J%'-21"

`0.(-30K%0&*B" A-32%%/(0D*" 3T" &1%" 5<&1" '00F')" (0&%-0'&(30')" OW?" JXCXH"

230T%-%02%"30"H%*%'-21"'0/"/%.%)34K%0&"(0"(0T3-K'&(30"-%&-(%.')B"

	Community Interest as An Indicator for Ranking
	Recommended Citation

	Microsoft Word - Xiaozhong revised dissertation2.docx

