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PHYSICS OF FLUIDS VOLUME 11, NUMBER 5 MAY 1999
Determination of particle size distributions from acoustic wave
propagation measurements

Peter D. M. Spelt, Michael A. Norato, Ashok S. Sangani, and Lawrence L. Tavlarides
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse,
New York 13244

~Received 4 August 1998; accepted 20 January 1999!

The wave equations for the interior and exterior of the particles are ensemble averaged and
combined with an analysis by Allegra and Hawley@J. Acoust. Soc. Am.51, 1545~1972!# for the
interaction of a single particle with the incident wave to determine the phase speed and attenuation
of sound waves propagating through dilute slurries. The theory is shown to compare very well with
the measured attenuation. The inverse problem, i.e., the problem of determining the particle size
distribution given the attenuation as a function of frequency, is examined using regularization
techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids,
the success of solving the inverse problem is limited since it depends strongly on the nature of
particles and the frequency range used in inverse calculations. ©1999 American Institute of
Physics.@S1070-6631~99!01405-1#
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I. INTRODUCTION

Determining the particle size distribution of a solid
liquid mixture is of great practical interest. It has been su
gested in the literature that this distribution may be de
mined by measuring the attenuation of a sound w
propagating through the mixture as a function of the f
quency of the wave. The main premise is that the attenua
caused by a particle as a function of frequency depends o
size and therefore the attenuation measurements can b
verted to determine the particle size distribution—at le
when the total volume fraction of the solids is small enou
so that the particle interactions and detailed microstructur
the slurry play an insignificant role in determining the aco
tic response of the slurry. Indeed, this general principle
been exploited successfully to determine the size distribu
of bubbles in bubbly liquids.1–3 Commercial ‘‘particle siz-
ers’’ based on acoustic response are in the process of b
developed/marketed for characterizing solid–liquid m
tures.4 The main objective of this paper is to investigate u
der what circumstances such a problem can be solved
solid–liquid systems. It will be shown that the success of
acoustic method for determining detailed particle size dis
butions is limited, depending on the nature of the partic
and the frequency range over which input data~attenuation!
are available.

The problem of determining the acoustic response o
slurry given its particle size distribution is referred to as t
forward problem. When the total volume fraction of the pa
ticles is small, the problem is relatively simple since then o
only needs to understand the interaction between a si
particle and the incident sound wave. This has been ex
ined by a number of investigators in the past with nota
contributions from Allegra and Hawley5 and Epstein and
Carhart6 who considered suspensions of particles as wel
drops. The former investigators also reported experime
1061070-6631/99/11(5)/1065/16/$15.00
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results verifying the theory for relatively small particles f
which the acoustic wavelength is large compared with
particle radius. The theory developed by these investiga
is quite general and accounts for attenuation by thermal,
cous, and scattering effects as described in more deta
Secs. II and III. The case of monodisperse nondilute susp
sions has been examined by Varadanet al.7 who used an
effective medium approximation to account for particle i
teractions, but their analysis was concerned only with
attenuation due to scattering. In Sec. II we present the the
for the forward problem with the main aim of reviewing th
important physical effects causing the attenuation. The d
vation for the attenuation proceeds along different lines th
that followed by Epstein and Carhart or Allegra and Hawl
in the way the one particle analysis is used to predict
attenuation of the suspension. These investigators calcul
the energy dissipation per one wavelength to estimate
attenuation while we use the method of ensemble average
determine both the phase speed and attenuation of wa
The method of ensemble averages will be more conven
for developing a suitable expression for attenuation in n
dilute suspensions, if desired, using either an appropr
effective-medium approximation or direct numerical simu
tions.

In Sec. III we present new experimental data for nea
monodisperse polystyrene particles whose radii are com
rable to the wavelength and validate the theory describe
Sec. II over a nondimensional frequency range much broa
than examined by previous investigators. We also summa
in that section the different physical mechanisms that ca
attenuation in suspensions. The attenuation as a functio
frequency is shown to undergo several peaks owing to
resonances in shape oscillations in agreement with the th
prediction. It also gives some indication of the range of f
quency and attenuation measurable with our acoustic dev

In Sec. IV we consider the inverse problem, i.e., t
5 © 1999 American Institute of Physics
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1066 Phys. Fluids, Vol. 11, No. 5, May 1999 Spelt et al.
problem of determining the particle size distribution giv
the total attenuation as a function of frequency and the ph
cal properties of the particles and the suspending liquid.
small particle volume fractions, this amounts to solving
linear integral equation for the unknown size distributio
This is an ill-posed problem: small changes/errors in the
tenuation data can cause large changes in the size dist
tion. Thus, for example, several very different particle dis
butions could give rise to essentially the same attenuat
frequency curve. This, of course, is a rather well-kno
difficulty in most inverse problems which involve solving
Fredholm integral equation of the first kind with a smoo
kernel. Techniques have been developed to ‘‘regularize’’
problem. We use the well-known Tikhonov regularizati
techniques,8 which replaces the ill-posed original proble
with another well-posed problem involving an integr
differential equation whose solution minimizes the fluctu
tions in the particle size distribution. Minimizing of the fluc
tuations is rationalized on the grounds that in most pract
situations the particle size distribution is smooth. This re
larization technique has been shown to work very well
the inverse problem in bubbly liquids.2

We apply the above technique to suspensions of poly
rene and glass particles. We find that the technique wo
well for the polystyrene particles but not for all glass pa
ticles. We also find that for polystyrene particles the te
nique works only when the attenuation is given over an
propriate frequency range—a frequency range that is
narrow or too broad may give erroneous estimates of
distribution. An alternative inverse technique based on lin
programing also failed to produce the correct particle s
distribution for the cases for which the Tikhonov schem
failed. This suggests that the prospects for determining
detailed particle size distribution from acoustic measu
ments are somewhat limited.~In situations where more migh
be known about the nature of particle size distribution, e
unimodal with a Gaussian or log-normal distribution, o
might be able to determine the size distribution through
propriate curve fitting as has been done, for example,
McClements and Coupland,9 but this is not addressed here!

The reasons why the size distributions for some part
suspensions are not recovered by the inverse techni
while the same techniques were found to be quite succes
for bubble suspensions can be given in terms of differ
resonance nature of these suspensions. In the case of bu
in most typical applications, the resonance occurs at frequ
cies for which the wavelength is relatively large compar
with the bubble radius. This resonance is due to volume
cillations; the shape-dependent resonances are unimpo
and, as a consequence, there is effectively one reson
frequency for each bubble size. Thus, the peaks in
attenuation-frequency curve give a reasonable indication
the bubble sizes. The situation with the particles is differ
as their resonance behavior is governed by shape osc
tions. For polystyrene particles, several resonance peaks
responding to different shape oscillations arise even
monodisperse particles, and, as a result, it is difficult to
termine whether a given resonance peak arises from a di
ent shape oscillation mode of the same particle or from
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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particle of different size. For glass particles, on the oth
hand, there are no significant resonance peaks even
monodisperse particles, and the attenuation behavior for
ferent sizes is not significantly different to allow accura
results for the size distribution.

II. THE FORWARD PROBLEM

The wave equations for both the interior and exterior
particles have been derived by Epstein and Carhart.6 They
were interested in the attenuation of sound waves in fog
therefore their analysis was concerned with drops instea
particles. The stress tensor for a viscous fluid used by th
for the interior of the drops was subsequently replaced
Allegra and Hawley5 by that of an elastic solid to determin
the attenuation of sound waves in a solid–liquid suspens
In this section we shall ensemble average a resulting w
equation to obtain the effective wave number of the susp
sion at arbitrary volume fraction, the real and imagina
parts of which give the wave speed and attenuation. Th
the attenuation is not calculated by means of an energy
sipation argument,5,6 but directly from averaging the relevan
wave equation. The result contains certain coefficients
remain to be evaluated for a given microstructure. In
present study, since we are primarily concerned with de
mining the size distribution, we shall evaluate the coe
cients in the limit of small volume fractions. In a separa
study, where we shall present experimental results for n
dilute suspensions, we shall extend the theory to treat no
lute suspensions.

A. Theory

Epstein and Carhart6 first linearized the conservatio
equations for mass, momentum, and energy. The pres
and internal energy were then eliminated by introduc
the linearized equations of state to yield equations in te
of density, velocity, and temperature. Next, the time dep
dence of all quantities were expressed by the fac
exp(2ivt)—which is henceforth suppressed—and the vel
ity was expressed as

v52¹F1¹3A,

with ¹•A50. With this form ofv it is possible to eliminate
the temperature and density from the governing equation
yield a fourth-order partial differential equation forF and a
second-order equation inA. The former, in turn, can be spli
into two second-order wave equations upon a substitu
F5fc1fT to finally yield three wave equations:

~¹21kc
2!fc50, ~1!

~¹21kT
2!fT50, ~2!

~¹21ks
2!A50. ~3!

The wave numbers in the above equations are given by

1

kc
2 5

c2

2v2 @12i~e1g f !1~„12i~e1g f !…2

14 f ~i1ge!!1/2#, ~4!
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1

kT
2 5

c2

2v2 @12i~e1g f !2~„12i~e1g f !…2

14 f ~i1ge!!1/2#, ~5!

ks5~11i !~vr/2m!1/2, ~6!

with

e[~4m/31k!v/~rc2!; f [sv/c2. ~7!

Here,c is the phase speed in pure liquid,r is the density,k
andm are, respectively, the compressional and dynamic
cosity, g5Cp /Cv is the ratio of specific heats at consta
pressure and volume,t is the thermal conductivity, and
s5t/rCp is the thermal diffusivity.

Inside the particles similar equations hold with the d
namic viscosity replaced bym̃/(2iv) and the wave spee
by „(l̃12m̃/3)/r̃…1/2, wherem̃ andl̃ are the Lame´ constants,
while the compressional viscosity is left out. Henceforth
tilde refers to the interior of particles.

At small values ofe and f ~such as in water!, the above
expressions forkc andkT simplify to

kc5v/c1
i

2
@~4m/31k!/r1~g21!s#v2/c3,

~8!
kT5~11i !~v/2s!1/2.

Equation~1! and its counterpart inside the particles d
scribe the sound wave propagation through the suspen
Note that the wave number has an imaginary part; so
waves in pure fluid are attenuated by viscous and ther
energy dissipation;10 the term inside the square brackets
~8! is commonly referred to as the ‘‘diffusivity of sound.
The total attenuation coefficient in both liquid and in t
solid particle will henceforth be treated as additional phy
cal properties. The other two wave equations describe wa
that arise from thermal conduction and finite viscosity:
note that the modulus ofkT in Eq. ~8! is inversely propor-
tional to the thermal penetration depthAs/v and that ofks

to the viscous penetration depthAm/rv. The thermal (fT)
and shear~A! waves have generally very high attenuati
and are unimportant in acoustic applications.

We now proceed to ensemble average the wave equa
~1! to find an expression for the effective wave number o
wave propagating through a solid–liquid suspension. In
ducing an indicator functiong, defined to be unity inside the
particles and 0 outside, the ensemble-averaged value offc is

^fc&5^gf̃c1~12g!fc&.

To obtain a wave equation for^fc& we first take the gradien
of the above equation to yield

¹^fc&5^g¹f̃c1~12g!¹fc&1^~¹g!~f̃c2fc!&. ~9!

As argued by Sangani,11 upon assuming that the particle
spatial distribution is homogeneous on a macroscale, the
term in ~9!, being a vector, can only depend on quantit
such as¹^fc& and ¹¹2^fc&. Anticipating that^fc& will
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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satisfy a wave equation we express the last term on the ri
hand side of the above equation in terms of¹^fc&, i.e., we
write

^~¹g!~f̃c2fc!&5l1¹^fc&,

where l1 depends on the parameters such as the volu
fraction,kc , and k̃c . The divergence of~9! is given by

¹2^fc&5^g¹2f̃c1~12g!¹2fc&1^~¹g!

•~¹f̃c2¹fc!&1l1¹2^fc&

52kc
2^fc&2~ k̃c

22kc
2!^gf̃c&1^~¹g!

•~¹f̃c2¹fc!&1l1¹2^fc&. ~10!

Writing

^~¹g!•~¹f̃c2¹fc!&5l2k̃c
2^fc&, ^gf̃c&5l3^fc&,

we find that^fc& satisfies a wave equation

~¹21keff
2 !^fc&50 ~11!

with the effective wave number given by

keff
2 5

kc
21l3~ k̃c

22kc
2!2l2k̃c

2

12l1
. ~12!

The real part of the effective wave number is the frequen
divided by the phase speed in the mixture and the imagin
part the attenuation.

Up to this point the analysis is rigorous and without a
assumption. Applying the boundary conditions of continu
of temperature, flux, velocity, and traction at the surface
the particles, and solving the resulting boundary value pr
lem numerically, it is possible, in principle, to determine t
phase speed and attenuation at arbitrary volume fraction
ing the above formulation. Special simplifications can
made when the wavelength is large compared with the p
ticles and when the viscous and thermal depths are s
compared with the particle radius for which numerical co
putations using the multipole expansions developed in rec
years~see, e.g., Ref. 12! can be readily used for determinin
the attenuation at arbitrary volume fractions. Alternative
one may use a suitable effective-medium approximation
account for the particle interactions in nondilute suspensi
using the above framework. We shall pursue this further i
separate study13 devoted to nondilute suspensions where
shall also present experimental data. Since our interest in
present study is in determining size distributions, it is nec
sary to consider only the simplest case of dilute suspensi

In dilute suspensions the particle interactions can be
glected, and the coefficientsl1 – 3 can be evaluated from th
solution for fc for a single particle given by Allegra an
Hawley.5 Accordingly, the conditionally average
^fc&(xux1) given a particle centered atx1 is given by

^fc&~xux1!5exp~ikc•x!1exp~ikc•x1!

3 (
n50

`

in~2n11!Anhn~kcr !Pn~m!, ~13!
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1068 Phys. Fluids, Vol. 11, No. 5, May 1999 Spelt et al.
where r 5ux2x1u, m5cosu, u being the angle betweenx
2x1 andkc , hn is the spherical Bessel function of the thi
kind ~corresponding to an outgoing scattered wave!, andPn

is the Legendre polynomial of degreen. The first term on the
right-hand side of the above expression is the uncondit
ally averaged̂ fc&(x) whose amplitude is taken to be uni
with no loss of generality.

Inside the particle centered atx1 we have

^f̃c&5~xux1!5exp~ikc•x1! (
n50

`

in~2n11!

3Ãnj n~ k̃cr !Pn~m!, ~14!

where j n is the spherical Bessel function of the first kin
Similar expressions are written for the conditionally av
agedfT andA. This results in expressions with a set of s
unknowns for each moden. Application of the aforemen-
tioned boundary conditions of continuity of velocity, tra
tion, temperature, and heat flux yield six equations in th
six unknowns for eachn. There were some typographic
errors in the equations given by Epstein and Carhart6 and
Allegra and Hawley;5 the correct equations are given in th
Appendix. Although it is possible to solve for the unknow
analytically in certain limiting cases, it is best to solve the
numerically since we are interested in covering a wide f
quency range for inverse calculations.

We now return to the calculations of the coefficien
l1 – 3. Upon using the identity

¹g52nd~x2xi !,

with xi being a point on solid–liquid interface andn the unit
normal vector at the point,l1 is given by

l1¹^fc&~x!52E
ux2x1u5a

n@^f̃c&~xux1!2^fc&~xux1!#

3P~x1!dA1 . ~15!

Here,P(x1) is the probability density for finding a particle i
the vicinity of x1 . Similarly, we have forl2 andl3

l2k̃c
2^fc&~x!52E

ux2x1u5a
n•¹@^f̃c&~xux1!

2^fc&~xux1!#P~x1!dA1 , ~16!

and

l3^fc&~x!5E g~x!^f̃c&~xux1!P~x1!dV1 . ~17!

The above integrals must be evaluated while keeping in m
that the integration variable isx1 . Thus, for example, in~15!
and ~16! we must consider all particles whose surfaces p
through the pointx. To carry out these integrals we use t
identity

eikc•x15eikc•xe2irkcm

5eikc•x (
m50

`

im~21!m~2m11! j m~kcr !Pm~m! ~18!
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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and the orthogonality of the Legendre polynomials ov
spherical surfaces. The resulting expressions are

l15
3f

z (
n50

`

@~n11! j n11~z!2n jn21~z!#

3@Ãnj n~ z̃!2 j n~z!2Anhn~z!#, ~19!

l252
3f

z̃
(
n50

`

~2n11! j n~z!

3F Ãnj n8~ z̃!2
z

z̃
j n8~z!2An

z

z̃
hn8~z!G , ~20!

l35
3f

2zz̃
Ã0S sin~ z̃2z!

z̃2z
2

sin~ z̃1z!

z̃1z
D 1

3f

z22 z̃2 (
n51

`

~2n11!

3Ãn@ z̃j n21~ z̃! j n~z!2z jn~ z̃! j n21~ z̃!#, ~21!

where in the expression forl1 the j n21-term in then50
contribution is to be left out. Here,f is the volume fraction
of the solids,z[kca and z̃[ k̃ca are the nondimensiona
wavenumbers, and primes denote derivatives. Express
~19!–~21!, together with the expression for the effectiv
wave number~12!, complete the description of a solid–liqui
mixture at low volume fractions.

In the above we have derived expressions for the atte
ation and wave speed by calculating the effective wave nu
ber directly. An alternative derivation of the attenuation c
efficient is to calculate the energy dissipation per wavelen
in the mixture and divide the result by the energy per wa
length. The result for the attenuation per unit length is the5,6

a52
3f

2z2a (
n50

`

~2n11!ReAn . ~22!

It can be shown that the two methods give essentially
same result for the attenuation in the limitf→0 with
z22 ReAn in the above replaced by Re(An /z)/Re(z) in the
ensemble-averaging method presented here.

The above analysis may be extended to account for
effect of finite volume fraction through a suitable effectiv
medium approximation. Sangani11 showed that the first cor
rection of O(f3/2) to the dilute O(f) approximation for
bubbly liquids can be simply derived through an effectiv
medium approximation. This correction is most significa
near the resonance frequency of bubbles, and to corre
capture the behavior near resonance it is important to rep
the pure liquid wave number~kc in the above analysis! by
the effective wave number. Thus, in the present conte
z[kca in ~19!–~21! for l1 – 3, is replaced byzeff[keff a,
while the wave number in pure liquid in the expression
keff , ~12!, has to be retained. The latter expression is th
iterated to obtain a converged solution forkeff . The
effective-medium approximations have been found to
quite useful in the related study of light scattering by susp
sions~see, e.g., Ref. 14!. For very high volume fractions the
other physical properties of the so-called effective medi
must also be modified. In a separate study,13 where we shall
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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report experimental data for dense slurries, we shall exam
several different versions of effective-medium approxim
tions in more detail.

Finally, the above analysis can be extended in a strai
forward manner to account for the particle size distribut
when the total volume fraction of the particles is small. L
us write the attenuation by particles of radius betweena and
a1da as an attenuation densityâ( f ,a) @wheref is the fre-
quency of the wave,f 5v/(2p)# times the volume fraction
of those particlesf(a)da; we shall refer tof(a) as the
volume fraction distribution. At low volume fractions thes
contributions can be ‘‘summed’’ over all particle sizes
give for the total attenuationa tot(f ):

a tot~ f !5E
a50

`

â~ f ,a!f~a!da. ~23!

It is customary to express the particle size distribution
terms of its number density distributionP(a). The volume
fraction distribution is related to P(a) by f(a)
5(4pa3/3)P(a).

The effective-medium approach described earlier
also be readily extended to account for the particle size
tribution. The coefficientsl1 – 3 are first determined as func
tions ofa for an assumed value of the effective wave num
and these are integrated after multiplying byf(a)da to yield
estimates for the average values ofl1 – 3 for the suspension
These are substituted in~12! to determinekeff . If this esti-
mate of keff is different from the the assumed value, th
l1 – 3 are estimated for the new value ofkeff , and the process
is repeated until the assumed and estimated values o
effective wave numbers agree with each other.

III. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

Figures 1 and 2 show the predictions for the attenua
and wave speed as a function of frequencyf for 79mm radius
polystyrene particles at a volume fraction of 0.05. The f
quency f in Hz is related tov by v52p f . The physical
properties used in the computations are given in Table15

We note that the wave speed only changes if the freque
becomes very large and that these changes coincide
strong changes in the attenuation as well. Hence we ex
that the measurement of the phase speed will not pro
significantly new information over that obtained from th
attenuation measurements alone as far as the problem o
termining the size distribution is concerned. On the ot
hand, since the phase speed at low frequencies is nearl
dependent of the frequency orkca, it might be possible to
use the low frequency speed data to determine the total
ume fraction of the particles regardless of its size distri
tion. We shall focus in the present study on the results
attenuation as they are the most sensitive to the particle
distribution.

The attenuation of sound waves in a suspension is
ferent from that in pure liquid because of four effects. Fir
the attenuation of sound in pure solid is different from that
pure liquid, and hence simply the presence of the partic
changes the attenuation from that of pure liquid. Seco
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
ne
-

t-

t

n
s-

r

he

n

-

cy
ith
ct
e

de-
r
in-

l-
-
r
ze

f-
,

s
d,

changes in temperature are different in a solid than in a
uid, and this causes a heat flux through the surface of
particles. This heat flux is out of phase with the sound wa
passage and this leads to attenuation referred to as the
mal attenuation. Third is the viscous energy dissipat
caused due to the motion of the boundary of the suspen
particles. Finally, the fourth effect is the attenuation due
scattering.

Allegra and Hawley5 showed that when the particle siz
is much smaller than the wavelength and much greater t
the thermal and viscous penetration depths (s/v)1/2 and

FIG. 1. Example of the dependence of attenuation on frequencyf for a
mixture of monodispersed polystyrene particles in water. Dashed lines
asymptotic slopes of the attenuation for small and large frequencies.

FIG. 2. Example of the dependence of wave speed on frequencyf for a
mixture of monodispersed polystyrene particles in water.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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Dow
TABLE I. The values of the physical properties that are used in this paper. The properties of wate
polystyrene were taken from Ref. 6; the properties of glass from various sources, most notably Ref. 15

Polystyrene Glass Water

density~g/cm3! 1.055 2.3 1.0
thermal conductivity (J/K•cm•sec) 1.1531023 9.631023 5.8731023

specific heat (J/g•K) 1.19 0.836 4.19
thermal expansion coefficient~1/K! 2.0431024 3.231026 2.0431024

attenuation coefficient per freq2 ~sec2/cm! 10215 10215 2.5310216

sound speed~cm/sec! 2.33105 5.23105 1.483105

shear viscosity (g/cm•sec2) ¯ ¯ 1.0131022

shear rigidity (g/cm•sec2) 1.2731010 2.831011
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(n/v)1/2, the resulting viscous and thermal attenuations
crease asf 1/2. On the other hand, when the penetrati
depths are much greater than the particles, both attenua
contributions increase asf 2. This transition occurs at very
low frequencies—about 2 Hz for 100m radius particles in
water—and will not be considered here. Attenuation due
scattering becomes important when the nondimensio
wave numberz5kca becomes comparable to unity. Fo
small but finitez the scattering losses increase asf 4. Thus,
one expects that the change in the attenuation behavior
f 1/2 at low frequencies tof 4 at high frequencies will provide
an important indication of the particle size. These asympt
ranges are indicated in Fig. 1. We see that the transitio
the f 4 behavior does not fully occur for the particles cons
ered here. As the frequency is increased particles und
several resonances as described in more detail below,
this is responsible for the several peaks seen in Fig. 1.

Figure 3 shows the contributions to the total attenuat
from eachPn mode. Then50 mode corresponds to radia
~volume! oscillations of the particles,n51 to the transla-
tional oscillations,n52 to the ellipsoidalP2-shape deforma-

FIG. 3. Contributions from the first five modesn in ~19!–~21! to the total
attenuation@the imaginary part ofkeff , which is given by~12!#. Polystyrene
particles in water.
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tion oscillations, and so on. The density of polystyrene p
ticles is essentially the same as that of water, hence
particles’ translational oscillations are very small. As a co
sequence, the viscous attenuation is small and the small
quency behavior is governed by the thermal attenuation
then50 mode. At higher frequencies then50 mode begins
to increase first asf 4 due to scattering losses but the cont
bution from then52 mode soon becomes important as
undergoes a resonance at about 3 MHz frequency.
n53 andn51 modes undergo resonances next, and so
We see that then50 mode undergoes a broad maximu
around 9 MHz. Although not shown here, it too undergoe
resonance with a sharp downward peak at about 21 M
Thus, we see that the attenuation varies with frequency
rather complicated manner at high frequencies owing to v
ous resonances. We should note here that the behavior o
kind for polystyrene particles has also been reported by o
investigators in the past. For example, Anson and Chive16

and Ma, Varadan, and Varadan,14 who restricted their analy-
sis to scattering losses only, found essentially the same
havior, and in earlier investigations17,18 mainly focusing on
the determination of waves reflected by immersed obje
high-amplitude reflected waves were found at certain re
nance frequencies.

Figure 4 shows attenuation as a function of nondim
sional wave numberkca for particles of radii 50 and 79
microns. We see that the curves for these two radii are
sentially the same, indicating that, at least for polystyre
particles, the thermal or viscous effects have negligible
fluence on the resonance frequency. The first resonance
responding ton52 appears atkca.1.4.

Allegra and Hawley5 tested~22! extensively against thei
experiments and found very good agreement. However, t
particles were always smaller than 1mm radius, so that the
wavelength was always much greater than the particle s
No resonance behavior was observed in their experime
Although the above-mentioned paper by Ma, Varadan,
Varadan14 presents experimental data on light scattering
the small-wavelength regime, no data on attenuation
sound waves by particles were presented. To test how
the theory works for larger particle sizes, we carried out
experiment that will be described in detail~along with more
experiments on concentrated slurries! elsewhere.13 In this ex-
periment the attenuation of sound waves was measured
frequency range of 1–10 MHz in a solid–liquid mixture
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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polystyrene particles with 7963m mean radius and 1.8m
standard deviation at 0.05 volume fraction. Monochroma
tonebursts, at incremental frequencies, were transmitted
transducer on one side of a small vessel in which the mix
was being stirred; a second transducer received the si
and sent it to a LeCroy 9310A digital oscilloscope. The a
plitude of the signal for pure water was measured, as
that for the solid–liquid mixture. The excess attenuation w
determined by

a52
1

d
logS Vmix

VH2O
D ,

whered is the distance between the transducers andVmix and
VH2O are the voltage amplitudes of the received signals in
mixture and pure water, respectively. The distance betw
the transducers was 2 in. at low frequencies and 1 in
higher frequencies; this was necessary because the atte
tion at higher frequencies was too large to produce sign
cant signal-to-noise ratio in the larger vessel.

Figure 5 shows the comparison between theory and
periment. At the two gaps in the frequency domain~where
the theory predicts very high peaks! the attenuation becam
again so large that the signal-to-noise ratio vanished eve
the smallest vessel. Good agreement is found between
periments and the theory except near resonance freque
where small differences are seen. There are two poss
reasons for these small differences. The first is concer
with the finite volume-fraction effect. To investigate this w
have also plotted in Fig. 5 a result from an effective-medium
approach described in the previous section. The resulting
tenuation changes, but in the wrong direction. The sec
reason is that the particles were not exactly monodisper
Using the method described in the previous section, a

FIG. 4. Attenuation divided by wave number as a function of the wa
number times the particle radius in the scattering regime for monodispe
polystyrene particles~—, a579mm; ---, a550mm!. The volume fractions
of the particles in both cases are the same and equal to 0.05.
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normal particle size distribution was introduced with a me
radius of 77 and 2.5mm standard deviation, which lie
within the manufacturers’ specifications. The result for t
attenuation, the dashed curve in Fig. 5, shows close ag
ment with the data. Thus, we conclude that the agreem
between the theory and experiment is excellent, and that
small observed differences are due to small polydispersit
the suspension.

The attenuation behavior displayed by polystyrene p
ticles is not generic, as can be seen from Fig. 6 which sh
the attenuation behavior for glass particles. Since the den
of the glass particles is significantly different from that
water, the glass particles execute significant translational
cillations. As a consequence, the low-frequency behavio
completely governed by the viscous effects and then51
mode. Note that the small frequency attenuation is about
orders of magnitude greater for glass particles than for
polystyrene particles. Also we see a considerably differ
behavior at higher frequencies. The attenuation does
seem to peak at several frequencies. Rather, for eachn we
see broad ‘‘hills’’ separated by narrow ‘‘valleys.’’ The tota
attenuation does not appear to go through several resona
The difference in the behavior for the glass and polystyre
particles at these high frequencies seems to arise ma
from the different elastic properties of the two materials.

IV. THE INVERSE PROBLEM

We now consider the inverse problem: given the to
attenuationa tot as a function off we wish to determinef(a)
using ~23!. The straightforward method of solving the inte

e
edFIG. 5. Comparison with experimental data for the attenuation as a func
of frequency. Polystyrene particles of radiusa579mm and 0.05 volume
fraction. s, experiments; ———, theory for monodispersed particle
-.-.-., theory for monodispersed particles with effective medium correct
for finite volume fraction effects; ---, theoretical result with a particle si
distribution with a mean particle radius of 77mm and standard deviation o
2.5 mm ~this is within the range specified by the manufacturer!.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions



e

n

i

n

s

h

t
r

t

e

h

ch-
r

lti-
y
he

-
lar-

dis-

1072 Phys. Fluids, Vol. 11, No. 5, May 1999 Spelt et al.
gral equations, i.e., discretizing the integral domain into
number of elements and converting the integral equation in
a system of linear equations in unknownsf(ak) at a selected
number of pointsak in the domain, cannot be used since th
resulting equations will be ill conditioned. Figure 7 illus-
trates the ill-posed nature of the problem. Figure 7~a! shows
two very different particle distributions whose attenuatio
versus frequency curves are seen in Fig. 7~b! to be essen-
tially the same. These curves were obtained by starting w
a smooth, log-normal particle size distribution@the dashed
curve in Fig. 7~a!# and generating the attenuation versus fre
quency data using the forward theory@the circles in Fig.
7~b!#. A 1% random noise was then added to the data a
~25! with e50, which is equivalent to the integral equation
~23!, was subsequently solved to yield the particle size di
tribution indicated by the solid line in Fig. 7~a!. The pluses in
Fig. 7~b! correspond to the attenuation determined from th
forward theory using the new particle distribution. Note tha
the attenuation is evaluated with a smaller frequency incr
ment than the one used for the original distribution. We se
that the attenuation from the two distributions agree wit
each other to within 1% for the frequencies marked b
circles. The highly oscillatory particle distribution does show
an oscillatory behavior in between the frequency incremen
particularly at 10 MHz, but these oscillations occur only fo
a very narrow frequency range and would have been miss
altogether had the attenuation been determined only at
input frequencies.

A. Method

Since the true particle distribution is expected to b
smooth, we must only allow solutions that are reasonab
smooth. There are several ways of accomplishing this. In t

FIG. 6. Attenuation by monodispersed glass particles~of 79 mm radius! in
water as a function of frequency and the contributions from the first thre
modesn in ~19!–~21! to the total attenuation@the imaginary part ofkeff ,
which is given by~12!#.
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present study, we shall use primarily a regularization te
nique due to Tikhonov8 which was successfully used fo
bubbly liquids by Duraiswami.2 An alternative method is
presented at the end of this section. Accordingly, we mu
ply ~23! with â( f ,a)d f and integrate over the frequenc
range to obtain a simpler integral equation in which t
right-hand side is only a function ofa:

E
f min

f maxE
amin

amax
â~ f ,a!â~ f ,a8!f~a8!da8d f

5b~a![E
f min

f max
a tot~ f !â~ f ,a!d f , ~24!

where (amin ,amax) and (f min ,fmax) are the radius and fre
quency ranges. The above integral equation is now regu

e

FIG. 7. Influence of fluctuations superimposed on the volume fraction
tributions ~a! on attenuation data~b!. In ~b! the circles correspond to the
result when using the dashed distribution of~a! and the pluses when using
the solid line in~a!.
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ized as explained below by adding a small terme(f
2 l 2f9) ~where primes denote derivatives! to its left-hand
side. Thus, we obtain

e@f~a!2 l 2f9~a!#1E
amin

amax
K~a,a8!f~a8!da85b~a!, ~25!

where l is a suitably chosen lengthscale andK(a,a8) is a
kernel defined by

K~a,a8!5E
f min

f max
â~ f ,a!â~ f ,a8!d f . ~26!

Equation~25! is an integro-differential equation and nee
two boundary conditions. Usual practice is to take the
rivative of f(a) to be zero at the two end points:

f8~amin!5f8~amax!50. ~27!

Note thatamin and amax are not knowna priori in general.
One expectsf to be zero also at the two end points. Thu
the range (amin2amax) must be determined by trial and erro
so that bothf and its derivatives are approximately zero
the extreme values ofa.

Now it can be shown that the solution of~25! subject to
the boundary conditions given by~27! minimizes

E1eE
amin

amax
@$f~a!%21 l 2$f8~a!%2#da, ~28!

whereE is the measure of error between the actual atten
tion and the computed attenuation:

E5E
f min

f maxU E
amin

amax
â~ f ,a!f~a!da2a tot~ f !U2

d f . ~29!

Since bothE and the second term in~28!, i.e., the integral,
are non-negative, minimization of~28! ensures that the solu
tion of ~25! will be free from large oscillations inf. In other
words, highly oscillatory distributions such as the one sho
in Fig. 7~a! are rendered inadmissible when~25! is solved
with finite, positivee in place of the original integral equa
tion ~24!. Thus, we have regularized the problem of det
mining f.

If we choose a largee, then we decrease the oscillation
in f but increase the error inf(a) since then the equatio
solved is significantly different from the original integr
equation. Smalle, on the other hand, yields unrealisticf(a)
having large oscillations when the dataa tot(f ) are not exact.
An optimum choice ofe then depends on the magnitude
uncertainty/error in the attenuation-frequency data. In
calculations we shall present here the exacta tot(f ) is first
determined using the forward theory for a givenf(a) and a
small random noise of about 1% magnitude is added t
before the inverse calculations are made~the effect of noise
magnitude is discussed below!. Thus, we have an estimate o
the error in the data, but in general this estimate may no
known reasonably accurately. To determine the optimume,
we solve~25! for several differente’s and plotE versuse to
find a minimum inE. This, however, may lead to distribu
tions in which f(a) may have unphysical negative valu
for somea. The constraintf(a)>0 for all a is satisfieda
posteriori by settingf(a)50 for all a’s for which the solu-
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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tion of ~25! gave negative values off. The computed value
of E for a givene is then based onf(a)>0.

The integro-differential equation~25! was solved as fol-
lows. After discretizing the domain (amin2amax) into N21
equal segments and the frequency domain intoM21 loga-
rithmically equal segments we first evaluate the ker
K(ai ,aj ) for i , j 51,2,...,N @cf. ~26!# using a trapezoidal rule
for the integration over the frequency range. As pointed
by Duraiswami,2 it is essential to calculate the integral ov
particle radius very accurately. We assume thatf(a) varied
in a piecewise linear manner in each segment and use a
point Gauss–Legendre quadrature to evaluate the integr
~25!. A second-order central difference formula was used
evaluatef9(a) at all points except the end pointsamin and
amax. The boundary conditionsf8(amin)50 and f8(amax)
50 were approximated using, respectively, second-order
ward and backward difference formulas. Application of~25!
at all the discretization points together with the bounda
conditions can be expressed with the above scheme as a
tem of linear equations:

(
j 51

N

Ai j f j5bi , i 51,2,...,N, ~30!

wheref j5f(aj ) andbi5b(ai). The above set of equation
was normalized by dividing all the equations with the gre
est element of the kernelK(ai ,aj ), Km for all i,j , times the
segment lengthDa5(amax2amin)/(N21). This set of equa-
tions was subsequently solved using a standard IMSL s
routine for linear equations.

Once f j are determined for a selected value ofe, we
satisfy the constraintf j>0 by setting, as mentioned earlie
f j50 for all negativef j . The errorE as given by~29! was
subsequently evaluated using a trapezoidal rule for inte
tion over the frequency range. The optimum value ofe was
determined by stepping logarithmically through several v
ues ofe and plottingE versuse.

A typical result ~N530, M5112, f min50.1 MHz, f max

517 MHz, amin515mm andamax535mm! for the errorE in
the resulting attenuation as a function ofe is shown in Fig. 8.
Note thate here is the actuale divided byKmDa. We see a
clearly defined optimum value ofe. Computations were also
made with largerM to confirm that the resulting volume
fraction distribution was not affected by the further refin
ment in the integration over the frequency range. A rem
should also be made of the choice for the lengthl in ~25!. We
may regard bothe and l as parameters to be chosen so as
minimize the errorE. Taking l 5(amax2amin)/n we computed
E by varying bothe and n with n varied from 1 toN. The
three-dimensional plot ofE versusn and e showed thatE
was much more sensitive to the choice ofe than it was ton.
In general, the results withn close toN were slightly better
than with those nearn51. Based on this observation w
chosen530. For larger values ofN(N.40) we found that
choosingn5N led to more oscillatory behavior forf j . This
is to be expected since choosing largern, and, hence, smalle
l, permits larger values off8(a).
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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B. Results and discussion

We now present results for the volume fraction distrib
tion obtained using the above technique. As mentioned
lier, we used the forward theory to generate attenuation d
for an assumed volume fraction distribution. Small rand
noise can be added to the data thus generated to mimic
sible errors arising in the attenuation measurement. Thi
satisfactory since we are primarily interested in assessing
procedure for solving the inverse problem. If the proced
gives erroneous results even for this case, it will certai
break down in practice using the experimentally genera
data.

The frequency range over which the attenuation m
surements are carried out in our laboratory is 0.1–15 M
We shall choose here the same range to investigate the
cess and limitations of the above technique to solve the
verse problem although we shall also consider cases wi
larger frequency range to inquire if better estimates off(a)
could be achieved if the attenuation data at higher frequ
cies were to be made available. This is important since
acoustic instruments operating up to 150 MHz are availa

We consider first particle sizes that are of the same o
of magnitude as the wavelength somewhere in this freque
range, which is the case for particles of about 10–100m
radius~for larger particles observed behavior of the atten
tion is shifted to lower frequencies!. A particle size distribu-
tion that is often used is a log-normal distribution, whi
results in volume fraction distributions such as the smo
one shown in Fig. 7~a!. We attempt therefore to recover th
distribution from the corresponding attenuation data. As
the forward problem, we shall investigate polystyrene p
ticles and glass particles in water, as the first are alm
neutrally buoyant and deformable while the latter are v

FIG. 8. Typical dependence of the error in the attenuation for the so
volume fraction distribution as a function of the regularization parametee.
The ~small! parametere should be chosen such that this error is minimize
The minimum was always found to be well-defined.
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rigid and much heavier than water; the physical proper
used in the present calculations are listed in Table I.

We begin with the results for polystyrene particles w
a narrow size distribution in the range of 20–30mm. The
particle size range for the inverse calculations is first taken
be much greater—5–100mm; the frequency range wa
0.1–17 MHz. Figure 9 shows that the volume fraction dis
bution as evaluated from the inverse technique is in v
good agreement with the input distribution. The result for t
size distribution can be improved further by making the p
ticle size range smaller~a close-up of the improved result i
shown in Fig. 11!.

In Fig. 10 we consider a more complicated, bimodal s
distribution in the range of 20–45mm with peaks at about 25
and 38mm. The attenuation as a function of frequency f
this distribution is shown in Fig. 10a. The maximum fr
quency used for inverse calculations is indicated by a squ
it is seen that the frequency range includes the first two re
nance peaks of the attenuation curve. From Fig. 10~b! we see
once again that the inverse procedure recovers this distr
tion very well.

One of the difficulties in solving an ill-posed problem
that small errors in the input~attenuation! data can cause
large changes in the solution. Of course, errors are alw
present in the experimentally obtained attenuation data.
calculations presented so far were made with no added no
To mimic the practical situation, we added random noise
5% standard deviation to the input data; this is about
same as the order of magnitude of the errors present in
experimental results shown in Fig. 5. The resulting volu
fraction distribution, shown in Fig. 11, does confirm th
small fluctuations in the input data only cause small dev
tions in the output. When the calculations were repeated w

d

.

FIG. 9. Solving the inverse problem for polystyrene particles. The solid
is the volume fraction distribution used to generate attenuation data@shown
in Fig. 12~a!, with f max as indicated by a square#; the dashed line is the
solution of the inverse problem when taking the particle radius range to
1–100mm and using 50 ‘‘bins’’ of particle sizes.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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a noise of 10% standard deviation, the computed particle
distribution was found to be considerably different from t
input distribution, although the main features of the size d
tribution were preserved by the inverse computations.

The results discussed so far suggest that the inv
problem can be solved with reasonable success. We
illustrate some limitations. The inverse method gave erro
ous particle size distributions for smaller particles when
same frequency range as the above was used. Of cours
order that the size of the particles be determined there m
be at least one transition—from the thermal attenuat
dominated regime to the scattering dominated regime wh

FIG. 10. Attenuation~a! and the solution of the inverse problem~b! for a
bimodal distribution of polystyrene particles, using 30 particle size bins
~b!, the solid line is the exact result, markers represent the inverse pro
solution when using forf max the value indicated by a square in~a!. Results
when cutting of the frequency range at the point marked by a triangle
discussed along with Fig. 14.
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
ze

-

se
w

e-
e
, in
st
n
h

occurs roughly speaking atkca5O(1). If the particles are
very small, then this transition may not occur over a fix
frequency range. However, as we shall presently see,
results are very sensitive to the frequency range chosen
computations even when this transition is included in
range.

Figure 12 shows the effect of varyingf max on the com-
puted distribution. As seen in the figure the resonance in
shape oscillations of the~polystyrene! particles leads to a
change in the slope of the curve just before the first re
nance. This transition occurs just beyond the point mar
by a circle in Fig. 12~a!. We see a marked improvement
the results in Fig. 12~b! when f max is chosen correspondin
to a point marked plus in Fig. 12~a! over those obtained with
a point corresponding to the circle which does not inclu
the second change in slope. The point marked plus co
sponds to a frequency greater than the frequency at which
second change in slope occurs for larger particles but sm
than that for smaller particles. This seems to give rise to
inverse solution which is reasonably accurate for larger p
ticles but not for smaller particles. Also shown in Fig. 12~b!
are the results whenf max is chosen to coincide with the en
of first peak, the point marked square in Fig. 12~a!. This is
seen to yield very accurate results for the size distributio

One might suppose that covering a broad enough
quency range will alleviate the difficulties seen above. Th
unfortunately, is not the case. Figure 13 shows the results
three differentf max. The dashed curve corresponds to cutti
off the frequency range at the end of first peak as in Fig.
the dashed–dotted line to the end of three peaks, and
dotted line to 109 Hz, a frequency about 50 times great
than the first resonance frequency. We see that the resul

n
m

re

FIG. 11. Solution of the inverse problem when random noise of 5% s
dard deviation is introduced in the attenuation~input! data. Solid line is the
exact result; the broken line is the result when no noise is introduced~al-
ready shown in Fig. 8!; and the dash–dotted curve is the result after int
duction of the noise. Polystyrene particles in water.
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inverse calculations actually deteriorate if a much lar
range of frequency is employed, notwithstanding the fact t
measurements over such a broad frequency range could
be a very challenging task. One may rationalize this resul
follows. As seen in Fig. 1 a monodisperse suspension w
exhibit several resonance frequencies corresponding to
ous shape oscillationPn (n52,3,...) modes. Thus, a secon
peak in the attenuation-frequency curve for polystyrene p
ticles may correspond either to say, aP3 mode of a larger

FIG. 12. Influence of the size of the frequency range over which attenua
is specified on the solution of the inverse problem. Polystyrene particles~a!
Input-attenuation data and four different upper bounds on the frequency~b!
Results from the inverse problem from these different ranges, using
same marker type. The solid line is the exact result;h, result when cutting
off the frequency range just at the end of the first peak in the attenuation1,
result when cutting of the frequency range after the second change in
of the attenuation; ands, result when cutting off before the second chan
in slope. Cutting off the frequency range at the point marked ‘‘L’’ is dis-
cussed along with Fig. 13.
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particle, or may correspond to aP2 mode of a smaller par-
ticle. In our calculations we used only up to the first s
modes (n<5), but in practice the acoustic response may
further complicated by the higher-order modes for frequ
cies of order 109 Hz considered here.

Since including a wide frequency range with seve
resonance peaks seems to adversely affect the inverse c
lation, one may consider cutting off the attenuation data
yond first peak. This, however, may not work if the distrib
tion is truly bimodal as was the case considered earlie
Fig. 10. If we omit the second resonance peak from the
tenuation data by considering a maximum frequency tha
less than the point marked square in Fig. 10~a!, say, that
marked by the circle, we get a poor inversion as shown
Fig. 14. The inverse technique computes accurately the
ume fraction distribution of larger particles whose resona
was included in the data but fails to predict that for smal
particles.

Figure 15 shows results for a broad, unimodal distrib
tion. The resonance peaks of different particles overlap
this case resulting in the absence of peaks in the attenua
frequency curve@Fig. 15~a!#. Figure 15~b! shows the results
of inversion for three different cut-off frequencies. The lar
est frequency, marked by a square in Fig. 15~a!, is larger than
the second transition frequency of small as well as la
particles, and this seems to produce excellent inverse res

In most of the inverse calculations shown so far whi
yielded poor results, we note that the failure is particula
severe for smaller particles. One may rationalize this by
serving that the total errorE will be dominated by the errors
at large frequencies since the attenuation there is very la

n

e

pe

FIG. 13. Too big a frequency range over which the attenuation is availa
for polystyrene particles also deteriorates the result: the solid line is
exact result; the dashed line is the inverse problem result when using at
ation data of Fig. 12~a! below the point marked by ‘‘h,’’ the dashed-dotted
line represents the result when this end point is shifted to the point ma
by ‘‘ L’’ and the dotted line is the result when this end point is shifted
1000 MHz.
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Whenkcamin,1 in the frequency domain that is considere
the small particles’ volume fraction is seen from Figs. 12~b!
and 14 to be underestimated, while the large particles’ v
ume fraction is overestimated. To decrease the relative
portance of the attenuation at high frequencies, we solve
slightly different inverse problem in which both the attenu
tion and â were divided byf 2. However, only small im-
provements were found by modifying the attenuation d
this way. The inverse-problem result shown in Fig. 14 was
fact obtained in this way.

Some insight into why the choice off max drastically af-
fects the results may be gained from Fig. 16, which sho
the three-dimensional plots for the kernelK(ai ,aj ) for the
same values off max as considered in Fig. 12. We see th
when f max510.4 MHz, corresponding to the circle in Fig
12~a!, the kernel has a maximum forai5aj5amax. The ker-
nel for smaller particles is very small and, as a conseque
the inverse technique could determine the larger particle
volume fraction correctly but failed for smaller particles.
contrast to this the kernel forf max517.1 MHz, corresponding
to the end of first peak, shows significant variations fo
wide range of values ofai andaj , and this apparently lead
to a much better inverse solution. Finally, the kernel
f max530.4 MHz, corresponding to the end of the third res
nance peak, shows a less pronounced structure.

It is also instructive to examine the kernel and the res
of inverse calculations for the problem of determini
bubble-size distribution in bubbly liquids examined b
Duraiswami.2 The inverse procedure works very well fo
bubbly liquids as can be seen from Fig. 17~a! which shows
the input and computed bubble size distributions to be
excellent agreement. The kernel for this case has sm
variations over a wide range of bubble radii as seen in Fig
17~b!. The attenuation as a function of frequency is shown

FIG. 14. As in Fig. 10~b!, but after cutting off the frequency range ove
which the attenuation was given between the first and second~attenuation!
peak, indicated by a triangle in Fig. 10~a!.
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
,

l-
-
a

-

a
n

s

t

e,
ze

a

r
-

s

n
th

re
n

Fig. 17~c!. The main reason for the success of the inve
technique for bubbly liquids seems to be that there is o
resonance frequency for bubbles of each size. As long as
frequency range is broad enough to cover the resonance
quency of all the bubbles, it is possible to determine the s
distribution.

The results presented so far were for polystyrene p
ticles. We have also carried out inverse calculations for gl
particles. As indicated earlier~cf. Fig. 6! there is no clear,
sharp resonance frequency peak for glass particles. As a
sequence, the inverse calculations for the glass particles
not show, in general, good agreement with the input s
distribution.

The results presented so far show that the succes
Tikhonov regularization to solve the inverse problem is lim
ited. Although we have given plausible reasons for why

FIG. 15. As Fig. 12, but with a broader size distribution.
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1078 Phys. Fluids, Vol. 11, No. 5, May 1999 Spelt et al.
method works well for bubbles but not for all particles, it
possible that other techniques for solving the inverse pr
lem may be more successful. For that reason we have
tempted an alternative method2,3,19based on linear program
ing that we shall briefly describe here.

The constraintf(a)>0 for all a was satisfied onlya
posteriori in the Tikhonov scheme. To ensure that the er
is minimized while satisfying this constraint, we reformula

FIG. 16. The kernelK(ai ,aj ) for polystyrene particles when using forf max

the value indicated in Fig. 12~a! by a s ~a!, 1 ~b!, andh ~c!.
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the original inverse problem as an optimization problem. T
simplest scheme is to minimize the error

E
f min

f maxU E
amin

amax
â~ f ,a!f~a!da2a tot~ f !Ud f . ~31!

instead of the integral of the square of the quantity enclo
by two vertical bars at each frequency. Constraints on
solution are useda priori in optimization via linear program-
ming; here we use thatf(a)>0. Imposing an upper bound
on the total volume fraction~maximum packing! can also be
incorporated but is not essential. After discretizing the f
quency range byM andf(a) in N discrete values we write

(
j 51

N

Bi j f~aj !2a tot~ f i !5ui2v i , ui ,v i>0, i 51,2, . . . ,M .

~32!

Here,Bi j is the discretized form of the integral operator
~31! andui andv i are, as yet, unknown, non-negative va
ables. Now, it can be shown19 that minimizing the absolute
value of ~32! is equivalent to minimizing

(
i 51

M

~ui1v i ! ~33!

with ~32! as a constraint together with the constrainsui , v i

>0 (i 51,...,M ) andf(ai)>0 (i 51,...,N). Essential here is
the notion that at the optimumuiv i50 for each i, which
makes the solutions of the two minimization problems~31!
and ~33! identical.

The above scheme was applied to a number of cases
were also examined using the Tikhonov method. It w
found that, in general, the linear programing scheme p
duced inferior results. A typical example is shown in Fig.
where the Tikhonov method is seen to yield far better res
for the size distributions. This technique also did not yie
good inverse results for the case of glass particles.

V. CONCLUSION

A theory for the attenuation and wave speed of soli
liquid suspensions at low particle volume fractions is d
scribed. The theory is shown to be in excellent agreem
with the experimental data measured in our laborato
Tikhonov regularization and linear programing techniqu
are employed to solve the inverse problem of determin
the particle size distribution from the attenuation-frequen
data. Although these techniques are successful in solving
inverse problem in several cases, we have also shown
the results are very sensitive to the choice of freque
range, the physical properties of the particles, and the na
of particle size distribution~unimodal, bimodal, etc.!. Since
the same techniques worked very well for bubbly liquids,
attribute the failure in solving the inverse problem satisfa
torily to the complex resonance behavior of slurries. We c
clude therefore that the prospects of using acoustic pro
for on-line monitoring of particle size distribution of slurrie
are somewhat limited unless some additional information
the particle size distribution~e.g., unimodal! is available.
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FIG. 17. Results for air bubbles in water.~a! Inverse problem result with a
total volume fraction equal to 0.004, together with the the kernelK(ai ,aj )
~b! and the attenuation as a function of frequency~c!.
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APPENDIX: EQUATIONS FOR A n

In this appendix we give the set of linear equations
unknowns that include the coefficientsAn required to calcu-
late the attenuation from~12! and ~19!–~21! or ~22!. These
equations are derived from the boundary conditions on
surface of a test particle. In addition to the coefficientsAn ,
Ãn of the solution of~1! outside and inside the particle, re
spectively, similar coefficients arise due to the solution of~2!
and~3!, denoted byBn andCn . Note that~3! is an equation
for the vectorA rather than a scalar velocity potential, b
only the azimuthal component ofA is nonzero, hence only a
scalar coefficientCn . In the following, we use the notatio
zc5kca, zT5kTa, andzs5ksa:
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zcj n8~zc!1Anzchn8~zc!1BnzThn8~zT!2Cnn~n11!hn~zs!

5Ãnz̃cj n8~ z̃c!1B̃nz̃Tj n8~ z̃T!2C̃nn~n11! j n~ z̃s!, ~A1!

j n~zc!1Anhn~zc!1Bnhn~zT!2Cn„hn~zs!1zshn8~zs!…

5Ãnj n~ z̃c!1B̃nj n~ z̃T!2C̃n„j n~ z̃s!1 z̃sj n8~ z̃s!…, ~A2!

bc@ j n~zc!1Anhn~zc!#1BnbThn~zT!

5Ãnb̃cj n~ z̃c!1B̃nb̃Tj n~ z̃T!, ~A3!

t„zcbc@ j n8~zc!1Anhn8~zc!#1BnbTzThn8~zT!…

5 t̃~Ãnb̃cz̃cj n8~ z̃c!1B̃nb̃Tz̃Tj n8~ z̃T!!, ~A4!

~2ivm!~@~zs
222zc

2! j n~zc!22zc
2 j n9~zc!#1An@~zs

2

22zc
2!hn~zc!22zc

2hn9~zc!#1Bn@~zs
222zT

2!hn~zT!

22zT
2hn9~zT!#1Cn2n~n11!@zshn8~zs!2hn~zs!# !

5Ãn@~v2r̃a222m̃ z̃c
2! j n~ z̃c!22m̃ z̃c

2 j n9~ z̃c!#

1B̃n@~v2r̃a222m̃ z̃T
2! j n~ z̃T!22m̃ z̃T

2 j n9~ z̃T!#

1C̃n2m̃n~n11!@ z̃sj n8~ z̃s!2 j n~ z̃s!#, ~A5!
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~2ivm!~zcj n8~zc!2 j n~zc!1An@zchn8~zc!2hn~zc!#

1Bn@zThn8~zT!2hn~zT!#2~Cn/2!@zs
2hn9~zs!

1~n21n22!hn~zs!# !

5m̃~Ãn@ z̃cj n8~ z̃c!2 j n~ z̃c!#1B̃n@ z̃Tj n8~ z̃T!2 j n~ z̃T!#

2~C̃n/2!@ z̃s
2 j n9~ z̃s!1~n21n22! j n~ z̃s!# !. ~A6!

Here,bc andbT are given by

bc5
~12g!v2

bc2 , bT52
g

c1
2b

Fv22S c1
2

g
2

4ivm

3r D kT
2G , ~A7!

with b the thermal expension coefficient andc1 the liquid-
equivalent of the speed of sound for spherical compressi

waves in an elastic isotropic solidc̃15A(l̃12m̃/3)/r̃. The
Lamé constantl̃ is not really needed when the speed
sound~c! of longitudinal compressional waves is specifie
as we can also writec1

25c2
„124m̃/(3rc2)…. The above

equations have also been given by Epstein and Carhart5 and
Allegra and Hawley.6 However, in both there are typograph
cal errors: in Ref. 5, the lastj n8( z̃s) in ~A2! is erroneously

FIG. 18. Comparison of the results for the inverse problem of polystyr
particles ~exact solution is the solid line! using the linear programming
method~..,..! and the Tikhonov method~--h--!. In both cases the attenua
tion was cut off at the same frequency, indicated by the square in Fig. 1~a!.
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replaced by hn8( z̃s); in Ref. 6 the signs of both
(n21n22)-terms are wrong, while the lasthn(zs) on the
left-hand side of~A6! has the argumentz̃ instead and the firs
zs afterCn is replaced byz̃s . Not correcting the typographi
cal errors in Ref. 6 would have altered the results sign
cantly.
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