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Measuring the dependence of visual sensitivity on parameters of the visual stimulus is a mainstay of vision
science. However, it is not widely appreciated that visual sensitivity is a product of two factors that are each
invariant with respect to many properties of the stimulus and task. By estimating these two factors, one can
isolate visual processes more easily than by using sensitivity measures alone. The underlying idea is that
noise limits all forms of communication, including vision. As an empirical matter, it is often useful to measure
the human observer’s threshold with and without a noise background added to the display, to disentangle the
observer’s ability from the observer’s intrinsic noise. And when we know how much noise there is, it is often
useful to calculate ideal performance of the task at hand, as a benchmark for human performance. This strips
away the intrinsic difficulty of the task to reveal a pure measure of human ability. Here we show how to do
the factoring of sensitivity into efficiency and equivalent noise, and we document the invariances of the two
factors. © 1999 Optical Society of America [S0740-3232(99)01703-2]

OCIS codes: 330.1800, 330.7310, 330.4060, 330.5510.
1. INTRODUCTION
Traditionally, objective studies of perception have mea-
sured and explained threshold contrast of a target on a
blank background: the contrast required for an arbi-
trarily selected level of performance. Indeed, most of
what we know best about visual processing has come from
such studies.1 However, it is not widely appreciated that
visual sensitivity is a product of two factors.2 By mea-
suring an additional threshold, on a background of visual
noise, one can partition visual sensitivity into two compo-
nents representing the observer’s efficiency and equiva-
lent noise. Although they require an extra threshold
measurement, these factors turn out to be invariant with
respect to many visual parameters and are thus more eas-
ily characterized and understood than their product, the
traditional contrast threshold.

Previous authors have presented compelling theoreti-
cal reasons for isolating these two quantities in order to
understand particular aspects of visual function.3–13

Here we ignore theory, to focus on the empirical proper-
ties of the two factors, especially their remarkable invari-
ances, which make them more useful than sensitivity.
When one factor is invariant with respect to a parameter
that affects sensitivity, then, of course, the other factor
varies proportionally with sensitivity. The surprise is
that one or the other of the two factors is invariant with
respect to many of the parameters that affect sensitivity.
This complementarity is what makes the factoring so use-
ful, confining the explanation to one or the other of the
two factors.

A. Energy
For reasons that will become clear shortly, after measur-
ing the threshold contrast we generally convert to energy
0740-3232/99/030647-07$15.00 ©
units. Contrast energy E is the square of the contrast
function summed over the dimensions along which the
stimulus varies. For static two-dimensional stimuli (as
in Fig. 1 below), signal energy is integrated over space:

E 5 EEc2~x, y !dxdy. (1)

The contrast function is the normalized deviation of the
luminance function from the background level,

c~x, y ! 5 @L~x, y ! 2 Lb#/Lb .

For letters, energy is the product of ‘‘ink’’ area and
squared contrast.

B. Using Noise
Studies of sensitivity measure threshold on a blank field.
Here we represent the threshold contrast energy on a
blank background by E0 . We advocate also measuring a
second threshold E, on a background of white noise,14 the
stronger the better. Further, we advocate calculating
the threshold E ideal of the ideal observer for the same task
on the same noise background. Knowing E0 , E, and
E ideal , instead of just E0 , the experimenter is much better
informed and able, as we will see below, to distinguish
(and reject) whole classes of explanation. From E0 , E,
and E ideal we particularly recommend calculating high-
noise efficiency h* and equivalent input noise Neq . Effi-
ciency and equivalent input noise have interesting
histories8,16 and useful theoretical and empirical proper-
ties: They capture the two degrees of freedom in the data
(E0 and E) and are the factors of sensitivity.
1999 Optical Society of America
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C. Signal-to-Noise Ratio
We introduce two minor extensions to the usual energy
and noise notation. First, lacking any widely accepted
symbol for signal-to-noise ratio E/N, we introduce D:

D 5 E/N. (2)

Second, in separating the effects of stimulus noise from
those of the observer’s equivalent noise, the threshold E is
less important than the threshold elevation E* produced
by the stimulus noise:

E* 5 E 2 E0 . (3)

We similarly apply the same asterisk to derived quanti-
ties when we substitute threshold elevation E* for
threshold E, e.g., D* 5 E* /N.

D. Measuring Threshold: E0
The value of measuring the ordinary threshold contrast
on a blank background remains. After converting it to
energy units, we call it E0 .

Visual thresholds are typically plotted as log threshold
versus log X, where X is a parameter of the stimulus, e.g.,
spatial frequency or background luminance. There is a
long tradition of looking for straight sections of such plots
and devising an explanation (a model) for that region,
e.g., the Rose–DeVries law and Weber law regimes of the
threshold-versus-luminance plot, and Ricco’s and Bloch’s
laws for threshold versus size and duration.17 By mea-
suring threshold again, in noise as explained next, we can
streamline this find-the-line approach, arriving at such
explanations more readily.

E. Measuring Threshold in Noise: E
The approach is based on the long-standing observation
that visual thresholds are elevated in the presence of
white noise added to the display. Threshold contrast en-
ergy E is linearly related to the displayed noise power
spectral density N:

E 5 D* ~N 1 Neq!, (4)

where D* and Neq are fitted constants. We are not
aware of any exceptions to this result for white noise (see
Ref. 8 for review; narrow-band masks can produce other
results18,19). A linear relationship, a line, is determined
by two points, so we can fix the line by measuring two
thresholds. Usually the experimenter will measure the
traditional threshold E0 on a blank background and a sec-
ond threshold E at a high level of noise N—the higher the
better, but at least high enough to double threshold,
E . 2E0 . In Eq. (4), the slope

D* 5
E

N 1 Neq
5

E 2 E0

N
5

E*

N
(5)

and the offset

Neq 5
E0

E 2 E0
N (6)

specify the line in a handy way. Neq is the observer’s
equivalent input noise, which contributes to the effective
stimulus, adding to the displayed noise N. D* is the ef-
fective signal-to-noise ratio (i.e., the signal-to-noise ratio
of the effective stimulus) at threshold. For performance
on a blank background, the observer is the only noise
source, and the effective signal-to-noise ratio is just
E0 /Neq .

F. Calculating Ideal Threshold in Noise: E ideal
For any task in which the displayed noise N poses a the-
oretical limit to attainable performance, it is relevant to
ask what threshold the (mathematically defined) ideal ob-
server has. (The ideal makes decisions based on the
available information, so as to maximize the probability
of a correct response.) When we can calculate the ideal
observer’s threshold E ideal for the task, we prefer to nor-
malize the human observer’s threshold by the ideal’s.
This gives us the human observer’s high-noise efficiency
h* 5 E ideal /E* .

A word about notation: Tanner and Birdsall4 intro-
duced the quantities d8 and h. The square of d8 is the
signal-to-noise ratio d82 5 D ideal 5 E ideal /N required by
an ideal observer to perform as well as the observer under
study.20 Efficiency h is the ratio of threshold energies of
ideal and human observers h 5 E ideal /E. Using our as-
terisk again, we introduce high-noise efficiency

h* 5
E ideal

E*
5

D ideal

D*
5 h

N 1 Neq

N
, (7)

which is the asymptotic value of h when measured in high
noise, N @ Neq . In practice, the nontrivial rms error of
threshold estimation makes the two flavors of efficiency, h
and h* , indistinguishable once the noise is high enough
to raise threshold at least fourfold, E . 4E0 . Like D* ,
h* discounts the no-noise threshold, considering only the
threshold elevation E* 5 E 2 E0 produced by the added
noise. h* has previously been called ‘‘central,’’ ‘‘sam-
pling,’’ and ‘‘calculation’’ efficiency.6–8,21 We introduce
the new name, high-noise efficiency, because the old
names have a much more restricted domain of validity
than the measure itself; i.e., the old names are mislead-
ingly limited.

For some very simple but popular tasks, like two-
interval forced-choice detection of a known signal in white
noise, the ideal signal-to-noise ratio at threshold
D ideal 5 d82 can be looked up in a table,22 and the ideal
threshold E ideal 5 D idealN can then be calculated for the
actual noise level. For more complex tasks, like letter
identification, the analytic solution is nontrivial, and it is
easier to implement the ideal as a computer program
whose threshold E ideal can be measured by the same pro-
cedure used to test the human observer.23 When E ideal
cannot be calculated, the effective signal-to-noise ratio D*
can be used instead of efficiency, with some of the same
virtues. We touch on this again in Appendix A. This re-
view considers only luminance noise (static and dynamic),
which has proved very useful in the study of the spa-
tiotemporal mechanisms mediating pattern perception,
but the same arguments apply to noise in other dimen-
sions, e.g., chromaticity,24 numerosity,25 and disparity.26

Having D ideal , we use the identity h* 5 D ideal /D* to
rewrite the empirical finding of linearity [Eq. (4)] as

E 5
D ideal

h*
~N 1 Neq!. (8)
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2. EMPIRICAL PROPERTIES OF THE TWO
FACTORS
In a nutshell, we measure E0 and E, find E ideal , and then
calculate the equivalent input noise Neq [see Eq. (6)] and
the (high-noise) efficiency

h* 5
E ideal

E 2 E0
. (9)

(We drop the prefix ‘‘high-noise’’ from here on.) Effi-
ciency h* rates the computation underlying our percep-
tual decisions on the absolute performance scale defined
by the ideal observer, while equivalent noise Neq specifies
how much noise the observer’s visual system (including
transduction) adds to the display. As noted above, there
are compelling theoretical reasons to isolate these quan-
tities, but here we invite the reader to be an agnostic em-
piricist, ignore the theory, and simply consider the merits
of the new quantities Neq and h* as a convenient coordi-
nate frame in which to analyze and report experimental
results.

To illustrate this approach, let us examine the effects of
size on letter visibility. Figure 1(a) shows letters of vari-
able size and contrast on a blank background. The faint-
est visible letters trace out the reader’s threshold (or sen-
sitivity) as a function of letter size. Thresholds are
plotted as open symbols in Fig. 1(d). There are two
limbs. For letters smaller than 1 deg, the slope ap-
proaches 21: Threshold is inversely proportional to size.
For letters larger than 1 deg, the threshold curve is very
shallow, approaching a slope of 0.18.

Figure 1(b) shows the effect of adding white noise.
The noise consists of independently generated square
checks; the power spectral density N of the noise equals
the product of contrast power crms

2 and check area. Al-
though the power spectral density is constant only up to
frequencies of approximately half a cycle per check, we
call the noise ‘‘white’’ because that frequency is suffi-
ciently high that the noise power spectral density is con-
stant over all frequencies to which the mechanism under
study is sensitive.15,27 The noise elevates threshold more
for smaller letters, so the smallest letters are invisible
(threshold contrast higher than 1), while the largest letter
is hardly affected [compare with Fig. 1(a)]. Noise can be
powerful stuff: Adding too much raises threshold un-
measurably high, but adding too little will produce a use-
lessly small threshold elevation. To be most informative,
the noise-masked threshold must be several times the un-
masked threshold, yet still measurable.

An easy way to achieve this is to scale the noise pattern
Fig. 1. (a) Letters. The vertical scale indicates the contrast of the letter. The bottom horizontal scale indicates the letter size, as-
suming a viewing distance of 48 cm. The top horizontal scale indicates nominal spatial frequency, in cycles per degree (c/deg), assuming
3 cycles per letter.27 The actual experiment was similar to this demonstration but showed only one letter at a time, randomly chosen
from the entire alphabet. (b) Letters in noise. The noise power spectral density N is 2 3 1024 deg 2. (c) Letters in noise. The noise
is scaled with the signal. The largest letter is an ‘‘a.’’ (d) Threshold contrast for 64%-correct identification, as a function of letter size,
with no noise (open symbols), unscaled white noise (dashed curve), and scaled white noise (filled symbols). Circles, data for observer
WT; squares, data for observer DM. The horizontal line is the ideal observer’s threshold with scaled noise. The 3 is DM’s threshold
for 82%-correct letter detection of 1° letters in noise.
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with the signal, as shown in Fig. 1(c). (In laboratory test-
ing we display one letter at a time, at a fixed physical size,
and merely adjust viewing distance to change the visual
size of signal and noise together.) Since the noise power
spectral density is proportional to check area,8 halving
the viewing distance quadruples the power spectral den-
sity.

Figure 1(d) shows 64%-correct thresholds for identify-
ing static letters, with and without noise, as a function of
letter size. (See Ref. 23 for methods.) The upper horizon-
tal axis is the nominal spatial frequency of the letter,
based on the finding that the observer uses the same
channel to identify a 1-deg letter and detect a 3-c/deg
grating,27 assuming that the channel frequency is in-
versely proportional to letter size. (This assumption is
not quite right, but that’s another story.28) The no-noise
curve (open symbols) corresponds to Fig. 1(a) and is very
much like a traditional contrast sensitivity curve for grat-
ings, rotated 180°. It is rotated because we are plotting
threshold versus size instead of 1/threshold (sensitivity)
versus 1/size (spatial frequency). The dashed curve
shows the effect of adding noise with a fixed power spec-
tral density [as in Fig. 1(b)]; most of the thresholds are
outside the usefully measurable range. As shown by the
filled symbols, adding scaled noise [as in Fig. 1(c)] yields
useful thresholds; it raises threshold but keeps the task
doable.

The horizontal line in Fig. 1(d) represents threshold in
noise for the ideal observer, measured by the same proce-
dure as for the human observers. The ideal observer
makes maximum-likelihood choices based on the same
stimulus information as provided to the human observer.
It is mathematically defined and is typically implemented
as a computer program. Its threshold is the lowest pos-
sible for the task.

Figure 2(a) takes the threshold contrasts of Fig. 1(d)
and replots them as contrast energy. As before, the open
symbols represent threshold measured on a blank back-
ground, and the filled symbols represent threshold mea-
sured in scaled noise. The remaining graphs of Fig. 2,
which plot Neq and h* , are derived from the energy
thresholds plotted here in Fig. 2(a).

Figure 2(b) plots the observers’ equivalent noise Neq ,
computed by Eq. (6) from the data in Fig. 2(a). This
shows that the observers’ Neq increases with size. Recall
that, without noise, threshold contrast changes only
slightly, and nonmonotonically, over this range [Fig. 1(d)].
Extensive parametric equivalent noise studies have
shown what this Neq curve is made of.29 The curve has
two limbs. Along the horizontal limb, Neq is photon
noise, which is inversely proportional to luminance, and,
along the rising limb, Neq is neural noise arising in the
visual cortex, i.e., after the two eyes’ signals have been
combined. Note that the equivalent noise is independent
of task. Back in Fig. 2(a) the thresholds are very differ-
ent for the binary-decision task of detecting 1-deg letters
(3) and the 26-way decision task of identifying 1-deg let-
ters (squares and circles), but here we can see that both
tasks yield similar estimates of the equivalent noise level.
Raghavan29 found the equivalent noise estimates based
on identifying 2 gratings, 2 or 26 letters, or 2000 words to
be identical.
Figure 2(c) plots efficiency h* , computed by Eq. (9)
from Fig. 2(a). These data also appear in Pelli et al.23

As noted there, for letters of 0.5 deg and larger (as large
as 60 deg), there is a shallow negative log-log slope of

Fig. 2. (a) Threshold energy for identification as a function of
letter size, replotted from Fig. 1(d). Energy equals squared con-
trast times letter area. The 3 is DM’s threshold for detection.
(b) Equivalent input noise of the observer, as a function of letter
size, computed by Eq. (6) from the data shown in (a). Note that
the equivalent noise for detection (3) is about the same as that
for identification (filled symbols). (c) Efficiency h* as a function
of letter size, computed by Eq. (9) from the data shown in (a).
The efficiency for detection (3) is one tenth that for identification
(filled symbols).
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20.35, indicating that we see small (0.5-deg) letters best.
Below 0.5 deg, efficiency drops as the observers approach
their acuity limit of 0.1 deg. The mere fivefold variation
of efficiency in Fig. 2(c) is very small, considering the
600:1 size range and the 6002 5 360,000:1 area range of
the letters.30

Not shown here are experimental results revealing the
invariance of letter identification efficiency with respect
to most of the other visual parameters studied. Effi-
ciency is independent of duration (60–4000 ms), contrast,
and eccentricity of the letter.23 That viewing conditions
have so little effect on efficiency suggests that the observ-
er’s decision process is similar across wide variations in
stimulus presentation. We were surprised that efficiency
should be independent of eccentricity, since it is well
known that threshold without noise grows with eccentric-
ity unless the signal is scaled to compensate for the fall-
ing cortical magnification.31 The efficiency results indi-
cate that eccentricity and the cortical magnification factor
affect only the equivalent input noise, not efficiency, and
that, judging by efficiency, tasks at different eccentricities
are performed most similarly when the signals are the
same size. Note that efficiency is sensitive to changes in
the nature of the computations demanded by the task,
varying tenfold across alphabets22 and between detection
and identification.

In returning to our goal of explaining sensitivity, i.e.,
the two limbs of the no-noise threshold curve in Fig. 1(d),
how can we explain the steep rise in threshold for small
letters and the shallow rise for large letters? As we
promised at the outset, we can now partition sensitivity
into two empirical factors. At zero noise, Eq. (4) reduces
to the product of signal-to-noise ratio and equivalent
noise:

E0 5 D* Neq , (10)

and, similarly, Eq. (8) reduces to the product of reciprocal
efficiency and equivalent noise:

E0 5
D ideal

h*
Neq . (11)

The extra scalar in Eq. (11), the ideal signal-to-noise ratio
at threshold D ideal , is independent of most experimental
parameters (e.g., letter size), except for the kind of task
(e.g., detection versus identification) and the threshold
criterion (e.g., 64% versus 82% correct). Of the two em-
pirical factors, efficiency h* is too flat a function of letter
size [Fig. 2(c)] to explain much of the 104 effect of size on
threshold E0 in Fig. 2(a). However, Neq [Fig. 2(b)], like
threshold, has two distinct limbs, with a break at 1 deg.
For smaller letters the log-log slope of Neq versus size ap-
proaches 0 (i.e., signal independent), and for larger letters
it approaches 2 (i.e., scales with the signal area). As
noted above, Raghavan29 showed that the zero-slope sec-
tion of the equivalent noise curve is dominated by photon
noise and that the 12-slope section is dominated by cor-
tical noise (i.e., noise arising after binocular combination
of the two eyes). Because efficiency is nearly constant,
the zero-slope limb of Neq (small letters) yields zero slope
of threshold energy [Fig. 2(a)] and a 21 slope of threshold
contrast [Fig. 1(d)]. $Recall that energy is the product of
area and squared contrast [Eq. (1)].% If efficiency were
perfectly constant, the 12-slope limb of Neq in Fig. 2(b)
(large letters) would yield a 12-slope limb of threshold en-
ergy and a zero-slope limb of threshold contrast. In fact,
for larger letters the efficiency curve has a slope of 20.35,
resulting in a 12.35 slope of threshold energy and a
0.35/2 5 0.18 slope of threshold contrast.

Traditionally, one would measure only the no-noise
threshold [open symbols in Fig. 1(d) or 2(a)]. Previous in-
vestigators have derived valuable insights from similar
sensitivity curves. For example, Banks et al.10 noted
that the small-signal limb has the same 21 slope as the
ideal observer limited by photon noise, suggesting that
our ability to see small signals is limited by photon noise
and showing that we have constant overall efficiency h for
small signals. However, the large-signal limb remained
unexplained: Why is contrast sensitivity so nearly con-
stant as letters grow from 1 to 60 deg? Measuring a
threshold in noise helps answer the question.

For large letters we uncover two effects. The more
profound effect is that the observer’s equivalent noise
scales with the signal [Fig. 2(b)], suggesting that it arises
in a part (or parts) of the visual pathway that is selective
for the signal scale. The smaller, but no less intriguing,
effect is that efficiency is highest for 0.5-deg letters and
gradually drops as letter size is increased [Fig. 2(c)]; we
had expected scale invariance. (Majaj et al.28 follow up
this result, finding other, more dramatic, ways in which
letter identification depends on size.)

The small-letter results confirm the conclusion of
Banks et al.10 However, Banks et al. noted that they
could get their result (same slope of human and ideal)
only if all their signals were geometrically similar. By
adding noise and factoring sensitivity into efficiency and
equivalent noise, Raghavan29 found that equivalent noise
is independent of signal extent and kind (e.g., same for
1-deg letters and 3-c/deg gratings), which makes its as-
signment to photon noise easier and more secure.

The constant overall efficiency for grating detection (at
high spatial frequencies) found by Banks et al.10 is a tiny
0.2%, whereas for letters Fig. 2(c) reports a respectable
high-noise efficiency of close to 10%. Most of the ineffi-
ciency in the overall result is due to equivalent noise,
which Banks et al. could not separately estimate because
they did not add noise.

Measuring a threshold in noise also helped in charac-
terizing the effect of eccentricity. The evidence that ec-
centricity affects equivalent noise, not efficiency (except
near the acuity limit) rejects the whole class of explana-
tions that are based on scaling everything by the cortical
magnification factor. [To be fair to the proponents of
that theory, the equivalent noise does increase with ec-
centricity in a way that is predicted by ganglion cell den-
sity (or cortical magnification factor),29 but this is a differ-
ent kind of theory.]

3. CONCLUSION
Even when the experimenter’s immediate goal is to ex-
plain sensitivity, it may be easier, and thus quicker, to
achieve this by adding a measurement with noise, to par-
tition the problem into two factors that can be explained
separately. Equivalent noise, being independent of task,
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invites explanation in terms of known properties of visual
neurons: their density, gain, variance, and physiological
thresholds. Efficiency, being largely independent of
viewing conditions, invites explanation in terms of the
computation that combines the distributed stimulus and
prior information to yield a decision. The classical para-
digm of explaining the straight segments in plots of log
threshold versus log X remains fruitful, but the slopes are
now immediately interpretable. Zero slope (at peak effi-
ciency) indicates a computation that scales with the
stimulus parameter, while rising and falling slopes of 61
indicate fixed-size computations.

APPENDIX A: FACTORING SENSITIVITY
BY ADDING NOISE
In practice, the ideas presented here can play out in four
different ways, depending on whether the experiment
measures thresholds with and without noise and whether
the task is one for which it is practical to compute an ideal
threshold. For many questions it is possible to define
tasks for which we can measure human performance and
calculate ideal performance, but there are some questions
for which a subjective criterion is essential (e.g., a unique
hue) so that we cannot meaningfully specify what ideal
performance would be. And there are some important
practical tasks, such as diagnostic radiology, for which it
is difficult to calculate ideal performance.32

1. One Threshold
If the experimenter measures only one threshold, then
the result will have only one degree of freedom. Cases a
and b distinguish whether we can calculate the ideal
threshold:

Case a. Measure E0 . Plot E0 . Most of the classic
vision literature follows this paradigm, e.g., the effects of
area (Ricco), duration (Bloch), or luminance (Weber and
Rose–DeVries); the effects of all three16; or the effects of
spatiotemporal frequency.33

Case b. Measure E, and calculate E ideal . Plot overall
efficiency h, where

h 5
E ideal

E
. (A1)

This case arises when the noise is known but not directly
under experimental control, so there is no zero-noise
threshold. Examples include Barlow’s34,35 quantum effi-
ciency measurements, the studies by Tanner and Swets36

and by Banks et al.,10 and other studies reviewed by
Geisler.11

2. Two Thresholds
If the experimenter measures threshold with and without
noise, then the results will have two degrees of freedom.
Again, cases a and b distinguish whether we can calculate
E ideal :

Case a. Measure E0 and E. Factor sensitivity,
E0 5 D* Neq , and plot the factors D* and Neq , where

D* 5
E 2 E0

N
, (A2)
Neq 5
E0

E 2 E0
N. (A3)

Examples in the literature of this approach include the
work of Rose,3,37 Nagaraja,38 van Meeteren and
Boogaard,39 and Engstrom.40 As it happens, most of
these studies used objective tasks, for which they could
have computed the ideal threshold, but they did not.

Case b. Measure E0 and E, and calculate E ideal .
Factor sensitivity, E0 5 (D ideal /h* )Neq , where
D ideal 5 E ideal /N, and plot the two factors h* and Neq :

h* 5
D ideal

D*
5

E ideal

E 2 E0
, (A4)

Neq 5
E0

E 2 E0
N. (A5)

It seems that Burgess et al.6 and Pelli7,8 were the first to
determine all three thresholds for the same task, though
Barlow21 had already made it clear that this would allow
a partitioning of sensitivity into two factors. This power-
ful technique has been applied to contrast discrimination9

and to detecting and identifying patterns,41 letters,23 and
solid objects.42
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