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The rheological behavior of rapidly sheared bubble suspensions is examined through numerical
simulations and kinetic theory. The limiting case of spherical bubbles at large Reynolds number
Re and small Weber numberWe is examined in detail. Here,Re5rga2/m andWe5rg2a3/s,
a being the bubble radius,g the imposed shear,s the interfacial tension, andm andr, respectively,
the viscosity and density of the liquid. The bubbles are assumed to undergo elastic bounces when
they come into contact; coalescence can be prevented in practice by addition of salt or surface-active
impurities. The numerical simulations account for the interactions among bubbles which are
assumed to be dominated by the potential flow of the liquid caused by the motion of the bubbles and
the shear-induced collision of the bubbles. A kinetic theory based on Grad’s moment method is used
to predict the distribution function for the bubble velocities and the stress in the suspension. The
hydrodynamic interactions are incorporated in this theory only through their influence on the virtual
mass and viscous dissipation in the suspension. It is shown that this theory provides reasonable
predictions for the bubble-phase pressure and viscosity determined from simulations including the
detailed potential flow interactions. A striking result of this study is that the variance of the bubble
velocity can become large compared with (ga)2 in the limit of large Reynolds number. This implies
that the disperse-phase pressure and viscosity associated with the fluctuating motion of the bubbles
is quite significant. To determine whether this prediction is reasonable even in the presence of
nonlinear drag forces induced by bubble deformation, we perform simulations in which the bubbles
are subject to an empirical drag law and show that the bubble velocity variance can be as large as
15g2a2. © 1997 American Institute of Physics.@S1070-6631~97!03006-7#
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I. INTRODUCTION

The classic experiments of Bagnold1 demonstrated tha
rapidly shearing a suspension of particles could induce b
tangential and normal stresses that are much larger
those in the pure fluid. Bagnold’s experiments were p
formed with neutrally buoyant solid particles suspended i
liquid, and the large stresses were observed when the R
nolds number and Stokes number of the particles were b
large, indicating that both fluid and particle inertia were im
portant. Subsequent experiments have shown that a sim
behavior can be seen when dry granular materials are rap
sheared.2 A theoretical description of these effects has be
developed for granular materials using a modification of
kinetic theory of dense gases that takes account of the ine
ticity of the interparticle collisions.3 In this theory, the tan-
gential and normal stresses can be understood in terms
particulate-phase effective viscosity and pressure. San
et al.4 have extended this analysis to include the effects o
low Reynolds number flow of the interstitial gas. To da
however, there is no comparable theory for systems in wh
the inertia of the interstitial fluid plays an important role as
would when the continuous phase is liquid.

Theoretical analysis and numerical simulations in
presence of fluid inertia are generally quite difficult. How
1540 Phys. Fluids 9 (6), June 1997 1070-6631/97/9(6
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ever, in the special case of a suspension of spherical bub
at high Reynolds number, the fluid flow can be approxima
as a potential flow. The equation for the velocity potentia
then the linear, Laplace equation and detailed numer
simulations and kinetic theory can be developed. This
proximation is valid if the bubbles’ Reynolds numb
Re5rga2/m is large and their Weber numbe
We5rg2a3/s is small. Here,s is the interfacial tension,m
andr are the liquid viscosity and density,g is the shear rate
anda is the bubble radius. These conditions can be achie
for a narrow range of bubble radii@with a5O~0.5 mm!# in
water. Throughout most of this paper, we will assume pot
tial flow in the continuous phase and spherical bubbles
cause of the great theoretical simplifications that these
proximations afford. However, in Section VI, we wi
consider the implications of the nonlinear drag force la
arising at finiteWe for the qualitative predictions of the
theory. In this paper, we will study rapid shear flows
bubble suspensions using numerical simulations that incl
the effects of the potential–flow interactions among t
bubbles. We will also develop a kinetic theory based
Grad’s moment method.5 It will be seen that the hydrody
namic interactions can be incorporated in such a theory b
simple adjustment of the virtual mass and drag coefficie
As a result, the kinetic theory for a sheared bubbly liqu
)/1540/22/$10.00 © 1997 American Institute of Physics
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will be shown to be quite similar to that derived previous
for gas–solid suspensions.4 Therefore, we shall see that th
variance of the bubble velocity becomes quite large lead
to a large disperse-phase pressure and viscosity analogo
that predicted and measured previously in granular flows

We have previously presented limited simulation resu
for very dilute bubble suspensions in a proceedings pap6

There, we showed that dilute bubble suspensions can ex
multiple steady states at the same shear rate. These con
of a quenched state, in which most of the bubbles follow
the motion of the liquid, and an ignited state, in which t
variance of the bubble velocity was large compared w
(ga)2. A kinetic theory similar to that developed for dilut
gas–solid suspensions by Tsao and Koch7 was able to pre-
dict this multiplicity of steady states.

In this paper, we will consider higher bubble volum
fractions that are typically characteristic of flows in whic
the disperse phase has a large effect on the suspension
ology. One of the motivations for studying sheared bub
suspensions is to assess the importance of mean velocity
dients in describing flows of bubble suspensions throu
closed conduits such as vertical pipes. The potential fl
interactions among bubbles rising in an otherwise quiesc
liquid tend to create bubble clusters.8,9 This cluster formation
is particularly severe when the magnitude of bubble-ph
velocity variance is small. One role of the shear-induc
bubble pressure investigated here may be to stabilize the
mogeneous state of the suspension against this clusterin
stability. Of course, since we consider here only the cas
mean shear in the absence of buoyancy forces produci
mean relative motion, the present study cannot prove
conjecture. The problem of determining a quantitative cr
rion for the stability of bubbly liquids in the presence of bo
mean relative motion and mean shear, however, is cons
ably more involved and is therefore left to a future inves
gation. Finally, we note that, in addition to its significance
the above problem, the shear-induced bubble pressure
also tend to prevent variations in the bubble volume fract
driven by other types of forces, such as lift and centrifu
forces, that may arise in pipe flows, vortical flows, and flo
through horizontal channels. Although the present stud
restricted to linear shear flows, the results obtained here
provide insight into these more complex flows.

In Section II, we review the basic equations governi
the trajectories of spherical bubbles in a low viscosity liqu
containing a sufficient amount of salt which prevents
bubbles from coalescing. These equations are taken f
Sangani and Didwania8 and Sanganiet al.6 As mentioned
earlier, the velocity fluctuations induced by the mean gra
ent are much greater than the characteristic shear velo
based on the radius of the bubbles whenRe is large. Thus,
we will consider in Section III the simple case in which th
bubbles have isotropic velocity fluctuations with no me
relative motion between the two phases, no imposed sh
and no viscosity. The properties of such bubble suspens
are functions off and the mean-squared velocity fluctu
tions characterized by the bubble-phase temperatureT. Since
this system is analogous to a molecular system in the
sence of an imposed flow, we shall refer to this as the e
Phys. Fluids, Vol. 9, No. 6, June 1997
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librium state of a bubble suspension. We determine the eq
tion of state, i.e., the relation between the bubble-ph
pressure,f, andT, using numerical simulations. The simu
lations are supplemented with a theory for dilute bubbly l
uids. As shown recently by Yurkovetsky and Brady,10 the
equilibrium state properties of bubbly liquids can be det
mined from the configuration-dependent Hamiltonian
bubbly liquids using the standard statistical mechanical te
niques. More specifically, we use the Hamiltonian to det
mine the pair probability distribution and hence the avera
properties of dilute bubbly liquids. The predictions of th
theory are shown to be in excellent agreement with the sim
lation results. Since our primary interest is in developing
kinetic theory for sheared suspensions which are not in e
librium and for which detailed pair probability distribution i
not easy to determine, we also explore in this section h
sensitive various properties are to the assumed expressio
the pair probability density. It is shown that the simulatio
results are most consistent with an assumption that the
poles induced by the bubbles are relatively independen
the distance between the bubbles.

In Section IV, we use Grad’s moment method to deve
a kinetic theory for sheared bubble suspensions. This the
accounts for the effect of the imposed shear on the velo
distribution of the bubbles in an approximate manner by c
sidering only the second moments of the velocity distrib
tion. Although this theory is similar to that for the gas–so
suspensions developed by Sanganiet al.,4 the presence of lift
force on the bubbles and the volume-fraction-dependenc
the virtual mass lead to important modifications of t
theory. The theoretical predictions are compared against
results of dynamic simulations of sheared suspensions
Section V and the agreement between the two is shown t
very good for a wide range of values off and Re. An
important conclusion from this section is that the detai
hydrodynamic interactions are not critical in determining t
rheology of sheared bubble suspensions. Rather, the ro
potential flow interactions is only to set the average virtu
mass of the bubbles and the viscous energy dissipation
These quantities may be determined as functions off from
the simulations of the equilibrium state presented in Sec
III.

In Section VI, we investigate the influence of the fini
Weber number of the bubbles on the results. The bub
deformation at a infinite Weber number tends to increase
added mass and drag coefficient of the bubbles. We ass
an approximate expression for the ratio of the drag coe
cient to the added mass that agrees with theoretical anal
of these quantities at moderateWe and approaches the dra
coefficient for a spherical cap bubble in the limit of ve
largeWe. The effects of bubble deformation on the dynam
ics of bubble–bubble collisions and the hydrodynamic int
actions among the bubbles are neglected in this sectio
will be seen that the effects of deformation on the drag re
place an upper limit on the ratio of the bubble velocity va
ance to (ga)2 that can be achieved in practice. This limitin
value is about 15. Nonetheless, the simulations with the n
linear drag law confirm the possibility of achieving qui
significant values of the bubble-phase pressure and visco
1541Kang et al.
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II. A REVIEW OF BASIC GOVERNING EQUATIONS

In this section we review the basic equations govern
the motion of bubbles in a liquid atRe@1 andWe50.
Further, we shall assume that the bubbles do not coale
but undergo elastic collisions. The coalescence of bub
can be prevented in practice by the addition of surface-ac
impurities. Careful observations on the effect of surfa
active impurities on the dynamics of pairs of bubbles ha
been made by Kok11–13and Duineveld14 who found that mo-
lar concentrations of surfactants as small asO(1024) are
sufficient to prevent coalescence. Such low concentration
the surfactants do not affect the potential flow approxim
tion. At high surfactant concentrations, of course, t
bubbles begin to behave like rigid spheres leading to bre
down of the potential flow approximation. Alternatively, th
coalescence can also be prevented by the addition of sa
shown, for example, by Lessard and Ziemenski.15 These in-
vestigators showed that a sufficient concentration of elec
lyte in aqueous solution gives rise to short-range forces
prevent coalescence. Experimental observations of bu
collisions in salt solutions by Tsao and Koch16 indicate that
bubbles bounce with little loss of kinetic energy.

Let us considerN bubbles placed initially randomly
within a unit cell of a periodic array with their centers
xa and velocitieswa, a51, . . . ,N. The velocity of the
bubble a relative to the average suspension veloc
^u&(x,t) will be denoted byva, i.e.

va5wa2^u&~x,t !. ~1!

The velocity of the liquid is similarly expressed a
u(x,t)5^u&1u8, whereu8 represents the disturbance flo
induced by the bubbles moving with the relative veloc
va. When the bubbles are spherical and the Reynolds num
is large, the disturbance flow can be treated as irrotatio
The velocityu8 is then expressed as a gradient of a veloc
potentialw satisfying

¹2w50, ~2!

with the boundary condition thatn•¹w5n•va on the surface
Sa of the bubblea. Here,n is a unit outward normal vecto
on Sa. We shall use the method of multipole expansions
determinew. As shown in Sangani and Didwania8 and San-
gani, Zhang, and Prosperetti,17 the velocity potential can be
determined accurately using a point-dipole approximation

w~x!5G•x2a3(
a51

N

Da
•¹S1~x2xa!, ~3!

whereS1 is a Green’s function for Laplace equation in
periodic domain18 andDa is the induced dipole strength du
to the presence of bubblea. The requirement that the ave
age ofu8 over a unit cell of the periodic array be zero
satisfied by choosing8

G5
3f

N (
a51

N

Da, ~4!

wheref is the volume fraction of the bubbles. Physical
G represents the back flow induced by the relative motion
the bubbles.
1542 Phys. Fluids, Vol. 9, No. 6, June 1997
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We shall treat the bubbles as massless and take the
cosity of the gas to be zero. Also, since we are intereste
isolating the effect of the mean velocity gradient, we shall
the buoyancy force due to gravity to zero. The force bala
on a representative bubblea can be expressed in terms of i
impulse defined by

Ia52rE
Sa

wndS. ~5!

It is easy to show that the sum of the impulses of all t
bubbles equals the momentum of the liquid induced by
relative motion of the bubbles. A bubble moving with a v
locity that differs from the mean suspension velocity carr
with it some liquid momentum, and thereforeIa may be
thought of as the virtual momentum of bubblea.

The force balance on the bubble gives8

dIa

dt
5Fp

a1Fv
a1F^u&

a 1Fc
a , ~6!

whereFp
a is the potential interaction force,Fv

a is the viscous
force,F^u&

a is the force due to mean flow, andFc
a is the force

due to collision. The potential interaction force is evaluat
from19

Fp
a54pra3Da

•¹¹w r~xa!

524pra6(
g51

N

DaDg:¹¹¹S1~x
a2xg!, ~7!

wherew r represents the regular part ofw, i.e., the velocity
potential minus the potential induced by the bubble itse
Therefore, the singular part ofS1, i.e. 1/r , must be removed
from S1 before differentiating it three times forg5a.

At large Reynolds numbers, the detailed short-time t
jectories of the bubbles are determined primarily by t
potential–flow interactions and collision forces. Howev
viscous forces play an essential role in controlling the kine
energy of the suspension over long,O(Re21), periods of
time. To leading order, i.e., toO(Re21), the viscous force
can be evaluated by computing the rate of energy dissipa
associated with the potential flow induced by the motion
the bubbles. Levich20 used this observation to show that th
drag on a single bubble is given byFv5212pmav. His
method was extended by Kok11,12 to the case of many
bubbles to show that the viscous force on individual bubb
can be determined from the relationFa52(1/2)¹vaEdiss,
Ediss being the rate of viscous energy dissipation per u
cell. Alternatively, the viscous force on individual bubble
can also be determined by solving a Laplace equation for
viscous potential as shown in Sangani and Didwania.8 As
shown by these authors the two methods give identical
sults. Since the latter offers some computational advanta
we use it in the present study.

As in Sanganiet al.,6 we shall use the following expres
sion for evaluating the contribution of the mean flow to t
force:

F^u&
a 5m

D^u&
Dt

2~¹^u&!•Ia, ~8!
Kang et al.
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where the derivatives of̂ u& are evaluated atx5xa,
m54pra3/3 is the mass of the liquid having the same v
ume as the bubble, andD/Dt5]/]t1^u&•¹ is the time de-
rivative following the average motion of the suspensio
While we do not have a rigorous proof justifying the use
~8!, this relation is consistent with several known results
limiting and/or special cases as shown in the Append
These include~i! the case of small-amplitude oscillatory m
tion examined in Sangani, Zhang, and Prosperetti;17 ~ii ! the
linear extensional floŵ ui&5ei j xj with ei j5eji for which
the flow is entirely irrotational; and~iii ! the simple shear
flow past a single spherical bubble with weak she
(ga!va) for which the flow has a nonzero vorticity.21 Fi-
nally, the expression is also consistent with that proposed
Auton, Hunt, and Prud’homme22 for an isolated bubble if we
substituteIa5mva/2 in ~8!.

The collision force is evaluated as described in Sang
and Didwania.8 The collision is treated as an instantaneo
event that preserves the kinetic energy and momentum o
liquid. This assumption is consistent with experimental o
servations and asymptotic analysis of bubbles bouncing
salt water at lowWe.16 Upon collision with a bubbleg, the
impulse of bubblea changes byFck where k is the unit
vector alongxa2xg andFc is the magnitude of the collision
impulse determined from the relation8

Fc52
2k•~wa2wg!

k•~ v̂a2 v̂g!
. ~9!

Here,wa andwg are the actual velocity of the bubbles@cf.
~1!# just before the collision andv̂a and v̂g are the velocities
of the bubbles when each bubble is acted upon by a
force along the line joining the center of the collidin
bubbles and directed inwards toward the center of
bubble, the force on all the other bubbles in the suspen
being zero.

Most of the results we shall present in this study we
obtained by dynamic simulations in which the trajectories
the bubbles were evaluated using a modified Euler sch
described in Sangani and Didwania.8 The simulations deter
mined the microstructure parameters such as the radial
tribution function, the velocity variancêv2&, and the
dispersed-phase pressure tensorPi j ~related to the bubble
phase stress bys i j52Pi j ). As shown in Sangani and
Didwania19 and Bulthuis, Prosperetti, and Sangani,23 the
stress consists of three parts: kinetic, collisional, and po
tial interaction. These stress contributions are associated
the transfer of the ‘‘virtual momentum’’ associated with th
bubbles across a surface by means of bubble transla
bubble–bubble collisions, and hydrodynamic interactio
respectively. They are defined by

Pi j
k 5n^I iv j&5

1

t (
a51

N

I i
av j

a , ~10!

Pi j
c 5n^aFi ,ckj&5

2a

tDt(coll Fckikj , ~11!
Phys. Fluids, Vol. 9, No. 6, June 1997
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Pi j
p52

2pra6

t (
a51

N

(
g51

N

Dm
aDn

g@2] i jmnS2~x
a2xg!

2~d i j ]mn1d jn] im1d jm] in!S1~x
a2xg!#. ~12!

Here,n5N/t is the number density of the bubbles,t being
the volume of the unit cell. The summation in~11! is over all
the collisions occurring over time intervalDt.

III. PROPERTIES OF BUBBLY LIQUIDS IN THE
ABSENCE OF SHEAR, GRAVITY, AND VISCOSITY

As mentioned in the Introduction, the root-mean-squa
velocity fluctuations in the ignited state of a rapidly shear
bubble suspension are large compared withga. Thus, it will
be useful to consider the behavior of a bubble suspensio
the absence of shear and viscous dissipation before deve
ing the kinetic theory for the more practical situation of
sheared suspension of bubbles experiencing viscous fo
In the absence of viscous dissipation and shear work,
kinetic energy and momentum of the liquid are conserv
and we will consider the case in which the liquid momentu
and the mean velocity of the bubble-phase are both zero
this case, the spatial structure and velocity distribution fu
tion of the system are isotropic and are determined enti
by the initial kinetic energy and the volume fractionf of the
bubbles. In analogy with the molecular systems, we sh
refer to this as the equilibrium state of a bubble suspens
Our objective in this section will be to determine the equ
tion of state, i.e., the relationship of the stress and kine
energy tof and the bubble-phase temperatureT[^v2&/3. In
addition, we shall be interested in comparing the microstr
ture of the bubble suspension with that of a hard-sphere
lecular system, and in determining the leading order estim
of the rate of viscous energy dissipation when the liquid h
small but finite viscosity. First, we will present results
numerical simulations for a range of volume fractio
0,f,0.30. Then, in the second subsection, we will der
analytical results valid in the limitf→0.

A. Numerical simulations

The spatial distribution of the bubbles is isotropic a
can be characterized in terms of the radial distribution fu
tion g(r ). Figure 1 gives results~diamonds! for the value of
g at r.2a obtained by dynamic simulations of bubble su
pensions. These values were computed by determining
number of pairs of bubbles with center-to-center separati
in the range of 2a(1,11D) with the bin size 2D50.05. The
results were obtained by averaging over several hund
a/T1/2 time units in a simulation withN554. The time step
for integrating the motion of bubbles was chosen such t
on average a bubble underwent a collision in 50 to 100 ti
steps. Since many practical flows of bubble suspensions
cur over low to moderate values off, we have computed the
properties only forf<0.3.

Also shown in Figure 1 are the results~pluses! for
g(2a) obtained from a hard-sphere molecular dynam
code. We see that the values are very similar to those for
bubble suspensions. Thus, we conclude that the spatial
tribution in the equilibrium state of bubble suspensions
1543Kang et al.
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very similar to that in a hard-sphere system. In particu
these results indicate that there is no significant clusterin
this isotropic random motion of a bubble suspension. T
may be contrasted with simulations of buoyancy-drive
flows in bubble suspensions, which indicated that the po
tial flow interactions among the bubbles induced very s
nificant clustering.8,9 The solid line in Figure 1 correspond
to an estimate ofx5g(2a) obtained from the well-known
Carnahan–Starling24 approximation for hard-sphere molec
lar systems:

x5
12f/2

~12f!3
. ~13!

The above equation is seen to give very good estimate
x in both bubble suspensions and hard-sphere molecular
tems.~It may be noted that the computed values are sligh
lower than those predicted by the above expression bec
of the finite bin size used in the simulations.!

We now present results for the bubble-phase stress
the equilibrium state, the stress is an isotropic tensor cha
terized by a single scalar. The kinetic part of the stress i

Pi j
k 5n^I iv j&5n~m/2!Ck~f!Td i j , ~14!

where (1/2)n^I iv i&5(3/2)n(m/2)Ck(f)T is the kinetic en-
ergy of the liquid per unit volume of the suspension. T
virtual mass of an isolated bubble ism/2 and its impulse is
I i.mv i /2. Thus,Ck will approach unity in a very dilute
suspension in which bubble–bubble interactions are exc
ingly rare. The results of dynamic simulations for vario
values off are shown in Figure 2. We see that the dep
dence ofCk onf is rather weak, and can be fitted adequat
by a quadratic relation,

Ck5120.35f20.42f2. ~15!

Physically, (m/2)Ck may be interpreted as a virtual mass
a bubble: it represents the energy required to increase (

FIG. 1. The radial distribution function atr52.025a. The diamonds are the
results for the bubble suspensions and the pluses are the results fo
hard-sphere molecular system. The solid line represents the Carna
Starling approximation~13! for the value atr52a.
1544 Phys. Fluids, Vol. 9, No. 6, June 1997
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3^v2& by a unit amount without applying any net force t
the suspension. We shall refer toCk as the energy-adde
mass coefficient. It should be noted that this coefficien
very different from the momentum-added mass coeffici
Ca that previous investigators have examined.17,25–27Ca re-
lates the average impulse to the average velocity in the
pension and the coefficient ofO(f) in its expressions re-
ported in the literature ranges from 2.76 to 3.31 compare
approximately20.35 found in the present case. When t
net impulse and net velocity of the bubbles are chang
with time, the test bubble experiences an effective medi
whose density and relative acceleration differ from that o
pure liquid. This effective medium behavior alone contri
utes a correction of 3f to Ca that is not present in the cal
culation ofCk .

Since we have seen that the pair probabilityx in a
bubble suspension of volume fractionf is very close to the
value for the corresponding hard-sphere system, it is in
esting to determine to what extent the stress in the bub
suspension can be related to the stress in an analogous
sphere molecular gas. The kinetic stress in a gas of sphe
molecules with massma can be written as28

Pi j
k 5manTd i j . ~16!

Comparing the above expression with~14!, we see that the
bubbles may be thought of as having a virtual massma equal
to Ckm/2. The kinetic stress in a bubble suspension is id
tical to that in a hard-sphere system with the samef and
kinetic energy. The collisional part of the pressure in a de
hard-sphere gas is given by28

Pi j
c 54manxfTd i j , ~17!

and therefore we define the collisional part in bubble susp
sions in terms of a scalarCc given by

Pi j
c 54~m/2!nCcxfTd i j , ~18!

the
n–

FIG. 2. The viscous dissipation coefficientRdiss ~pluses!, the energy-added
mass coefficientCk ~diamonds!, and the collision stress coefficientCc

~squares! as functions off. The solid lines represent the quadratic fits~15!
and ~21! to Rdiss andCk .
Kang et al.
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with x given by ~13!. The collisional stress would be iden
tical to that in the hard-sphere system with the same kin
energy and volume fraction ifCc5Ck . The values ofCc

determined from dynamic simulations are given in Figure
Our simulations show thatCc is in fact quite close toCk at
the higher values off. For smallerf, Cc is somewhat
smaller thanCk with Cc approaching approximately 0.97 a
f→0.

The relative importance of the potential and collision
parts of the stress is expressed in terms of a coefficienlp

defined by

lp5tr ~Pp!/tr ~Pc!. ~19!

Both the potential and the collisional stresses areO(f2) for
smallf and thereforelp must approach anO(1) constant as
f→0. As shown in Figure 3 the potential stress contribut
is rather small withlp varying in the range 0.06–0.04 a
f varied from 0.05 to 0.3. In other words, the potential str
is only about 5% of the collisional stress and thus may
regarded as negligible. This very small potential stress
isotropically fluctuating bubble suspensions may be c
trasted with the large potential stress calculated when the
a net relative motion between the bubbles and the liquid
the latter case, the potential stress was larger than the kin
and collisional stresses and it led to clustering of the bubb
and instability of the uniform state of the suspension.
bubble suspensions that contain a large velocity varia
~due to shear or some other factor! as well as a relative
motion of the two phases~such as that due to buoyancy!, one
may expect that the balance between the potential stress
erated by the mean relative motion and the kinetic and
lisional stress associated with the bubble velocity varia
will determine the stability of the uniform state of th
suspension.10,29–31

To develop the kinetic theory for sheared bubble susp
sions, we shall need an estimate of the rate of viscous en
dissipation for a given variance in the velocity of bubble
An isolated spherical bubble moving with velocityv through
a nearly inviscid liquid experiences a viscous drag fo

FIG. 3. The ratio of potential to collisional stress,lp . The approximate
mean value is shown by a solid line.
Phys. Fluids, Vol. 9, No. 6, June 1997
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equal to212pmav.32,20 We therefore express the rate
energy dissipation per unit volume of bubble suspension
terms of a scalarRdiss defined by

Ediss52n^Fv•v&5236pmanTRdiss~f!, ~20!

whereRdiss→1 asf→0. The simulation results forRdissas a
function off are given in Figure 2. It should be noted th
although we evaluated the viscous force and dissipation
every time step to determine average dissipation rate,
trajectories of the bubbles were evaluatedneglectingthe vis-
cous force on the bubbles so that the suspension micros
ture depended only on the volume fraction of bubbles a
the kinetic energy of the liquid. The results forRdiss can be
fitted by an approximate linear relation

Rdiss5120.16f20.22f2. ~21!

Rdiss is the viscous drag coefficient that relates the rate
viscous dissipation of energy in a suspension with no m
bubble velocity to the bubble velocity variance. It is differe
from the viscous drag coefficientCd defined, for example by
Sangani and Didwania8 and Sangani, Zhang, an
Prosperetti17 in terms of the mean viscous force acting on
suspension of bubbles with a mean motion relative to
suspension. The latter investigators found the coefficien
O(f) in Cd to range from 2.11 to 2.28 compared with a
approximate estimate of20.16 in the present simulations fo
Rdiss. The effective medium due to mean relative motio
which contributes 2f to Cd , makes no contribution to
Rdiss.

Not all properties of bubble suspensions can be in
preted in terms of a hard-sphere system with a volume fr
tion dependent virtual mass. For example, the collision f
quencyṄc defined as the number of collisions per unit tim
per particle can be expressed in terms ofT by means of

Ṅc56cf
fxT1/2

ap1/2 . ~22!

For hard-sphere systemscf51. The results of numerica
simulations for both bubble suspensions and hard-sphere
pensions are shown in Figure 4 where we see that whilecf is
indeed close to unity for the hard-sphere system the bub
suspensions yieldcf equal to about 0.81 for the whole rang
of volume fractions. As the bubbles approach each oth
their added mass increases and the relative velocity decre
leading thereby to lower collision rates. Also shown in Fi
ure 4 is the coefficient for collision force determined in n
merical simulations. This coefficient is related to the co
sion force by

Fc
a52mfck~wa2wg!•k, ~23!

wherek is a unit vector alongxg2xa. Note thatmfc corre-
sponds to the average of factor 2/(k•( v̂a2 v̂g)) in ~9!. Ac-
cording to the hard-sphere model, which we used earlie
describing the results for collision stress,f c would be simply
equal toCk/2. The results of numerical simulations, how
ever, show considerably greater magnitude off c , and, in
particular, as shown by the solid line in Figure 4,f c is ap-
proximately given approximately by 5/7Ck . This additional
1545Kang et al.

icense or copyright; see http://pof.aip.org/about/rights_and_permissions



s
u
ei
em
e
e
ct

e

ith

tri
or
o
d
te
ily
t

b

r

ecial
en

e

ell
on-

fluc-

tor
e

e
cal-

the

-
s
al
b-

se-

the
factor of 10/7 arises from the added mass of the bubble
collision being greater than that of isolated bubbles. Th
apparently, the collision stress in bubble suspensions b
approximately the same in the effective hard-sphere syst
is a result of cancellation of two opposing effects of reduc
collision frequency and collisional impact velocity on on
hand and the increased added mass of bubbles at conta
the other.

B. Two-bubble calculations

In this section we determine the coefficientsCk , Cc ,
Rdiss, etc., in the limitf→0. The calculations require th
knowledge of the pair probability functionP2(I

1,I2,x1,x2)
which represents the probability of finding two bubbles w
their centers atx1 and x2 with impulsesI1 and I2, respec-
tively. In the presence of dissipative effects, this pair dis
bution function must be determined from detailed traject
calculations for pairs of interacting bubbles as has been d
by Kumaran and Koch33,34 and van Wijngaarden an
Kapteyn.35 These calculations, however, are generally
dious. Fortunately, this probability distribution can be eas
determined based on a statistical mechanical argumen
recently demonstrated by Yurkovetsky and Brady.10 These
investigators and Russo and Smereka30 have shown that the
dynamics of bubbles with potential flow interactions can
described in terms of a HamiltonianH with the position and
impulses of the bubbles treated as the generalized coo
nates such that

İa52
]H

]xa , ẋa5va5
]H

]Ia
. ~24!

For bubbly liquids considered hereH simply equals the ki-
netic energy of the liquid, i.e.,

H~C N!5
1

2(
a51

N

va
•Ia. ~25!

FIG. 4. The results for the coefficients of the collision frequency (cf) and
the collision force (f c).
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Here, the configuration of bubblesC N consists of the posi-
tions and impulses of theN bubbles. The velocities of the
bubbles are treated as dependent variables. For the sp
case of zero mean impulse, the probability density is giv
by the Boltzmann equation:10,30

PN~C N!5ANexp@2b~m/2!H~C N!#, ~26!

whereAN andb are given by

AN5nNS b

2p D 3N/2, b5
3

^I 2&
. ~27!

The constantAN was determined by requiring that th
N-particle probability must be equal to the product ofN
single-particle distributions when all the bubbles are w
separated from each other and from the normalization c
dition *P1(C

1)dI15n. The constantb was determined from
the calculation of̂ I 2& as explained later@cf. the discussion
following ~38!#. It should be noted thatb is related to the
inverse of bubble-phase temperature based on impulse
tuations and not the velocity fluctuations.

For two bubbles with center-to-center separation vec
x22x15aR, it is easy to show that the velocities of th
bubbles are related to their impulses by

v i
a5

2

m F H S 11
3

2R6D d i j1
9

2R6 kikj J I ja1H 2
3

2R3 d i j

1
9

2R3 kikj J I j32aG ~a51,2!, ~28!

whereki5Ri /R is the unit vector along the line joining th
centers of the bubbles. Here, and in all the subsequent
culations, we have neglected terms ofO(R29) and smaller.
These higher order terms make a small contribution to
suspension properties even for touching bubbles,R52.

With the form of the pair probability distribution estab
lished, it is relatively straightforward to compute variou
equilibrium properties of dilute bubbly liquids. The radi
distribution function is obtained by integrating the pair pro
ability distribution in the impulse phase:

n2g~aR!5A2E expF2
mb

4
~ I1•v11I2•v2!GdI1dI2.

~29!

The integration in the above expression and in the sub
quent calculations is facilitated by introducing

Ī5I11I2, Î5I12I2. ~30!

In terms of these variables, the total kinetic energy of
liquid is given by

1

2
~ I1•v11I2•v2!5

2

m
@ Ī 21 Î 21Ēi j Ī i Ī j1Êi j Î i Î j #, ~31!

where

Ēi j5
3

2 S 2
1

R3 1
1

R6D d i j1
9

2 S 1R3 1
1

R6D kikj ,
~32!

Ei j5
3

2 S 1R3 1
1

R6D d i j1
9

2 S 2
1

R3 1
1

R6D kikj .
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The integral on the right-hand-side of~29! is difficult to
evaluate exactly for arbitrary values ofR and therefore we
shall evaluate it in the limit of largeR by expanding the
integrand in a Taylor series. Thus, for example, we write
part dependent onĪ as

e2b Ī 2F12bĒi j Ī i Ī j1
9b2

8R6 $ Ī 426~k• Ī !2Ī 219~k• Ī !4%G ,
~33!

where we have neglected terms ofO(R29). Now substitut-
ing for the kinetic energy from~31! in ~29!, using
dI1dI258dĪdÎ , and making use of the Taylor series expa
sion ~33! we obtain

g~aR!58A2n
22S p

b D 3S 12
9

8R6D S 12
9

8R6D . ~34!

The integrals over the impulse subspace were evaluated
the help of the following formulas:

I 2n[E e2b Ī 2Ī 2ndĪ5~2p11!

3E e2b Ī 2~k• Ī !2pĪ 2n22pdI , ~35!

I 05S p

b D 3/2, I 2n5
2n11

2b
I 2n22 ,n51,2, . . . . ~36!

Now substituting forA2 from ~27! into ~34! and neglecting
terms smaller thanO(R26) we obtain

g~aR!512
9

4R6 . ~37!

According to this expressionx5g(2a)5129/25650.965
at R52 indicating that the potential flow interactions cau
only a slight depletion of the bubbles in the vicinity of a te
bubble. This result also indicates that the added mass e
in the presence of random fluctuations in impulse introdu
a small effective repulsive potential between pairs of bubb
as noted earlier by Yurkovetsky and Brady.10 The numerical
simulations described earlier~cf. Figure 1! showedg(2a) for
bubble suspensions to be approximately the same as tha
a hard-sphere system with the same volume fraction.
small 3.5% change ing(2a) predicted by the theory is
smaller than the statistical errors in the simulations.

To determineCk , we need to estimatê I•v& and
^v•v&. Let c be any dynamic variable~e.g. I•v) associated
with the motion of bubbles. Then its average for dilu
bubble suspensions can be estimated using

n^c&~x1!5E c1~ I1,x1!P1~ I
1,x1!dI1

1E @c1~ I1,I2,x1,x2!

2c1~ I1,x1!#P2~ I
1,I2,x1,x2!dI1dI2dx2.

~38!

Here,c1(I1,x1) is the value ofc for bubble 1 with impulse
I1 placed atx1 andc1(I1,I2,x1,x2) is the value for the same
Phys. Fluids, Vol. 9, No. 6, June 1997
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bubble given the presence of a second bubble with impu
I2 at x2. Note that we have neglected the three-bubble in
actions which will be unimportant in dilute suspension
Also, the above expression for determining average qua
ties is valid provided that the differenc
c1(I1,I2,x1,x2)2c1(I1,x1) integrated over the impulse sub
space decays faster thanux22x1u23. This is indeed the case
in all the calculations presented in this section.

Since the impulses of the bubbles are independe
specified, the second term on the right-hand-side of~38! is
identically zero whenc15(I 1)2. Consequently,̂ I 2& is de-
termined solely from the first term, and upon integration t
yields the relation betweenb and ^I 2& given in ~27!.

The kinetic energy per unit volume of the suspens
equals (n/2)^I•v& and to evaluate it we substitutec5I•v in
~38!:

n^I•v&5
2n

m
^I 2&1n2S ba

p D 3 2mE F 3

2R3 $~211R23!I 2

13~11R23!~k• Ī !21~11R23! Î 213~21

1R23!~k• Î !2%Ge2b~ Ī 21 Î2!F12
3b

2R3 $2 Ī 2

13~k• Ī !21 Î 213~k• Î !2%1O~R26!GdRdĪdÎ .
~39!

The leading order term ofO(R23) in the above integral van
ishes upon integration over the impulse space while the
mainder simplifies to

^I•v&5
2

m F12
3

16
f1O~f2!G^I 2&, ~40!

where we have made use of the result 1/b5^I 2&/3. Similar
calculations for the velocity variance yield

^v2&53T5
4

m2 F11
3

16
f1O~f2!G^I 2&. ~41!

Combining the above expressions with the definition ofCk

@cf. ~14!#, we obtain

Ck512
3

8
f1O~f2!. ~42!

This approximate estimate of theO(f) coefficient,
23/8520.375, is in very good agreement with the coef
cient20.35 obtained from numerical simulations@cf. ~15!#.

The above results can also be used to estimate the
cous dissipation coefficientRdiss. To determine viscous
forces, we must solve for the viscous potential8 which, with
the dipole approximation, is given by

wv52a3(
a51

2

da
•¹

1

ux2xau
. ~43!

The viscous dipoles are to be determined from the bound
conditionn•¹wv5212Da. Here,Da is the induced dipole
for the potential flow described earlier. The viscous force
given byFv

a54pmada. On solving ford we obtain
1547Kang et al.
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a512pma@2Da1~1/2!Da

•¹¹R21
•¹¹R212D32a

•¹¹R21#. ~44!

Since the velocity of a bubble is related to the dipoles
va52(2Da1D32a

•¹¹R21), the rate of viscous energ
dissipation per unit volume of the suspension is given by

Ediss52n^Fv•v&548pman^D2&. ~45!

Now usingDa52(m21Ia1va)/3 we obtain

^D2&5~1/9!@m22^I 2&12m21^I•v&1^v2&#, ~46!

and upon combining with~40!, ~41!, and~20! we obtain

Rdiss512
3

16
f1O~f2!, ~47!

which is in very good agreement with the results of nume
cal simulations given by~21!.

Next, we determine the collision frequency and the c
lision stress. The former is given by@cf. ~22!#

Ṅc56cfx
f

a S Tp D 1/2
5

1

2nEg•k.0
g•kP2~C 2!~4a

2!dkdI1dI2, ~48!

whereg5v12v2 is the relative velocity. It is easy to show
that the relative velocity of two bubbles along the line joi
ing their centers is related to their relative impulse by

g•k5
4

m F12
3

R3 1
6

R6G Î•k. ~49!

The above quantity andP(C 2) must be evaluated atR52 to
determine the collision frequency~48!. To keep the consis
tency in our calculations correct toO(R26), however, we
shall carry out integration first with arbitraryR and substitute
R52 in the final result. Note also that the integration ov
g•k.0 is the same as the integration overÎ•k.0. Now
expanding the exponential inP2 to O(R

26) as in the previ-
ous calculations, and using the following results:

I n*5E
k• Î.0

e2b Î2Î ndÎ5
p11

2 E
k• Î.0

e2b Î2Î ~n2p!

3~k• Î !pdÎ5
2d~I n22* !

db
, ~50!

I 0*5~1/2!~p/b!3/2, I 1*5p/~2b2!, ~51!

we obtain, toO(R26),

cf5~123R2316R26!~129/8R26!~113/2R23

23/4R26!5123/2R2323/8R26. ~52!

With R52, the above yieldscf5413/51250.807, in excel-
lent agreement with the results of numerical simulations
the collision frequency shown in Figure 4. The first factor
~52! corresponds tôv•k&/^ Î•k&, which is the inverse of the
factor by which the added mass of the bubbles changes
to interactions. The added mass of the bubbles at collis
i.e. atR52, is 32/2351.391 times that of isolated bubble
1548 Phys. Fluids, Vol. 9, No. 6, June 1997
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~Note that this factor is slightly different from 10/751.429
quoted earlier. The difference is due to terms of ord
smaller thanR26 retained in the derivation that gave th
result 10/7.! This increased added mass, and conseque
the decreased relative velocity, tends to lower the collis
frequencies in bubble suspensions. The second factor in~52!,
which resulted from the integration in the mean impu
Ī -space, is the same as that obtained in the radial distribu
function calculation. The effective repulsive potential i
duced by the potential flow interactions tends to deplete
pair probability density at contact and this too contributes
the decrease in the collision frequency. Finally, the third f
tor, which resulted from the integration in theÎ -space, tends
to increase the collision frequency. The terms ofO(R23) in
P2(C

2) which did not contribute to the result forg(aR)
make an important contribution to this last factor. Thus
naive calculation, in which the pair probability is taken to
simply the product of two single-particle distributions wi
the radial distribution function, i.e.,P2(I

1,I2,x1,x2)
5 g(aR)P1(I

1,x1)P1(I
2,x2), would have given an incorrec

estimate of 0.69 forcf .
The collisional part of the pressure tensor is given by

Pi j
c 52E

g•k.0
Fc,ikjg•kP2~C

2!~4a2!dkdI1dI2. ~53!

The collision forceFc is equal to the relative velocity time
the added mass at contact, i.e.,

Fc52~m/2!g•k~123R2316R26!R52
21 k52~ Î•k!k.

~54!

Upon substituting for the collision force in~53!, carrying out
the integration, and comparing the result with~18! we find

Cc5@129/~8R6!#R525503/51250.982. ~55!

Once again, this result is in excellent agreement with
results of numerical simulations shown in Figure 2.

Finally, the trace of the potential interaction part of th
pressure tensor can be evaluated from

Pii
p522pra6E D1D2R~• !3¹¹¹R21P~C 2!dRdI1dI2,

~56!

where (•)3 represents a triple scalar product. Expressing
dipoles in terms of impulses of the bubbles, expand
P(C 2) in the inverse powers ofR as in the other calcula
tions, and comparing the result of integration with~19!, we
obtain

lp59/~128Cc!536/50350.072, ~57!

indicating that the potential stress is only about 7% of
collision stress in dilute bubble suspensions. This is in agr
ment with the results of numerical simulations shown in F
ure 3 according to whichlp varied from about 0.04 to 0.06
asf decreased from 0.3 to 0.05.
Kang et al.
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C. Sensitivity of the averaged properties to the pair
probability distribution

We have seen that the average properties of di
bubble suspensions obtained using the exact expressio
the pair probability distribution for the equilibrium case a
in very good agreement with the corresponding results
tained from the numerical simulations. Unfortunately, t
equilibrium case considered in the present section is ra
special and it is not easy to extend such exact analyse
nonequilibrium situations such as sheared suspensions.
theory in which the pair probability distribution can be fa
torized into one-particle distributions is much easier to
velop for dense sheared suspensions and therefore it
some interest to explore how various properties of bub
liquids depend on the assumed form of pair probability. W
have calculated the properties described above for di
bubbly liquids for three simple forms of pair probability di
tributions: ~i! P(C 2)5n2f (v1) f (v2); ~ii ! P(C 2)5n2f (I1)
3 f (I2); and ~iii ! P(C 2)5n2f (D1) f (D2). We shall refer to
these as, respectively, the independent velocity, impulse,
dipole approximations. Thus, for example, we assume in~i!
that the velocities of the two bubbles are independent of t
separation vectoraR and then determine their dipoles an
impulses in terms of the velocities andR. The averaged
properties are then determined by integrating the approp
quantity in the velocity andR space. These approximation
for various properties are summarized in Table I along w
the results of the rigorous analysis presented in Section I
and the results of numerical simulations.

The evaluation ofCk , Rdiss, andlp does not require a
specification of the form of the functionf : the only restric-
tion is the normalization condition, e.g.,* f (v)dv51 for the
case of an independent velocity approximation,
* f (D)dD51 for the independent dipole approximation. W
see from Table I that all three properties are quite sensitiv
the approximation made regarding the pair probability. F
example,Ck , which can be interpreted as an added mass
relates the energy of the suspension to the bubble velo
variance, is given by 113f/16 according to the independe
velocity approximation, and 1215f/16 according to the in-
dependent impulse approximation. The corresponding res
for the added mass coefficient for a collective acceleration
the bubblesCa are 113.31f and 112.76f, respect-
ively.25,27,26,36,37As mentioned earlier, the effective mediu

TABLE I. Estimates of various coefficients based on different approxim
tions for the pair probability distributions corresponding to assuming
the velocities~I!, impulses~II !, or dipoles~III ! are independent of the rela
tive separation between the bubbles. The results based on the exac
probability are denoted by~IV !, and those obtained from numerical simul
tions by ~V!.

I II III IV V

Ck 113f/16 1215f/16 123f/16 123f/8 120.35f
Rdiss 113f/16 129f/16 12f/16 123f/16 120.16f
Ck /Rdiss 1 123f/8 12f/8 123f/16 120.19f
lp 29/64 9/32 0 0.07 0.07
cf 0.837 0.862 0.837 0.81 0.81
Cc /Ck 1 1 1 0.98 0.97
Phys. Fluids, Vol. 9, No. 6, June 1997
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contributes 3f to Ca but there is no corresponding contribu
tion to Ck . We shall see in the next section that the mo
important quantity controlling the rheology of bubble su
pensions is the ratioCk /Rdiss. The independent dipole ap
proximation yields Ck /Rdiss512f/8 compared with
120.19f obtained by the numerical simulations. As seen
Table I, the independent dipole approximation gives the b
estimate for this and the other properties of the bubble s
pensions.

A clue as to why the dipole approximation gives sup
rior estimates may be obtained by examining the ‘‘head-o
collision of two bubbles moving towards each other alo
the6x1-axis. Consider two bubbles initially separated by
large distance moving towards each other with velocit
6v` . The impulse and the dipole of the bubble moving
the positive x1-direction are given bym21I`52D`

5v`/2, and the total kinetic energy of the liquid i
mv`

254mD`
2 . As the bubbles approach each other, th

added mass or, equivalently, impulse increases in magni
while the velocity decreases so that the total kinetic ene
of the inviscid liquid remains constant. At the instant wh
the two bubbles come in contact, the velocity and impulse
the bubbles are related to their dipoles by

vc52~7/4!Dc , I c52~5/4!mDc. ~58!

Note that the added mass of the bubbles at contac
I c /vc55/7m compared with the added mass ofm/2 for iso-
lated bubbles — a result cited earlier in the discussion
numerical results for the collision frequency. Since the to
kinetic energy remains unchanged for purely potential fl
interactions, we haveI cvc5I`v`52mD`

2 from which we
obtain

Dc

D`
5A32

35
.0.96,

I c
I`

5
5

4
A32

35
.1.20,

~59!

vc
v`

5
7

8
A32

35
.0.84.

Thus, the dipoles only change by about 4% during
head-on collision. The change in the dipoles for other re
tive orientations of the pair of bubbles is likewise expect
to be small. Consequently, the pair probability distributi
factorized in terms of independent one-bubble dipole dis
butions is more accurate in predicting the properties of b
bly liquids than factorizations based on velocity—
impulse—distributions.

In Table I we also gave results for the collision fr
quency and collision stress. To evaluate these quantities
detailed form off is necessary. We assumed a Maxwelli
form for f . Thus, for example, for the case of independe
dipole approximation we chose,

f ~D!5
1

~2pTDc!
3/2expS 2

D2

2TDc
D , ~60!

whereTDc5^Dc
2&/3 is the temperature based on the dipo

distribution at collision. Based on our calculations for t
head-on collision of two bubbles we estimatedTDc to be
given by

-
t

air
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TDc5
8

35
T, ~61!

which assumes that in the bulk^D2&5^v2&/4, a result based
on an isolated bubble for whichD52v/2. Similarly, we
choseTIc5(m2/4)(10/7)T for the independent impulse ap
proximation andTc5(7/10)T for the independent velocity
approximation. With these forms forf we see from Table I
that all three approximations gave reasonably good estim
of both the collision frequency and collision stress.

In summary, the calculations presented in this sect
offer two ways to interpret the results of dynamic simu
tions. In the first, the bubbles are treated as hydrodyna
cally noninteracting particles with a virtual mass ofCk(f).
This gives an estimate of the collision stress that is in r
sonable agreement with the results of dynamic simulatio
It, however, does not predict the collision frequency c
rectly. In the second, the bubbles are thought of as inter
ing hydrodynamically but with very little change in the
dipoles. This gives reasonably good estimates of all the p
erties of the equilibrium state of the bubble suspension
addition, we also described a third, more rigorous appro
based on first determining the pair probability density a
then determining various average properties. The last
proach yielded quite accurate results for a dilute, equilibri
suspensions but its application to more general, dissipa
bubbly flows and to higher bubble concentrations would
quire substantially more effort than the first two approach

IV. KINETIC THEORY FOR SHEARED SUSPENSIONS

In this section we develop a kinetic theory for a den
sheared suspension of bubbles. We begin with the conse
tion equation for a dynamic variablec associated with the
motion of bubbles:

]

]t
n^c&1

]

]xj
n^wjc&2n^ċ&50, ~62!

wherewj is the velocity of a representative bubble andċ is
the rate of change ofc with time following the motion of the
bubble. We shall assume that the mean velocity gradien
g i j and write

wi5g i j xj1v i , ~63!

wherexj is the center of the bubble andv i is the velocity
relative to the mean flow. We shall restrict our attention
the case when there is no mean force acting on the bub
and hencê v i&50. Our main interest will be to determin
the velocity variance and the kinetic and collisional stress
Since the kinetic part of the pressure tensor is given
Pi j
k 5n^I iv j&, we apply the above conservation equation

c i j5I iv j . Substituting forc in ~62! we obtain

D

Dt
n^c i j &1

]

]xk
n^vkc i j &1ngkk^c i j &5n^ċ i j &, ~64!

whereD/Dt is the time derivative following the averag
motion of the suspension. Analogous to~6!, the rate of
change ofc i j following the motion of the bubbles can b
decomposed into four parts due to potential-flow inter
1550 Phys. Fluids, Vol. 9, No. 6, June 1997
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tions, viscous forces, the mean flow, and bubble–bubble
lisions. The results of the previous section suggest that
potential flow interaction force will have a minor effect o
the behavior of a bubbly liquid with zero mean relative v
locity and therefore we shall neglect the contribution fro
this force.

Next we will estimate the viscous contribution to the ra
of change of the kinetic stress,^ċ i j &. It can be shown that

^c i j & and hencê ċ i j & must be symmetric. The proof relie
on the fact that the impulse of a bubble can be expresse
a product of a symmetric generalized added mass matrix
the velocity of all the bubbles in the suspension.9 Thus, we
shall estimate the contribution toċ i j from the forces exerted
on the bubble due to viscous effects and the mean flow s
ply from their contributions to İ i by using ^ċ i j &
5 ^ İ iv j1v i İ j&. In other words, we takêI i v̇ j&5^v i İ j&. This
approximation would be exact if the changes in the velocit
and impulses of the bubbles had no effect on their spa
structure and therefore their added mass matrix. This
proximation will become increasingly accurate with increa
Re. In addition, we will use the largeRe estimate of the
viscous dissipation obtained in the previous section. Th
the viscous contribution is expressed as

^ċ i j
v &5224pmaRdisŝ v iv j&. ~65!

The contribution due to the mean flow is written as

^ċ i j
u &52^gkick j1gk jcki&. ~66!

The fluid acceleration termmD^ui&/Dt in ~6! does not con-
tribute to the above term since it must be multiplied
^v i& which vanishes in the present case of no mean rela
motion.

The above estimates of the contributions toċ i j from
various forces acting on the bubbles do not require a deta
knowledge of the velocity distribution. A calculation of th
contribution from the collisional force on the other hand r
quires a specification of the two-particle velocity distributio
at contact, i.e., atR52.

In the theory of hard-sphere dense gases and gran
materials it is usually assumed that the two-particle veloc
distribution can be expressed as a product of single-par
distributions, i.e.,P25n2x f (v1) f (v2). The collisional rate of
change of any dynamical variablec is then given by~see
Jenkins and Richman38 and Kremer and Rosa39 for details!

n
]c^c&

]t
5S~c!2

]

]xk
Qk~c!2gklQl S ]c

]vk
D , ~67!

where

S~c!5n2xE
g•k.0

~c2c8! f ~v1! f ~v2!H 11ak

•¹ ln
f ~v1!

f ~v2! J ~4a2!g•kdv1dv2dk, ~68!
Kang et al.
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Q~c!5an2xE
g•k.0

~c82c!k f ~v1! f ~v2!H 11ak

•¹ ln
f ~v1!

f ~v2! J ~4a2!g•kdv1dv2dk, ~69!

wherev1 andv2 are the velocities of the colliding particles
g5w12w2 is the relative velocity,wa5va1g•xa is the ac-
tual velocity of the particlea, andc andc8 are the values of
c for particles 1 just before and after the collision.

The above expressions are appropriate to bubble sus
sions provided that the velocities of the colliding bubbles
independent of each other. Our calculations in the previ
section suggest that it is probably more appropriate to t
the dipoles of the bubbles as independent. Detailed calc
tions, however, show that the results obtained with the dip
approximation are essentially the same as those obta
from the above expressions provided that we treat
bubbles as rigid particles with independent velocities a
mass (m/2)Ck(f). Thus, we shall evaluate the collision
contribution to ^ċ i j & using ~67!–~69! by substituting
c5I iv j5(m/2)Ckv iv j . Later we shall quote how much th
results forS andQ would have been affected if we had us
instead the independent dipole approximation for the col
ing bubbles.

An exact solution forf would require a solution of the
Boltzmann equation for the velocity distribution. Howeve
this is cumbersome and therefore we shall use Gra
method5 to obtain approximate solutions for the second m
ments of the velocity distribution. This method was shown
yield reasonably accurate results for gas–solid suspensio
finite Stokes numbers and finite inelasticity.4 In this method,
the velocity distribution is assumed to take a form

f ~v!5H 11
1

2
ai j T

]2

]v i]v j
J f M~v!, ~70!

where f M is the Maxwellian velocity distribution. It is eas
to show that the constantai j is related to the second mo
ments of velocity by

^v iv j&5T~d i j1ai j !. ~71!

Since the bubble-phase temperatureT equals one-third the
velocity variance, we require that the traceaii be zero.

Substituting~70! for f into the expressions forS and
Q, taking c5I iv j5(m/2)Ckv iv j , and evaluating the inte
grals yield~see Kremer and Rosa39!

S~ I iv j !5~m/2!nCkxfF2
48

5ap1/2ai j T
3/2

1
24

5
TSeij21

3
ekkdij DG, ~72!

Qi~ I j !5~m/2!CkQi~v j !5Sm2 DCknxfF4TS d i j1
2

5
ai j D

2
32

5p1/2aT
1/2S ei j1 1

2
ekkd i j D G , ~73!

whereei j5(g i j1g j i )/2 is the rate of strain tensor.
Phys. Fluids, Vol. 9, No. 6, June 1997
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We mentioned earlier that the results based on the in
pendent dipole approximation are essentially the same
~72! and~73!. We now cite a few specific results. The coe
ficient of the T3/2 term in the expression forS evaluated
assuming that the dipoles of the colliding bubbles are in
pendent of each other differs only by 7% from the abo
result based on the rigid particles with virtual mass
(m/2)Ck . Similarly, Qi(v j ), which is same as the collision
stress, was found to be essentially the same for the effec
rigid particle and the independent dipole approximations.

We now restrict our attention to steady, homogeneo
flows with gkk50 for which ~64! reduces tô Ṗi j &50 since
n^Pi j & is independent of time and position. Substituting f
the viscous, mean flow, and collisional contributions
Ṗi j , and rearranging, we obtain

ei j F11
8

5
fxG1

Rdiss

Cktv
~d i j1ai j !1

24

5ap1/2fxT1/2ai j

1
1

2
~gkiak j1gk jaki!1

4

5
fx~g ikak j1g jkaki!

2
16

5p1/2faT21/2x~ek jg ik1ekig jk!50, ~74!

wheretv5m/(24pma) is the viscous relaxation time for a
isolated bubble.

In the next section we shall compare the predictions
the kinetic theory with the results of dynamic simulation
The simulations with periodic boundary conditions are m
conveniently carried out for the special case of simple sh
for which g i j5gd i1d j2 with x1-axis as the flow direction,
x2-axis as the gradient direction, andx3-axis as the vorticity
direction. Defining the Stokes number bySt5gtv5Re/18
and the effective Stokes number at finite volume fractions

S̄t5
CkSt

Rdiss
5

CkRe

18Rdiss
, ~75!

we obtain the following four scalar equations forai j from
~74!:

S̄t211a11~S̄t
211v!1

8

5
fxa122

l

v
50, ~76!

S̄t211a22~S̄t
211v!1a1250, ~77!

S̄t211a33~S̄t
211v!50, ~78!

1

2 S 11
8

5
fx D1a12~S̄t

211v!1
a11
2

1
4

5
a22fx50,

~79!

where

v5
24fx

5ap1/2

T1/2

ga
, l5

384

25p
f2x2. ~80!

Solving ~76!–~79! together with the condition that the trac
aii must be zero yields

a125
5~l23vS̄t21!

v~518fx!
, ~81!
1551Kang et al.
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a115
1

v1S̄t21 H l

v
28fx

l23vSt21

v~518fx!
2S̄t21J , ~82!

a225
1

v1S̄t21 H 2
5~l23vS̄t21!

v~518fx!
2S̄t21J , ~83!

a3352
1

11vS̄t
. ~84!

In addition, it is easy to show thata135a2350. Finally, the
condition thataii50 yields the following cubic equation fo
v:

v32F S̄t6 S 11
8

5
fx D 222S̄t211

lS̄t

3 Gv21F S̄t222
2

3
l

2
8

5
fxGv2

1

3
lS̄t211

1

30
S̄tl~8fx25!50. ~85!

Note that the above equation, which represents the fluc
tion energy balance, determines the steady state bub
phase temperature.

At this point, it is interesting to compare the theory f
bubble suspensions presented here with the theory of g
solid suspensions at finite Stokes numbers due to San
et al.4 In that the effective Stokes numberS̄t was defined as
S̄t5gm/(6pmaRdiss), m being the mass of the particle
The energy dissipation coefficientRdiss for the gas–solid sus
pensions determined from the Stokes flow interactions
very different from that for bubble suspensions. In bub
suspensions there is an additional factorCk(f) which ac-
counts for the variation of virtual mass of bubbles withf.
Another important difference is the contribution toċ i j due to
mean flow @cf. ~66!#. This can be decomposed into tw
terms:~i! due to spatial acceleration of the mean flow; a
~ii ! due to mean vorticity of the fluid. More specifically, th
contribution toİ i from the mean flow is@cf. ~6!#

İ i
u5mav̇ i

u5FmD^ui&
Dt

2mag i jv j G1ma~g i j2g j i !v j ,

~86!

where we have takenI i5mav i , ma being the effective vir-
tual mass of the bubbles. The last term on the extreme r
side of the above expression, which is commonly referred
as the lift force term, was absent in the theory of gas–s
suspensions. Also, for gas–solid suspensions, the term in
the square brackets is replaced by the reaction fo
2m^u̇i&52mD^ui&/Dt2mv jg i j . When there is no mean
relative motion, there is no contribution from theD^ui&/Dt
term, and consequently the termgkiak j1gk jaki in ~74! re-
places theg ikak j1g jkaki term in the gas–solid suspensio
theory. Comparing the cubic equation forT1/2 derived here
with that in Sanganiet al.,4 we see that the first two terms i
the two theories are identical. The other two terms have
same leading order behavior in the limitf→0. Thus, the
nondimensional temperatures in bubble suspensions
gas–solid suspensions at finiteSt are identical at low volume
fractions. The stress components for the two suspensi
however, are unequal. In fact, it is easy to show thata11 and
1552 Phys. Fluids, Vol. 9, No. 6, June 1997
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a22 for bubble suspensions correspond, respectively, toa22
anda11 in the gas–solid suspensions in the limit off→0.
Thus the effect of lift force is to simply rotate the stre
components by 90° in the plane of shear at smallf.

When all three roots of the cubic equation~85! are real
and positive, the theory predicts three steady states of w
the state with the intermediate value ofT can be shown to be
unstable while the states with the lowest and highestT are
stable and are referred to as the quenched and ignited st
respectively.~By stability here we mean the stability to sma
spatially homogeneous variations in the bubble-phase v
ance. Thus, for example, a small increase in the variance
the intermediate state will yield a greater increase in the
ergy input by shear than the increase in the viscous ene
dissipation rate, and consequently, the system will move
ward the ignited state. Likewise, a small decrease in the v
ance starting from the intermediate state will cause the s
tem to become quenched. Whether these ignited
quenched states are also stable to smallspatial variations in
the bubble-phase volume fraction or temperature canno
answered, of course, by this sort of reasoning!. In the small
f limit, the analysis of Tsao and Koch7 originally derived
for gas-solid suspensions can be applied to bubble sus
sions as well. These investigators showed that both st
exist whenSt.241/2 andfSt3,1.5 and the final steady stat
depends on the magnitude of the initial velocity fluctuatio
in the suspension. On the other hand, the final state is
ignited state regardless of the initial conditions ifSt.241/2

and fSt3.1.5. Finally, only the quenched state exists f
St,241/2 and fSt3.1.5. Since the relation~85! for T in
bubble suspensions departs from that for gas–solid sus
sions at finitef, it is interesting to compare the behavior
finite f. Let us denote byRei the Reynolds number below
which the ignited state does not exist and byReq the Rey-
nolds number above which the quenched state does not e
The cubic equation~85! was solved numerically to determin
these two critical Reynolds numbers as a function off and

FIG. 5. The critical Reynolds numbers as functions of volume fractionf.
The ignited state will exist only forRe.Rei while the quenched state wil
exist only forRe,Req .
Kang et al.
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the results are shown in Figure 5. Multiple steady states
possible whenRei,Re,Req . For Re,Rei only the
quenched state exists while forRe.Req only the ignited
state exists. We see that these two curves mee
f.0.014. Above this value off the cubic equation~85!
permits only one real root and hence only one steady st

For a givenf whenRe is decreased from a high valu
for which the ignited state exists, the velocity variance of
bubbles will decrease smoothly untilRe5Rei below which
there will be a sudden decrease in the variance because o
transition to the quenched state. Figure 6 shows the jum
the variance that will occur atRe5Rei . Once again, at
f.0.014, the jump in the variance vanishes and hencT
will be a smooth, continuous function ofRe for f greater
than this critical value. This behavior of bubble suspensi
is qualitatively similar to that in gas–solid suspensio
where the criticalf was found to equal approximately 0.05
The present analysis shows that the multiple steady st
described in Sanganiet al.6 occur only for very dilute sus-
pensions.

V. COMPARISON WITH NUMERICAL SIMULATIONS

We now compare the predictions of the kinetic theo
presented in the previous section against the results of
merical simulations for bubble suspensions subject to
simple shear flowg i j5gd i1d j2. Two kinds of suspension
were simulated:~i! bubble suspensions with full hydrody
namic interactions as described in Section II; and~ii ! an ef-
fective hard-sphere model of a bubble suspension. In~ii ! the
bubbles were treated as if they have a virtual mass
(m/2)Ck . The trajectories of the particles were evaluat
using

m

2
Ck

dv i
dt

5212pmaRdissv i2
mg

2
Ckv1d i21Fi

c , ~87!

whereFi
c is the hard-sphere like collision force. Note that t

detailed potential flow interactions are neglected in th

FIG. 6. The values offT1/2/ga for the ignited and quenched states
Re5Rei .
Phys. Fluids, Vol. 9, No. 6, June 1997

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
re

at

e.

e

the
in

s
s

es

u-
a

f
d

e

simulations andCk andRdissare the same as that determin
in Section II. It should be noted that the kinetic theory w
developed in the previous section corresponds exactly to
situation described by the effective hard-sphere simulatio
Thus, a detailed comparison of the results from~ii ! with the
theory will allow us to assess the validity of the Grad’s a
proximation used in the kinetic theory while the comparis
of ~i! and ~ii ! will indicate the validity of replacing the de
tailed hydrodynamic interactions among the bubbles w
volume-fraction-dependent virtual mass and drag coe
cients.

All simulations were carried out with 54 bubbles~or
particles!, which were initially randomly placed inside a un
cell of a periodic array. The simulation with full hydrody
namic interactions was carried out typically over seve
thousand collisions. The number of collisions per bub
once the steady state was attained was thus typically in
range of 100–500.

In what follows we shall present results for a wide ran
of values ofRewith the goal of assessing the kinetic theor
Obviously the assumptions made in evaluating the bub
trajectory, viz. small Weber number and largeRe, will not
be expected to apply for such a wide range of values
Re. We shall defer the question of determining the range
Re for which the model simulations carried out here are m
likely to apply to Section VI.

Figure 7 shows the velocity variance as a function
f for Re5180. At such a high Reynolds number, the va
ance is much greater thang2a2 and the velocity distribution
should resemble that of the equilibrium state studied in de
in Section II. Thus, we expect the Grad’s approximation
be reasonably accurate. We see that the simulation result
generally in good agreement with the predictions of t
theory with the maximum deviation of about 15% atf
50.05 and 0.3. We note that the velocity variance go
through a minimum aroundf50.15. The viscous energ
dissipation per unit volume of the suspension varies appr

FIG. 7. Velocity variance as a function off for Re5180. The simulation
results are indicated by diamonds and the theoretical predictions are
cated by the solid line.
1553Kang et al.
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mately linearly withf while the shear energy input, whic
roughly equalsmsg

2, approaches a constant value tim
T1/2 asf→0. At steady state the balance of the two requi
that T/g2a2 vary as (Re/f)2 at smallf. Here,ms is the
bubble-phase viscosity as explained in more detail bel
For a fixed value ofT, the contribution from the collision
stress at givenT increasesms at rate that is faster than th
increase in viscous dissipationRdiss and, consequently, th
velocity variance goes through a minimum.

The results for shear viscosity of the bubble-phase a
function off at Re5180 are shown in Figure 8. The she
viscosity is related to the bubble-phase stress by

s1252P125msg12. ~88!

Since the calculation of the potential interaction stress
computationally intensive and since this stress was foun
be roughly 5% of the collisional stress for the equilibriu
case considered in Section III, we calculated the stress in
dynamic simulations by adding only the kinetic and co
sional components of the stress. These stresses are eva
in the theory from

s i j
k 52nma^v iv j&52

r

2
fCkT~d i j1ai j !, ~89!

s i j
c 52Qi~ I j !522rf2xCkTFd i j1 2

5
ai j

2
8

5~pT!1/2
aH ei j1 1

2
ekkd i j J G . ~90!

As shown in Figure 8, the agreement between the the
and simulations is excellent when the results of dynam
simulations are plotted asms /T

1/2. Thus, the 15% deviation
in T between the theory and simulations noted earlier~cf.
Figure 7! does not arise from errors in the expression for
shear viscosity in terms ofT. At largeRe, the bubble-phase
viscosity is sensitive to the coefficient of the leading ord

FIG. 8. The bubble-phase shear viscosityms ~scaled byraT1/2! as a func-
tion of f for Re5180. The predicted values as shown by the solid line
estimated by combining~89! and~90!. The dotted line represents the den
gas theory prediction given by~91!.
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terms inS andQ in ~72! and ~73!, and a good agreemen
with the results forms indicates that the expressions for the
terms based on a hard-sphere model are reasonably acc

The dotted line in Figure 8 corresponds to the shear
cosity based on the well-known kinetic theory of dense ga
with the molecules of the gas being treated as having
effective mass (m/2)Ck :

ms
`5

8

5p1/2aT
1/2f2xrCkF11

p

12S 11
5

8fx D 2G . ~91!

We see that the calculated value of the shear viscosity i
reasonably good agreement with the above formula
Re→`. The theory of dense gases considers small pertu
tions to the equilibrium state (T@g2a2) and therefore the
above expression forms is relatively simple and only a func
tion of T andf. In contrast, the approximate theory we ha
developed here is more complete in the sense that it attem
to determine the viscosity even whenga is comparable to
T1/2.

Figure 9 shows the comparison between the theory
simulations for the bubble-phase pressure defined as
third the tracePkk . We see once again an excellent agre
ment between the theory and simulations.

The results for the normal stress differences are sho
in Figures 10–11. According to the theory,P115P33 and
P22.P11 in the limit of small f. The theory for finitef
predicts thatP222P11 will change sign atf.0.17. The lift
force tends to increase the velocity fluctuations in t
x2-direction and this leads to a greater kinetic stress for
22 components. This results in the positive value
P222P11 at low f. At higher volume fractions the signifi
cance of the collision stress increases and the collisions
crease the 11 components of the stress because the imp
simple shear flow induces a relative motion of the bubb
along thex1-axis. The results of numerical simulations a
seen to follow this general trend. It may be noted that t

e
FIG. 9. Bubble-phase pressureP scaled byrT as a function off for
Re5180.L : sum of collisional and kinetic bubble-phase pressures,h :
the collisional part,1 : the kinetic part. The lines represent the predictio
of the theory@cf. ~89! and ~90!#.
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behavior of bubble suspension is different from that found
gas–solid suspensions where the lift force was absent an
mean flow effect was to induce greater fluctuations in
x1-direction. As a consequence,P11 for the gas–solid sus
pensions was greater thanP22 andP33 for the whole range of
f.

The calculations discussed above were carried ou
largeRe to test the accuracy of the expression~72! for S
which could not be tested independently through the sim
tions of the kind described in Section III. At such large
Re, however, it is likely that the Weber number will also b
large and the spherical bubble assumption cannot be j
fied. Thus, it is of practical importance to compare the the
and simulations for smaller values ofRe. Figure 12 shows
the velocity variance as a function ofRe for f50.3. The
results based on hydrodynamically interacting bubbles
indicated by diamonds while those based on the hard-sp

FIG. 10. (P222P11)/P as a function off for Re5180. The theory is
represented by the solid line while the diamonds are the results of nume
simulations.

FIG. 11. (P222P33)/P as a function off for Re5180.
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model are indicated by pluses. We see that both are in v
good agreement with each other and with the predictions
the theory. The same is true for the results for the sh
viscosity shown in Figure 13. It is interesting to note th
ms /raT

1/2 remains approximately constant asRe is varied
from 200 to 60. This constant value is in good agreem
with ~91! based on the kinetic theory of dense gases wh
predicts that the constant is equal to 0.326 forf50.3. Simi-
larly, the results for the bubble-phase pressure shown in
ure 14 are in good agreement with the theoretical pred
tions. In particular,P/T is seen to remain approximatel
constant for all the values ofReexamined in the simulations
indicating that the contribution from the imposed shear@the
term ofO(T1/2) in ~73!# remains small for the entire range o
Re.

al
FIG. 12. Velocity variance as a function of Reynolds number forf50.3.
Diamonds are the results of detailed hydrodynamic interactions while
pluses are the results for the effective hard-sphere model. The solid
represents the theory.

FIG. 13. Scaled bubble-phase shear viscosity as a function ofRe for
f50.3. Refer to Figure 12 caption for symbols.
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In contrast to the above results, the agreement for
normal stress differences shown in Figures 15–16 is no
good. Our theory predicted the normal stress differe
P222P11 to be negative while the simulations gave positi
values. The stress difference, however, is less than 5% o
pressure and is therefore unimportant from a practical p
of view. The results for the stress differenceP222P33 on the
other hand are larger in magnitude and seen to be in qu
tative agreement with the predictions of the theory. Note a
that the results calculated including the full hydrodynam
interactions are essentially the same as that obtained from
hard-sphere model forRe greater than about 60. The stre

FIG. 14. Bubble-phase pressureP scaled byrT as a function ofRe for
f50.3. The kinetic, collisional, and total pressures for the bubble sus
sions are denoted, respectively, by squares, pluses, and diamonds. Th
responding results for the effective hard-sphere model are indicated
crosses, triangles, and stars. The lines represent the theoretical predic

FIG. 15. The normal stress difference as a function ofRe for f50.3.
Diamonds and pluses are, respectively, the results for bubble suspen
and the effective hard-sphere model. The line represents the theory pr
tion.
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difference for smallerRe is greater for bubble suspension
than for the hard-sphere model.

The results forf50.15 are shown in Figures 17–21. W
see once again that the results for the velocity variance ar
very good agreement with the theory for a wide range
Re. The bubble-phase shear viscosity scaled withraT1/2 is
seen to vary only by about 30% asRe is decreased from 200
to 40. The agreement between the theory and simulations
the normal stress difference is good forP222P33 but not for
the other stress difference. The results for the hard-sph
model system are in excellent agreement with those for
bubble suspension. Thus, the observed discrepancy betw
the computed normal stress differences and the theory a
due to inaccuracies in the Grad’s approximation.

Finally, the results forf50.05 are shown in Figures
22–26. Although there appears to be a slight systematic
ference in the velocity variance and shear viscosity for

n-
cor-
by
ns.

ons
ic-

FIG. 16. The normal stress difference (P222P33)/P for f50.3. See the
Figure 15 caption for the symbols.

FIG. 17. The nondimensional velocity variance as a function ofRe for
f50.15. See the Figure 15 caption for symbols.
Kang et al.

icense or copyright; see http://pof.aip.org/about/rights_and_permissions



t
is
s
-
xi

a
th
t
ad
s
h
a

t
t

ig-

ion

ich
that
. In
as-
city,
n-
ity
for
ed
we
s of
bubble suspension and the hard-sphere model system a
higher values ofRe, the agreement of both with the theory
quite reasonable. Note also that, in contrast to the result
higherf, the scaled viscosityms /raT

1/2 decreases substan
tially asRe is decreased from 200 to 40. The simple appro
mation based on kinetic theory of gases@cf. ~91!# does not
exhibit this Reynolds number dependence and is not an
equate description for dilute bubble suspensions. On
other hand, the theory presented here which accounts for
change in the velocity distribution due to imposed shear
equately describes the rheology of bubble suspension
small f. Finally, we note that the agreement between t
simulation results and the theory is very good for the norm
stress differences. It may be noted that smallf theory pre-
dicts thatP115P33 while both our simulations and the finite
f theory showP112P33 to be significant. We also note tha
the results forf50.05 show no evidence of an abrup

FIG. 18. The scaled bubble-phase shear viscosityms /raT
1/2 as a function

of Re for f50.15. See the Figure 15 caption for symbols.

FIG. 19. The normal stress difference (P222P11)/P as a function ofRe for
f50.15. See the Figure 15 caption for symbols.
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change in the behavior of bubble suspensions from the
nited state to quenched state found for very smallf. This is
consistent with Figure 8 which shows that such a transit
only occurs forf,0.014.

VI. BUBBLES WITH NONLINEAR DRAG

In Sections II–V, we considered the ideal case in wh
the bubbles are spherical and they produce a fluid flow
may be described using the potential flow approximation
addition, the drag coefficient for an isolated bubble was
sumed to have a linear dependence on the bubble velo
i.e., F5212pmva. While these approximations are reaso
able for bubbles traveling close to their terminal veloc
over a narrow range of bubble sizes, they would not hold
the wide range of bubble velocities predicted in the ignit
state of a sheared bubble fluid. Thus, it is imperative that
assess the influence of nonlinear drag on the dynamic

FIG. 20. The normal stress difference (P222P33)/P as a function ofRe for
f50.15. See the Figure 15 caption for symbols.

FIG. 21. The normal stress differences (P112P33)/P as a function ofRe for
f50.15. See the Figure 15 caption for symbols.
1557Kang et al.
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sheared bubble suspensions to determine whether a
qualitatively similar to the ignited state predicted in the fo
going analysis can exist under physically realistic conditio
We have shown that hydrodynamic interactions play a m
est role in the dynamics of sheared bubble suspension
least in the regime for which the potential flow approxim
tion is accurate. For this reason and because no theo
available to describe the hydrodynamic interactions in
more general case, we will neglect such interactions in
section and will consider only the nonlinear drag acting
the bubbles and bubble–bubble collisions.

Our knowledge of the drag on bubbles comes from
tensive studies of the terminal velocity of bubbles in a va
ety of liquids by Haberman and Morton40 and others. The
Morton number,M5gm4/rs3, is a dimensionless numbe
that depends only on the viscosity and density of the liqu
the interfacial tension, and the gravitational accelerationg.

FIG. 22. The nondimensional velocity variance as a function ofRe for
f50.05. See the Figure 15 caption for symbols.

FIG. 23. The scaled bubble-phase shear viscosityms /raT
1/2 as a function

of Re for f50.05. See the Figure 15 caption for symbols.
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Thus, this number can be used to categorize various liqu
in terms of the type of buoyancy-driven bubble motion th
will be obtained. The most important parameter leading t
large variation of the Morton number among various liqui
is the viscosity. The Morton number can be as large as 105 in
highly viscous oils and, at such large Morton numbers,
bubble is always deformed whenever inertia is importa
However, water has a Morton number of order 10210. In
water and other low Morton number fluids, there exists
range of bubble sizes in which the Reynolds numb
Rev5rva/m, is large but the Weber numberWev
5 rv2a/s isO(1) or smaller.

A bubble rising in water is spherical at low to modera
Reynolds number and begins to take on an oblate sphero
shape atWev'0.5 which corresponds to about 0.5 mm r
dius bubbles and an approximateRev of 130. As the bubble
deforms, its drag coefficient and virtual mass both incre

FIG. 24. The normal stress difference (P222P11)/P as a function ofRe for
f50.05. See the Figure 15 caption for symbols.

FIG. 25. The normal stress difference (P222P33)/P as a function ofRe for
f50.05. See the Figure 15 caption for symbols.
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because the deformed bubble carries along with it more
the liquid. The increase in the drag coefficient increases
rate at which the kinetic energy associated with the bubb
motion is dissipated, while the increased added mass
creases the total kinetic energy in the liquid for the sa
bubble velocity variance or bubble temperature. Since
drag coefficient increases more rapidly than the added m
the net effect of the deformation effects at finiteWewill be
to decrease the bubble temperature. Moore41 and Lamb42 de-
rived theoretical predictions for the aspect ratio, drag coe
cient, and added mass of spheroidal bubbles at low and m
erateWev . These predictions have been shown to be
reasonable agreement with experimental measuremen
the terminal velocity and aspect ratio forWev,1.7 by
Duineveld.43 At larger Weber numbers, the bubble sha
loses its fore–aft symmetry and becomes unsteady and
drag on the bubble increases sharply. Eventually,
Wev>30, the bubble assumes a steady spherical cap s
and the drag coefficient takes on a constant value,
CD52F/(rv2pa2)'2.6.

To obtain a rough estimate of the effects of the chan
in drag and added mass induced by bubble deformation
the bubble velocity variance, we will perform simulations
which each bubble experiences a pseudo-steady drag
F5212Rpmva and has an added massma5(m/2)C, so
that the equation for the acceleration of bubblea is

v̇ i
a52

R

Ctv
v i

a2d i2v1
a , ~92!

where tv5a2r/(18m) is the viscous relaxation time of
spherical bubble. This expression assumes that the co
cient for the lift force is the same as the added mass co
cient. Finally, although the bubbles are deformed at
higher Weber numbers, we will continue to treat them
elastic spheres when evaluating bubble–bubble collision

We require a relationship for the ratioR/C over the full
range of Weber numbers in order to model the behavior o

FIG. 26. The normal stress difference (P112P33)/P as a function ofRe for
f50.05. See the Figure 15 caption for symbols.
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sheared bubble fluid with a wide distribution of bubble v
locities.

Moore41 provides expressions forR andC that are valid
for Wev,1.8. In the limit of small Weber number, thes
expressions yield R/C5110.038Wev . Furthermore,
CD /C5RevR/24C goes through a minimum atWev'1.3.
However, Moore’s expressions are not applicable
Wev.1.8. We know from experimental observations of t
terminal velocity thatCD'2.6 in the limitWev→`. There
are no experimental or theoretical results for the added m
coefficient at largerWev , so we will simply assume that th
added mass remains at the value calculated by Moore
Wev51.8 for all higher Weber numbers. An empirical rel
tionship forR/C that exhibits this largeWev asymptote and
approximates Moore’s results for moderateWev is

R

C
5
110.038Wev
110.08Wev

2 10.016Rev@12exp~20.032Wev
3!#.

~93!

In Figure 27, we present simulation results for the va
ance of the bubble velocity scaled with (ga)2 in suspensions
with volume fractions of 0.15~diamonds! and 0.3~pluses!.
The ratio of the Weber and Reynolds numbers based on
shear rate is chosen such thatWe/Re25m2/(ras)
' 1.431025, corresponding to bubbles with radii of 1 mm i
water. It can be seen that the variance grows to a value 1
15 times larger than (ga)2 before the ratio^v2&/(ga)2

passes through a maximum atRe'70.
The kinetic theory result~74! for the second moments o

the bubble velocity can be modified to include the effects
nonlinear drag, if the second term in~74! is replaced by the
value of ^v i v̇ i& derived using the new expressions~92! and
~93! for the bubble acceleration. The integrals for the dis
pation caused by the nonlinear drag must be performed
merically and so the equations for the moments cannot
written in an analytical form. However, they can readily

FIG. 27. Velocity variance for deformable bubbles with nonlinear drag. T
pluses and diamonds represent the results of numerical simulations wit
drag law based on~92! for f50.3 and 0.15, respectively. The lines are th
predictions of a kinetic theory.
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solved by Newton–Raphson iteration. The predictions of
kinetic theory with nonlinear drag are presented as do
and solid lines in Figure 27. They approach the kine
theory for spherical bubbles forRe,40 where nearly all the
bubbles in the suspension have small values ofWev . As the
Reynolds number is increased, the theory exhibits a m
mum value of^v2&/(ga)2 that is within about 20% of the
maximum seen in the simulations. Both the theory and sim
lations indicate that the velocity variance is larger in t
more concentrated bubble suspension as a result of
higher collision frequency.

Thus, we have seen that nonlinear drag has the effec
limiting the velocity variance that can be produced by she
ing a bubble suspension to a value at which the Weber n
ber based on the root-mean-square bubble velocity is of
der one. In the parameter regime that can be easily obta
with millimeter-sized bubbles in low Morton number liquid
the nonlinearity of the drag associated with bubble deform
tion makes significant quantitative changes in the predicti
of the theory. Nonetheless, the important qualitative pred
tion that shearing can induce a substantial variance of
bubble velocity and an associated bubble-phase stres
mains valid in the presence of nonlinear drag which agr
with ~8!.
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APPENDIX: THE MEAN FLOW CONTRIBUTION TO
THE FORCE ON A BUBBLE

We show here that~8! is valid for the special cases liste
in the main text. The previous investigators8,23 employed a
definition of the impulseJa based on the actual velocity o
the bubble instead of the impulseIa based on the relative
velocity used in the present study. The two are related b

Ja52m^u&~xa!1Ia. ~A1!

For the special case of small amplitude oscillatory mot
(^u&5Ueivt, U andv being constants! of massless bubble
in an inviscid liquid examined in Sangani, Zhang, a
Prosperetti17 the force balance on a bubble gives

05E
]Da

pndA52rE
]Da

]F

]t
ndA5 ivJa, ~A2!

whereF5w1^U&•xeivt is the velocity potential based o
actual fluid velocity. Thus, the force balance reduces to

ivIa5 ivmU. ~A3!

This is consistent with~6! and ~8! with F^u&5 ivmU.
Now let us consider the case of linear extensional fl

with ^ui&5ei j xj . Neglecting the viscous and buoyanc
forces, the force balance on a bubble gives
1560 Phys. Fluids, Vol. 9, No. 6, June 1997
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dJi
a

dt
53mDj

a
]ui

r

]xj
. ~A4!

Here, ui
r is the regular part of the actual velocity near t

center of bubblea. The derivative in the above expressio
must be evaluated at the center of the bubble, i.e.,
x5xa. The above expression is exact within the point-dipo
approximation used throughout this study.8,23 Substituting
~A1! into ~A4! we obtain

dIi
a

dt
5mwj

a ]^ui&
]xj

13mDj
aF]^ui&

]xj
1

]2w r

]xi]xj
G , ~A5!

wherew r is the regular part of the velocity potential based
relative velocities of the bubbles. The last term in the abo
equation is the same as the potential interaction forceFp

a

given by~7!. Comparing~A5! with ~6! then requires that the
force due to mean flow be given by

F ^u&,i
a 5m@wj

a13Dj
a#

]^ui&
]xj

. ~A6!

Now the velocity potentialF near the center of bubblea can
be expressed asF5@Dj

a(a3/r 3)1Cj
a#r j where r5x2xa.

The velocity and impulse of the bubbles are therefore rela
to Da and Ca by wa5Ca22Da and Ja52m@Ca1Da#.
Eliminating Ca from the above relations yield
wa13Da52m21Ja. Substituting this relation into~A6!,
and using~A1!, we obtain

F ^u&,i
a 5@2I j

a1m^uj&#
]^ui&
]xj

, ~A7!

which agrees with~8!.
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