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ARTICLES

An O(N) algorithm for Stokes and Laplace interactions of particles
Ashok S. Sangania) and Guobiao Mo
Department of Chemical Engineering and Materials Science, Syracuse University,
Syracuse, New York 13244

~Received 27 December 1995; accepted 12 April 1996!

A method for computing Laplace and Stokes interactions amongN spherical particles arbitrarily
placed in a unit cell of a periodic array is described. The method is based on an algorithm by
Greengard and Rokhlin@J. Comput. Phys.73, 325 ~1987!# for rapidly summing the Laplace
interactions among particles by organizing the particles into a number of different groups of varying
sizes. The far-field induced by each group of particles is expressed by a multipole expansion
technique into an equivalent field with its singularities at the center of the group. The resulting
computational effort increases only linearly withN. The method is applied to a number of problems
in suspension mechanics with the goal of assessing the efficiency and the potential usefulness of the
method in studying dynamics of large systems. It is shown that reasonably accurate results for the
interaction forces are obtained in most cases even with relatively low-order multipole expansions.
© 1996 American Institute of Physics.@S1070-6631~96!01108-7#

I. INTRODUCTION

Numerical simulations of motion of particles through a
suspending fluid provide valuable insight into the complex
interrelationship between the microscale physics, the micro-
structure, and the macroscopic behavior of suspensions.
However, the problem of determining hydrodynamic interac-
tions among many particles is computationally intensive with
most of the existing methods for simulations suitable only
for a relatively small number of interacting particles, typi-
cally of O(100). While this is adequate for many problems,
there are also large numbers of problems for which it is
desirable to simulate systems containing much greater num-
ber of particles. For example, the uniform state of small Rey-
nolds number, finite Stokes number, gas-solid fluidized bed
is known to be unstable for certain ranges of its parameters
~the volume fraction of the particles and the Stokes number!
resulting in the formation of large bubbles or regions devoid
of particles. Large-scale simulations are needed to under-
stand in detail the mechanisms responsible for these macro-
scopic instabilities. Similarly, problems involving concen-
trated fiber suspensions withnl3 of O(1022103) require
large-scale simulations involving thousands of fibers in order
that the box size used in the simulations does not signifi-
cantly affect the behavior of such suspensions. Here,n is the
number density of fibers andl is the length of fibers. More-
over, recent experimental and numerical work on sediment-
ing fibers suggest that the uniform state of such suspensions
is unstable resulting in the formation of clusters.1 Large-scale
simulations are needed to determine the cluster size distribu-
tion and the resulting properties of the sedimenting fiber sus-
pensions. Large-scale simulations are also needed in the
study of suspensions with significant wall effects, polydis-

perse suspensions, or for suspensions in which the hydrody-
namic interactions are expected to be screened at distances
large compared to the size of the particles.

Two major difficulties in computing hydrodynamic in-
teractions among particles in Stokes~small Reynolds num-
ber! flow are: ~i! the long-range, multiparticle nature of in-
teractions; and~ii ! the lubrication effects arising from a
relative motion of particles in close proximity to each other.
These are explained in more detail below.

The velocity disturbance caused by a particle with a net
nonzero force acting on it decays only as 1/r , r being the
distance from the center of the particle, and therefore it is not
possible to use an arbitrary cut-off radius for truncating the
hydrodynamic interactions among particles. In other words,
one must compute the interactions amongall the particles in
the suspension. The velocity induced by a particle is gener-
ally expressed in terms of a distribution of hydrodynamic
force density acting along its surface. The multiparticle na-
ture of the interaction arises due to the fact that this force
density is unknown and is to be determined as a part of the
solution by solving for the force density on all the particles
simultaneously. This is different, for example, from the prob-
lem of computing Coulombic interactions among species
with known charges for which the interactions are also long-
ranged but, because the charge on the individual species is
known, the interactions are pair-additive. As a consequence,
no simple pair-additive approximation can be made in com-
puting hydrodynamic interactions.

When two particles in close proximity approach toward
each other with anO(1) relative velocity, the fluid in the gap
between the particles must squeeze out radially from the nar-
row gap between the particles. This results in a radial veloc-
ity of O(e21/2) in the gap region of thicknesse and a force
density ofO(e22) localized to anO(e) surface area of each
particle. This is known as the lubrication effect.~See, fora!Electronic mail: asangani@mailbox.syr.edu
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example, Happel and Brenner2 or Kim and Karrila3 for de-
tails.! Since the lubrication force density is highly localized
to a relatively small area of the the surface of the particles,
the conventional numerical techniques, such as the boundary
integral technique in which the surface of the particles is
discretized into a number of surface elements~see
Pozrikidis4 for details!, become impractical for large systems
as the number of discretized elements needed for resolving
the lubrication effects become prohibitively large as the two
particles approach each other.

To overcome the above two difficulties, Brady and
Bossis5 devised an ingenious scheme in which the many-
particle resistivity matrix, which gives the force density on
the particles given their velocities, is expressed as a sum of
far-field approximation to the many-particle mobility matrix
inverse and the pair resistivity tensors. The former accounts
for the long-range, multiparticle nature of the interactions
while the latter accounts for the lubrication forces between
pairs of particles which contribute in a pair-additive manner
to the resistivity tensor. This method is also used by Ladd6

who showed that the approximation devised by Brady and
Bossis can be systematically improved by including higher-
order approximations to the far-field mobility matrix. The
main advantage of the method over the conventional bound-
ary integral method is that relatively few unknowns~typi-
cally 11 to 26! per particle are needed for determining many-
particle interactions with an accuracy that is adequate for
many dynamic simulation problems.5,6 Unfortunately, the
method requires inverting a far-field mobility matrix with at
least (11N)2 elements, the computational effort for which
grows asN2 as the system size increases,N being the num-
ber of particles in the system. This limits the computations to
N of no more than few hundreds.

Alternate methods that do not require inverting the mo-
bility matrix have been proposed by Mo and Sangani,7 San-
gani and Mo,8 and Cichokiet al.9 Cichoki et al. employed
the same idea as Brady and Bossis to account for the lubri-
cation effects but avoided the matrix inversion with the help
of a suitable transformation of the equations governing the
multipoles. In the present study we use the method proposed
by Sangani and Mo. According to this method, the force
density on the particles is decomposed first into a lubrication
force density which is localized to the gap region between
the closely spaced particles and a regular force density which
is distributed on the entire surface of the particles. The ve-
locity due to the latter is expressed in terms of force multi-
poles at the center of the particles while that due to the
former is approximated in terms of a force dipole at the
center of the gap between the particles. This method thus
accounts for both the long-range, multiparticle nature of the
interactions and the lubrication effects. Application of the
boundary conditions on the surface of the particles leads to a
system of linear equations of the formA•x5b, wherex is a
vector of translational and rotational velocity of the particles
and the induced force multipoles,A is anO(N3N) matrix
andb is a vector that depends on the imposed flow. In San-
gani and Mo,8 each element of the matrixA was evaluated
separately and the resulting equations were solved subse-
quently to determine the force multipoles and the velocities

of the particles. The accuracy of the method was shown to be
comparable to that of the method of Brady and Bossis.5

However, since each element ofA was evaluated separately,
the method also requiredO(N2) computations, and, conse-
quently, no significant computational savings resulted even
though it avoided the computation of the mobility matrix
inverse.

For large systems, it will be advantageous to devise
schemes in which the computational effort increases much
more slowly withN. The solution of the set of linear equa-
tionsA•x5b is typically obtained by iterative methods when
N is large. In order that this can be accomplished with only
anO(N) computational effort, one must be able to compute
A•x for a givenx in anO(N) time. This is the main objec-
tive of the present investigation. Our method is based on a
fast summation technique based on hierarchial grouping of
particles developed for computing Coulombic and gravita-
tional interactions. There are several ways of doing this~see,
for example, Apple,10 Barnes and Hut,11 and Greengard and
Rokhlin.12! Here, we shall follow the approach outlined by
Greengard and Rokhlin.12 These investigators~and the other
co-workers of Greengard! have developed an algorithm for
computing Laplace and Coulombic interactions in the two-
as well as three-dimensional space13,14 and for the elastic
interactions in the two-dimensional space.15 The field created
by a group of particles far from a given particle is expressed
in terms of multipoles at the center of the group as described
in more detail later in this paper. Since the field represented
by a group of particles with a fixed number of multipoles
becomes accurate when the distance from the center of the
group is large compared with the linear dimension of the
group size, we need a hierarchy of groups in which the field
felt by a given particle is evaluated by using smaller groups
of particles that are relatively close to the particle and larger
groups of particles that are further away from it.

The method described by Greengard and Rokhlin for
solving Laplace equation starts with a discretization of the
boundary integrals and this makes it somewhat inefficient for
treating suspension problems in which the lubrication forces
are significant. Although the computational effort scales lin-
early withN, the number of discretization elements per par-
ticles will be prohibitively large when the lubrication effects
are significant. However, by combining their technique of
rapidly summing the interactions with the method of Sangani
and Mo,8 in which the number of unknowns per particle is
small due to explicit treatment of the lubrication effect, it
should be possible to decrease the overall computational ef-
fort significantly. Also, as we shall see, the extension of the
method to sum Stokesian interactions is nontrivial. The
method requires developing appropriate expressions for the
far-field and near-field representations of the field induced by
a group of particles. Greengard and Rokhlin gave these ex-
pressions for the Laplace equation and the present study de-
rives similar relations for the Stokes equations. The method
is applied to several problems to assess the efficiency and the
potential usefulness of the algorithm.

We should perhaps mention here about anO(N) algo-
rithm based on the lattice-Boltzmann gas technique that al-
ready exists for the study of hydrodynamic interactions in
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suspensions. The fluid continuum in Stokes interactions is
replaced by a lattice-Boltzmann gas with appropriate rules
for its molecules to exchange their positions and momentum.
It is found that with suitable rules for this exchange in the
bulk and at the interface between the particles and the mol-
ecules of the lattice-Boltzmann gas, it is possible to mimic
the behavior of rigid particles suspended in a Navier–Stokes
flow. A method based on this idea has been extensively
tested in two recent papers by Ladd.16,17Ladd has been able
to carry out Stokesian dynamic simulations of suspensions
with N of O(104) using this technique. In addition to being
O(N) in computations, the method has the advantage of be-
ing able to treat both the nonzero Reynolds number flows
past fixed particles and the suspensions of submicron sized
particles for which the Brownian forces are significant. This
method, however, is still in its early stages of development
with its accuracy and efficiency for largeN systems untested
and unchallenged by the other direct approaches based on
solving partial differential equations arising from the con-
tinuum approximation. It is hoped that in the least the
method developed here may serve as a check and an alternate
to the lattice-Boltzmann gas based algorithms for monodis-
perse suspensions of rigid particles. Furthermore, since the
size of the lattice is typically governed by the smallest di-
mension of the particles, it appears that the method of sum-
ming interactions by hierarchial grouping will be far more
efficient in dealing with the suspensions of slender fibers or
polydisperse suspensions. Also, since in general, it is a non-
trivial task to determine the appropriate rules for the ex-
change of momentum at the interface to mimic boundary
conditions other than the no-slip condition, it is expected that
the method described in this paper will be more readily
adapted to the suspensions of charged particles,18 drops or
bubbles.7 Note that for highly deformable particles and slen-
der fibers, the interactions can be computed using the inte-
gral equation representation for the Stokes flow instead of
the multipole representation. The lubrication effect men-
tioned earlier is likely to play less important a role for these
cases, and consequently the straightforward integral equation
coupled with the fast summation method described here is
expected to be adequate for the study of such suspensions.

The basic method is outlined in Sec. II where we con-
sider a simple case of Laplace interactions. We have chosen
to treat these interactions first since the method is much
easier to understand for this case and because of its applica-
tion to the simulations of bubbly liquids at large Reynolds
and small Weber numbers~see Sangani and Didwania19!.
Although the general principles are the same as in the
method outlined by Greengard and Rokhlin, the details are
quite different. In Sec. III we describe the method for com-
puting Stokes interactions. In Sec. IV we assess the effi-
ciency of the algorithm by applying it to a number of prob-
lems. First we consider two Laplace interaction problems:~i!
determination of the effective reaction rate constant in a
diffusion-limited reacting medium; and~ii ! determination of
the added mass coefficient for particles in inviscid suspen-
sions. Next, we consider three Stokes flow interaction prob-
lems: ~i! a uniform flow through fixed beds of particles;~ii !

effective viscosity of suspensions; and~iii ! sedimentation ve-
locity and hydrodynamic fluctuations in suspensions.

II. THE METHOD FOR LAPLACE INTERACTIONS

As mentioned in Sec. I, we shall first consider a simpler
problem of determining Laplace interactions of spherical
particles. We shall explain the method in reference to a prob-
lem of diffusion-controlled reactions. This will be applicable
with minor modifications to the other problems of Laplace
interactions.

When the size of one of the reactant species is much
greater than the other, the larger species may essentially be
regarded as immobile and the rate of reaction then depends
on the rate at which the smaller species diffuses through the
medium and arrives at the surface of the larger, immobile
species. To model this situation, we consider a suspension
consisting ofN spherical particles each of radiusa placed
within a unit cell of a periodic array. The suspending fluid
contains a species with a linear dimension much smaller than
a which diffuses through the fluid with a constant diffusivity
D. The species reacts very rapidly with the spheres such that
its concentration at the surface of the spheres may be taken
to be vanishingly small. We shall assume that the species is
continuously produced in the fluid at a constant rate through-
out the fluid medium. At steady state the average concentra-
tion ^C& of the species in the suspension is determined by the
balance between the rate at which it is produced in the bulk
and the rate at which it is consumed by the reaction. The
problem then is to determine the non-dimensional reaction
rate constantRs defined by

^Q&54paDRs^C&. ~1!

Here,^Q& is the average quantity of the species reacting per
unit time on a single sphere. Whenf, the volume fraction of
the spheres, is small, the interactions among spheres can
be neglected, andRs51—a result first given by
Smoluchowski.20 An estimate of the first correction for small
but finitef was given by Felderhof and Deutch,21 and, more
recently, numerical simulations have been used to compute
Rs as a function off for dense suspensions~see, for ex-
ample, Felderhof22!. Our goal will be to calculateRs for a
few selected configurations ofN spheres. The fluid is as-
sumed to be at rest so that the species concentrationC sat-
isfies the Poisson equation

¹2C1S50 ~2!

with the boundary conditionC50 on the surface of the
spheres. Here,DS is the net rate at which the species is
produced per unit volume of the fluid and is related to^Q&
by DS(12f)5n^Q&, n being the number density of the
spheres. It may be noted that the presence ofS in Eq. ~2!
renders it a Poisson equation instead of the Laplace equation
but we shall continue to refer to the interactions as Laplacian
since Eq.~2! is a rather trivial special case of the more gen-
eral Poisson equation in which the sink term is a function of
the position. In Sec. IV, where we present the results of
computations forRs , we shall also consider the problem of
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added mass whose governing differential equation is indeed
the Laplace equation, and the solution for that case will be
obtained simply by settingS50.

A. A review of an O(N2) algorithm

Before describing theO(N) algorithm in detail, it is use-
ful to present a more conventional method of multipole ex-
pansion in which the computations grow asN2 as the system
size is increased. The method has a close connection to the
boundary integral method but enjoys an advantage of a faster
convergence for simple particle shapes such as spheres con-
sidered in the present study. This method was outlined in
reference to the problem of determining the effective thermal
conductivity and the added mass coefficient for a given con-
figuration of spheres in our earlier studies.23,24

The concentrationC of the diffusing species can be ex-
pressed in terms of the Green’s function~or the fundamental
singular solution! S1 of the Poisson equation as

C~x!5C`1 (
a51

N

G aS1~x2xa!, ~3!

whereC` is to be chosen such that the average concentration
equalŝ C&, G a is a differential operator that will be defined
more precisely later in the section,xa is the center of the
particlea, andS1 is the spatially periodic Green’s function
satisfying

¹2S1~x!54pFt212(
xL

d~x2xL !G . ~4!

Here, xL represents the lattice points of the periodic array,
t is the volume of the unit cell of the periodic array, andd is
the Dirac’s delta function. The constant sink termt21 in the
above expression is needed to balance the source term at the
lattice points. An Ewald technique for evaluatingS1 is de-
scribed in detail by Hasimoto.25 More details including ex-
pressions for the derivatives ofS1 are given in Sangani
et al.24 and Cichoki and Felderhof.26 As shown by Hasimoto,
S1(x) has a singular, source-like, behavior near lattice points
where it behaves as 1/ux2xLu.

The use of spatially periodic Green’s function ensures
that the field induced by each particle, i.e.,G aS1(x2xa), is
spatially periodic, and hence consistent with the imposed pe-
riodic boundary condition. Thus, we only need to satisfy the
boundary condition at the surface of the particles. For the
case of spherical particles it is convenient to expressC near
each particle in terms of spherical harmonics in a polar co-
ordinate system with its origin at the center of that particle.
Thus, near particlea, we expressC as

C52Sr2/61(
i50

1

(
n50

`

(
m50

n

@Enm
i ,a1Anm

i ,ar22n21#Ynm
i ~r !,

~5!

wherer5x2xa, andYnm
i are the solid spherical harmonics

with

Ynm
0 5r nPn

m~m!cosmw, Ynm
1 5r nPn

m~m!sinmw. ~6!

Here,m5cosu and the spherical polar anglesu and w are
defined by r 15rcosu, r 25rsinucosw, and r 35rsinusinw.
Now the boundary condition of vanishingC at r5a yields

Enm
i ,a1a22n21Anm

i ,a2
1

6
Sa2dn0dm0d i050, ~7!

wheredn0 is a Kronecker delta function whose value is unity
for n50 and zero otherwise.

In order that Eq.~3! can be recast into Eq.~5!, we define
the differential operatorG a such that the singular terms at
xa in Eq. ~3! are exactly the same as those in Eq.~5!. Since
the singular part ofS1 equals 1/r , we require that

G ar21[ (
i ,n,m

r22n21Anm
i ,aYnm

i , ~8!

where the summation overi ,n,m is the same as that in Eq.
~5!. In Appendix A, we have compiled a number of useful
results on the differentiation of 1/r and the other spherical
harmonics. Using Eq.~A1!, we see at once that

G a5 (
i ,n,m

lnm
21Anm

i ,a
Dnm

i , ~9!

wherelnm is given by Eq.~A2! andDnm
i is the differential

operator defined by Eq.~A3!. The constantAnm
i ,a will be re-

ferred to as the induced multipoles.
Now the coefficientsEnm

i ,a of the terms that are regular at
r50 in Eq.~5! are related to thenth order derivatives of the
regular part ofC at r50 by @cf. Eqs.~A6!-~A8!#

Enm
i ,a5enm@Dnm

i ~Creg1Sr2/6!# r50 , ~10!

whereenm is given by Eq.~A8! andCreg equalsC minus the
singular part atr50, i.e.Creg5C2G ar21. Substituting for
G a from Eq. ~9! into Eq. ~3! and combining it with Eq.~10!
yields

Enm
i ,a5enmF $Dnm

i ~C`1Sr2/6!%r50

1 (
k50

`

(
l50

k

(
j50

1

(
g51

N

lkl
21Akl

j ,g
Dnm

i
Dkl

j S1~x
a2xg!G ,

~11!

where the singular part 1/r must be removed fromS1 before
differentiating it forg5a. For later reference, we note that
S is related to the sum of monopoles by means of a simple
relation

S52
4p

t (
g51

N

A00
0,g ~12!

obtained by combining Eqs.~4! and~9!. Here, we made use
of the fact that all singularities are situated inside the par-
ticles so that, for a point lying in the fluid, Eq.~4! simplifies
to ¹2S154p/t.

Now theO(N2) algorithm consists of truncating the in-
finite set of equations represented by Eqs.~7! and ~11! by
considering only the equations and multipolesAnm

i ,a with
n<Ns . This results in a total ofNt5N(Ns11)2 number of
equations in an equal number of unknown multipolesAkl

i ,g .
These equations are cast into a formA•x5b wherex is an
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Nt-vector of unknown multipole strengths,A is anNt3Nt

matrix whose coefficients are the derivatives of
S1(x

a2xg), andb is anNt-vector that is related toC`, or,
equivalently,^C&. The computational cost is typically gov-
erned by the calculation ofNt

2 elements of the matrixA.
This is computationally intensive sinceS1 itself is to be com-
puted using series in real and reciprocal space lattice
vectors.25 When high accuracy in numerical simulations is
not critically required, it is possible to avoid the repeated
calculations ofS1 for all pairs of particles by using a grid
interpolation scheme in which the unit cell is first divided
into a number of smaller cubes with the help of a grid and all
the derivatives ofS1 needed in the calculations are evaluated
at the grid points and stored for the interpolation purpose in
the subsequent calculations. Although this reduces the com-
putational effort considerably, the computations still grow
quadratically withNt .

The set of linear algebraic equations is subsequently
solved using an appropriate iterative solver and this requires
computations ofO(Nt

2) times the number of iterations re-
quired for the convergence to within a desired accuracy.
Thus, the overall computational effort and the memory stor-
age ~for the matrix A) scale as Nt

2 . @In earlier
calculations,8,24 we solved the system of equations using a
Gaussian elimination algorithm which required anO(Nt

3)
effort, but for smallN, the computational time was mostly
governed by the time for computing the matrix elements and
thus this step was not crucial.#

B. Far- and near-field representations of the
disturbances induced by a group of particles

In order that the overall computations for determining
the multipoles scale linearly withNt , we must be able to
determineEnm

i ,a with O(Nt) computations. The method de-
scribed in Sec. II A is inefficient for largeNt since it com-
putes the disturbance created by each particleg separately at
the center of each particlea. Clearly, the field created by
particles that are separated by a large distance from particle
a can be grouped together for the purpose of evaluating their
effect on particlea. Similarly, all the particles neara feel
similar regular field (Creg) from the group of particles far
away from them and therefore the calculation of the regular
fields for the particles could also be grouped together. If we
simply create all the groups of particles with each group
containing nearly an equal numberP of particles, then we
would requireO((N/P)2) group–group interaction compu-
tations. In addition, we must separately account for the inter-
actions among particles that are neighbors and this would
requireO(NP) computations resulting in a total computa-
tional effort that scales roughly asN2/P21NP. This has a
minimum forP5O(N1/3), and the total computational time
for this optimumP scales asN4/3.

In order to further reduce the order of computations we
must create a hierarchy among groups of particles and adopt
a strategy in which the regular field near particlea is evalu-
ated by combining greater number of particles that are fur-
ther away from it and fewer particles that are closer to it.
This can be accomplished using the algorithm of Greengard

and Rokhlin12 which we shall present in more detail in Sec.
II C. Here, we shall derive the expressions that are needed
for combining the fields induced by a group of particles and
the regular fields ‘‘felt’’ by a group of particles. In particular,
we need to know~i! how to translate a field induced due to a
singularity atxc to a field with singularity at another point
xp such that both fields are identical at a pointx sufficiently
far away from bothxc andxp; and~ii ! how to translate a field
which is regular and expressed in solid spherical harmonics
at one point to a regular field expanded around another point
in its vicinity. The first one will be useful, for example, in
combining the fields induced by a group of particlesg while
the second one will be useful in determiningCreg around a
number of particles neara. Greengard and Rokhlin accom-
plished these two tasks through the use of addition theorems
for Legendre functions. We shall use a different procedure
here, one that we have found more suitable to treat the case
of Stokes flow to be considered in Sec. III. Also, since the
method presented here incorporates the periodic boundary
conditions imposed by the presence of the unit cell at the
outset, it has the advantage of dealing more easily with vari-
ous kinds of non-absolutely convergent sums that otherwise
arise in calculations involving the Green’s function for infi-
nite domains. The case of interactions among finite number
of particles in an infinite medium can of course be trivially
recovered by substituting 1/r in place ofS1(r ).

1. Translation of singularities

We wish to translate a fieldCc[G cS1(x2xc) with its
singularities atxc to an equivalent fieldCp with its singulari-
ties atxp such that bothCc andCp give the same value of
C or its derivatives at a pointx far from bothxc andxp. We
start with a Green’s identity

E
V
~ f¹2C2C¹2f !dVr5E

]V
~ f¹C2C¹f !•ndAr , ~13!

whereV is any volume enclosing pointsxc andxp, ]V is its
surface,n is the unit outward normal on]V, andr5x2xp.
Now we choosef to equalYnm

j (r ) ( j50,1) and substitute in
turn forC bothCc andCp. SinceCc5Cp and¹Cc5¹Cp on
]V, the surface integrals in both must be equal and therefore
we obtain

E
V
Ynm
j ~r !¹2CcdVr5E

V
Ynm
j ~r !¹2CpdVr , ~14!

where we have made use of the fact that
¹2f5¹2Ynm

j (r )50. ~Note that this does not assume that
Cc andCp are equal at all points withinV, only their equiva-
lence on]V.) Care must be taken in evaluating the above
integrals since the Laplacian ofCc or Cp is a series in gen-
eralized functions

¹2Cc[G c¹2S1~r2r cp!

54pFA00
0,ct212(

i ,k,l
lkl

21Akl
i ,c
Dkl

i d~r2r cp!G , ~15!
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wherer cp5xc2xp. Here, we have used Eq.~9! to represent
Cc in terms of multipolesAkl

i ,c at xc and Eq. ~4! for the
Laplacian ofS1 , the pointsxc andxp being assumed to lie
inside the basic unit cell withxL50.

Now sinceCp must be spatially periodic, the most gen-
eral form for it with singularities atxp is

Cp5ep1(
i ,k,l

lkl
21Akl

i ,p
Dkl

i S1~r !, ~16!

whereep is a constant that may arise in translating the sin-
gularities fromxc to xp, andAkl

i ,p are the multipoles atxp.
Substituting Eqs.~15! and ~16! into Eq. ~14! we obtain

~21!nAnm
j ,p5lnmenm(

i ,k,l
~21!klkl

21Akl
i ,c
Dkl

i Ynm
j ~r cp!.

~17!

Here, we have used the result thatDkl
i Ynm

j (r ) at r50 is
nonzero only fori5 j , n5k, andm5 l , and that its value for
this special case is 1/enm . Also, in deriving the above result
we have assumed that the monopoles atxc andxp, are equal,
i.e.,A00

0,c5A00
0,p , a result that is verifieda posteriorifrom Eq.

~17!. Thus, the term containingt21 in Eq. ~4! made no con-
tribution to Eq.~17!. Finally, we also made use of the fol-
lowing result for the integration of generalized functions:

E
V
Ynm
j ~r !Dkl

i d~r2r cp!dV5~21!kDkl
i Ynm

j ~r cp!. ~18!

Expression~17! allows one to compute the multipoles at
xp given their values atxc. A more convenient form that is
useful for computing these multipoles can be obtained by
using the results given in Appendix A where we have pre-
sented more detailed formulae for evaluating the derivatives
of spherical harmonics.

It may be noted that the first few multipoles atxp could
also be obtained by a straightforward Taylor series expan-
sion ofCc aroundxp. Thus, using

GS1~r2r cp!5GS1~r !2r cp•¹GS1~r !1 . . . , ~19!

the relations among first few multipoles can be readily ob-
tained

A00
0,p5A00

0,c , A10
0,p5A10

0,c2r 1
cpA00

0,c ,

A11
0,p5A11

0,c1r 2
pcA11

0,c , . . . . ~20!

It is easy to verify that these are in agreement with the more
general result given by Eq.~17!. Calculations of higher-order
multipoles using the Taylor series expansion, however, be-
comes cumbersome and the method presented here based on
generalized functions proves more convenient.

To complete the translation, we need to determine the
constantep. For this purpose we start with the identity

E
V
FC2

1

6
r 2¹2CGdV5

1

3E]V
n•F rC2

1

2
r 2¹CGdA ~21!

and once again substitute forC in turn bothCp andCc. The
volumeV is chosen to be the basic unit cell in which both
xc andxp lie and]V is the surface of the unit cell. Since both
Cp andCc are required to be equivalent at all points on the

surface of the unit cell, the surface integral in both cases
must be identical leading thereby to the equality of the vol-
ume integrals

E
t
FCc2

1

6
r 2¹2CcGdV5E

t
FCp2

1

6
r 2¹2CpGdV. ~22!

Substituting forCc andCp, noting that the integral ofGS1
over the unit cell vanishes, and using the generalized func-
tion representation of Laplacians ofCc andCp, we obtain

ep1
2p

3t
A20
0,p5

2p

3t
@A00

0,cr pc•r pc22A10
0,cr 1

pc12A11
0,cr 2

pc

12A11
1,cr 3

pc1A20
0,c#, ~23!

which can be further simplified by substituting forA20
0,p from

Eq. ~17! to obtain

ep5
2p

t
@A00

0,c$~r pc!22Y20
0 ~r pc!%13~A11

0,cr 2
pc1A11

1,cr 3
pc!#

~24!

Equations~17! and ~24! allow us to shift the multipole
singularities at pointxc to that atxp. These will be useful in
combining the disturbance created a group of particlesg into
an equivalent disturbance created at a single pointxp.

2. Translation of regular solutions

We now consider the problem of translating a field
Creg,p which is regular at bothxp andxc ~these are not to be
confused with the singular points we used in the previous
derivation! and for which a spherical harmonic expansion
aroundxp is known to the corresponding field with its ex-
pansion aroundxc. Let

Creg,p52
1

6
f r 21 (

j ,n,m
Enm
j ,pYnm

j ~r ! ~25!

be the regular expansion aroundr5x2xp50. We then wish
to determine the coefficients that appear in the expansion
aroundxc

Creg,c52
1

6
f ur2r cpu21(

i ,k,l
Ekl
i ,cYkl

i ~r2r cp!. ~26!

For this purpose we use the fact thatEkl
i is related to akth

order derivative ofCreg,c evaluated atr5r cp

Ekl
i ,c5eklDkl

i FCreg1
1

6
f ur2r cpu2G

r5rcp
. ~27!

Substituting forCreg from Eq. ~25! we obtain the desired
result

Ekl
i ,c5

1

6
f ekl@Dkl

i $~r cp!222r•r cp%# r5rcp

1ekl (
j ,n,m

Enm
j ,p
Dkl

i Ynm
j ~r cp!. ~28!

Once again, expressions for the first few coefficientsEkl
i ,c

could also be obtained using the Taylor series expansion, and
the results obtained that way can be shown to be in agree-
ment with the above more general result.
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C. An O(N) algorithm

We now describe theO(N) algorithm for computing the
Laplace interactions. This consists of the following steps:

~1! Create a hierarchy tree.The first step is to create a
hierarchy among groups of particles. For simplicity, we shall
assume that our basic unit cell is cubic. We divide this into 8
equal-sized cubes each with its linear dimension half that of
the basic cell. These are referred to as the level 0 boxes.
Next, each box at level 0 is further subdivided into 8 smaller
level 1 boxes leading to a total of 64 boxes at level 1. The
process is continued to the finest levelmlev at which the box
size is such that on average there areP particles per finest
level box,P being a constant ofO(1) whose precise value
must be determined by optimizing the total computational
time. Note that there are a total ofmlev115 log8(N/P) levels.
Finally, each particle is assigned the finest level ‘‘parent’’
box in which its center lies.

~2! Upward pass.The second step is to determine the
multipole representation of the fields induced by a group of
particles that is valid at large distance from the group. It is
assumed that we shall determine the multipoles of the par-
ticles by a suitable iterative procedure@cf. Step~5!#. Thus, at
the beginning of each iteration we start with the assumed
values of the multipolesAnm

j ,g for each particle and compute
the contribution from each particle’s multipoles to its parent
box multipoles and the constantep at mlev level using Eqs.
~17! and ~24! with xp in that expression being the position
vector of the center of the parent box andxc andAkl

i ,c , re-
spectively, the center and the multipoles of particleg. Next,
with the multipoles and the constante for all the finest level
boxes computed, we determine the multipoles ande for the
next coarsermlev21 level boxes with each parent box mul-
tipoles now determined from the multipoles of its eight
‘‘children’’ at levelmlev . This procedure is repeated to larger
size boxes to compute the constante and the multipoles of
all the boxes at all the levels.

~3! Downward pass.The multipoles and the constante
determined in Step~2! give the far-field representation of the
effects of particles whose center is located in a given box.
We next want to computef andEkl

i , i.e., the coefficients that
appear in describing the regular field, for all the boxes at all
the levels. This is achieved by starting with the boxes at level
1 ~or level 0 if the basic unit cell is not cubic but oblong
instead, for example! and determining the contribution to the
regular field expansion about the center of the boxes from
the disturbance due to particles in the other boxes at the same
level but the ones that are not its nearest neighbors. Here,
and in the subsequent discussion, we shall refer to all the 26
nearest neighbors of a given box at a given level and the box
itself as the nearest neighbor of the box for the sake of brev-
ity. Thus, a given box has 27 nearest neighbors. At level 1,
there are 43233537 boxes that are further away from a
given box and contributions tof andEkl of a given box from
the particles in these 37 boxes can be determined using
Eq. ~11! with the summation overg in that expression re-
placed by the summation over these 37 ‘‘equal generation’’
boxes. Of course,xa must be replaced by the position vector
of the center of the box whose regular coefficients are being

computed andxg by the center of the equal generation box
from which the contribution is being computed. Also,S to be
used equals the net sinkSeq due to all the particles repre-
sented by the equal generation boxes. This can be deter-
mined from Eq.~12! with the summation overg once again
replaced by the summation over the equal generation boxes.
Now comparing with the regular expansion given by Eq.
~25!, we see that at this levelf for a given box is the sum of
Seq over its 37 equal generation distant neighbors.

Next, we computef and Ekl
i of the boxes at the next

finer level, i.e., level 2. Unlike level 1, in addition to the
contribution from its equal generation level 2 boxes~there
are 632335189 equal generation boxes for each box at this
level!, we must also determine the contribution from the
regular expansion of its parent box at level 1. Denoting the
box at level 2 under consideration by a superscriptc, the
parent byp, and the equal generation box by eq, we write

f c5 f p1(
eq

Seq, Ekl
i ,c5Ekl

i ,p→c1(
eq

Ekl
i ,eq→c , ~29!

and use Eq.~28! to determine the contribution from the par-
ent (p→c); the equal generation contribution tof andEkl is
determined, as before, with the use of Eqs.~11! and ~12!. It
should be noted that the parent of a box accounts for the field
induced by all the particles lying in the distant boxes of level
1. Thus, for each level 2 box, we have now accounted for all
the particles that are outside its nearest 27 level 2 boxes. The
particles in these 27 boxes are too close to an arbitrarily
selected particle in the box under consideration and therefore
we must wait for the calculations of the coefficients for the
finer level boxes to account for their effect.

The above procedure of combining contributions from
the equal generation boxes and the parent box is continued to
levels 3,4,. . . ,mlev . At all these levels, the total number of
equal generation boxes from which the contributions are
computed equals 189, except for the finestmlev level, for
which we sum over all the 216 boxes. This includes addi-
tional 27 nearest neighbor boxes with one small difference:
the singular part 1/r is removed fromS1 before computing
the contribution from these nearest 27 boxes. Physically, this
accounts for all the particles that are lying in the periodic
images of the nearest neighbor boxes at the finestmlev but
not the particles in the nearest boxes themselves which are
too close to permit the use of far-field representation in de-
termining the regular field expansion. We shall account for
these particles separately via Step~4!.

Finally, we compute the contribution tof and Ekl
i of

each particlea from the finest level parent box. There is, of
course, no contribution from the equal generation boxes at
the particle level.

~4! Particle to particle contribution.The contributions
from the particles in the nearest 27 boxes are evaluated in the
same way as for the contributions from the equal generation
boxes in the previous step except that the functionS1(r ) is
now replaced by 1/r because the regular part ofS1 has al-
ready been accounted for in Step~3!.

~5! Determine new guess for the multipoles.The Steps
~2!–~4! constitute one iteration in solving for the multipoles
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of the particles. A suitable iterative procedure, such as the
generalized moment residual~GMRES! method, is used to
obtain the new guess for the multipoles.

Steps~2!–~5! must be repeated until the multipoles con-
verge to within a specified accuracy. We now make several
remarks regarding the procedure outlined above.

Remark 1.For problems in suspension mechanics, we
typically use the periodic boundary conditions. For this spe-
cial case, creating the hierarchy tree is a trivial matter. Once
the basic unit cell is divided into a specified number of lev-
els, this tree remains unchanged throughout the dynamic
simulation. In order that this remains computationally effi-
cient, the number of particles in any of the finest level boxes
must not become much greater than its average valueP. This
will be true provided that no isolated cluster with a large
number density develop as the simulation proceeds. This is
an important consideration in stellar dynamics where the
overall number density of particles~stars/planets! is very
small and the cluster~galaxy! formation is an important phe-
nomenon to be investigated through simulations. In such a
case,mlev may have to be changed during the simulations
and may not remain uniform throughout the basic cell. The
computational effort for the determination of the tree for
such highly nonuniform systems scales asN(logN)4 as
shown by Aluru and co-workers.27,28The number density of
particles in most suspension problems is typically large and
the probability of developing a highly nonuniform suspen-
sion is generally small. In few exceptional cases, such as
gas–solid fluidized bed where large voids devoid of any par-
ticles may form, creating tree with nonuniformmlev may
prove useful.

Remark 2.If the multipole moments representing the
effect of groups of particles are computed up ton5Nsp , the
computational effort for the upward pass scales as
(Nsp11)4N: there are a total of (Nsp11)2 multipole coef-
ficients to be evaluated and each depend linearly on the same
number of multipoles of its children. The computational cost
for computing the parent to child contribution to the coeffi-
cientsEkl in the regular expansion is alsoO((Nsp11)4N),
assuming that these coefficients are also computed up to
k5Nsp . The cost of computing the contribution from the
equal generation boxes is roughly 216/P times that for the
parent to child calculation,P being the average number of
particles per box. Finally, the particle to particle contribution
requires anO(27P(Ns11)4N) effort. Here,Ns is the order
of multipoles retained in describing the field induced by the
particles. Thus, as a first approximation, the total computa-
tional cost per one iteration is controlled by the equal gen-
eration contribution and the particle to particle contribution.
A rough estimate of the total operation count is therefore
@216(Nsp11)4/P127P(Ns11)4#N and this has a minimum
for P53@(Nsp11)/(Ns11)#2. Of course, this is to be used
only as a rough guide to estimate how optimumP might
depend onNs andNsp . More accurate estimate can be ob-
tained through numerical experimentation.

The total operation count and the estimate of optimum
P obtained here are different from that of Greengard and
Rokhlin12 who used a slightly more complex algorithm
which scales asNsp

3 instead of the fourth power dependence

obtained in the present algorithm. Similar reduction in the
exponent ofNsp is obtained in a related calculation by
Zinchenko.29 These investigators considered very high val-
ues ofNsp for which the reduction is significant. As will be
shown in Sec. IV, a very good accuracy is obtained even
with Nsp as small as 3 and therefore we have not imple-
mented their method here.

Remark 3.If the dimension of the unit cell does not
change in dynamic simulations, then it is possible to save
considerable computational time by storing various matrices
that are needed in computing the parent to child or child to
parent contributions, and the contribution from the equal
generation boxes. In particular, the only place where one
needs to use Ewald’s technique for determiningS1 and its
derivatives is in the equal generation computations and these
calculations need to be done only once, at the beginning of
the simulations. Also the total number of derivatives to be
evaluated isO(4Nsp

2 logN), which amounts to a negligible
cost compared with a total derivatives ofO(4Ns

2N2) that one
must evaluate atevery time step in theO(N2) algorithm
described in the previous section.

III. THE METHOD FOR STOKES INTERACTIONS

Having described in detail the method for Laplace inter-
actions, we now consider the method for Stokes interactions.
The basic idea is same as before and we need to address only
two important issues:~i! how to include the lubrication ef-
fects such that reasonably accurate particle trajectories are
obtained with very few unknowns per particle; and~ii ! how
to translate the singular and regular solutions of Stokes equa-
tions. Of course, the lubrication effects could also be impor-
tant in some problems involving Laplace interactions, e.g.,
the problem of determining the effective thermal conductiv-
ity of dense suspensions consisting of highly conducting in-
clusions, but we chose to defer the discussion of the issue~i!
to the present section to explain the important aspects of the
algorithm through a relatively simple problem for which the
lubrication effects are absent.

We shall follow the method of Sangani and Mo8 to ac-
count for the lubrication forces in Stokes flow. This method
separates the force density on the surface of the particles into
a singular distribution of the force density near the narrow
gap between the particles and a regular distribution of force
density over the entire surface of the particles. The singular
force density gives asymptotically correct forces on the par-
ticles in terms of their velocities and the gap width while the
regular distribution is expanded in the case of spherical par-
ticles in a series of multipoles at the center of the particles,
and their values are determined by satisfying the boundary
condition on the surface of the particles. In addition to giving
correct lubrication forces and torques on the particles in
close proximity, the method also accounts for the effect of
the velocity induced by the lubrication forces on the other
particles in the suspension. The velocity of the fluid is given
by

ui~x!5^ui&~x!1 (
a51

N

M j
av i j ~x2xa!1ui

lub~x!, ~30!
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where^ui& is the average velocity of the suspension,v i j is a
spatially periodic Green’s function for the Stokes equation,
M j

a is a differential operator, andui
lub is the velocity in-

duced by the lubrication force density. Detailed expressions
for each of these quantities may be found in Mo and
Sangani7 and Sangani and Mo.8 In particular,
2(F j /4ph)v i j (r ) is the velocity atr due to point forcesF
acting at the lattice points of the periodic array. As shown by
Hasimoto,25

v i j5S1d i j2
]2S2

]r i]r j
, ~31!

whereS1 is the same function as introduced earlier in the
Laplace interaction calculations, andS2 satisfies¹

2S25S1 .
v i j (r ) has a singular behavior nearr50 as given by

v i j→v i j
s [

1

r
2
1

2

]2r

]r i]r j
, ~32!

the well-known Oseen tensor for the flow induced due to a
point force at origin in a fluid at rest at infinity. The actual
expression for the differential operatorM j

a is somewhat in-
volved but, fortunately, will not be needed for our discus-
sion. The only thing that we need to note is that it is defined
such that, when operated onv i j

s , it produces terms that co-
incide with the singular terms in the Lamb’s general solution
in terms of spherical harmonics. More specifically, let the
velocity of the fluid near the surface of particlea be ex-
panded in the Lamb’s solution as

ua5us,a1ur ,a ~33!

with us,a andur ,a being, respectively, the singular and regu-
lar parts ofu at x5xa. These are defined by

us,a~r !5 (
n51

`

@cn
sr 2¹pn

s,a1bn
srpn

s,a1¹x~rxn
s,a!1¹fn

s,a#,

~34!

wherer5x2xa,

cn
s5

22n

2n~2n21!
, bn

s5
n11

n~2n21!
, ~35!

and pn
s , xn

s , and fn
s are spherical harmonics of degree

2n21. ~For this section we temporarily suppress our previ-
ous notation according to whichf is the volume fraction of
the particles.! We define the above spherical harmonics in
terms of ‘‘multipole’’ coefficientsPnm

j , etc., by means of

pn
s,a5(

m, j
Pnm
j ,aYnm

j r22n21,

xn
s,a5(

m, j
Tnm
j ,aYnm

j r22n21, ~36!

fn
s,a5(

m, j
Fnm

j ,aYnm
j r22n21,

where the summation overm is from 0 ton and for j from 0
to 1. Likewise, the regular part is written as

ur ,a~r !5 (
n51

`

@cn
r r 2¹pn

r ,a1bn
r rpn

r ,a1¹x~rxn
r ,a!1¹fn

r ,a#,

~37!

with cn
r 5c2n21

s , bn
r 5b2n21

s , and

pn
r ,a5(

m, j
Pnm
r j ,aYnm

j ,

~38!
xn
r ,a5(

m, j
Tnm
r j ,aYnm

j ,

fn
r ,a5(

m, j
Fnm

r j ,aYnm
j .

In Mo and Sangani,7 we have defined the differential
operatorM j

a in terms of the coefficientsPnm
j ,a , etc., that

appear in Eqs.~36! such that

ui
s,a5M j

av i j
s , ~39!

wherev i j
s is the Oseen tensor@cf. Eq. ~32!#. We also gave

expressions for evaluating the coefficients that appear in the
regular part of the velocity atxa in terms of the singular
coefficientsPkl

i ,g , etc., of all the particles in the suspension.
This is analogous to the expression we cited for the Laplace
interactions@cf. Eq. ~11!# except that the corresponding ex-
pressions for the Stokes interactions are considerably more
involved. The direct evaluation of these regular coefficients
requires anO(N2) computational effort. In the present sec-
tion we shall derive the results for the translation of regular
and singular solutions that will allow us to determine the
regular coefficients with anO(N) effort.

A. Translation of Stokes singularities

We wish to translateui
c5M j

cv i j (x2xc) with its singu-
larities at xc to a velocity field with its singularities atxp

such that both are equivalent at a pointx sufficiently far
away from bothxc andxp. Since the field with singularities
at xp must also be spatially periodic, the most general form
for it is given by

ui
p5ei1M j

pv i j ~x2xp!, ~40!

whereei is a constant. Letpc andpp be the corresponding
pressure fields. Substitutingp for C in Eq. ~14! we obtain

E
V
Ynm
j ~r !¹2pc dVr5E

V
Ynm
j ~r !¹2pp dVr , ~41!

wherer5x2xp. Now since the pressure satisfies the Laplace
equation except at its singularities, the integrals in the above
expression can be evaluated simply from the singular behav-
ior of p which can be written as

ps5h(
k,l ,i

Pkl
i Ykl

i r22k215h(
k,l ,i

lkl
21Pkl

i
Dkl

i r21, ~42!

where we have made use of Eq.~A1! in writing the last
equality. Noting that¹2r21524pd(r ), it is relatively easy
to carry out integrations in Eq.~41! to obtain a relation simi-
lar to Eq.~17!
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Pnm
j ,p5enmlnm(

i ,k,l
lkl

21Pkl
i ,c
Dkl

i Ynm
j ~r pc!, ~43!

wherer pc5xp2xc.
Now we determineTnm

j ,p . Let v5¹3u be the vorticity.
Using Eqs.~34! and ~35!, it can be shown that the singular
part of the vorticity is given by

vs,a5(
n

2
1

n
ra3¹pn

s,a2n¹xn
s,a2ra¹2xn

s,a , ~44!

where the superscripta stands forc as well asp, and
ra5x2xa. Now we note thatr•va satisfies the Laplace
equation at all points except at its singular pointxa. This can
be seen by multiplying Eq.~44! with r and using
ra5r2rap to yield

r•vs,a5(
n

2
1

n
rap•~r3¹pn

s,a!1@n~n11!2nrap–¹

2r 2¹21rap•r¹2#xn
s . ~45!

Taking Laplacian of the above equation and using results
such asra–¹xn

s,a52(n11)xn
s,a ~since xn

s,a is a homoge-
neous polynomial of degree2n21 in r i

a) and r5ra1rap

we obtain

¹2~r•vs,a!5(
n

2
1

n
rap•r3¹¹2pn

s,a1@n215n16

2~n12!rap–¹1r•~rap2r !¹2#¹2xn
s,a .

~46!

Now substitutingr•v for C in Eq. ~14!, using the general-
ized function representation of Laplacians ofpn

s andxn
s , and

simplifying the resulting integrals we obtain

n~n11!

lnmenm
Tnm
j ,p5(

k,l ,i

1

lkl
Fk~n11!Tkl

i ,c
Dkl

i Ynm
j 1

1

k
Pkl
i ,cr

•$Dkl
i ~r3¹Ynm

j ~r !!%G
r5rpc

. ~47!

This can be further simplified using the general results for
differentiation of spherical harmonics given in Appendix A.
A convenient set of formulas for computing all the multi-
poles atxp from those atxc is given in Appendix B.

To compute the coefficientsFnm
j ,p we start with the iden-

tity

]

]xj
~s i j ui82s i j8 ui !5ui8

]s i j

]xj
1p8

]ui
]xi

, ~48!

wheres i j[2pd i j1h(]ui /]xj1]uj /]xi) is the stress ten-
sor corresponding to a field (ui ,p) ands i j8 is the stress cor-
responding to a regular field (ui8 ,p8). (ui ,p) on the other
hand, is allowed to be singular at some points in the space.
We now choose the regular fields to be given by

p85Ynm
j ~r !, u85cn

r r 2¹Ynm
j 1bn

r rYnm
j , ~49!

substitute for (u,p) both (uc,pc) and (up,pp) in turn, inte-
grate the identity~48! over a volumeV large enough to con-

tain bothxc andxp, apply the divergence theorem, and use
the equivalence of the two fields at all points on the bound-
ary ]V to obtain

E
V
@$cn

r r 2¹Ynm
j ~r !1bn

r rYnm
j ~r !%–~¹–sc!1Ynm

j ~r !¹–uc#dVr

5E
V
@$cn

r r 2¹Ynm
j ~r !1bn

r rYnm
j ~r !%•~¹•sp!

1Ynm
j ~r !¹–up#dVr . ~50!

Since the divergence of stress and velocity are zero ex-
cept at the singular points, only the singular part of the ve-
locity and stress will contribute to the above integrals. Sub-
stituting the singular part of the velocity forui

a , wherea
stands forc or p, the integrands in the above expression
reduce to

(
k

F H 1k ~cn
r r 2¹Ynm

j 1bn
r rYnm

j !•ra1ck
s~r a!2Ynm

j J ¹2pk
s

1~cn
r r 2¹Ynm

j 1bn
r rYnm

j !•~¹3~ra¹2xk
s!!1Ynm

j ¹2fk
sG .
~51!

Using the generalized function representation of Laplacians
of pk

s , etc., and carrying out the integrations in Eq.~50! we
obtain

Fnm
j ,p5enmlnm(

i ,k,l
FFkl

i ,c
Dkl

i Ynm
j 1

1

n11
Tkl
i ,cr pc–¹

3~Dkl
i ~rYnm

j !!1Pkl
i ,cH S cnr 1ck

s2
1

k~n11! D
3Dkl

i ~r 2Ynm
j !1S 1

k~n11!
2

22k

k~2k21! D r
•Dkl

i ~rYnm
j !1

22k

2k~2k21!
r 2Dkl

i Ynm
j J G

r5rpc
. ~52!

A convenient formula for evaluatingFnm
j based on the above

expression is given in Appendix B.
Finally, to complete the transformation of the singular

solution atxc to that atxp, we need to determine the constant
ei in Eq. ~40!. For this purpose we use the identity

E
t
@uc2r¹–uc#dV5E

t
@up2r¹–up#dV5E

]t
ru•n dA,

~53!

wheret is the unit cell enclosing bothxc andxp andn is a
unit outward normal on its surface]t. As before, we have
used the equivalence ofuc andup on ]t. Sincev i j and its
derivatives are solenoidal, and since their integrals over the
unit cell vanish, substituting foruc and up @cf. Eq. ~40!#
yieldse50.

1999Phys. Fluids, Vol. 8, No. 8, August 1996 A. S. Sangani and G. Mo

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



B. Translation of regular solutions of Stokes
equations

We now consider a solution of Stokes equation which is
regular both atxp and xc and for which the coefficients
(Pnm

r j ,p ,Tnm
r j ,p ,Fnm

r j ,p) in the regular Lamb’s solution around
xp are known. Our goal is to derive expressions for its ex-
pansion aroundxc, i.e., to determine the coefficients
Pnm
r j ,c ,Tnm

r j ,c and Fnm
r j ,c . Since the pressure satisfies the

Laplace equation, the coefficients in its expansion are related
by the same expression as forEkl in Sec. II@cf. Eq.~28! with
f50#

Pkl
ri ,c5ekl (

j ,n,m
Pnm
r j ,p
Dkl

i Ynm
j ~r cp!. ~54!

Similarly, we use the fact thatv r
•r with r5x2xc satisfies

the Laplace equation and obtain

k~k11!Tkl
ri ,c5ekl~v r

•r !r50

5ekl (
j ,n,m

Fk~n11!Tnm
r j ,p
Dkl

i Ynm
j ~r cp!2

1

n11

3Pnm
r j ,c$r•~¹~Dkl

i ~rYnm
j !!!%r5rcpG . ~55!

Finally, we use the fact thatr•ur is biharmonic, and there-
fore Fkl

ri ,c can be evaluated from7

Fkl
ri ,c5

ekl
k F HDkl

i 2
~k2 l !~k2 l21!

4k22
Dk22,l

i ¹2J ~r•ur !G
r5rcp

.

~56!

Once again, the detailed expressions for determining various
coefficients of the regular part of the velocity are given in
Appendix B.

C. The O(N) algorithm for Stokes interactions

TheO(N) algorithm for Stokes interactions consists of
the same steps as outlined in Sec. II. In addition to comput-
ing the contribution from the singularity at the center of par-
ticle g to the regular field near particlea, we also calculate
the flow induced by the lubrication forces between each pair
of particles in close proximity. In Sangani and Mo,8 we gave
the expression for the flow due to lubrication forces in terms
of a force dipole singularity situated at the center of the gap
between the particles. The upward pass now determines the
equivalent force multipoles of the finest level boxes from
both the force multipoles of the particles and the lubrication
singularities. The remainder of the upward pass calculations
in which the multipoles are evaluated for the coarser level
boxes remain unaffected by the lubrication singularities. In
the downward pass calculations, the contribution from the
equal generation boxes is evaluated by the expressions given
in Mo and Sangani7 with the center of particleg in that study
now replaced by the center of the equal generation box, and
the center of particlea replaced by the center of the box
whose regular coefficients are being evaluated. Finally, in
the particle to particle step, we evaluate the contribution
from the particles and the lubrication singularities lying in
the 27 nearest neighbor boxes. For this we need additional

expressions for computing the contribution to coefficients in
the regular part of the velocity near each particle from the
singularities situated at the center of the particles and the
lubrication gaps. These expressions are given in Appendix B.

IV. APPLICATION TO FEW SPECIFIC SUSPENSION
PROBLEMS

In this section we apply the method described in the
previous two sections to few specific problems with the aim
of assessing the utility of the method in studying systems
with large N. Since the computational effort increases as
Nsp
4 , we shall be particularly interested in determining the

accuracy of the method for smallerNsp .
To validate the analytical results for computing the

translation of singular and regular solutions of Laplace and
Stokes equations, and to test the accuracy of the computer
programs, we found it very useful to compare the results of
the programs againstO(N2) programs which were exten-
sively tested previously for their accuracy.7,8,18,24Since the
computational time required by theseO(N2) algorithms is
very large, the accuracy for largeN was tested by arranging
theN particles within the basic unit cell in a periodic array
with each sub-unit cell containingN0 particles. Typically,
the calculations were checked withN051, which corre-
sponds to a truly periodic array, and withN0516, the par-
ticles within the sub-unit cell arranged in the latter case in a
random array. Since in theO(N2) method we compute each
element of the matrixA separately and then evaluate the
productA•x, the most important test of theO(N) algorithm
requires the direct evaluation of this product to match with
the corresponding product evaluated by theO(N2) method
for any givenx. Here, for example, for the case of Laplace
interactions,x is the vector ofAnm

i ,g while the product is the
vector ofEkl

ja @cf. Eq. ~11!# plus a constant times the vector
of Akl

j ,a , with the constant depending on the boundary con-
dition at the surface of the particles. The elements of the
matrix A being related to the derivatives ofS1 evaluated at
x5xa2xg. TakingAnm

i ,g51 for all n,m,i , andg, we evalu-
ate the mean value ofEkl

j ,a over all the particles and its vari-
ance from the mean. For the special case of a periodic array
with N051, the variance must, of course, be zero. However,
theO(N) algorithm with finiteNsp introduces some fluctua-
tions even in the case of a periodic array. These fluctuations
were found to decrease rapidly with the increase inNsp . The
mean value for eachEkl was also found to agree well with
that obtained from theO(N2) algorithm as we shall show in
more detail below. Similar tests were also made for the
Stokes interactions code.

A. Laplace interactions

A few typical results for the relative errors for the spe-
cial case of diffusion-controlled reactions are given in Table
I. The boundary condition on the surface of particles for this
problem yields Eq.~7!. Denoting the left-hand side~lhs! of
this equation byr nm

i ,a we calculate two measures of the rela-
tive errors. The first is defined by

E15
1

neq
(
n,m,i

U^r nmi ,a&2^ r̄ nm
i ,a&

^ r̄ nm
i ,a&

U , ~57!
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where the angular brackets denote the average over all the
particles in the unit cell,r nm

i ,a is the lhs of Eq.~7! computed
by theO(N) algorithm, r̄ nm

i ,a is the corresponding value ob-
tained from theO(N2) algorithm, andneq5(Ns11)2 is the
total number of unknowns per particle,Ns being the highest
order multipole used in describing the disturbance field due
to each particle (n<Ns). The order of multipoles to which
the disturbance created by groups of particles is represented
in theO(N) algorithm is denoted byNsp .

The second measure of the relative error is

E25
1

neq
(
n,m,i

U^Enm
i ,a&2^Ēnm

i ,a&

^Ēnm
i ,a&

U , ~58!

whereEnm
i ,a is computed using theO(N) algorithm andĒnm

i ,a

by theO(N2) algorithm. This error is a true representation of
the error introduced by the grouping of particles and is rela-
tively insensitive to the volume fractionf of particles. The
errorE1 on the other hand, depends on the specific boundary
condition and is therefore dependent on the nature of prob-
lem to be solved. Also since the magnitude ofEnm

i ,a decreases
relative to the coefficient of the singular termAnm

i ,a as the
volume fraction decreases, this error will decrease asf is
decreased.

As seen in Table I both relative errors are generally
small in magnitude even though the errors do not decrease
monotonically withNsp . For the special case of periodic
arrays withN051, only the multipolesAnm with n andm
multiples of 4 are nonzero and therefore a significant reduc-
tion in the error is expected to occur only whenNs and
Nsp are incremented by 4. This is found to be generally true
even for random arrays. In most cases the errors for
Nsp5Ns14 are seen to be very small, well within the accu-
racy of theO(N2) algorithm.

Table II shows the computing time for one iteration on a
single IBM SP2 processor at the Cornell Theory Center. The
times shown there are for an interactive calculation on the
machine and thus represent approximate times. They are use-
ful, however, for illustrating the dependence of computer
time onN, Ns , Nsp , andP. We see that the computing time

is essentially governed by the downward pass in which the
evaluation of the contributions from the equal generation
neighbors and the particle to particle interactions to the regu-
lar coefficientsEkl

i ,a take up most of the computing time. As
mentioned earlier, the operation count for the equal genera-
tion roughly scales as 216N(Nsp11)4/P, and that for the
particle to particle as 27NP(Ns11)4. The scaling of these
times withNsp , Ns , andP can be verified approximately
from the data presented in Table II. For example, the particle
to particle time quadrupoled whenN was increased from 512
to 1024 keepingNs51. Note that withmlev52, there are 512
boxes and henceP equals, respectively, 1 and 2 for
N5512 and 1024. Similarly, the particle to particle time
changed roughly by a factor of 4 whenNs was changed from
1 to 2 atN5512. The ratio of particle to particle time to the
equal generation time is somewhat variable. ForNs5Nsp the
ratio of this time does approximately scale asP2, but the
ratio appears to vary considerably withNs ranging from 0.07
for Ns50 and N5512 to 1.09 for Ns5Nsp53 and
N51024. This variation may be partly due to inaccurate na-
ture of the timing obtained from the interactive calculations.
More importantly, however, the difference may arise because
the particle to particle calculations require evaluation of
spherical harmonics for each pair of particles whereas the
calculation for the equal generation contribution uses precal-
culated derivatives ofS1 .

The set of equations given by Eq.~7! were solved itera-
tively using a subroutine based on the generalized minimum
residual method for nonsymmetric matrices written at
Lawrence Livermore. The routine determines the approxi-
mate solutionxap to A•x5b and generates an estimate of the
error defined as the square root of Euclidian norm of the
differenceb2A–xap divided by the norm ofb. Since it is not
known a priori what error estimate is acceptable for gener-
ating a satisfactory solution to a given problem, we must

TABLE I. Relative errors from the Laplace interaction code as a function of
Nsp for different values ofNs . Case A: simple cubic array withf50.3,
N051, N5512. Case B: random array withf50.25,N0516,N51024.

Case Ns Nsp E1 E2

A 1 1 4.0E-2 1.3E-3
2 4.0E-2 1.3E-3
4 7.5E-4 2.1E-4

A 2 2 7.9E-2 1.1E-2
4 7.4E-2 1.1E-2
5 9.5E-5 2.2E-4

B 1 1 2.5E-2 1.1E-2
2 1.1E-1 1.9E-2
4 1.4E-1 1.3E-1
5 1.9E-3 2.5E-3

B 2 2 8.0E-2 4.9E-2
4 7.8E-2 2.2E-2
5 6.9E-4 9.9E-3

TABLE II. Computing time~in s! per iteration using a single processor on
IBM SP2: eq gen, pp, and total refer to time for computing equal generation
contribution, particle to particle contribution, and the total time, respec-
tively. ~These times are for the diffusion-controlled reaction problem.!

N mlev Ns Nsp eq gen pp Total

512 2 1 1 2.0 0.7 2.8
1 2 3.6 0.7 4.6
1 4 47.6 0.7 49.2
2 2 3.6 2.6 6.6
2 5 113 2.7 117

1024 2 0 0 1.7 0.5 2.3
1 1 2.7 3.4 6.4
1 2 3.6 2.7 6.8
1 3 7.2 2.7 11.0
1 4 49 2.7 54
3 3 7.1 31 40
4 4 50 73 128

4096 3 1 1 21.5 5.5 28
1 4 375 5.5 387
2 2 38 21 62
4 4 386 145 550

8192 3 1 1 23 23 48
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study the convergence properties for various problems sepa-
rately.

1. Diffusion-controlled reactions

We begin with the diffusion-controlled reactions. Here,
our primary interest is in determining the non-dimensional
reaction rateRs . This is determined as follows.

It can be shown that the average concentration is related
to C` in Eq. ~3! by

^C&5C`2fF12^A00
0,a&1

1

15
SG , ~59!

where the angular brackets denote average over all the par-
ticles, f is the volume fraction of the particles,S is the
strength of sink@cf. Eq. ~2!#, and A00

0,a is the strength of
induced monopole due to the presence of particlea, the
radius of the spheres being taken to be unity. The non-
dimensional reaction rate can be shown to be given by

Rs5
S~12f!

3fFC`1
S

6 S 12
2

5
f D G . ~60!

For computingRs , we takeC`51 and first determine
A00
0,a . S is then determined from the overall heat balance

which givesS523f^A00
0,a&. Finally, substituting forS in

Eq. ~60! yieldsRs .
An additional quantity that gives some measure of the

convergence is the variance in the monopole strength from
its average value. Table III gives bothRs and the variance
for various values off andN. In all cases the convergence
is seen to be quite rapid, with the number of iterations for a
given error estimate increasing slowly withN.

Table IV shows a comparison between the results ob-
tained by theO(N2) andO(N) algorithms. First, we find that
the convergence ofRs with Ns is very rapid. Thus, a rea-

sonably high accuracy is achieved withNs less than or equal
to 4 even at high volume fractions. For the special case of a
periodic array (N051), the results obtained here are in
agreement with the results reported by Felderhof.22 As men-
tioned earlier, we expect a very high accuracy from the
O(N) algorithm whenNsp5Ns14. This is indeed the case.
However, even the results obtained with lower values of
Nsp are seen to introduce only a modest error, typically less
than 10%.

In studying large systems it will be desirable to carry out
simulations with the lowest order approximation that keeps
the essential physics of the problem. In the present case, this
corresponds toNs51. The net reaction rate is related to the
monopoles (n50) and the effective diffusivity of the me-
dium is governed by the induced dipoles (n51). Since the
concentration on the surface of the particles is specified~viz.,
C50), we expect a Brinkman-like screening of the condi-
tionally averaged concentration. More specifically, it is easy
to show that the average concentration^C&1 at x given a
sphere atx1 satisfies¹2^C&15a2^C&1 for large r[x2x1
with a253fRsD/(D* (12f)), D* being the effective dif-
fusivity in reacting media and is analogous to the Brinkman
viscosity used in describing the conditional averaged veloc-
ity in the analogous case of Stokes flow through an array of
fixed particles. For larger , we therefore expect̂C&12^C&
to decay ase2ar /r , the radius of the particles being taken to
be unity. Thus, the conditional average concentration decays
algebraically as 1/r for small r and exponentially forr larger
than the screening length 1/a. For smallf, this screening
length is ofO(f21/2), and a question we would like to ad-
dress is if such a screening can be observed clearly in simu-
lations based onO(N) algorithms with smallNsp or do the
imposed lengths due to hierarchial division of the suspension
interfere with the screening phenomenon.

Figure 1 shows the conditionally averaged monopole as
a function ofr . The ordinateM is defined by

TABLE III. Convergence of the reaction rateRs as a function of number of
iterations~iter! andN using a generalized residual moment~GMRES! algo-
rithm. Error refers to the error estimate calculated by the GMRES code and
var5^A22^A&2&/^A&2 is the non-dimensional variance in the induced
monopoles,A[A00

0 .

N f Ns5Nsp Iter Error Rs var

1024 0.1 2 6 5.8E-2 2.08 3.8E-2
11 8.1E-3 2.11 4.1E-2
17 9.5E-4 2.11 4.2E-2
23 7.0E-5 2.11 4.2E-2

0 12 9.7E-3 2.06 8.4E-2

1024 0.3 2 10 6.0E-1 4.74 1.3E-2
20 4.5E-2 4.95 1.6E-2
38 9.2E-5 4.95 1.6E-2

4096 0.3 1 20 1.7E-1 4.15 3.3E-1
40 1.0E-2 4.19 3.7E-1

4096 0.01 1 8 8.9E-3 1.19 4.6E-2
24 1.0E-5 1.19 4.6E-2

8192 0.1 1 9 1.5E-1 1.89 4.1E-2
19 9.7E-3 2.00 4.1E-2

TABLE IV. A comparison of the results for the non-dimensional diffusion-
controlled reaction rateRs and the monopole variance~cf. Table III cap-
tion! obtained by theO(N2) andO(N) algorithms.

f N0 Ns

O(N2) O(N)

Rs var N Nsp Rs var

0.45 1 0 9.06 0.0 512 0 8.35 0.0
512 4 9.06 0.0
4096 0 6.03 1.1E-5
4096 4 9.05 1.7E-9

4 10.31 0.0 512 4 10.31 0.0
4096 4 10.30 1.0E-7

8 10.31 0.0

0.45 16 1 9.98 2.5E-3 1024 2 8.71 3.3E-3
4 9.98 2.5E-3

2 10.74 1.7E-3 2 9.37 3.0E-3
3 11.17 1.7E-3 3 9.50 1.7E-3
4 11.33 1.7E-3 4 11.39 1.5E-3

0.1 16 0 2.17 2.6E-2 1024 0 1.65 3.4E-2
1 2.31 1.7E-2 1 2.31 1.8E-2
2 2.34 1.7E-2 2 2.31 1.8E-2
3 2.34 1.7E-2 3 2.27 1.6E-2
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M5r
^A&2^A&1~r !

^A&
, ~61!

where^A& is the average monopole (^A00
0,a&) and^A&1(r ) is

the average of the monopoles of particles separated by dis-
tancer . Is is easy to show that the conditionally averaged
monopole is proportional to the conditionally averaged con-
centration ^C&1 and therefore we expectM to decay as
e2ar for distances large compared with unity but small com-
pared with the size of the unit cell. The calculations were
done for a single configuration of 512 randomly placed par-
ticles withf50.01,Ns51, andNsp51. The same configu-
ration was used also for evaluatingM using theO(N2)
algorithm so that a detailed comparison of the conditional
averaged monopoles can be made. The agreement between
the two is remarkably good for all values ofr<30. The unit
cell size was about 60 units and with the two hierarchial
levels used in theO(N) calculations, the box sizes at the first
and second levels were, respectively, 15 and 7.5 units. As
seen in Fig. 1, there appears to be no influence of these
lengths on the results obtained with theO(N) method even
for Nsp as small as unity.

It is interesting to make a comparison of the computing
times for the two algorithms. For the case mentioned above,
the time per iteration was about 3 s and it took 10 iterations
to converge. Thus the total time using theO(N) algorithm is
about 30 s. The time required by theO(N2) algorithm on the
other hand, was about 4350 s.~Both these times are for in-
teractive calculations on a single IBM SP2 processor.! This
consisted of about 2880 s for evaluating various derivatives
of S1 . ~There are 5123511/25130,816 pairs of particles and
for each pair we need to evaluate 9 derivatives ofS1 using
the Ewald’s technique, which in turn requires sums over a
total of 400 real and reciprocal space lattice vectors.! The
time for filling the coefficients of matrix took 77 s, and the
time solving the system of 2048 equations using a Gaussian
elimination method took 1388 s. Note that the total time is

dominated by the time for evaluating the derivatives ofS1 , a
step that is not required in theO(N) algorithm since the
derivatives needed for this calculation are precalculated and
stored for subsequent calculations. Moreover, as mentioned
earlier one needs to evaluate onlyO(216 logN) number of
derivatives as opposed to theO(N2) derivatives required by
theO(N2) algorithm.

2. Added mass coefficient

We now consider another problem of Laplace interac-
tions, viz., inviscid, irrotational flow past spheres. This has
important applications in understanding the flows of bubbly
liquids at large Reynolds numbers and small Weber
numbers19 as well as the acoustic behavior of suspensions.24

Dynamic simulations for large systems will be needed for
understanding the nature of instabilities in bubbly liquids.
Here, we shall consider the problem of determining the
added mass coefficient of suspended particles. Thus, we de-
termine the resulting inviscid, irrotational flow when all the
particles are given a velocity of unit magnitude along the
x1-axis. The velocity of the liquid can be expressed in terms
of a velocity potentialw by u5¹w, with the continuity
equation for the liquid requiring¹2w50. The boundary con-
dition on the surface of the particlea gives n–¹w5n–va,
n being the unit outward normal on the surface of the particle
a andva its velocity. Withw near the particlea expanded in
spherical harmonics as in Eq.~6!, the boundary condition
yields

nEnm
i ,a2~n11!Anm

i ,aa22n215dn1dm0d i0 . ~62!

Finally, the velocity of the suspension averaged over the
whole unit cell is specified to be zero. The added mass co-
efficient Ca is related to thex1-component of the impulse
I 1 by

^I 1&[2rK E
Sa

wn1 dAL 52m^E10
0,a1A10

0,aa23&5~m/2!Ca ,

~63!

wherer is the density of the liquid andm is the mass of
liquid having the same volume as the particle, i.e.,
m5(4pa3r)/3.

The results for the added mass coefficient are shown in
Table V. The convergence ofCa with Ns is very rapid with

FIG. 1. The normalized conditionally averaged monopoleM as a function
of r in a system withN5512 andf50.01. TheO(N) calculations were
done withNs5Nsp51 and theO(N2) with Ns51.

TABLE V. Results for the added mass coefficientCa .

f N0 Ns Ca N Nsp Ca

0.25 1 1 2.00 512 1 2.00
3 2.03 3 2.03
5 2.03

0.45 1 1 3.45 512 1 3.45
3 3.80 3 3.80
5 3.82 5 3.82
7 3.82

0.25 16 1 2.06 1024 1 2.06
5 2.06

3 2.12 3 2.12
5 2.13
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Ns51 giving reasonably accurate estimates. The results ob-
tained using theO(N) algorithm with Nsp51 andNs51
also appear to be quite accurate. The accuracy in this case is
better than the reaction-diffusion problem.

B. Stokes interactions

We now consider the applications to Stokes flows past
spherical particles. For this case the no-slip boundary condi-
tion on the surface of the particles yields a set of relations
among the coefficients of singular and regular terms given
by7

Fnm
ri ,a1

~n11!a22n11

n~2n21!~2n11!
Pnm
i ,a1

a2

2~2n11!
Pnm
ri ,a5Fnm

i ,` ,

~64!

Fnm
i ,a2

a2

2~2n11!
Pnm
i ,a1

na2n13

~n11!~2n11!~2n13!
Pnm
ri ,a

5Pnm
i ,` , ~65!

Tnm
ri ,a1a22n21Tnm

i ,a5Tnm
i ,` , ~66!

where the quantities on the right-hand side of the above
equations depend on the imposed flow and the translational
and rotational velocities of the particles. In addition to the
above, we have 6 additional equations per particle for the
suspension problems for which the translational and rota-
tional velocities are to be determined given the force and
torque acting on the particles@cf. Eqs. ~67!–~68!#. As
pointed out by Cichokiet al.9 and Cichoki and Hinsen,30 the
accuracy of the numerical results for dense suspensions de-
pend critically on the manner in which the above set of equa-
tions is truncated. We follow the truncation scheme used by
Mo and Sangani,7 and solve only the set of equations ob-
tained by truncating Eq.~64! to n<Ns , Eq. ~65! to
n<Ns22, and Eq.~66! to n<Ns21. Likewise, the un-
knowns are truncated as follows:Pnm

i ,a to n<Ns , fnm
i ,a to

n<Ns22, and Tnm
i ,a to Ns21. This truncation scheme is

based on the asymptotic analysis of the resulting equations at
small volume fraction of particles in flow through periodic
arrays of spheres by Sangani and Acrivos.31 For high volume
fractions it was found that significantly better results are ob-
tained if additional terms arising forFnm

i ,a with
Ns22,n<Ns are also included by substituting
Fnm

i ,a5a2Pnm
i ,a/(4n12) for n.Ns22. This corresponds to

satisfying Eq.~65! without thePnm
ri ,a term. According to this

truncation scheme then we have a total of 3Ns
221 unknown

multipoles per particle plus the six components of transla-
tional and rotational velocities. The coefficients of regular
terms are truncated as follows:Pnm

ri ,a andFnm
ri ,a with n<Ns

and Tnm
ri ,a with n<Ns21. Similarly, all the moments of

groups of particles in the upward pass and all the coefficients
of the regular terms in the Lamb’s solution during the down-
ward pass are evaluated in the same way as the above regular
coefficients for the particles withNs replaced byNsp .

As in the case of Laplace equations, the code was tested
by comparing the coefficients of all the regular terms ob-
tained by theO(N) algorithm against that obtained from the
O(N2) algorithm developed earlier by Mo and Sangani7 and

a very good agreement between the two was found. We now
present results for few specific cases with the primary aim of
assessing the accuracy of the method for relatively small
Ns andNsp , and the efficiency of the GMRES method for
solving the system of equations arising in suspension me-
chanics.

1. Permeability of fixed bed of particles

The results for the average non-dimensional drag
K5^F&/6phaU on the spheres placed in a uniform flow
with a superficial velocityU are given in Table VI. The
Darcy permeabilityk of the fixed bed of spheres is related to
K by k52a2/(9fK). We find that the results obtained by
the two algorithms are in a reasonably good agreement with
each other even withNsp5Ns , an exception being the case
of random array withf50.25 for whichNs5Nsp52 gave
an unphysical result.

The computing times we reported in Table II were for a
single SP2 processor. In Table VII we give the computing
times for both Laplace and Stokes interactions using multiple
processors running in parallel. Since the GMRES code we
used for solving the system of equations was written for a
scalar computing, we employed a master-workers model.

TABLE VI. The non-dimensional drag coefficientK5^F&/(6phUa) for
flow through an array of fixed spherical particles.

f N0 Ns K(O(N2)) N Nsp K(O(N))

0.25 1 2 7.08 512 2 7.46
3 6.91
5 7.03

3 8.97 3 8.70

0.5235 1 3 28.0 512 3 25.0
5 40.9 5 38.6
7 41.9

0.25 16 2 6.18 1024 2 -ve
3 7.36 3 7.11

0.1 16 2 2.65 1024 2 2.72
3 2.65 3 2.69

TABLE VII. Computing times~in s! for the downward pass calculations in
Laplace and Stokes interactions using multiprocessors on IBM SP2.

N Ns Nsp W Laplace Stokes

512 2 2 1 4.7 21.9
8 0.7 3.4

2 3 1 7.7 84.7
8 1.2 12.3

3 3 8 1.4 13.7

1024 2 2 1 8.6 32.5
4 2.4 9.3
8 1.6 5.0

3 3 1 20.9 132
8 3.0 26

4096 2 2 8 6.6 30.2
3 3 8 13.5 . . .

8192 2 2 8 10.8 39.3
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The updating of the unknown multipoles and the upward
pass which takes relatively insignificant time were carried
out by the master processor who also distributed to all the
workers the downward pass~the equal generation and par-
ticle to particle! calculations. All the workers essentially
used the same memory as the master processor and hence we
were limited to systems smaller than about 10,000 particles
for Ns5Nsp52. We see that the computing time for the
downward pass roughly scales linearly with the number of
workersW. Also we note that the computing time for the
Stokes flow problem is greater than that for the Laplace in-
teraction problem for same values ofNs andNsp . The op-
eration count for Stokes flow interactions for givenNs and
Nsp can be shown to be slightly less than six times that
required for Laplace interactions. This is consistent with the
times shown in Table VI which shows the time for Stokes
interactions to be roughly 4–5 times that for Laplace inter-
actions. We should note that the computing times shown in
Table VI correspond to the case of flow through fixed bed of
particles for which the lubrication effects are absent. For the
suspension problems to be discussed in the next subsection
an additional time will be required for evaluating the contri-
bution from the lubrication velocity field, the magnitude of
which depends on the average number of pairs with their
center to center distance less than a specified value.

Figure 2 shows the convergence rate for the permeability
problem for three different values of volume fractionf for
random arrays withN5512. The error estimate is defined as
before, i.e., the square root of the ratio of Euclidian norm of
A–x2b to that ofb. The convergence rates forf50.1 and
0.25 are nearly equal and much greater than forf50.45.
Thus, higher values off will require greater number of it-
erations. A suitable preconditioning of the matrix may there-
fore lead to considerable saving in the overall computational
times for higher volume fractions. The further work in this
direction is left to future work.

2. Effective viscosity and sedimentation

We now consider the problems of determining the effec-
tive viscosity of random suspensions of neutrally buoyant
particles and the sedimentation velocity of negatively buoy-
ant particles. The calculations for these two problems include
the lubrication forces as outlined in Sangani and Mo8 with
two modifications:~i! an expression for the velocity field due
to relative motion of two particles in the plane normal to the
line joining their centers given in that paper was incomplete
and hence needed a correction; and~ii ! the torque due to
lubrication flow induced by two spheres with unequal rota-
tional velocities omitted in their study was included in the
present study. Atf50.45 we found that this made no more
than 5% change in the effective viscosity and thus their in-
fluence on the effective viscosity or the sedimentation veloc-
ity results presented in Sangani and Mo should be negligible.

For the suspension problems, Eqs.~64!–~66! for the
multipoles are supplemented with the additional 6N equa-
tions given by

Freg1Flub1Fext50, ~67!

L reg1L lub50, ~68!

whereFlub and L lub are the lubrication contributions to the
force and torque,Fext is the external non-hydrodynamic force
due to gravity or inter-particle potential, andFreg andL reg are
related to the multipolesP1m

i andT1m
i , respectively@cf. Eqs.

~70!–~71! in Mo and Sangani7#. The regular parts of the
force and torque can be related to the velocity of the particles
by consideringn51 terms in Eqs.~64! and ~66!. These are
equivalent to the Faxen’s laws

Freg56pha@2v1$11~a2/6!¹2%ureg#,

L reg54pha@22V1v reg#, ~69!

whereureg andv reg are the regular parts of the velocity and
vorticity evaluated at the center of the particle.

Initial guess for the velocity of the particles in the case
of effective viscosity problem was obtained by solving first
Eqs.~67!–~69! with ui

reg5g i j xj andv reg5¹3ureg, g i j being
the imposed shear rate. The solution of these equations con-
verges very quickly, and since only the short-range lubrica-
tion forces need to be evaluated, the computational effort is
relatively insignificant.

Figure 3 shows the error estimate as a function of the
number of iterations using the GMRES code for solving the
system of Eqs.~64!–~66! coupled with Eq.~67! and~68! for
a random suspension of 512 particles per unit cell. We note
that the convergence rates are slower than those obtained in
the permeability problem, especially forf50.1 and
f50.25. Thus, the inclusion of lubrication forces decreases
the convergence rate. On the other hand, since a good initial
guess can be obtained for the viscosity problem by first solv-
ing the simple set of equations given by Eqs.~67!–~69!, the
magnitude of the error is relatively small. Table VIII gives
the effective viscosity and the variance in the particles’ ve-
locity from the mean as a function of number of iterations.
We see that while the error is decreasing slowly with the
number of iterations, the values of viscosity and variance
obtained even with 40 iterations are reasonably accurate. The

FIG. 2. Error estimate as a function of number of iterations for the perme-
ability problem.N5512,Ns5Nsp52.
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effective viscosity does not monotonically converge but os-
cillates around 5.6, the value reported by Ladd.6

The convergence rates for the sedimentation problem are
shown in Fig. 4. These rates are very similar to those ob-
tained for the effective viscosity problem. However, unlike
the viscosity problem, a good initial guess is difficult to
make in the present case, and, consequently, the magnitude
of the error is relatively high. On the other hand, the lubri-
cation forces are not very critical in the present problem.
Two particles with same external forces sediment together,
and the nonzero relative velocity between them can occur
only due to the effect of the other particles onureg felt by
each particle. This relative velocity is typically small and
consequently the lubrication forces play a relatively insig-
nificant role. This can be seen from Table IX which give the
results for the sedimentation velocity both with and without
the inclusion of lubrication forces. These results were ob-
tained with theO(N2) algorithm withN0516. The corre-
sponding results forN51024 particles with theO(N) algo-
rithm were obtained by excluding the lubrication forces for
which the error decreases with the number of iterations at a

rate similar to that for the permeability problem. We see a
generally good agreement between the results obtained by
the two algorithms. In view of the fact that the lubrication
forces are relatively unimportant, it may be possible to im-
prove the convergence rate without loss of much accuracy by
limiting the lubrication forces only between pairs of particles
that are very close to each other. The calculations shown in
Figs. 3 and 4 included lubrication forces for all pairs of par-
ticles with the center to center distance less than 2.6a. This
distance, for example, could be reduced to 2.1a.

In both suspension problems discussed here the slower
convergence rates arise probably due to the fact that some of
the coefficients in the force equation~67! areO(e21) times
the velocity difference between the pairs of particles. Per-
haps iterative methods in which Eqs.~67!–~69! are solved
separately from Eqs.~64!–~66! might lead to better conver-
gence rates. This will be investigated further in a future
work.

We close this section by considering sedimentation at a
relatively low volume fraction,f50.05. Our aim is to check
how well the simulations with lower-order approximations,

FIG. 3. Error estimate as a function of number of iterations for the effective
viscosity problem.N5512,Ns5Nsp52.

TABLE VIII. Convergence data for the non-dimensional effective viscosity
and particle-velocity variance as functions of number of iterations using the
GMRES algorithm:N51024;N0516;Ns5Nsp52. The lubrication contri-
bution is denoted by lub and error is the error estimate obtained by the
GMRES code.

f Iter Error h* /h lub var/(ga)2

0.45 40 1.7E-2 5.78 3.4 0.14
80 1.3E-2 5.57 3.2 0.15
120 8.0E-3 5.94 3.6 0.16
160 6.0E-3 5.44 3.1 0.16

0.25 40 3.5E-3 2.10 0.38 0.10
80 1.3E-3 2.10 0.38 0.10

0.1 40 1.2E-3 1.31 0.048 0.067
80 3.8E-4 1.31 0.048 0.067

FIG. 4. Error estimate as a function of number of iterations for the sedimen-
tation problem.N5512,Ns5Nsp52.

TABLE IX. A comparison of the results for average non-dimensional sedi-
mentation velocityU/U0 obtained byO(N) andO(N2) algorithms with
N51024 andN0516. TheO(N2) results are obtained both with and with-
out the lubrication singularities while theO(N) results are obtained without
the lubrication singularities.

U/U0(O(N
2)) O(N)

f Ns w lub. w/o lub. Nsp U/U0

0.45 2 0.099 0.100 2 0.057
3 0.049 0.050 3 0.057

0.25 2 0.173 0.174 2 0.165
3 0.145 0.146 3 0.151

0.1 2 0.399 0.401 2 0.391
3 0.388 0.389
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e.g.,Ns5Nsp52, satisfy the theoretical prediction by Caf-
lisch and Luke32 that the velocity variance in random sedi-
menting suspensions diverge with the system size. In addi-
tion to using the lower-order approximations, we also wanted
to test if there would be any serious consequences of not
using enough iterations in obtaining the solution by the
GMRES code. The results for the average sedimentation ve-
locity and velocity variances in the direction of gravity and
in the plane transverse to it are presented in Figs. 5 and 6.
Each point was obtained by averaging over 15 independent
random configurations. The standard error~i.e., standard de-
viation divided by the square root of the number of data! for
the velocity variances computed with these configurations
was generally smaller than the size of symbols used in Fig. 6.

The simulations were carried out by requiring that the itera-
tive scheme be terminated either when the error estimate
decreases below 5E24 or when the number of iterations
exceeded 35. ForN5512 andN51024 the error estimate
reached lower than the specified value with an average of 20
and 26 iterations whereas forN52048 and 4096 the trunca-
tion was due to number of iterations exceeding 35. The cor-
responding average error estimates were, respectively,
5.8E24 and 2E23. These calculations were done non-
interactively using 8 SP2 processors. The average time per
iteration for the downward pass forN54096 was 25 s,
somewhat lower than one reported in Table VII.

In Fig. 5 we have plotted the sedimentation velocity as a
function ofN. In the limit of largeN the sedimentation ve-
locity approaches a constant value as given by~cf. Mo and
Sangani7!

U~N!5U`21.7601S~0!U0

h

h*
f1/3N21/3, ~70!

whereU0 is the terminal velocity of an isolated particle,
U` is the velocity in an unbounded suspension with finite
f, andS(0) is the zero wave number structure factor. For
f50.05, usingh* /h51.13 andS(0)50.67 yields the co-
efficient ofN21/3 term in the above equation to equal 0.39.
The above relation withU`/U050.74 is seen to be in a
reasonably good agreement with the results of numerical
simulations.

Figure 6 shows the results for the velocity variance.
Since the long-range interactions are dominated by the fields
induced by point forces, one may estimate the variance based
on a simple point force approximation. This was done by
Ladd33 who showed that the variance in the velocity compo-
nent parallel to gravity is given by

varz[
^Uz

2&2^Uz&
2

^Uz&
2 50.823f2/3N1/3, ~71!

and that in the plane normal to gravity by

varh[
Uh
2

^U&2
50.0662f2/3N1/3. ~72!

Thus the velocity fluctuations diverge withN and the fluc-
tuations in the direction parallel to gravity are about 12.4
times that in the plane normal to it. Our simulations are seen
to be in excellent agreement with these predictions.

V. CONCLUSIONS

In this paper we have described in detail a method of
summing Laplace and Stokes interactions with a computa-
tional effort that scales only linearly with the number of par-
ticles. The method consists of combining the fields induced
by a group of particles in a series of multipoles at the center
of the group. The results from the method are in excellent
agreement with the ones obtained from previousO(N2) al-
gorithms asNsp , the order to which the multipole series is
expanded, is increased. Very good agreement is obtained in
most cases even whenNsp equalsNs , the order to which the
field induced by the individual particles is represented. The
method is combined with the generalized minimum residual

FIG. 5. The non-dimensional average sedimentation velocity as a function
of N21/3 for f50.05.U0 is the terminal velocity for an isolated particle.

FIG. 6. The divergence of velocity variance with the system sizeN in
random sedimenting suspensions withf50.05. The top line corresponds to
the theoretical prediction for the velocity variance in the direction of gravity
while the bottom line corresponds to the velocity variance in the plane
normal to gravity.
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~GMRES! algorithm for solving iteratively the system of lin-
ear equations in the multipoles induced by the particles. A
number of problems are studied with an aim of assessing the
computational time requirements for solving problems in
Stokes and Laplace interactions. The method appears to be
extremely efficient for solving Laplace interactions. The
GMRES algorithm, however, yields a relatively slow conver-
gence rate for the Stokes interaction problems at large vol-
ume fractions and further work to improve the convergence
rate is desirable. At any rate, the method offers very signifi-
cant reduction in the overall computational effort over the
existingO(N2) algorithms and may be used for carrying out
dynamic simulations of systems ofO(5002103) particles at
very high volume fractions to systems ofO(104) at low vol-
ume fractions.
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APPENDIX A: SOME USEFUL FORMULAS FOR THE
DIFFERENTIATION OF SPHERICAL HARMONICS

In this appendix, we present some frequently used re-
sults concerning differentiation of spherical harmonics. The
following result is taken from Hobson:34

Dnm
j r215lnmr

22n21Ynm
j , ~A1!

where
lnm5~21!n2m~n2m!!212m, ~A2!

Dnm
j 5Dm

j ]n2m

]x1
n2m ~A3!

with

Dm
0 5F S ]

]j Dm1S ]

]h DmG , Dm
1 5 i F S ]

]j Dm2S ]

]h DmG ,
~A4!

and
j5x21 ix3 , h5x22 ix3 . ~A5!

The following is also a result from Hobson34 recast in a
slightly different form:

Dkl
i Ynm

j 5c1Yn2k,m1 l
s 1c2Yn2k,b~m2 l !

s , ~A6!

with

c15~21! i j22 l
~n1m!!

~n2k1m1 l !!
,

~A7!
c25~21!min@s81sb~21! i #

22 l~n1m!!

@n2k1b~m2 l !#!
.

Here, min5min(m,l ), b5sgn(m2 l ), s51 if i1 j51 and 0
otherwise, ands8512s. In using Eq. ~A7! we must set
Ypq
s 50 wheneverq.p. Note that for the special case cor-

responding ton5k, m5 l , and i5 j , the above result gives

Dnm
j Ynm

j 5enm
21 , enm5

~22!m

~11dm0!~n1m!!
. ~A8!

The following identity is useful in evaluating derivatives in-
volving product of two differential operators that appear in
expressions such as Eq.~11!:

Dkl
i
Dnm

j 5~21! i jDn1k,m1 l
s 1@s81sb~21! i #~24!2min

3HDn1k,b~m2 l !
s 2min¹2Dn1k22,b~m2 l !

s

1
min~min21!

2
¹4Dn1k24,b~m2 l !

s 1 . . . J
~A9!

where the dots represent terms with¹6, etc., which are un-
important in most calculations dealing with Laplace and
Stokes interaction problems where the functions to be differ-
entiated satisfy either Laplace or biharmonic equation.

The following formula is useful for differentiations in-
volving curl of rYnm

j :

r–¹3@Dkl
i ~rYnm

j !#5c3Yn2k11,m1 l
s8 1c4Yn2k11,b~m2 l !

s8 ,
~A10!

where

c35~21!~ i j1s!@2 l ~n11!2mk#
22 l~n1m!!

~n2k111m1 l !!
,

c45@bs82s~21! i #@~n11!l2mk#~21!min

3
22 l~n1m!!

@n2k111b~m2 l !#!
. ~A11!

The other useful results are as follows:

r•Dkl
i ~rYnm

j !5
2n2k13

2n22k13
r 2Dkl

i Ynm
j 1d1Yn2k12,m1 l

s

1d2Yn2k12,b~m2 l !
s , ~A12!

Dkl
i ~r 2Ynm

j !52r•Dkl
i ~rYnm

j !1~k2 l !~k2 l21!

3Dk22,l
i Ynm

j 2r 2Dkl
i Ynm

j . ~A13!

Here,

d15~21! i j H 2 l1
k~n2k122m2 l !

2n22k13 J
3

22 l~n1m!!

~n2k1m1 l11!!
, ~A14!

d25~21!min22 l@s81sb~21! i #H2 l1
k~n2k121m2 l !

2n22k13 J
3

~n2k122m1 l !~n1m!!

@n2k121b~m2 l !#!
. ~A15!

APPENDIX B: FORMULAS FOR TRANSLATING
SINGULAR AND REGULAR SOLUTIONS OF STOKES
EQUATIONS

In this appendix, we present detailed formulas for trans-
lating singular and regular solutions of Stokes equations.

Formulas for the upward pass.
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Pnm
j ,p5lnmenm(

i ,k,l
lkl

21Pkl
i ,c@c1Yn2k,m1 l

s 1c2Yn2k,b~m2 l !
s #, ~B1!

Tnm
j ,p5

lnmenm
n~n11! F(i ,k,l Tkl

i ,c

lkl
k~n11!$c1Yn2k,m1 l

s 1c2Yn2k,b~m2 l !
s %1

Pkl
i ,c

klkl
$c3Yn2k11,m1 l
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s8 %G , ~B2!

Fnm
j ,p5lnmenm(

i ,k,l

1

lkl
FFkl

i ,c$c1Yn2k,m1 l
s 1c2Yn2k,b~m2 l !

s %2
1

n11
Tkl
i ,c$c3Yn2k11,m1 l
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4n24k16
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s J G , ~B3!

wherec12c4 are given by Eqs.~A1! and ~A11! and

c55
~21! i j22 l~n1m!!

~n2k111m1 l !! F H k~n2k122m2 l !

~2n22k13!
2 l J S n13

2n13
2
1

kD 1

n11
1~k2 l !~k2 l21!

3H n13

2~n11!~2n13!
2

1
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1

22k

2k~2k21! J G , ~B4!

c65
~21!min22 l~n1m!!

@n2k121b~m2 l !#!
@s81sb~21! i #F H k~~n2k12!22~m2 l !2!

2n22k13
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2n13
2
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kD 1

n11

1~k2 l !~k2 l21!H n13

2~n11!~2n13!
2

1

k~n11!
1

22k

2k~2k21! J G . ~B5!

In the above formulasYpq
s must be evaluated atxp2xc.

Formulas for the downward pass.
Formulas for evaluating contribution to the regular coefficientsPkl

ri ,c , Tkl
ri ,c , andFkl

ri ,c from the singularities at the equal
generation distant neighbors similar to Eq.~11! may be found in Mo and Sangani.7 To this the contribution from the parent
must be added, the formulas for which are given below

Pkl
ri ,c5ekl (

j ,n,m
Pnm
r j ,p@c1Yn2k,m1 l

s 1c2Yn2k,b~m2 l !
s #, ~B6!

Tnm
ri ,c5

ekl
k11(i ,k,l F ~n11!Tnm

r j ,p$c1Yn2k,m1 l
s 1c2Yn2k,b~m2 l !

s %1
Pnm
r j ,p

k~n11!
$c3Yn2k11,m1 l

s8 1c4Yn2k11,b~m2 l !
s8 %G , ~B7!

Fkl
ri ,c5ekl (

j ,n,m
FFkl

r j ,p$c1Yn2k,m1 l
s 1c2Yn2k,b~m2 l !

s %2
1

k
Tnm
r j ,p$c3Yn2k11,m1 l

s8 1c4Yn2k11,b~m2 l !
s8 %

1Pnm
r j ,pH r 2

4n24k16
~c1Yn2k,m1 l

s 1c2Yn2k,b~m2 l !
s !1c5Yn2k12,m1 l

s 1c6Yn2k12,b~m2 l !
s J G . ~B8!

The spherical harmonicsYnm in the above expression must be evaluated atxc2xp.
Formulas for particle to particle contribution.
The formulas for determining contribution to the coefficients of regular terms in the expansion around particlea due to

singularities at the lubrication point or the neighbor particleg are obtained from Eqs.~B6!–~B8! by substitutingn by
2n21. The factorials appearing in these expressions must also be modified. The resulting expressions are given below

Pkl
ri ,a5ekl (

n,m, j ,g
lnm

21Pnm
j ,g~g11g2!, ~B9!

2009Phys. Fluids, Vol. 8, No. 8, August 1996 A. S. Sangani and G. Mo

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Tkl
ri ,a5ekl (

n,m, j ,g
S 2

n

k11D Tnm
j ,g

lnm
~g11g2!2

1

nk~k11!

Pnm
j ,g

lnm
~g31g4!, ~B10!

Fkl
ri ,a5ekl (

n,m, j ,g

Fnm
j ,g

lnm
~g11g2!2

1

k

Tnm
j ,g

lnm
~g31g4!1

Pnm
j ,g

lnm
F 1

2~122n22k!
r 2~g11g2!1

1

k
~g51g6!G , ~B11!

where

g15ln1k,m1 l~21! i j r22n22k21Yn1k,m
s , ~B12!

g25ln1k,b~m2 l !~24!2min@s81sb~21! i #r22n22k21Yn1k,b~m2 l !
s , ~B13!

g35ln1k21,m1 l~21! i j1s~nl2mk!r22n22k11Yn1k21,m1 l
s8 , ~B14!

g45ln1k21,b~m2 l !~24!2min@s82sb~21! i #b~2nl2mk!r22n22k11Yn1k21,b~m2 l !
s8 , ~B15!

g55ln1k22,m1 l~21! i j r22n22k13Yn1k22,m1 l
s F ~2n2k111m1 l !S k~22n!2112n

2n~2n21! D S 22l12k
n1k1m1 l21

2n12k21 D
2~k2 l !~k2 l21!S 2

1

n
1

k22

4k22
1

k~n22!

2n~2n21! D G ~B16!

g65ln1k22,b~m2 l !@s81sb~21! i #~24!2minr22n22k13Yn1k22,b~m2 l !
s F ~2n2k112m1 l !

k~22n!12n21

2n~2n21!

3S 22l12k
n1k212m1 l

2n12k21 D2~k2 l !~k2 l21!S 2
1

n
1

k22

4k22
1

k~n22!

2n~2n21! D G , ~B17!

wherer5xa2xg andYnm
s are evaluated atr .
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