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The rheological behavior of rapidly sheared bubble suspensions is examined through numerical
simulations and kinetic theory. The limiting case of spherical bubbles at large Reynolds number
Re and small Weber numbaNe is examined in detail. HerdRe=pya?/ u and We=py?a’ls,

a being the bubble radiug; the imposed sheas,the interfacial tension, and andp, respectively,

the viscosity and density of the liquid. The bubbles are assumed to undergo elastic bounces when
they come into contact; coalescence can be prevented in practice by addition of salt or surface-active
impurities. The numerical simulations account for the interactions among bubbles which are
assumed to be dominated by the potential flow of the liquid caused by the motion of the bubbles and
the shear-induced collision of the bubbles. A kinetic theory based on Grad’'s moment method is used
to predict the distribution function for the bubble velocities and the stress in the suspension. The
hydrodynamic interactions are incorporated in this theory only through their influence on the virtual
mass and viscous dissipation in the suspension. It is shown that this theory provides reasonable
predictions for the bubble-phase pressure and viscosity determined from simulations including the
detailed potential flow interactions. A striking result of this study is that the variance of the bubble
velocity can become large compared witpa)? in the limit of large Reynolds number. This implies

that the disperse-phase pressure and viscosity associated with the fluctuating motion of the bubbles
is quite significant. To determine whether this prediction is reasonable even in the presence of
nonlinear drag forces induced by bubble deformation, we perform simulations in which the bubbles
are subject to an empirical drag law and show that the bubble velocity variance can be as large as
15y?a%. © 1997 American Institute of Physid$S1070-663(97)03006-7

I. INTRODUCTION ever, in the special case of a suspension of spherical bubbles
at high Reynolds number, the fluid flow can be approximated
The classic experiments of Bagnbldemonstrated that as a potential flow. The equation for the velocity potential is
rapidly shearing a suspension of particles could induce botthen the linear, Laplace equation and detailed numerical
tangential and normal stresses that are much larger thagimulations and kinetic theory can be developed. This ap-
those in the pure fluid. Bagnold’s experiments were perproximation is valid if the bubbles’ Reynolds number
formed with neutrally buoyant solid particles suspended in Re=pya?/u is large and their Weber number
liquid, and the large stresses were observed when the ReWe=py?a’®/s is small. Heres is the interfacial tensiory
nolds number and Stokes number of the particles were bothndp are the liquid viscosity and density,is the shear rate,
large, indicating that both fluid and particle inertia were im-anda is the bubble radius. These conditions can be achieved
portant. Subsequent experiments have shown that a simildor a narrow range of bubble radivith a=0(0.5 mm] in
behavior can be seen when dry granular materials are rapidlyater. Throughout most of this paper, we will assume poten-
sheared. A theoretical description of these effects has beertial flow in the continuous phase and spherical bubbles be-
developed for granular materials using a modification of thecause of the great theoretical simplifications that these ap-
kinetic theory of dense gases that takes account of the inelaproximations afford. However, in Section VI, we will
ticity of the interparticle collisiond.In this theory, the tan- consider the implications of the nonlinear drag force law
gential and normal stresses can be understood in terms ofaaising at finiteWe for the qualitative predictions of the
particulate-phase effective viscosity and pressure. Sangatheory. In this paper, we will study rapid shear flows of
et al* have extended this analysis to include the effects of dubble suspensions using numerical simulations that include
low Reynolds number flow of the interstitial gas. To date,the effects of the potential-flow interactions among the
however, there is no comparable theory for systems in whictbubbles. We will also develop a kinetic theory based on
the inertia of the interstitial fluid plays an important role as it Grad’s moment methotlt will be seen that the hydrody-
would when the continuous phase is liquid. namic interactions can be incorporated in such a theory by a
Theoretical analysis and numerical simulations in thesimple adjustment of the virtual mass and drag coefficient.
presence of fluid inertia are generally quite difficult. How- As a result, the kinetic theory for a sheared bubbly liquid
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will be shown to be quite similar to that derived previously librium state of a bubble suspension. We determine the equa-
for gas—solid suspensiofisTherefore, we shall see that the tion of state, i.e., the relation between the bubble-phase
variance of the bubble velocity becomes quite large leadingressureg, and T, using numerical simulations. The simu-
to a large disperse-phase pressure and viscosity analogousl&tions are supplemented with a theory for dilute bubbly lig-
that predicted and measured previously in granular flows. uids. As shown recently by Yurkovetsky and Bradythe

We have previously presented limited simulation resultsequilibrium state properties of bubbly liquids can be deter-
for very dilute bubble suspensions in a proceedings papermined from the configuration-dependent Hamiltonian of
There, we showed that dilute bubble suspensions can exhildiubbly liquids using the standard statistical mechanical tech-
multiple steady states at the same shear rate. These consistédues. More specifically, we use the Hamiltonian to deter-
of a quenched state, in which most of the bubbles followednine the pair probability distribution and hence the average
the motion of the liquid, and an ignited state, in which theproperties of dilute bubbly liquids. The predictions of this
variance of the bubble velocity was large compared withtheory are shown to be in excellent agreement with the simu-
(ya)2. A kinetic theory similar to that developed for dilute lation results. Since our primary interest is in developing a
gas—solid suspensions by Tsao and Koafas able to pre- kinetic theory for sheared suspensions which are not in equi-
dict this multiplicity of steady states. librium and for which detailed pair probability distribution is

In this paper, we will consider higher bubble volume not easy to determine, we also explore in this section how
fractions that are typically characteristic of flows in which sensitive various properties are to the assumed expression for
the disperse phase has a large effect on the suspension rhike pair probability density. It is shown that the simulation
ology. One of the motivations for studying sheared bubbleesults are most consistent with an assumption that the di-
suspensions is to assess the importance of mean velocity greeles induced by the bubbles are relatively independent of
dients in describing flows of bubble suspensions througlhe distance between the bubbles.
closed conduits such as vertical pipes. The potential flow In Section IV, we use Grad's moment method to develop
interactions among bubbles rising in an otherwise quiescer# kinetic theory for sheared bubble suspensions. This theory
liquid tend to create bubble clusté¥$This cluster formation accounts for the effect of the imposed shear on the velocity
is particularly severe when the magnitude of bubble-phasdistribution of the bubbles in an approximate manner by con-
velocity variance is small. One role of the shear-inducedsidering only the second moments of the velocity distribu-
bubble pressure investigated here may be to stabilize the htion. Although this theory is similar to that for the gas—solid
mogeneous state of the suspension against this clustering isuspensions developed by Sangetrél,* the presence of lift
stability. Of course, since we consider here only the case diorce on the bubbles and the volume-fraction-dependence of
mean shear in the absence of buoyancy forces producingthe virtual mass lead to important modifications of the
mean relative motion, the present study cannot prove thitheory. The theoretical predictions are compared against the
conjecture. The problem of determining a quantitative crite+esults of dynamic simulations of sheared suspensions in
rion for the stability of bubbly liquids in the presence of both Section V and the agreement between the two is shown to be
mean relative motion and mean shear, however, is considevery good for a wide range of values @f and Re An
ably more involved and is therefore left to a future investi-important conclusion from this section is that the detailed
gation. Finally, we note that, in addition to its significance tohydrodynamic interactions are not critical in determining the
the above problem, the shear-induced bubble pressure witheology of sheared bubble suspensions. Rather, the role of
also tend to prevent variations in the bubble volume fractiorpotential flow interactions is only to set the average virtual
driven by other types of forces, such as lift and centrifugalmass of the bubbles and the viscous energy dissipation rate.
forces, that may arise in pipe flows, vortical flows, and flowsThese quantities may be determined as functiong d&fom
through horizontal channels. Although the present study ishe simulations of the equilibrium state presented in Section
restricted to linear shear flows, the results obtained here willll.
provide insight into these more complex flows. In Section VI, we investigate the influence of the finite

In Section Il, we review the basic equations governingWeber number of the bubbles on the results. The bubble
the trajectories of spherical bubbles in a low viscosity liquiddeformation at a infinite Weber number tends to increase the
containing a sufficient amount of salt which prevents theadded mass and drag coefficient of the bubbles. We assume
bubbles from coalescing. These equations are taken froran approximate expression for the ratio of the drag coeffi-
Sangani and Didwanfaand Sanganet al® As mentioned cient to the added mass that agrees with theoretical analyses
earlier, the velocity fluctuations induced by the mean gradi-of these quantities at moderatée and approaches the drag
ent are much greater than the characteristic shear velociggoefficient for a spherical cap bubble in the limit of very
based on the radius of the bubbles wheais large. Thus, largeWe. The effects of bubble deformation on the dynam-
we will consider in Section Il the simple case in which the ics of bubble—bubble collisions and the hydrodynamic inter-
bubbles have isotropic velocity fluctuations with no meanactions among the bubbles are neglected in this section. It
relative motion between the two phases, no imposed sheawill be seen that the effects of deformation on the drag result
and no viscosity. The properties of such bubble suspensiordace an upper limit on the ratio of the bubble velocity vari-
are functions of¢p and the mean-squared velocity fluctua- ance to ya)? that can be achieved in practice. This limiting
tions characterized by the bubble-phase temperdtugince value is about 15. Nonetheless, the simulations with the non-
this system is analogous to a molecular system in the alinear drag law confirm the possibility of achieving quite
sence of an imposed flow, we shall refer to this as the equisignificant values of the bubble-phase pressure and viscosity.
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II. A REVIEW OF BASIC GOVERNING EQUATIONS We shall treat the bubbles as massless and take the vis-
. . . . . . cosity of the gas to be zero. Also, since we are interested in

In this section we review the basic equations governinggyating the effect of the mean velocity gradient, we shall set
the motion of bubbles in a liquid aRe>1 andWe=0. o pyoyancy force due to gravity to zero. The force balance

Further, we shall assume that the bubbles do not coalescgy, 4 representative bubhiecan be expressed in terms of its
but undergo elastic collisions. The coalescence of bUbbleﬁnpulse defined by

can be prevented in practice by the addition of surface-active

impurities. Careful observations on the effect of surface- N

active impurities on the dynamics of pairs of bubbles have 1= _PJSaﬂDndS ®)
been made by Kak~**and Duineveld* who found that mo-

lar concentrations of surfactants as small@&l0~%) are It is easy to show that the sum of the impulses of all the
sufficient to prevent coalescence. Such low concentrations dubbles equals the momentum of the liquid induced by the
the surfactants do not affect the potential flow approximaJelative motion of the bubbles. A bubble moving with a ve-
tion. At high surfactant concentrations, of course, thelocity that differs from the mean suspension velocity carries
bubbles begin to behave like rigid spheres leading to break¥ith it some liquid momentum, and therefoté may be
down of the potential flow approximation. Alternatively, the thought of as the virtual momentum of bubhle

coalescence can also be prevented by the addition of salt as The force balance on the bubble gites

shown, for example, by Lessard and ZiemersSkihese in- @

vestigators showed that a sufficient concentration of electro- — = |:3+ Fo+ |:<“u>+ Fe, (6)

lyte in aqueous solution gives rise to short-range forces that

prevent coalescence. Experimental observations of b“bb\ﬁherng is the potential interaction forc& is the viscous
collisions in salt solutions by Tsao and Kd@findicate that force,Ff‘w is the force due to mean flow, aifg is the force

bubbles bounce _W'th little loss of k|net|c_e_n_ergy. due to collision. The potential interaction force is evaluated
Let us considerN bubbles placed initially randomly romLo

within a unit cell of a periodic array with their centers at
x* and velocitiesw®, a=1,... N. The velocity of the Fe=4mpa’D*- VV o' (x%)
bubble « relative to the average suspension velocity
(u)(x,t) will be denoted byw?, i.e.

vi=w—(u)(x,t). (1)

The velocity of the liquid is similarly expressed as where¢' represents the regular part ¢f i.e., the velocity
u(x,t)=(u)+u’, whereu’ represents the disturbance flow potential minus the potential induced by the bubble itself.
induced by the bubbles moving with the relative velocity Therefore, the singular part &, i.e. 1f, must be removed
v®. When the bubbles are spherical and the Reynolds numbd&iom S, before differentiating it three times for=a.
is large, the disturbance flow can be treated as irrotational. At large Reynolds numbers, the detailed short-time tra-
The velocityu’ is then expressed as a gradient of a velocityjectories of the bubbles are determined primarily by the
potential ¢ satisfying potential—flow interactions and collision forces. However,
5 viscous forces play an essential role in controlling the kinetic
Vie=0, 2 energy of the suspension over lon@(Re 1), periods of
with the boundary condition that: Vo =n-v® on the surface time. To leading order, i.e., t®(Re 1), the viscous force
S¢ of the bubblex. Here,n is a unit outward normal vector can be evaluated by computing the rate of energy dissipation
on S*. We shall use the method of multipole expansions toassociated with the potential flow induced by the motion of
determinep. As shown in Sangani and Didwafiiand San-  the bubbles. Levich used this observation to show that the
gani, Zhang, and Prosperetfithe velocity potential can be drag on a single bubble is given Wy,=—127uav. His
determined accurately using a point-dipole approximation, method was extended by Kbk'? to the case of many

N
= —4mpa’Y, DD%:VVVS(x*—x), )
y=1

N bubbles to show that the viscous force on individual bubbles
¢(X)=G~x—a32 D%. VS, (x—x%), 3) can be_determined from_ the relati(ﬁff’=—_(1_/2)V_vaEdiSS, _
a=1 Eqiss being the rate of viscous energy dissipation per unit

cell. Alternatively, the viscous force on individual bubbles
can also be determined by solving a Laplace equation for the
viscous potential as shown in Sangani and Didw&nkes
shown by these authors the two methods give identical re-
sults. Since the latter offers some computational advantages,
we use it in the present study.
3¢ N As in Sangankt al.,® we shall use the following expres-
G= Wzl D*, 4 sion for evaluating the contribution of the mean flow to the
force:

where ¢ is the volume fraction of the bubbles. Physically,

G represents the back flow induced by the relative motion of a _ D(u) _ @
the bubbles. Fo=mMpir (V{u))-19, (8)

where S; is a Green’s function for Laplace equation in a
periodic domaif andD“ is the induced dipole strength due
to the presence of bubble. The requirement that the aver-
age ofu’ over a unit cell of the periodic array be zero is
satisfied by choosifg
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where the derivatives of{u) are evaluated atx=x?, 27pa’ NN

m=4mpa®3 is the mass of the liquid having the same vol- ~ Pf=— > D DED26ijmnSy(x¥—X")
ume as the bubble, arl/Dt=g/dt+(u)-V is the time de- Toasly=l
rivative following the average motion of the suspension. — (8 Imnt Oindim+ Sjmdin) SL(XE—x")]. (12)

While we do not have a rigorous proof justifying the use of _ _ ) .
(8), this relation is consistent with several known results for 1€€,N=N/7 is the number density of the bubblespeing
limiting and/or special cases as shown in the Appendix{N€ volume of the unit cell. The summation(itd) is over all
These includéi) the case of small-amplitude oscillatory mo- th€ collisions occurring over time intervalt.
tion examined in Sangani, Zhang, and Prospe?é(ﬁii;) the
linear extensional flow(u;)=g;;x; with e;=e; for which  1ll. PROPERTIES OF BUBBLY LIQUIDS IN THE
the flow is entirely irrotational; andiii) the simple shear ABSENCE OF SHEAR, GRAVITY, AND VISCOSITY
flow past a single spherical bubble with weak shear
(ya<v®) for which the flow has a nonzero vorticify.Fi-
nally, the expression is also consistent with that proposed b
Auton, Hunt, and Prud’homm&for an isolated bubble if we : . .
: o i be useful to consider the behavior of a bubble suspension in
substitutel *=mv</2 in (8). i ST
. ) : . the absence of shear and viscous dissipation before develop-
The collision force is evaluated as described in Sangani S . o
: ) N . Ing the kinetic theory for the more practical situation of a
and Didwanid The collision is treated as an instantaneous : S .
" sheared suspension of bubbles experiencing viscous forces.
event that preserves the kinetic energy and momentum of thle . N
S ) o . ) . h the absence of viscous dissipation and shear work, the
liquid. This assumption is consistent with experimental ob-

servations and asymptotic analysis of bubbles bouncing irl§|net|c energy and momentum of the liquid are conserved

16 2 . and we will consider the case in which the liquid momentum
isriguvlvsetecr)fa&%mz c#’;\ ;?](;r;gotljl)lﬁs;lokn vaggr:kblfstilrz ' Ltjl::le'[ aqd the mean velqcity of the bubble—phgse are .both zero. In
vector alongc®— x” andF., is the mfagnitude of the collision thIS case, the spatial st_ructure_ and velocity dlstrl_butlon fgnc-
impulse determined fromc the relatfn tion of the system are isotropic and are determined entirely

by the initial kinetic energy and the volume fractignof the
bubbles. In analogy with the molecular systems, we shall
refer to this as the equilibrium state of a bubble suspension.
Our objective in this section will be to determine the equa-
tion of state, i.e., the relationship of the stress and kinetic
Here,w®* andw?” are the actual velocity of the bubblgsf. energy tog and the bubble-phase temperaﬁll'ﬁe<uz>/3. In
- . ~ ~ . addition, we shall be interested in comparing the microstruc-
(1)] just before the collision and® andv? are the velocities o of the bubble suspension with that of a hard-sphere mo-
of the bubbles when each bubble is acted upon by a Unibcular system, and in determining the leading order estimate

Lorg& anngdthdg Ilnedqunlngdthe centder hOf the COI“T”% of the rate of viscous energy dissipation when the liquid has
ubbles and directed Inwards toward the center of the oy p; finjte viscosity. First, we will present results of

bupble, the force on all the other bubbles in the S“SpenSiOHumerical simulations for a range of volume fractions

being zero. . . 0<¢<0.30. Then, in the second subsection, we will derive
Most of the results we shall present in this study Wereshalytical results valid in the limigg—0.

obtained by dynamic simulations in which the trajectories of

the bubbles were evaluated using a modified Euler schem@. Numerical simulations

described in Sangani and Didwarfighe simulations deter-  The spatial distribution of the bubbles is isotropic and

mined the microstructure parameters such as the radial digyn e characterized in terms of the radial distribution func-

tribution function, the velocity variancgv®), and the o g(r). Figure 1 gives resultadiamonds for the value of

dispersed-phase pressure tenBgr (related to the bubble- o 5¢r—24 obtained by dynamic simulations of bubble sus-

phase ;trgess byrij=—Pjj). As shown in Sangani and pensions. These values were computed by determining the

Didwania and Bulthuis, Prosperetti, and Sangghithe 1\ mper of pairs of bubbles with center-to-center separations

stress consists of three parts: kinetic, collisional, and poteny, ihe range of (1,1+ A) with the bin size 2=0.05. The

tial interaction. These stress contributions are associated wWithus,1ts were obtained by averaging over several hundred

the transfer of the “virtual momentum” associated with the 5,712 time units in a simulation wittN=54. The time step

bubbles across a surface by means of bubble translatiogy, integrating the motion of bubbles was chosen such that
bubble—.bubble coII|S|ons,. and hydrodynamic interactions, average a bubble underwent a collision in 50 to 100 time
respectively. They are defined by steps. Since many practical flows of bubble suspensions oc-
cur over low to moderate values @f we have computed the
K 10 . properties only forp<0.3.

PiJ:n<|in>:;Zl livis (10) Also shown in Figure 1 are the resultpluses for
g(2a) obtained from a hard-sphere molecular dynamics
code. We see that the values are very similar to those for the

Picj =n(aF; k)= 2_:‘2 Fokik; (11) bgbb!e sgspensions_._Thus, we conclude that the spgtial qlis-

TAtCol tribution in the equilibrium state of bubble suspensions is

As mentioned in the Introduction, the root-mean-squared
velocity fluctuations in the ignited state of a rapidly sheared
Bubble suspension are large compared with Thus, it will

2k (w*—w?)
Fo=———5——=—. (9
k-(v¥=Vv?)
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FIG. 1. The radial distribution function at=2.02%. The diamonds are the FIG. 2. The viscous dissipation coefficieR;s (pluses, the energy-added
results for the bubble suspensions and the pluses are the results for theass coefficientC, (diamond3, and the collision stress coefficiel@,
hard-sphere molecular system. The solid line represents the Carnahanisquaresas functions of. The solid lines represent the quadratic it§)
Starling approximatior{13) for the value ar =2a. and(21) to RyssandCy.

very similar to that in a hard-sphere system. In particular,><<v2> by a unit amount without applying any net force to
these results indicate that there is no significant clustering ifhe suspension. We shall refer &, as the energy-added
this isotropic random motion of a bubble suspension. Thisnass coefficient. It should be noted that this coefficient is
may be contrasted with simulations of buoyancy-driven very different from the momentum-added mass coefficient
flows in bubble Suspensions, which indicated that the potenca that pre\/ious in\/estiga’[ors have examiﬁéeﬁ_27ca re-
tial flow interactions among the bubbles induced very sig-ates the average impulse to the average velocity in the sus-
nificant clustering:® The solid line in Figure 1 corresponds pension and the coefficient @(¢) in its expressions re-
to an estimate ofy =g(2a) obtained from the well-known ported in the literature ranges from 2.76 to 3.31 compared to
Carnahan—Starliri§ approximation for hard-sphere molecu- approximately—0.35 found in the present case. When the
lar systems: net impulse and net velocity of the bubbles are changing
1—$I2 with time, the test bubble experiences an effective medium
X= m (13 whose density and relative acceleration differ from that of a
pure liquid. This effective medium behavior alone contrib-
The above equation is seen to give very good estimates aftes a correction of @ to C, that is not present in the cal-
x in both bubble suspensions and hard-sphere molecular sysulation of C, .
tems.(It may be noted that the computed values are slightly ~ Since we have seen that the pair probabilityin a
lower than those predicted by the above expression becaub@bble suspension of volume fractighis very close to the
of the finite bin size used in the simulations. value for the corresponding hard-sphere system, it is inter-
We now present results for the bubble-phase stress. lasting to determine to what extent the stress in the bubble
the equilibrium state, the stress is an isotropic tensor charasuspension can be related to the stress in an analogous hard-
terized by a single scalar. The kinetic part of the stress is sphere molecular gas. The kinetic stress in a gas of spherical
Pikj —n(l0;)=n(M2)C(H) TS . (14) molecules with mase, can be written &8

k

where (1/20(1,0;)=(3/2)N(M/2)C( )T is the Kinetic en- Pij=manTd; . (16)
ergy of the liquid per unit volume of the suspension. TheComparing the above expression with¥), we see that the
virtual mass of an isolated bubble ng2 and its impulse is  bubbles may be thought of as having a virtual magsqual
li=my;/2. Thus, C, will approach unity in a very dilute to C,m/2. The kinetic stress in a bubble suspension is iden-
suspension in which bubble—bubble interactions are exceedical to that in a hard-sphere system with the sagneand
ingly rare. The results of dynamic simulations for variouskinetic energy. The collisional part of the pressure in a dense
values of¢ are shown in Figure 2. We see that the depenhard-sphere gas is given By
dence ofC, on ¢ is rather weak, and can be fitted adequately
by a quadratic relation,

C.=1-0.355—0.4242. (15) and therefore we define the collisional part in bubble suspen-

) sions in terms of a scal&, given by
Physically, fn/2)C, may be interpreted as a virtual mass of

a bubble: it represents the energy required to increase (1/2) Pij=4(m/2nCex ¢T3, (18)

Pﬁ :4manX¢T5ij , (17)
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' ' ' ' ' equal to —12ruav.®#?° We therefore express the rate of
ol i energy dissipation per unit volume of bubble suspension in
terms of a scalaRss defined by

Ediss= —N(F, V)= —36muanTRysd ¢), (20

whereRgiss— 1 as¢— 0. The simulation results fdRysas a
o8 b ] function of ¢ are given in Figure 2. It should be noted that
» although we evaluated the viscous force and dissipation at
0.06 - o o 4 every time step to determine average dissipation rate, the
trajectories of the bubbles were evaluategylectingthe vis-
0.04 | 4 cous force on the bubbles so that the suspension microstruc-
ture depended only on the volume fraction of bubbles and
002 . the kinetic energy of the liquid. The results fBy;s can be
fitted by an approximate linear relation

012 4

0 L | 1 L L

0 0.05 0.1 0.15 0.2 0.25 0.3 Rdiss: 1— 0.16(]5— 0_22¢2_ (21)

volume fraction ¢

Rgiss IS the viscous drag coefficient that relates the rate of
viscous dissipation of energy in a suspension with no mean
bubble velocity to the bubble velocity variance. It is different
from the viscous drag coefficiet; defined, for example by
with x given by (13). The collisional stress would be iden- Sangani and Didwarfa and Sangani, Zhang, and
tical to that in the hard-sphere system with the same kineti®rosperetdi’ in terms of the mean viscous force acting on a
energy and volume fraction I€.=C,. The values ofC.  suspension of bubbles with a mean motion relative to the
determined from dynamic simulations are given in Figure 2suspension. The latter investigators found the coefficient of
Our simulations show that, is in fact quite close t&€C, at  O(¢) in Cy4 to range from 2.11 to 2.28 compared with an
the higher values ofp. For smaller¢$, C. is somewhat approximate estimate 6f0.16 in the present simulations for
smaller thanCy with C. approaching approximately 0.97 as Ryss. The effective medium due to mean relative motion,
¢—0. which contributes 2 to C4, makes no contribution to
The relative importance of the potential and collisional Ryjss.
parts of the stress is expressed in terms of a coeffidignt Not all properties of bubble suspensions can be inter-
defined by preted in terms of a hard-sphere system with a volume frac-
)\pztr(Pp)/tr(PC). (19 tion depender_ﬂ virtual mass. For example_, the collisi.on. fre-
quencyN. defined as the number of collisions per unit time

Both the pOtential and the collisional StreSSGS@(eﬁz) for per partic'e can be expressed in termsTdby means of
small ¢ and therefore\., must approach a@(1) constant as

FIG. 3. The ratio of potential to collisional stress,. The approximate
mean value is shown by a solid line.

¢—0. As shown in Figure 3 the potential stress contribution N.=6c dXTY? 22)
is rather small with\, varying in the range 0.06—0.04 as ¢ P gl

¢ varied from 0.05 to 0.3. In other words, the potential stress hard-soh 1 Th its of ical
is only about 5% of the collisional stress and thus may pd Of hard-sphere systentg=1. The results of numerica

regarded as negligible. This very small potential stress ir?imu!ations for both t.’prle suspensions and hard-sphgre sus-
isotropically fluctuating bubble suspensions may be conpPensions are ShOWU in Figure 4 where we see that whiie
trasted with the large potential stress calculated when there |§d88d c_Iose tp unity for the hard-sphere system the bubble
a net relative motion between the bubbles and the liquid. [pUspensions y|e_ldf equal to about 0.81 for the whole range
the latter case, the potential stress was larger than the kinet?(f yolume fractlons. As the bubbles approach gach other,
and collisional stresses and it led to clustering of the bubble}ﬁje'r.adde mass Increases a_m.d the relative velocity qecrgases
and instability of the uniform state of the suspension. |nead|ng thereby to lower collision rates. Also shown in Fig-

bubble suspensions that contain a large velocity variancH’® 4 is the coefficient f_or coIIis_ic_)n fo.rce determined in nu-

(due to shear or some other fagtars well as a relative mencal simulations. This coefficient is related to the colli-

motion of the two phasesuch as that due to buoyangpgne sion force by

may expect that the balance between the potential stress gen- Fo¢=—mfk(w*—w")-k, (23

erated by the mean relative motion and the kinetic and col-

lisional stress associated with the bubble velocity variancévherek is a unit vector along”—x®. Note thatmf; corre-

will determine the stability of the uniform state of the sponds to the average of factor IQ/(\?“—\?V)) in (9). Ac-

suspensiof?2°-31 cording to the hard-sphere model, which we used earlier in
To develop the kinetic theory for sheared bubble suspendescribing the results for collision stre$s,would be simply

sions, we shall need an estimate of the rate of viscous energgqual toC,/2. The results of numerical simulations, how-

dissipation for a given variance in the velocity of bubbles.ever, show considerably greater magnitudefof and, in

An isolated spherical bubble moving with velocitythrough  particular, as shown by the solid line in Figuref4,is ap-

a nearly inviscid liquid experiences a viscous drag forceproximately given approximately by 5Z7 . This additional
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105 : : : , , Here, the configuration of bubblesN consists of the posi-
tions and impulses of thdl bubbles. The velocities of the
! S . . s - i bubbles are treated as dependent variables. For the special
ey sphers) case of zero mean impulse, the probability density is given
by the Boltzmann equatiotf:*°

Pr(2N) = Anexi — B(m/2).72(7N)], (26)

whereAy and B are given by

0.95 4

09 b

4 ¢g(bubbles)
08y T + ¥ + i 3N/2 3

Ay=nN , 5:m. (27)

2

0.75 1

The constantAy was determined by requiring that the
N-particle probability must be equal to the product Nf
single-particle distributions when all the bubbles are well
A separated from each other and from the normalization con-
° o " ol fraction 6 0% 03 dition fP,(#%)dI*=n. The constang was determined from
the calculation of12) as explained latefcf. the discussion
FIG. 4. The results for the coefficients of the collision frequency @énd  following (38)]. It should be noted tha8 is related to the
the collision force {.). inverse of bubble-phase temperature based on impulse fluc-
tuations and not the velocity fluctuations.
For two bubbles with center-to-center separation vector

factor of 10/7 arises from the added mass of the bubbles & —X' =aR, it is easy to 'show that the velocities of the
collision being greater than that of isolated bubbles. ThusPubbles are related to their impulses by

apparently, the collision stress in bubble suspensions being 2 3 9 3
approximately the same in the effective hard-sphere systems v{'=—|1{| 1+ 55| 8+ 556 kiKj |17+ { — 553 9ij

) ) ) m 2R 2R 2R

is a result of cancellation of two opposing effects of reduced

collision frequency and collisional impact velocity on one 3-a

hand and the increased added mass of bubbles at contact on + ﬁki Ki (1] (@=1.2), (28)

the other. , ) L
wherek;=R; /R is the unit vector along the line joining the

centers of the bubbles. Here, and in all the subsequent cal-
culations, we have neglected terms@fR™°) and smaller.

B. Two-bubble calculations These higher order terms make a small contribution to the

In this section we determine the coefficier@g, C., suspension properties even for touching bubliRes?2.
Rgiss, €tc., in the limit¢—0. The calculations require the With the form of the pair probability distribution estab-
knowledge of the pair probability functioR,(1%,12,x},x?)  lished, it is relatively straightforward to compute various

which represents the probability of finding two bubbles withequilibrium properties of dilute bubbly liquids. The radial
their centers ax® andx? with impulsesl® and 12, respec- distribution function is obtained by integrating the pair prob-
tively. In the presence of dissipative effects, this pair distri-ability distribution in the impulse phase:

bution function must be determined from detailed trajectory mg

calculations for pairs of interacting bubbles as has been done n2g(aR) :Azf exp{ — = (11 v 412.v?) [dItdI2.

by Kumaran and Kocl3* and van Wijngaarden and 4

Kapteyn® These calculations, however, are generally te- (29)
dious. Fortunately, this probability distribution can be easilyThe integration in the above expression and in the subse-
determined based on a statistical mechanical argument agient calculations is facilitated by introducing

recently demonstrated by Yurkovetsky and Bradyhese — .

investigators and Russo and Smer@keve shown that the I=11412, T=11=12% (30)
dynamics of bubbles with potential flow interactions can bejn terms of these variables, the total kinetic energy of the
described in terms of a Hamiltonia’ with the position and  jiquid is given by

impulses of the bubbles treated as the generalized coordi-

1 2 — . P
nates such that SOV 1202 = 20124 L+ BT, (8D
o . o7
= XV oE 24 where
For bubbly liquids considered herg& simply equals the ki- E—_§ _i+i 5 +g i+i Kk
netic energy of the liquid, i.e., 72| R3TRE)IT2|R3T RGN @2
N
BV A 3(1 1 9/ 1 1
.7/(%N)=§;1v e, (25) E”-:E(ﬁg-i—ﬁg 8+ —§g+§6)kikj.
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The integral on the right-hand-side ¢29) is difficult to  bubble given the presence of a second bubble with impulse
evaluate exactly for arbitrary values Bf and therefore we 12 atx?. Note that we have neglected the three-bubble inter-
shall evaluate it in the limit of larg&k by expanding the actions which will be unimportant in dilute suspensions.

integrand in a Taylor series. Thus, for example, we write theAlso, the above expression for determining average quanti-

part dependent ohas ties is valid provided that the difference
02 Y1112, x8,x2) — (11, xY) integrated over the impulse sub-
17 BE, Il + '86{|4 6(k-1)212+9(k- |)4}} space decays faster thiuf—x*| 3. This is indeed the case
8R in all the calculations presented in this section.
(33 Since the impulses of the bubbles are independently

where we have neglected terms ©fR™%). Now substitut- ~ Specified, the second term on the right-hand-sideé36y is
ing for the kinetic energy from(31) in (29), using identically zero wheny'=(1%). Consequently(l?) is de-
dlldI2=8de, and making use of the Taylor series eXp‘,jm_t(?rmined solely_ from the first term, anq upon integration this
sion (33) we obtain yields the relation betwee@ and(12) given in (27).

The kinetic energy per unit volume of the suspension

w3 9 9 equals (/2)(l-v) and to evaluate it we substitute=1-v in
g(aR)=8A2n‘2(—> (1——6)(1——5). (34) .
B 8R 8R (39):
The integrals over the impulse subspace were evaluated with _ 5 ,Ba 3 3
the help of the following formulas: n{l- >__<| )+ m R3{( 1+R79)12
Ton fe B2l = (2p+1) +3(1+R’3)(k~ﬁ2+(l+R’3)T2+3(—
. .- 3 —
- -3\ (1.T\21 | a=B(12+12)| 1 _ _2
Xfe’ﬁ'z(k-l)ZPl 2n-2pg) (35) FROMED }}e 1 oret !
5 (77)3/2 , 2n+17 2 - +3(k-UZ+T2+3(k-IA)2}+O(R6)}deGIA.
To=\ % + YT 2n-2,N= .
B 2B

(39

The leading order term d®(R™3) in the above integral van-
ishes upon integration over the impulse space while the re-
mainder simplifies to

Now substituting forA, from (27) into (34) and neglecting
terms smaller tha®(R®) we obtain

g(aR)=1- (37

9
4R®"
According to this expressioy=g(2a)=1—9/256=0.965 (r V>_
at R=2 indicating that the potential flow interactions cause ) .
only a slight depletion of the bubbles in the vicinity of a test Where we have made use of the resufs2(1°)/3. Similar
bubble. This result also indicates that the added mass effeGglculations for the velocity variance yield
in the presence of random fluctuations in impulse introduces
a small effective repulsive potential between pairs of bubbles  (v?)=3T= 2|1
as noted earlier by Yurkovetsky and BratfyThe numerical
simulations described earliéf. Figure 2 showedg(2a) for ~ Combining the above expressions with the definitiorCf
bubble suspensions to be approximately the same as that ffef. (14)], we obtain
a hard-sphere system with the same volume fraction. The 3
small 3.5% change irg(2a) predicted by the theory is Ci=1—=¢+0(¢?). (42)
smaller than the statistical errors in the simulations. 8

To determineCy, we need to estimatdl-v) and Thijs approximate estimate of theD(¢) coefficient,
(v-v). Let ¢ be any dynamic variablée.g.1-v) associated - 3/8=—0.375, is in very good agreement with the coeffi-
with the motion of bubbles. Then its average for dilute cient —0.35 obtained from numerical simulatioff. (15)].

1——¢+0(¢2 }(IZ) (40

+i +0(¢?) [(1?) (42)
16¢ ¢ :

bubble suspensions can be estimated using The above results can also be used to estimate the vis-
cous dissipation coefficienRys. TO determine viscous
n(dz}(xl):J’ S xH P (11 xhdIt forces, we must solve for the viscous potefitighich, with

the dipole approximation is given by

1112 (1 2
+f[w(l 19,5, X9) ——a32 4=V
S X IPL(11 12,2, x2) dI L1 2dX.
The viscous dipoles are to be determined from the boundary
(38) conditionn-V¢,=—12D*. Here,D* is the induced dipole
Here, y1(11,x}) is the value ofy for bubble 1 with impulse for the potential flow described earlier. The viscous force is
11 placed aix! and ¢*(1,12,x1,x?) is the value for the same given byF%=4muad®. On solving ford we obtain

|X Xa| (43)
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F*=127ua[2D%+(1/2D*-VVR 1. VYR 1-D3 ¢
-VVR™1]. (44)

(Note that this factor is slightly different from 10#71.429
quoted earlier. The difference is due to terms of order
smaller thanR™® retained in the derivation that gave the

Since the velocity of a bubble is related to the dipoles by€Sult 10/7) This increased added mass, and consequently
ve=—(2D%+D3 . VVR™ 1Y), the rate of viscous energy the decreased relative velocity, tends to lower the collision

dissipation per unit volume of the suspension is given by ~frequencies in bubble suspensions. The second facté2)n

Egiss= —N{(F,-Vv)=48muan(D?). (45)
Now usingD%= — (m~ 1%+ v%)/3 we obtain
(D?)=(1/9[m~2(1%)+2m X1-v)+(v?)], (46)

and upon combining witli40), (41), and(20) we obtain

3
Riss= 1~ 766+ 0(¢?), 7

which resulted from the integration in the mean impulse
I-space, is the same as that obtained in the radial distribution
function calculation. The effective repulsive potential in-
duced by the potential flow interactions tends to deplete the
pair probability density at contact and this too contributes to
the decrease in the collision frequency. Finally, the third fac-
tor, which resulted from the integration in thespace, tends

to increase the collision frequency. The termsogR3) in
P,(%?2) which did not contribute to the result fay(aR)

which is in very good agreement with the results of numeri-make an important contribution to this last factor. Thus, a

cal simulations given by21).

naive calculation, in which the pair probability is taken to be

Next, we determine the collision frequency and the col-simply the product of two single-particle distributions with

lision stress. The former is given lgf. (22)]

. (T
Nc: 6CfXE ;

1/2

g-kP,(%,)(4a?)dkdl*dI?, (48)
>0

whereg=v!—V? is the relative velocity. It is easy to show

the radial distribution function, i.e.,P,(1%,12,x%,x?)
= g(aR)P,(1%,x})P,(12,x?), would have given an incorrect
estimate of 0.69 foc; .

The collisional part of the pressure tensor is given by

Pﬁ=—f Feikjg-kPy(7?)(4a?)dkdI*dI2. (53
g-k>0

that the relative velocity of two bubbles along the line join- The collision forceF, is equal to the relative velocity times

ing their centers is related to their relative impulse by

4 3 6

The above quantity anE(%>,) must be evaluated &=2 to

determine the collision frequend#8). To keep the consis-

tency in our calculations correct t0(R™®), however, we

shall carry out integration first with arbitrafy and substitute
R=2 in the final result. Note also that the integration over

g-k>0 is the same as the integration oviek>0. Now
expanding the exponential i, to O(R™ %) as in the previ-
ous calculations, and using the following results:

p+1

e j e g =PI s
k-1>0 k-1>0
x(k-IA)deA=_d(d;;M, (50)
Te=(U2(wlB)?  TF=ml(28?), (52)
we obtain, toO(R™®),
ci=(1-3R 3+6R ) (1—-9/8R ®)(1+3/2R 3
—3/4R"6)=1-3/2R"3—3/8R" 6. (52)

With R=2, the above yields;=413/512=0.807, in excel-

the added mass at contact, i.e.,

Fe=—(m/2)g-k(1-3R 3+ 6R %) k= —(i-k)k.
(54)

Upon substituting for the collision force 3), carrying out
the integration, and comparing the result w(f8) we find

C.=[1—9/(8R®)]r_,=503/512=0.982. (55)
Once again, this result is in excellent agreement with the
results of numerical simulations shown in Figure 2.

Finally, the trace of the potential interaction part of the
pressure tensor can be evaluated from

Pﬁ=—27ma6f DID?R(-)3VVVR 1P(#2)dRdIdI?,
(56)

where ()2 represents a triple scalar product. Expressing the
dipoles in terms of impulses of the bubbles, expanding
P(Z?) in the inverse powers oR as in the other calcula-
tions, and comparing the result of integration wift®), we
obtain

\p=9/(128C,) =36/503=0.072, (57)

lent agreement with the results of numerical simulations for

the collision frequency shown in Figure 4. The first factor inindicating that the potential stress is only about 7% of the
(52) corresponds tdv-k)/(i-k), which is the inverse of the collision stress in dilute bubble suspensions. This is in agree-
factor by which the added mass of the bubbles changes dument with the results of numerical simulations shown in Fig-
to interactions. The added mass of the bubbles at collisioryre 3 according to which , varied from about 0.04 to 0.06
i.e. atR=2, is 32/23=1.391 times that of isolated bubbles. as ¢ decreased from 0.3 to 0.05.
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TABLE |. Estimates of various coefficients based on different approxima-contributes 3 to C, but there is no corresponding contribu-
tions for the pair probability distributions corresponding to assuming thattion to C,. We shall see in the next section that the most

the velocities(l), impulses(ll), or dipoles(lll) are independent of the rela- . . .
tive separation between the bubbles. The results based on the exact péripportant quantity controlling the rheology of bubble sus-

probability are denoted bgiV), and those obtained from numerical simula- PENSIONS is the rati€, /Ryss. The independent dipole ap-
tions by (V). proximation yields C,/Rgs—=1— /8 compared with
1-0.19¢ obtained by the numerical simulations. As seen in

! I i v v Table I, the independent dipole approximation gives the best

Cy 1+34/16 1-154/16 1-34/16 1-3¢/8 1-0.35p estimate for this and the other properties of the bubble sus-

Ruiss 1+3¢/16 1-9¢/16 1-¢/16 1-3¢/16 1-0.16p pensions.

Cic/Raiss 1 1-3¢/8  1-¢/8 1-3¢/16 1-0.1% A clue as to why the dipole approximation gives supe-

Ao ~9/64 o/32 0 0.07 0.07 rior estimates may be obtained by examining the “head-on”

c 0.837 0.862 0.837 0.81 0.81 e i

C./IC, 1 1 1 0.98 0.97 collision of two bubbles moving towards each other along
the +x;-axis. Consider two bubbles initially separated by a
large distance moving towards each other with velocities
*v,. The impulse and the dipole of the bubble moving in

C. Sensitivity of the averaged properties to the pair the positive x,-direction are given bym l.=-D.,

probability distribution =v.,./2, and the total kinetic energy of the liquid is

2 _ 2 .

We have seen that the average properties of dilut@quwa‘lme' As thg tl)ubkljle§ ap?rogch each _other, theg
bubble suspensions obtained using the exact expression fgefle k:nasslor,_ eqduwa ently, 'mpl; s€ |hncreas|eli n magmtu €
the pair probability distribution for the equilibrium case are While the velocity decreases so that the total kinetic energy

in very good agreement with the corresponding results Ob(_)f the inviscid liquid remains constant. At .the inst.ant when
tained from the numerical simulations. Unfortunately, thethe two bubbles come in conta}ct, _the velocity and impulse of
equilibrium case considered in the present section is rathépe bubbles are related to their dipoles by

special and it is not easy to extend such exact analyses to , — —(7/4D_, |.=—(5/4)mD.. (58)
nonequilibrium situations such as sheared suspensions. The

theory in which the pair probability distribution can be fac- Note that the added mass of the bubbles at contact is
torized into one-particle distributions is much easier to ded¢/v.=5/7m compared with the added massrof2 for iso-
velop for dense sheared suspensions and therefore it is &fted bubble — a result cited earlier in the discussion of
some interest to explore how various properties of bubb|y1umerical results for the collision frequency. Since the total
liquids depend on the assumed form of pair probability. Wekinetic energy remains unchanged for purely potential flow
have calculated the properties described above for diluténteractions, we havé.=1.v..=2mDZ from which we
bubbly liquids for three simple forms of pair probability dis- obtain

tributions: (i) P(22)=n?f(v})f(v?); (i) P(2?)=n?%f(I%)

X 1(1%); and(ii) P(72)=nf(DY)f(D?). We shall refer to De _ \F—Z:o.ge, e _ E\F—Zzl.zo,
these as, respectively, the independent velocity, impulse, and D=« 35 l. 4 V35 (59)

dipole approximations. Thus, for example, we assumg)in
that the velocities of the two bubbles are independent of their Ve _ ’ \EWO'SA"

separation vectoaR and then determine their dipoles and v. 8 V35
impulses in terms of the velocities ariRl. The averaged . 0 .
properties are then determined by integrating the appropriat%_:hus’ the dipoles only change by about 4% during the

uantity in the velocity an® space. These approximations ead-on collision. The change in the dipoles for other rela-
9 Y y pace. PP tive orientations of the pair of bubbles is likewise expected

for various properties are summarized in Table | along with . T
. i . ; o be small. Consequently, the pair probability distribution
the results of the rigorous analysis presented in Section Il . . . : C
actorized in terms of independent one-bubble dipole distri-

and the results of numerical simulations. : . ) L .
) ; butions is more accurate in predicting the properties of bub-
The evaluation ofCy, Rgiss, and\, does not require a - o .
e . ; bly liquids than factorizations based on velocity—or
specification of the form of the functioft the only restric- . e
impulse—distributions.

tion is the normalization condition, e.g.f(v)dv=1 for the -

case of an independent velocity approximation, or In Table | we also gave results for the collision fre-

[f(D)dD=1 for the independent dipole a roximation,We quency and collision stress. To evaluate these quantities the
b P PP ) detailed form off is necessary. We assumed a Maxwellian

see from Table | that all three properties are quite sensitive t?orm for f. Thus. for examole. for th find d
the approximation made regarding the pair probability. For Lo ple, for the case of independent
exampleC, , which can be interpreted as an added mass thaqIp0|e approximation we chose,
relates the energy of the suspension to the bubble velocity 1 D2
variance, is given by 4 3¢/16 according to the independent f(D)= WEGXF‘( T 5T
velocity approximation, and 2 15¢/16 according to the in- be be
dependent impulse approximation. The corresponding result&zhereTDC=<D§>/3 is the temperature based on the dipole
for the added mass coefficient for a collective acceleration oflistribution at collision. Based on our calculations for the
the bubblesC, are 1+3.31¢ and 1+2.764, respect- head-on collision of two bubbles we estimatég. to be

ively.227.2636.37A5 mentioned earlier, the effective medium given by

: (60
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tions, viscous forces, the mean flow, and bubble—bubble col-
lisions. The results of the previous section suggest that the
potential flow interaction force will have a minor effect on
the behavior of a bubbly liquid with zero mean relative ve-
locity and therefore we shall neglect the contribution from
this force.

Next we will estimate the viscous contribution to the rate
of change of the kinetic streséi//ij). It can be shown that

Ei?//”) and hencg z',/;ij) must be symmetric. The proof relies

on the fact that the impulse of a bubble can be expressed as

8
35

which assumes that in the bu{B?2)=(v?)/4, a result based
on an isolated bubble for which=—wv/2. Similarly, we
choseT,.=(m?/4)(10/7)T for the independent impulse ap-
proximation andT.=(7/10)T for the independent velocity
approximation. With these forms fdrwe see from Table |
that all three approximations gave reasonably good estimat
of both the collision frequency and collision stress.

In summary, the calculations presented in this sectio : ; .
offer two ways to interpret the results of dynamic simula-2 product of a symmetric generalized added mass matrix and
the velocity of all the bubbles in the suspensiofhus, we

tions. In the first, the bubbles are treated as hydrodynami- _ R
cally noninteracting particles with a virtual mass ©f( ). shall estimate the contribution 14; from the forces exerted

This gives an estimate of the collision stress that is in rea® the bubble due to viscous effects and the mean flow sim-
sonable agreement with the results of dynamic simulationsly from their contributions to l; by using (i)

It, however, does not predict the collision frequency cor-= (ljv;+ujl;). In other words, we takéljv;)=(v;l;). This
rectly. In the second, the bubbles are thought of as interacepproximation would be exact if the changes in the velocities
ing hydrodynamically but with very little change in their and impulses of the bubbles had no effect on their spatial
dipoles. This gives reasonably good estimates of all the propstructure and therefore their added mass matrix. This ap-
erties of the equilibrium state of the bubble suspension. Iproximation will become increasingly accurate with increase
addition, we also described a third, more rigorous approacRe. In addition, we will use the larg®e estimate of the
based on first determining the pair probability density andviscous dissipation obtained in the previous section. Thus,
then determining various average properties. The last apghe viscous contribution is expressed as

proach yielded quite accurate results for a dilute, equilibrium
suspensions but its application to more general, dissipative
bubbly flows and to higher bubble concentrations would re-

Toc=3cT, (61)

<¢ﬁ>:—24WMaRdiss<Uin>- (65)

quire substantially more effort than the first two approaches.

IV. KINETIC THEORY FOR SHEARED SUSPENSIONS

In this section we develop a kinetic theory for a dense
sheared suspension of bubbles. We begin with the conserv
tion equation for a dynamic variabl¢ associated with the
motion of bubbles:

J i y)=0 62

M) o W)= (1) =0, (62
wherew; is the velocity of a representative bubble ands
the rate of change af with time following the motion of the
bubble. We shall assume that the mean velocity gradient i
¥ij and write

(63

wherex; is the center of the bubble and is the velocity
relative to the mean flow. We shall restrict our attention to
the case when there is no mean force acting on the bubbl
and hencev;)=0. Our main interest will be to determine

Wi =yijXjtvi,

the velocity variance and the kinetic and collisional stresses.
Since the kinetic part of the pressure tensor is given by

Pikan(Iivj>, we apply the above conservation equation to
#ij=liv;. Substituting fory in (62) we obtain

D d .
D_tn<¢ij>+(9_)(kn<vk¢ij>+”7kk<¢ij>:n<¢ij>, (64)
where D/Dt is the time derivative following the average
motion of the suspension. Analogous (6), the rate of
change ofy;; following the motion of the bubbles can be

decomposed into four parts due to potential-flow interac-
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The contribution due to the mean flow is written as

(i) == Vit T Vi i) - (66)

he fluid acceleration terrnD(u;)/Dt in (6) does not con-
ribute to the above term since it must be multiplied by
(vj) which vanishes in the present case of no mean relative
motion.

The above estimates of the contributions{ﬁq from
various forces acting on the bubbles do not require a detailed
knowledge of the velocity distribution. A calculation of the
contribution from the collisional force on the other hand re-

uires a specification of the two-particle velocity distribution
t contact, i.e., aR=2.

In the theory of hard-sphere dense gases and granular
materials it is usually assumed that the two-particle velocity
distribution can be expressed as a product of single-particle
distributions, i.e.P,=n%yf(v})f(v?). The collisional rate of
change of any dynamical variablg is then given by(see

Senkins and Richmahand Kremer and Ro&for details

Gy 5 o
n—¢ _S(‘/l)_&_)q(Qk(w_y"'Q'(ﬁk)’ (67)
where
S(lﬁ):nzxf (y—y¢")f(vHE(v?)| 1+ak
g-k>0
1
. VInIE—X%} (4a?)g- kdvidv2dk, (69)
Kang et al.
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We mentioned earlier that the results based on the inde-
Q(¢)=an2)(f (' = pkf(vhHf(v?){ 1+ak pendent dipole approximation are essentially the same as
g0 (72) and(73). We now cite a few specific results. The coef-
f(vl) ) e ficient of the T®2 term in the expression foB evaluated
'V|nf(—vzj](4a )g- kdv-dv-dk, (69 assuming that the dipoles of the colliding bubbles are inde-
pendent of each other differs only by 7% from the above
wherev! andv? are the velocities of the colliding particles, result based on the rigid particles with virtual mass of
g=w'—w? is the relative velocityw=v“+y-x“ is the ac-  (m/2)C,. Similarly, Q;(v;), which is same as the collision
tual velocity of the particler, andy andy’ are the values of = stress, was found to be essentially the same for the effective
y for particles 1 just before and after the collision. rigid particle and the independent dipole approximations.
~ The above expressions are appropriate to bubble suspen- we now restrict our attention to steady, homogeneous
sions provided that the velocities of the c_oII|d|r_19 bubbles A8lows with y,,=0 for which (64) reduces tof pij>:0 since
independent of each other. Our calculations in the preV|ou§1<Pij> is independent of time and position. Substituting for

section suggest that it is probably more appropriate to treahe yiscous, mean flow, and collisional contributions to
the dipoles of the bubbles as independent. Detailed caIcuIaB

tions, however, show that the results obtained with the dipole '/’
approximation are essentially the same as those obtained 8
from the above expressions provided that we treat thé&ij 1+§¢X
bubbles as rigid particles with independent velocities and
mass (/2)C,(¢). Thus, we shall evaluate the collisional
contribution to (i/fij> using (67)—(69) by substituting
y=lvj=(m2)Cvv;. Later we shall quote how much the
results forS andQ would have been affected if we had used
instead the independent dipole approximation for the collid-

and rearranging, we obtain

Rdiss

+ ——(&;+a;)+ 24 TYZ
CkTv( i T aij) Sa 2 PXT 4

1 4
+ E('}’kiakj"' Yijki) + g¢X( Yik@kj T Yjkaki)

16 —12
_md’aT X (& Vikt €Y =0, (74)

ing bubbles. _ _ _ wherer,=m/(24mua) is the viscous relaxation time for an
An exact solution forf would require a solution of the ig5o1ated bubble.

Boltzmann equation for the velocity distribution. However, In the next section we shall compare the predictions of
this is_cumbersome and therefore we shall use Grad'ge kinetic theory with the results of dynamic simulations.
method to obtain approximate solutions for the second mo-tpe simulations with periodic boundary conditions are most
ments of the velocity distribution. This method was shown t0cqnyeniently carried out for the special case of simple shear
yield reasonably accurate results for gas—solid suspensions @t \which ¥ij= ¥8,18j2 With x;-axis as the flow direction,
finite Stokes numbers and finite inelasticitin this method, x,-axis as the gradient direction, arg-axis as the vorticity

the velocity distribution is assumed to take a form direction. Defining the Stokes number I8t=yr,=Re/18
* v
1 2 and the effective Stokes number at finite volume fractions by
= +—a. T———
) {1 2% 30,00, }fM(V)' (70 — CSt CRe
= = : (75)
wheref), is the Maxwellian velocity distribution. It is easy Raiss  18Ruiss
to show that the constar; is related to the second mo- e obtain the following four scalar equations faf from
ments of velocity by (74):
_ , St t+a (St i+ w)+ = dya,— —=0, (76)
Since the bubble-phase temperatireequals one-third the 5 @
velocity variance, we require that the tr be zero. — —
Y a o St 1+ a, (St 1+ w)+a;,=0, (77

Substituting(70) for f into the expressions fo and

Q, taking ¢=l;v;=(mM/2)Cw;v;, and evaluating the inte- St 14 (St o) = 7
grals yield(see Kremer and Ro$a St A3y St ©)=0, (78)

S(l,UJ)I(m/Z)anXd) ——,—Saﬂ_lzaistlz E +§¢X +a12( +w)+7+§a22¢){_ '
(79
24 1 h
T8 _éexkélj) , (1 Where
24¢y TY? 384 ,
m 2 O Barl 3a N5y X (80)
Qi(lj)=(m/2)C,Qi(v;) = E)Ck”)ﬂﬁ 4T\ 6+ g & _ _ N
Solving (76)—(79) together with the condition that the trace
32 1 a;; must be zero yields
— wja.-rl/2 eij + Eekkﬁij> , (73) —
_5(A—3wSt™) 81
wheree;; = (y;;+ v;i)/2 is the rate of strain tensor. 3127 5+ 8y) (81)
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k )\ 8 )\ - 3w§t_ 1 - 1] (82) 200 T T T T T T T
apy=——1 —— - ,
1 st e 2PX e
180 - 4
1 5(\—3wSt Y < o
e T TR |
1 140 + |
dzz= — - 84 Re Re,
¥ 1test 9

120 | ) .

In addition, it is easy to show that,;=a,;=0. Finally, the

condition thata;; =0 yields the following cubic equation for 100 | 1
[ON Re;
_ ) . sl |
T bl P o5t 22 2y 52 2y -
S 3|72 T3 I
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
volume fraction ¢
8¢ Lt 1§A(8¢ 5)=0 (85)
- = w— = + == —5)=0.
5 X 3 30 X FIG. 5. The critical Reynolds numbers as functions of volume fracion

. . The ignited state will exist only foRe>Re while the quenched state will
Note that the above equation, which represents the ﬂUCtu%-Xist%nIy forRe<Re, y & q

tion energy balance, determines the steady state bubble-
phase temperature.

At this point, it is interesting to compare the theory for . _
bubble suspensions presented here with the theory of gag22 for bubble suspensions correspond, respectivelyazto
solid suspensions at finite Stokes numbers due to Sangafifd @ in the gas—solid suspensions in the limit #0.
et al? In that the effective Stokes numbst was defined as Thus the effect ofol!ft force is to simply rotate the stress
St=ym/(6munaRys), M being the mass of the particles. components by 90° in the plane of shear at sryall

. uiss L . When all three roots of the cubic equati@8b) are real
The energy dissipation coeffiCieRyss for the gas—solid SUS and positive, the theory predicts three steady states of which

. . The state with the intermediate value®tan be shown to be
very different from that for bubble suspensions. In bubble ble while the states with the lowest and hiafestre
suspensions there is an additional fac®y(¢) which ac- unsk')[la d ferred h hed and 9T d
counts for the variation of virtual mass of bubbles with stable and are referred to as the quenched and ignited states,
- ) ) T respectively(By stability here we mean the stability to small
Another important difference is the contributiongg due o gpatially homogeneous variations in the bubble-phase vari-
mean flow[cf. (66)]. This can be decomposed into tWo gnee Thus, for example, a small increase in the variance for
terms: (i) due to spatial acceleration of the mean flow; andine jntermediate state will yield a greater increase in the en-
(i) due to mean vorticity of the fluid. More specifically, the ergy input by shear than the increase in the viscous energy
contribution tol; from the mean flow igcf. (6)] dissipation rate, and consequently, the system will move to-
, ward the ignited state. Likewise, a small decrease in the vari-
- u D(u;) ; : : :
Ii=mg;=|m DI My yijvj |+ mMa(vij— ¥5i)vj, ance starting from the intermediate state will cause the sys-
(86) tem to become quenched. Whether _these_ |gn|teq and
quenched states are also stable to sis@ditial variations in
where we have takeh=m,v;, m, being the effective vir-  the bubble-phase volume fraction or temperature cannot be
tual mass of the bubbles. The last term on the extreme righinswered, of course, by this sort of reasohirg the small
side of the above expression, which is commonly referred tQs |imit, the analysis of Tsao and Kotoriginally derived
as the lift force term, was absent in the theory of gas—solidor gas-solid suspensions can be applied to bubble suspen-
suspensions. Also, for gas—solid suspensions, the term insidgons as well. These investigators showed that both states
the square brackets is replaced by the reaction forcexist whenSt>24"2and¢St<1.5 and the final steady state
—m(u;)=—mD(u;)/Dt—mu;y;; . When there is no mean depends on the magnitude of the initial velocity fluctuations
relative motion, there is no contribution from tlgu;)/Dt in the suspension. On the other hand, the final state is the
term, and consequently the terpy;ay;+ y;ay; in (74) re-  ignited state regardless of the initial conditionsSit> 24112
places they;.ay;+ yjkax term in the gas—solid suspension and ¢St>1.5. Finally, only the quenched state exists for
theory. Comparing the cubic equation 62 derived here  St<24'? and ¢St£>1.5. Since the relatiori85) for T in
with that in Sanganét al,* we see that the first two terms in bubble suspensions departs from that for gas—solid suspen-
the two theories are identical. The other two terms have thsions at finiteg, it is interesting to compare the behavior at
same leading order behavior in the limit—0. Thus, the finite ¢. Let us denote byRe the Reynolds number below
nondimensional temperatures in bubble suspensions arwhich the ignited state does not exist and g, the Rey-
gas—solid suspensions at finB¢are identical at low volume nolds nhumber above which the quenched state does not exist.
fractions. The stress components for the two suspension$he cubic equatio85) was solved numerically to determine
however, are unequal. In fact, it is easy to show thatand  these two critical Reynolds numbers as a functiorpond
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FIG. 6. The values okTY%ya for the ignited and quenched states at FIG. 7. Velocity variance as a function @f for Re=180. The simulation
Re=Re . results are indicated by diamonds and the theoretical predictions are indi-

cated by the solid line.

the results are shown in Figure 5. Multiple steady states are
possible whenRg<Re<Reg,. For Re<Re only the simulations andC, andRyssare the same as that determined
quenched state exists while féte>Re, only the ignited in Section II. It should be noted that the kinetic theory we
state exists. We see that these two curves meet afeveloped in the previous section corresponds exactly to the
¢=0.014. Above this value ofp the cubic equatior(85) situation described by the effective hard-sphere simulations.
permits only one real root and hence only one steady stateThus, a detailed comparison of the results frémwith the

For a giveng whenRe is decreased from a high value theory will allow us to assess the validity of the Grad’s ap-
for which the ignited state exists, the velocity variance of thEproximation used in the kinetic theory while the comparison
bubbles will decrease smoothly unRle=Rg below which  of (i) and (i) will indicate the validity of replacing the de-
there will be a sudden decrease in the variance because of thgiled hydrodynamic interactions among the bubbles with
transition to the quenched state. Figure 6 shows the jump iQolume-fraction-dependent virtual mass and drag coeffi-
the variance that will occur aRe=Reg. Once again, at cjents.
¢$==0.014, the jump in the variance vanishes and hehce All simulations were carried out with 54 bubblésr
will be a smooth, continuous function &te for ¢ greater particles, which were initially randomly placed inside a unit
than this critical value. This behavior of bubble suspensiongell of a periodic array. The simulation with full hydrody-
is qualitatively similar to that in gas—solid suspensionsnamic interactions was carried out typically over several
where the criticalp was found to equal approximately 0.058. thousand collisions. The number of collisions per bubble

The present analysis shows that the multiple steady statefhce the steady state was attained was thus typically in the
described in Sangart al® occur only for very dilute sus- range of 100—-500.

pensions. In what follows we shall present results for a wide range
of values ofRewith the goal of assessing the kinetic theory.
V. COMPARISON WITH NUMERICAL SIMULATIONS Obviously the assumptions made in evaluating the bubble

trajectory, viz. small Weber number and larBe, will not
We now compare the predictions of the kinetic theoryhe expected to apply for such a wide range of values of
presented in the previous section against the results of nire, We shall defer the question of determining the range of
merical simulations for bubble suspensions subject to @&Refor which the model simulations carried out here are most
simple shear flowy;; = yd;16j,. Two kinds of suspensions |ikely to apply to Section VI.
were simulated(i) bubble suspensions with full hydrody- Figure 7 shows the velocity variance as a function of
namic interactions as described in Section II; &npan ef- ¢ for Re=180. At such a high Reynolds number, the vari-
fective hard-sphere model of a bubble suspensiofiiJthe  ance is much greater tharfa and the velocity distribution
bubbles were treated as if they have a virtual mass 0&hould resemble that of the equilibrium state studied in detail
(m/2)Cy. The trajectories of the particles were evaluatedin Section Il. Thus, we expect the Grad’s approximation to
using be reasonably accurate. We see that the simulation results are
m_ dv, my . generally_ in good agreement yvit_h the predictions of the
ickm=—127r,uaRdissvi—TCkvl5i2+ Fi, (87) theory with the maximum deviation of ebout 1.5% at
=0.05 and 0.3. We note that the velocity variance goes
whereF? is the hard-sphere like collision force. Note that thethrough a minimum aroundb=0.15. The viscous energy
detailed potential flow interactions are neglected in theselissipation per unit volume of the suspension varies approxi-
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FIG. 8. The bubble-phase shear viscosity (scaled bypaT"?) as a func-  FiG, 9. Bubble-phase pressufe scaled bypT as a function of¢ for
tion of ¢ for Re=180. The predicted values as shown by the solid line arere=180. ¢ : sum of collisional and kinetic bubble-phase pressutes,
estimated by combining89) and(90). The dotted line represents the dense the collisional part;+ : the kinetic part. The lines represent the predictions
gas theory prediction given bi@1). of the theory{cf. (89) and (90)].

mately linearly with¢ while the shear energy input, which terms inS and Q in (72) and (73), and a good agreement

roughly equals 2 approaches a constant value times . N .

Tl’zgas)iﬁ—»qo Atlus StZa d E?ate the balance of the two requiresWlth the results folg indicates that the expressions for these

that T/y2a? ;/ary as (—'ge/q‘))z at small . Here, u. is the terms based on a hard-sphere model are reasonably accurate.
. ' M

. ; . . . The dotted line in Figure 8 corresponds to the shear vis-
bubble-phase viscosity as explained in more detail below. . S
. o - cosity based on the well-known kinetic theory of dense gases
For a fixed value ofT, the contribution from the collision

stress at giver increasesus at rate that is faster than the with the molecules of the gas being treated as having an

increase in viscous dissipatidRy,ss and, consequently, the effective mass (/2)Cy:
velocity variance goes through a minimum. 8
. . ®_ aT1/2¢2 C
The results for shear viscosity of the bubble-phase as a #s =g 12 XPk
function of ¢ at Re=180 are shown in Figure 8. The shear
viscosity is related to the bubble-phase stress by

1+ il
12 8¢x

We see that the calculated value of the shear viscosity is in

reasonably good agreement with the above formula for
01,= — P1o= psyio. (88 Re—x. The theory of dense gases considers small perturba-

. . . . . .t ilibri 2,2

Since the calculation of the potential interaction stress idions to the equilibrium stateTe-y“a“) and therefore the

computationally intensive and since this stress was found tébOVe expression fqus is relatively Slmple and only a func-

be roughly 5% of the collisional stress for the equilibrium tion of T and¢. In contrast, the approximate theory we have

case considered in Section Ill, we calculated the stress in téeveloped here is more complete in the sense that it attempts

dynamic simulations by adding only the kinetic and colli- tol determine the viscosity even whera is comparable to

sional components of the stress. These stresses are evaluafed- ) )
in the theory from Figure 9 shows the comparison between the theory and

simulations for the bubble-phase pressure defined as one-

5 2
1+ —) } 91

k_ _ __P third the traceP,,. We see once again an excellent agree-
7ij = T NMa(viv) = = 5 SCT (9 + &), @9 ent between the theory and simulations.
5 The results for the normal stress differences are shown
Uicj =-Qi(l))= —2p¢2xC, T i+ gaij in F|gure§ 10—1.1. .Accordlng to the theorlp,,= P?,S.and
P>>>P4 in the limit of small ¢. The theory for finite¢
8 1 predicts that?,,— P, will change sign atp=0.17. The lift
— Wa &+ Eekkéij} . (900 force tends to increase the velocity fluctuations in the

X,-direction and this leads to a greater kinetic stress for the
As shown in Figure 8, the agreement between the theor22 components. This results in the positive value of
and simulations is excellent when the results of dynamidP,,— P4, at low ¢. At higher volume fractions the signifi-
simulations are plotted gss/T*2 Thus, the 15% deviation cance of the collision stress increases and the collisions in-
in T between the theory and simulations noted earl@r crease the 11 components of the stress because the imposed
Figure 7 does not arise from errors in the expression for thesimple shear flow induces a relative motion of the bubbles
shear viscosity in terms of. At large Re, the bubble-phase along thex;-axis. The results of numerical simulations are
viscosity is sensitive to the coefficient of the leading orderseen to follow this general trend. It may be noted that this
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FIG. 10. (P~ P;)/P as a function of¢ for Re=180. The theory is  FIG. 12. Velocity variance as a function of Reynolds number#er0.3.

represented by the solid line while the diamonds are the results of numeric@iamonds are the results of detailed hydrodynamic interactions while the

simulations. pluses are the results for the effective hard-sphere model. The solid line
represents the theory.

behavior of bubble suspension is different from that found in
gas—solid suspensions where the lift force was absent and theodel are indicated by pluses. We see that both are in very
mean flow effect was to induce greater fluctuations in thegyood agreement with each other and with the predictions of
X;-direction. As a consequencBy; for the gas—solid sus- the theory. The same is true for the results for the shear
pensions was greater th&y, andP3; for the whole range of  viscosity shown in Figure 13. It is interesting to note that
o. ws!paTY? remains approximately constant Be is varied
The calculations discussed above were carried out &rom 200 to 60. This constant value is in good agreement
large Re to test the accuracy of the expressigi®) for S with (91) based on the kinetic theory of dense gases which
which could not be tested independently through the simulapredicts that the constant is equal to 0.326 e 0.3. Simi-
tions of the kind described in Section Ill. At such large alarly, the results for the bubble-phase pressure shown in Fig-
Re, however, it is likely that the Weber number will also be ure 14 are in good agreement with the theoretical predic-
large and the spherical bubble assumption cannot be justiions. In particular,P/T is seen to remain approximately
fied. Thus, it is of practical importance to compare the theoryconstant for all the values & e examined in the simulations
and simulations for smaller values Bfe. Figure 12 shows indicating that the contribution from the imposed shgthe
the velocity variance as a function &e for $=0.3. The  term ofO(T*? in (73)] remains small for the entire range of
results based on hydrodynamically interacting bubbles arRe,
indicated by diamonds while those based on the hard-sphere
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FIG. 13. Scaled bubble-phase shear viscosity as a functioRefor
FIG. 11. (P~ P33)/P as a function of¢ for Re=180. ¢=0.3. Refer to Figure 12 caption for symbols.
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FIG. 14. Bubble-phase pressuescaled bypT as a function ofRe for FIG. 16. The normal stress differenc—P33)/P for ¢=0.3. See the
¢=0.3. The kinetic, collisional, and total pressures for the bubble suspenFigure 15 caption for the symbols.
sions are denoted, respectively, by squares, pluses, and diamonds. The cor-
responding results for the effective hard-sphere model are indicated by
crosses, triangles, and stars. The lines represent the theoretical predlctlonaifference for smalleRe is greater for bubble suspensions
than for the hard-sphere model.
The results forp=0.15 are shown in Figures 17—-21. We
In contrast to the above results, the agreement for theee once again that the results for the velocity variance are in
normal stress differences shown in Figures 15-16 is not agery good agreement with the theory for a wide range of
good. Our theory predicted the normal stress differencdRe. The bubble-phase shear viscosity scaled withiT2? is
P,,— P4, to be negative while the simulations gave positiveseen to vary only by about 30% B is decreased from 200
values. The stress difference, however, is less than 5% of the 40. The agreement between the theory and simulations for
pressure and is therefore unimportant from a practical pointhe normal stress difference is good 5,— P33 but not for
of view. The results for the stress differerieg,— P33 0n the  the other stress difference. The results for the hard-sphere
other hand are larger in magnitude and seen to be in qualinodel system are in excellent agreement with those for the
tative agreement with the predictions of the theory. Note alsdubble suspension. Thus, the observed discrepancy between
that the results calculated including the full hydrodynamicthe computed normal stress differences and the theory arises
interactions are essentially the same as that obtained from tishue to inaccuracies in the Grad’s approximation.
hard-sphere model fdRe greater than about 60. The stress Finally, the results for¢=0.05 are shown in Figures
22-26. Although there appears to be a slight systematic dif-
ference in the velocity variance and shear viscosity for the

0.1 T T T T T T T

140 T T T T T T T

100 |- 7

60 - 7

20 - 7

-0.25
40

60

80

100

120

Re

140

160

180

200

40 60 80 100 120 140 160 180 200
Re

FIG. 15. The normal stress difference as a functionRaf for ¢=0.3.
Diamonds and pluses are, respectively, the results for bubble suspensions
and the effective hard-sphere model. The line represents the theory predi€4G. 17. The nondimensional velocity variance as a functiorReffor
tion. ¢=0.15. See the Figure 15 caption for symbols.
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FIG. 18. The scaled bubble-phase shear viscgsifpaT*? as a function
of Refor ¢=0.15. See the Figure 15 caption for symbols.

FIG. 20. The normal stress differencet— P33)/P as a function oRe for
¢=0.15. See the Figure 15 caption for symbols.

bubble suspension and the hard-sphere model system at tbBange in the behavior of bubble suspensions from the ig-
higher values oRe, the agreement of both with the theory is nited state to quenched state found for very sralThis is
quite reasonable. Note also that, in contrast to the results abnsistent with Figure 8 which shows that such a transition
higher ¢, the scaled viscosityLS/paT”2 decreases substan- only occurs for¢<0.014.

tially asReis decreased from 200 to 40. The simple approxi-

mation based on kinetic theory of gade$. (91)] does not /. BUBBLES WITH NONLINEAR DRAG

exhibit this Reynolds number dependence and is not an ad- ] ] ) ] )
equate description for dilute bubble suspensions. On the N Sections lI-V, we considered the ideal case in which
other hand, the theory presented here which accounts for tH8€ Pubbles are spherical and they produce a fluid flow that
change in the velocity distribution due to imposed shear adM& be described using the potential flow approximation. In
equately describes the rheology of bubble suspensions ggdition, the drag goefﬂment for an isolated bubble was as-
small ¢. Finally, we note that the agreement between thesUmed to have a linear dependence on the bubble velocity,
simulation results and the theory is very good for the normal-8- F=—12muva. While these approximations are reason-

stress differences. It may be noted that sraliheory pre- able for bubbles traveling close to their terminal velocity
dicts thatP,,= P45 while both our simulations and the finite OVEr & narrow range of bubble sizes, they would not hold for

¢ theory showP,,— P43 to be significant. We also note that the wide range of bubble velocities predicted in the ignited
the results for¢=0.05 show no evidence of an abrupt state of a sheared bubble fluid. Thus, it is imperative that we

assess the influence of nonlinear drag on the dynamics of
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FIG. 19. The normal stress difference4— P4,)/P as a function oRe for
$=0.15. See the Figure 15 caption for symbols.
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FIG. 21. The normal stress differencd®,(— P33)/P as a function oRefor
¢=0.15. See the Figure 15 caption for symbols.
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sheared bubble suspensions to determine whether a statgys, this number can be used to categorize various liquids
qUElIitatiVEly similar to the |gn|tEd sState prEdiCted in the fOfe-in terms of the type of buoyancy_dri\/en bubble motion that
going analysis can exist under physically realistic conditionswj|| be obtained. The most important parameter leading to a
We have shown that hydrodynamic interactions play a modtarge variation of the Morton number among various liquids
est role in the dynamiCS of sheared bubble SUSpenSionS gthe ViSCOSiW. The Morton number can be as |arge asrjl_o
least in the regime for which the potential flow approxima- highly viscous oils and, at such large Morton numbers, the
tion is accurate. For this reason and because no theory supble is always deformed whenever inertia is important.
available to describe the hydrodynamic interactions in theqowever, water has a Morton number of order 10 In
more general case, we will neglect such interactions in thigyater and other low Morton number fluids, there exists a
section and will consider Only the nonlinear drag aCting Onrange of bubble sizes in which the Reyno|ds number,

the bubbles and bubble—bubble collisions. ReU:PUa/,U«, is |arge but the Weber numbeWeU
Our knowledge of the drag on bubbles comes from ex-= ;,2a/sis O(1) or smaller.
tensive studies of the terminal velocity of bubbles in a vari- A pubble rising in water is spherical at low to moderate

ety of liquids by Haberman and Morthand others. The  Reynolds number and begins to take on an oblate spheroidal
Morton number,M=gu*/ps®, is a dimensionless number shape aWe,~0.5 which corresponds to about 0.5 mm ra-
that depends only on the viscosity and density of the liquiddjus bubbles and an approxima@e, of 130. As the bubble

the interfacial tension, and the gravitational acceleraion deforms, its drag coefficient and virtual mass both increase
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FIG. 23. The scaled bubble-phase shear viscgsifipaTY? as a function ~ FIG. 25. The normal stress difference— P33)/P as a function oRe for
of Refor ¢=0.05. See the Figure 15 caption for symbols. ¢=0.05. See the Figure 15 caption for symbols.
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FIG. 27. Velocity variance for deformable bubbles with nonlinear drag. The
pluses and diamonds represent the results of numerical simulations with the
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predictions of a kinetic theory.

FIG. 26. The normal stress difference,(— P33)/P as a function oRe for
¢=0.05. See the Figure 15 caption for symbols.

because the deformed bubble carries along with it more of
the liquid. The increase in the drag coefficient increases theheared bubble fluid with a wide distribution of bubble ve-
rate at which the kinetic energy associated with the bubbledocities.
motion is dissipated, while the increased added mass in- Moore*! provides expressions f& andC that are valid
creases the total kinetic energy in the liquid for the samdor We,<1.8. In the limit of small Weber number, these
bubble velocity variance or bubble temperature. Since thexpressions yield R/C=1+0.038Ve,. Furthermore,
drag coefficient increases more rapidly than the added mas€p/C=Rg,R/24C goes through a minimum ave,~1.3.
the net effect of the deformation effects at firtée will be However, Moore’s expressions are not applicable at
to decrease the bubble temperature. Mbbaad LamB2de- We,>1.8. We know from experimental observations of the
rived theoretical predictions for the aspect ratio, drag coeffiterminal velocity thatCp~2.6 in the limitWe,—o. There
cient, and added mass of spheroidal bubbles at low and mo@re no experimental or theoretical results for the added mass
erate We,. These predictions have been shown to be incoefficient at largeiVe, , so we will simply assume that the
reasonable agreement with experimental measurements afided mass remains at the value calculated by Moore for
the terminal velocity and aspect ratio faWe,<1.7 by We,=1.8 for all higher Weber numbers. An empirical rela-
Duineveld® At larger Weber numbers, the bubble shapetionship forR/C that exhibits this larg&Ve, asymptote and
loses its fore—aft symmetry and becomes unsteady and tr&pproximates Moore’s results for moderats, is
drag on the bubble increases sharply. Eyentually, at 1+0.038Ne,
We, =30, the bubble assumes a steady spherical cap shape —=
and the drag coefficient takes on a constant value, i.e., C 1+0.08¥
Cp=2F/(pv?ma?)~2.6. (93

To obtain a rough estimate of the effects of the changes In Figure 27, we present simulation results for the vari-
in drag and added mass induced by bubble deformation oance of the bubble velocity scaled witlyd)? in suspensions
the bubble velocity variance, we will perform simulations in with volume fractions of 0.1%diamondg and 0.3(pluses.
which each bubble experiences a pseudo-steady drag fordde ratio of the Weber and Reynolds numbers based on the
F=—12R7uva and has an added mass,=(m/2)C, so shear rate is chosen such thaVeRe&=u?/(pao)

+0.01Re,[1—exp —0.03We)].

that the equation for the acceleration of bubblés ~ 1.4x 10 °, corresponding to bubbles with radii of 1 mm in
R water. It can be seen that the variance grows to a value 10 to
ve=— C_Uia_ Siv?, (92) 15 times larger than ?(a)z before the ratio(v?)/(ya)?
T passes through a maximumRe~70.
where r,=a%p/(18u) is the viscous relaxation time of a The kinetic theory resulf74) for the second moments of

spherical bubble. This expression assumes that the coeffine bubble velocity can be modified to include the effects of
cient for the lift force is the same as the added mass coeffironlinear drag, if the second term (@4) is replaced by the
cient. Finally, although the bubbles are deformed at thevalue of(v;v;) derived using the new expressiof®2) and
higher Weber numbers, we will continue to treat them ag93) for the bubble acceleration. The integrals for the dissi-
elastic spheres when evaluating bubble—bubble collisions. pation caused by the nonlinear drag must be performed nu-
We require a relationship for the rati/C over the full merically and so the equations for the moments cannot be
range of Weber numbers in order to model the behavior of avritten in an analytical form. However, they can readily be
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solved by Newton—Raphson iteration. The predictions of the dJe ou!

kinetic theory with nonlinear drag are presented as dotted W:3m D' —. (A4)

and solid lines in Figure 27. They approach the kinetic !

theory for spherical bubbles féte< 40 where nearly all the Here, u; is the regular part of the actual velocity near the
bubbles in the suspension have small value®/ef . As the  center of bubblex. The derivative in the above expression
Reynolds number is increased, the theory exhibits a maximust be evaluated at the center of the bubble, ie., at
mum value of(v2)/(ya)? that is within about 20% of the Xx=Xx". The above expression is exact within the point-dipole
maximum seen in the simulations. Both the theory and simuapproximation used throughout this stutf. Substituting
lations indicate that the velocity variance is larger in the(Al) into (A4) we obtain

more conge_ntrated bubble suspension as a result of the die a(u) o) e
higher collision frequency. ——=mw +3mDf| ——+ , (A5)
Thus, we have seen that nonlinear drag has the effect of 9t X aXj  IXIX;

limiting the velocity variance that can be produced by shearwhere¢" is the regular part of the velocity potential based on
ing a bubble suspension to a value at which the Weber numrelative velocities of the bubbles. The last term in the above
ber based on the root-mean-square bubble velocity is of ofequation is the same as the potential interaction fdge
der one. In the parameter regime that can be easily obtaingglven by (7). Comparing(A5) with (6) then requires that the
with millimeter-sized bubbles in low Morton number liquids, force due to mean flow be given by
the nonlinearity of the drag associated with bubble deforma-
tion makes significant quantitative changes in the predictions pe _ m{we + 3DQ]M. (AB)
of the theory. Nonetheless, the important qualitative predic- A . 1 ax;
tion that shearing can induce a substantial variance of thgqy the velocity potentiad near the center of bubbte can
bubble velocity and an associated bubble-phase stress rgg expressed a@:[Dja(aslrs)JrCJq]rj where r=x—x®.
mains valid in the presence of nonlinear drag which agreegne velocity and impulse of the bubbles are therefore related
with (8). to D* and C* by w*=C?%—2D* and J*= —m[C*+ D“].
Eliminating C* from the above relations yield
w%+3D%= —m~1J% Substituting this relation intdA6),
and using(Al), we obtain
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