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Determination of particle size distributions from acoustic wave
propagation measurements

Peter D. M. Spelt, Michael A. Norato, Ashok S. Sangani, and Lawrence L. Tavlarides
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse,
New York 13244

(Received 4 August 1998; accepted 20 January 1999

The wave equations for the interior and exterior of the particles are ensemble averaged and
combined with an analysis by Allegra and Hawlely Acoust. Soc. Am51, 1545(1972] for the
interaction of a single particle with the incident wave to determine the phase speed and attenuation
of sound waves propagating through dilute slurries. The theory is shown to compare very well with
the measured attenuation. The inverse problem, i.e., the problem of determining the particle size
distribution given the attenuation as a function of frequency, is examined using regularization
techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids,
the success of solving the inverse problem is limited since it depends strongly on the nature of
particles and the frequency range used in inverse calculations199) American Institute of
Physics[S1070-663(199)01405-1

I. INTRODUCTION results verifying the theory for relatively small particles for
which the acoustic wavelength is large compared with the
Determining the particle size distribution of a solid— particle radius. The theory developed by these investigators
liquid mixture is of great practical interest. It has been sug+s quite general and accounts for attenuation by thermal, vis-
gested in the literature that this distribution may be detercous, and scattering effects as described in more detail in
mined by measuring the attenuation of a sound waveSecs. Il and Ill. The case of monodisperse nondilute suspen-
propagating through the mixture as a function of the fre-sions has been examined by Varadstral” who used an
guency of the wave. The main premise is that the attenuatiosffective medium approximation to account for particle in-
caused by a particle as a function of frequency depends on iteractions, but their analysis was concerned only with the
size and therefore the attenuation measurements can be iattenuation due to scattering. In Sec. Il we present the theory
verted to determine the particle size distribution—at leasfor the forward problem with the main aim of reviewing the
when the total volume fraction of the solids is small enoughimportant physical effects causing the attenuation. The deri-
so that the particle interactions and detailed microstructure ofation for the attenuation proceeds along different lines than
the slurry play an insignificant role in determining the acous-that followed by Epstein and Carhart or Allegra and Hawley
tic response of the slurry. Indeed, this general principle hain the way the one particle analysis is used to predict the
been exploited successfully to determine the size distributiomttenuation of the suspension. These investigators calculated
of bubbles in bubbly liquid$-3 Commercial “particle siz- the energy dissipation per one wavelength to estimate the
ers” based on acoustic response are in the process of beiragtenuation while we use the method of ensemble averages to
developed/marketed for characterizing solid—liquid mix-determine both the phase speed and attenuation of waves.
tures? The main objective of this paper is to investigate un-The method of ensemble averages will be more convenient
der what circumstances such a problem can be solved fdor developing a suitable expression for attenuation in non-
solid—liquid systems. It will be shown that the success of thedilute suspensions, if desired, using either an appropriate
acoustic method for determining detailed particle size distri-effective-medium approximation or direct numerical simula-
butions is limited, depending on the nature of the particlegions.
and the frequency range over which input déttenuation In Sec. lll we present new experimental data for nearly
are available. monodisperse polystyrene particles whose radii are compa-
The problem of determining the acoustic response of aable to the wavelength and validate the theory described in
slurry given its particle size distribution is referred to as theSec. Il over a nondimensional frequency range much broader
forward problem. When the total volume fraction of the par-than examined by previous investigators. We also summarize
ticles is small, the problem is relatively simple since then onén that section the different physical mechanisms that cause
only needs to understand the interaction between a singlettenuation in suspensions. The attenuation as a function of
particle and the incident sound wave. This has been exanirequency is shown to undergo several peaks owing to the
ined by a number of investigators in the past with notableresonances in shape oscillations in agreement with the theory
contributions from Allegra and Hawléyand Epstein and prediction. It also gives some indication of the range of fre-
Carhart who considered suspensions of particles as well aguency and attenuation measurable with our acoustic device.
drops. The former investigators also reported experimental In Sec. IV we consider the inverse problem, i.e., the
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problem of determining the particle size distribution givenparticle of different size. For glass particles, on the other
the total attenuation as a function of frequency and the physihand, there are no significant resonance peaks even for
cal properties of the particles and the suspending liquid. Atnonodisperse particles, and the attenuation behavior for dif-
small particle volume fractions, this amounts to solving aferent sizes is not significantly different to allow accurate
linear integral equation for the unknown size distribution.results for the size distribution.

This is an ill-posed problem: small changes/errors in the at-

tenuation data can cause large changes in the size distribu-

tion. Thus, for example, several very different particle distri-1l. THE FORWARD PROBLEM

butions could give rise to essentially the same attenuation-
frequency curve. This, of course, is a rather well-known

difficulty in most inverse problems which involve solving a were interested in the attenuation of sound waves in fog and

E;?:QIOI'?; ér;tr?ig[]aelser?;\?e?%r;eort ;he?/ef::ftelgrg ‘\‘Ar”e:[hu?azrzne?’ottg etherefore their analysis was concerned with drops instead of
' q P guianze particles. The stress tensor for a viscous fluid used by them
problem. We use the well-known Tikhonov regularization

i . . - for the interior of the drops was subsequently replaced by

technique$, which replaces the ill-posed original problem . : :

: : X . Allegra and Hawley by that of an elastic solid to determine
with another well-posed problem involving an integro- . . A .

. ) : . L the attenuation of sound waves in a solid—liquid suspension.
differential equation whose solution minimizes the fluctua- . . .

. . ! : s S In this section we shall ensemble average a resulting wave
tions in the particle size distribution. Minimizing of the fluc-

tuations is rationalized on the grounds that in most racticaﬁequation to obtain the effective wave number of the suspen-
9 P sion at arbitrary volume fraction, the real and imaginary

sﬂgaﬂpns the pgrtlcle size distribution is smooth. This regu-parts of which give the wave speed and attenuation, Thus,
larization technique has been shown to work very well for

the inverse problem in bubblv liquids the attenuation is not calculated by means of an energy dis-
P y iq j . sipation argumerit® but directly from averaging the relevant

We apply the above technique to suspensions of polysty- . . ; -
. : . wave equation. The result contains certain coefficients that
rene and glass particles. We find that the technique works. . . .
; femain to be evaluated for a given microstructure. In the

well for the polystyrene particles but not for all glass par- . . . .
: : . present study, since we are primarily concerned with deter-
ticles. We also find that for polystyrene particles the tech- . g S .
. SR mining the size distribution, we shall evaluate the coeffi-
nigue works only when the attenuation is given over an ap-

ropriate frequency rande—a frequency range that is tocients in the limit of small volume fractions. In a separate
brop q y ge— d y 9 %tudy, where we shall present experimental results for non-
narrow or too broad may give erroneous estimates of th

. L : " Milute sus ensions, we shall extend the theory to treat nondi-
distribution. An alternative inverse technique based on Ilnear pen y

) ) . - “lute suspensions.
programing also failed to produce the correct particle size

distribution for the cases for which the Tikhonov schemeA. Theory
failed. This suggests that the prospects for determining the Epstein and Carhdrtfirst linearized the conservation

detailed particle size distribution from acoustic meas”re'equations for mass, momentum, and energy. The pressure
ments are somewhat limitedn situations where more might 54 jnteral energy were then eliminated by introducing
be.known a_b"“t the natgre of particle size d_|str.|bu'§|on, €.9-the linearized equations of state to yield equations in terms
unimodal with a Gaussian or log-normal distribution, one density, velocity, and temperature. Next, the time depen-
might be able to determine the size distribution through aPyence of all quantities were expressed by the factor

propriate curve fitting as has been done, for example, b¥,\x — .ot—which is henceforth suppressed—and the veloc-
McClements and Couplar?d)ut this is not addressed here. ityF\)/S/a;wez(pressed as PP

The reasons why the size distributions for some particle
suspensions are not recovered by the inverse techniques V=—V®+VXA,

while the same techniques were found to be quite successfiiin v. A=0. With this form ofv it is possible to eliminate

for bubble suspensions can be given in terms of differingnhe temperature and density from the governing equations to
resonance nature of these suspensions. In the case of bub%d a fourth-order partial differential equation fér and a

in most typical applications, the resonance occurs at frequersecond-order equation #. The former, in turn, can be split

cies for which the wavelength is relatively large comparedinio two second-order wave equations upon a substitution
with the bubble radius. This resonance is due to volume osg, — b+ b7 to finally yield three wave equations:

cillations; the shape-dependent resonances are unimportant

and, as a consequence, there is effectively one resonance (V2+ k(2:)¢c:01 (1)
frequency for each bubble size. Thus, the peaks in the (V24 K2) by =0 @
attenuation-frequency curve give a reasonable indication of T
the bubble sizes. The situation with the particles is different  (y2+ kg)A:O. ®)
as their resonance behavior is governed by shape oscilla- . ) )
tions. For polystyrene particles, several resonance peaks cotl'€ Wave numbers in the above equations are given by
responding to different shape oscillations arise even for 1 c?

monodisperse particles, and, as a result, it is difficult to de- 2= Szl uetf )+ ((1—u(e+yf))?

termine whether a given resonance peak arises from a differ- ~°

ent shape oscillation mode of the same particle or from a +4f(u+ye))?, 4

The wave equations for both the interior and exterior of
particles have been derived by Epstein and Cafhaitiey
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c2 ) satisfy a wave equation we express the last term on the right-
=521 et yf)=((1—(et+yf)) hand side of the above equation in termsVdi,), i.e., we
ki 2w
write
+4f(u+ ye))¥2), ©) ~
s <(Vg)(¢c_ ¢c)>:)\lv<¢c>,
Ke= (14 0)(wpl2u)™, ©) where \; depends on the parameters such as the volume
with fraction, k., andk.. The divergence of9) is given by
e=(4ul3+ K)wl(pc?); f=owlc?, (7) V(o) =(gV?¢c+(1-9)V2¢c) +((VQ)
Here,c is the phase speed in pure liqujdjs the densityx (Vo= Vo)) + NV e)
and u are, respectively, the compressional and dynamic vis- ) o~
cosity, y=C,/C, is the ratio of specific heats at constant = —ke(de) = (Ke—kS){(g ) +((VQ)
pressure and volumes is the thermal conductivity, and ~ )
o=1/pC, is the thermal diffusivity. (Ve=Ve)) + MV be). (10

Inside the particles similar equations hold with the dy-yriting
namic viscosity replaced by/(—t») and the wave speed - > -
by (X +2u/3)/p)2 wheren andX are the Lameonstants, (V) (Vo= Vhe)) =Noke(dbe),  (dde)=Na(dbc),
while the compressional viscosity is left out. Henceforth aye find that(¢,) satisfies a wave equation
tilde refers to the interior of particles.
At small values ofe andf (such as in watér the above (V2+K5)(be)=0 (11

expressions fok. andkr simplify to with the effective wave number given by

ke=wlc+ S[(4ul3+ 0)lp+ (7= 1)alw?/c?, PR R Lo L
eff _ '
® 1I-M

(12
— 1/2
kr=(1+)(w/20)™" The real part of the effective wave number is the frequency

Equation(1) and its counterpart inside the particles de-divided by the phase speed in the mixture and the imaginary
art the attenuation.

scribe the sound wave propagation through the suspensioﬂ. i . o )
Note that the wave number has an imaginary part; sound Up t(? this pomt' the analysis is rigorous and W'thou,t any
waves in pure fluid are attenuated by viscous and therm&SSUmption. Applying the boundary conditions of continuity
energy dissipatio®’ the term inside the square brackets in Of témperature, flux, velocity, and traction at the surface of
(8) is commonly referred to as the “diffusivity of sound.” the part|cle_s, and_ s_olvmg Fhe r(_asultl_ng_ boundary valu_e prob-
The total attenuation coefficient in both liquid and in the [€M numerically, itis possible, in principle, to determine the
solid particle will henceforth be treated as additional physi—,phase speed and attengatlon at grbltrqry V.‘?'“”.‘e fraction us-
cal properties. The other two wave equations describe wave89 the above formulation. Special simplifications can be

that arise from thermal conduction and finite viscosity: Wem?de when Lhe Wﬁve'?“gth 1S Iargehcomp:ared \r/‘V'th the parl-l
note that the modulus d&; in Eqg. (8) is inversely propor- ticles and when the viscous and thermal depths are sma

tional to the thermal penetration deptfa/w and that ofk compared with the particle radius for which numerical com-
to the viscous penetration depthu/pe. The thermal (bT)S putations using the multipole expansions developed in recent
and shear(A) waves have generally very high attenuationyears(see’ €.9., Ref. J)_Z:an be readily use_d for determlnmg
and are unimportant in acoustic applications. the attenuation at arbitrary volume fractions. Alternatively,

We now proceed to ensemble average the wave equatioCH'e may use a suitable effective-medium approximation to

(1) to find an expression for the effective wave number of Laccount for the particle interactions in nondilute suspensions

wave propagating through a solid—liquid suspension. Intro*'>"9 the above framework. We shall pursue this further in a

ducing an indicator functiog, defined to be unity inside the separate study devoted to nondilute suspensions where we

particles and 0 outside, the ensemble-averaged valdg isf shall also present experimental data. Since our interest in the
' present study is in determining size distributions, it is neces-

<¢>c>:<9<~ﬁc+ (1-g) o). sary to (_:onsider only_the simplest_cas_e of dilu_te suspensions.
In dilute suspensions the particle interactions can be ne-
To obtain a wave equation fde.) we first take the gradient glected, and the coefficienks, _; can be evaluated from the
of the above equation to yield solution for ¢ for a single particle given by Allegra and
_ 5 Hawley® Accordingly, the conditionally averaged
V(o) =(gV e+ (1—9) V) +{((VA)(de—dc)). (9 () (X|x1) given a particle centered at is given by

As argued by Sangaft, upon assuming that the particles’ () (X|x1) = expl ke X) +expl k- X;)

spatial distribution is homogeneous on a macroscale, the last o
term in (9), being a vector, can only depend on quantities > "2n+ DA-h-(k.r)P 13
such asV(¢.) and VV?(¢.). Anticipating that(¢.) will n§=:0 X MAahn(ker)Po(p). (13
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wherer =|x—Xx,|, u=cos#, 6 being the angle between and the orthogonality of the Legendre polynomials over

—X; andk., h, is the spherical Bessel function of the third spherical surfaces. The resulting expressions are

kind (corresponding to an outgoing scattered waeadP,, .

is the Legendre polynomial of degreeThe first term on the 3¢ . .

right-hand side of the above expression is the unconditionz‘l_TnZO [N+ Din+2(2)=Njn-12(2)]

ally averaged ¢.)(x) whose amplitude is taken to be unity L

with no loss of generality. X[Anjn(2) = Jn(2) = Anhn(2)], (19
Inside the particle centered »t we have

3¢ _
- - No=— =2 (2n+1)j,(2)
(he)=(X|x1) =exp(tke-Xy) ZO M(2n+1) Z 120

ey z s _ _z ’
X Anin(Ker)Po(), (19 X | Anln(2) = 2 In(2) = Avs (2. (20
wherej, is the spherical Bessel function of the first kind. s s -
Similar expressions are written for the conditionally aver-, _3¢~ [sinz=2) sinz+2) + 3¢ S (2n+1)
agedg; andA. This results in expressions with a set of six > 277 °\ 7—z 747 727241

unknowns for each moda. Application of the aforemen- o _ ~ ~

tioned boundary conditions of continuity of velocity, trac- XA Zjn-1(D)n(2) = Zjn(Djn-1(2)], (21)
tion, temperature, and heat flux yield six equations in these . . . .
six unknowns for each. There were some typographical Wherg n thg expression for, the J!‘*l'term n then=_0
errors in the equations given by Epstein and Cafhand contribution is to be left OEt. l—|ere;§ is the volume fraction
Allegra and Hawley* the correct equations are given in the Of the solids,z=kc.a and z=k.a are the nondimensional
Appendix. Although it is possible to solve for the unknowns Wavenumbers, and primes denote derivatives. Expressions
analytically in certain limiting cases, it is best to solve them(19—(21), together with the expression for the effective
numerically since we are interested in covering a wide freWave numbet12), complete the description of a solid—liquid

quency range for inverse calculations. mixture at low volume fractions.
We now return to the calculations of the coefficients N the above we have derived_ expressions.for the attenu-
\;_3. Upon using the identity ation and wave speed by calculating the effective wave num-
ber directly. An alternative derivation of the attenuation co-
Vg=—ns(x—x;), efficient is to calculate the energy dissipation per wavelength

in the mixture and divide the result by the energy per wave-
length. The result for the attenuation per unit length is tien

~ 3¢ «
(o) (XIxa) = (be) (X|x1)] O‘:_En}::o (2n+1)ReA,. (22)

with x; being a point on solid—liquid interface amdthe unit
normal vector at the poind 4 is given by

K1V<¢c>(x)=—ﬁ

X P(xq)dA; . (15) It can be shown that the two methods give essentially the
same result for the attenuation in the lim@#—0 with
Here,P(x,) is the probability density for finding a particle in ;-2 ReA, in the above replaced by Rg(/7)/Re() in the
the vicinity of x;. Similarly, we have foi, andA; ensemble-averaging method presented here.
The above analysis may be extended to account for the
Aok o) (X) = —J N-V[{$e)(X|X;) effect of finite volume fraction through a suitable effective-
Ix=xs|=a medium approximation. Sangahshowed that the first cor-
— (o) (X|%1) TP (X)) dA,, (16  rection of O(¢*? to the dilute O(¢) approximation for
bubbly liquids can be simply derived through an effective-
and medium approximation. This correction is most significant
near the resonance frequency of bubbles, and to correctly
)\3<¢C>(X):J’ (X)) (X|X1)P(x)d V. (17)  capture the behavior near resonance it is important to replace
the pure liquid wave numbdi. in the above analysisy
The above integrals must be evaluated while keeping in min§1€ effective wave number. Thus, in the present context,
that the integration variable ig . Thus, for example, if15) ~ Z2=Kc@ in (19-(21) for A,_3, is replaced byzer=kra,
and (16) we must consider all particles whose surfaces pas&/hile the wave number in pure liquid in the expression for
through the poink. To carry out these integrals we use the Ker, (12), has to be retained. The latter expression is then

X=xq|=

identity iterated to obtain a converged solution fdégy. The
effective-medium approximations have been found to be
e X1 gtke X trken quite useful in the related study of light scattering by suspen-
© sions(see, e.g., Ref. 34For very high volume fractions the

— atkex me_ 1ym ; other physical properties of the so-called effective medium
=g'c E 1H"2m+1 k.r)P 18
ot (=D (ke Pr(p) (19 must also be modified. In a separate stiitiywhere we shall
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report experimental data for dense slurries, we shall examine  10'
several different versions of effective-medium approxima-
tions in more detail.

Finally, the above analysis can be extended in a straight-
forward manner to account for the particle size distribution
when the total volume fraction of the particles is small. Let 10"}
us write the attenuation by particles of radius betwaemd
a+da as an attenuation density(f,a) [wheref is the fre-
quency of the wavef = w/(27)] times the volume fraction
of those particlesp(a)da; we shall refer to¢(a) as the
volume fraction distribution. At low volume fractions these
contributions can be “summed” over all particle sizes to
give for the total attenuatior(f ):

10° L

=
[=]
r'o

ATTENUATION (CM™)
g
&

N
o
IS
T

ol )= f ~ taada 23

It is customary to express the particle size distribution in
terms of its number density distributidd(a). The volume 10°4 — . ;

; T . 10 10 10 10
fraction distribution is related toP(a) by &(a) FREQUENCY (Hz)

=(4ma’/3)P(a). .
Th frecti di h d ibed i FIG. 1. Example of the dependence of attenuation on frequérfoy a
€ efiective-medium approac escribed earlier Cafl,y e of monodispersed polystyrene particles in water. Dashed lines are

also be readily extended to account for the particle size disasymptotic slopes of the attenuation for small and large frequencies.
tribution. The coefficienta. ;_z are first determined as func-

tions ofa for an assumed value of the effective wave number

and these are integrated after multiplyingdga)dato yield  changes in temperature are different in a solid than in a lig-
estimates for the average values\af_; for the suspension. uid, and this causes a heat flux through the surface of the
These are substituted {12) to determinek. If this esti-  particles. This heat flux is out of phase with the sound wave
mate ofke is different from the the assumed value, thenpassage and this leads to attenuation referred to as the ther-
\;_zare estimated for the new value kaf;, and the process mal attenuation. Third is the viscous energy dissipation
is repeated until the assumed and estimated values of thgwused due to the motion of the boundary of the suspended

effective wave numbers agree with each other. particles. Finally, the fourth effect is the attenuation due to
scattering.

IIl. DISCUSSION AND COMPARISON WITH Allegra and Hawley showed that when the particle size

EXPERIMENTAL DATA is much smaller than the wavelength and much greater than

. - __the thermal and viscous penetration depths«f)*? and
Figures 1 and 2 show the predictions for the attenuation P ptios <)

and wave speed as a function of frequehfiyr 79 um radius

polystyrene particles at a volume fraction of 0.05. The fre-
quencyf in Hz is related tow by w=2xf. The physical

properties used in the computations are given in Tabfe I. 4|
We note that the wave speed only changes if the frequenc
becomes very large and that these changes coincide wil 454
strong changes in the attenuation as well. Hence we expe:
that the measurement of the phase speed will not providg 1.52|
significantly new information over that obtained from the §
attenuation measurements alone as far as the problem of d 15}
termining the size distribution is concerned. On the other3
hand, since the phase speed at low frequencies is nearly i|§ 1.48}
dependent of the frequency &ga, it might be possible to w
use the low frequency speed data to determine the total vo = 146}
ume fraction of the particles regardless of its size distribu-
tion. We shall focus in the present study on the results for 144¢

attenuation as they are the most sensitive to the particle siz

1.58

distribution. 1.42;

The attenuation of sound waves in a suspension is dif
ferent from that in pure liquid because of four effects. First, 4 168 0 107
the attenuation of sound in pure solid is different from that in FREQUENCY (Hz)

pure liquid, and henc_e simply the presence (_)f t_he particlegig. 2. Example of the dependence of wave speed on frequefmya
changes the attenuation from that of pure liquid. Secondnixture of monodispersed polystyrene particles in water.
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TABLE I. The values of the physical properties that are used in this paper. The properties of water and
polystyrene were taken from Ref. 6; the properties of glass from various sources, most notably Ref. 15.

Polystyrene Glass Water
density(g/cn) 1.055 2.3 1.0
thermal conductivity (J/Kem:sec) 1.1%10°3 9.6x10°° 5.87x10 2
specific heat (J/K) 1.19 0.836 4.19
thermal expansion coefficieft/K) 2.04x10°* 3.2x107® 2.04x107*
attenuation coefficient per frégsec/cm) 101 107 2.5x10°16
sound speedcm/sed 2.3x10° 5.2x10° 1.48x10°
shear viscosity (g/crsed) ‘e “es 1.01x107?
shear rigidity (g/cmsed) 1.27x10'° 2.8x101 ‘e

(vlw)*?, the resulting viscous and thermal attenuations intion oscillations, and so on. The density of polystyrene par-
crease asf2 On the other hand, when the penetrationticles is essentially the same as that of water, hence the
depths are much greater than the particles, both attenuatigrarticles’ translational oscillations are very small. As a con-
contributions increase a&. This transition occurs at very sequence, the viscous attenuation is small and the small fre-
low frequencies—about 2 Hz for 100 radius particles in  quency behavior is governed by the thermal attenuation of
water—and will not be considered here. Attenuation due tahen=0 mode. At higher frequencies time=0 mode begins
scattering becomes important when the nondimensionab increase first a* due to scattering losses but the contri-
wave numberz=k.a becomes comparable to unity. For pytion from then=2 mode soon becomes important as it
small but finitez the Scattering losses increaseféSThUS, undergoes a resonance at about 3 MHz frequency_ The
one expects that the change in the attenuation behavior frof=3 andn=1 modes undergo resonances next, and so on.
12 at low frequencies t6* at high frequencies will provide e see that thev=0 mode undergoes a broad maximum
an important indication of the particle size. These asymptotigqound 9 MHz. Although not shown here, it too undergoes a
ranges are indicated in Fig. 1. We see that the transition t.gonance with a sharp downward peak at about 21 MHz.
the f* behavior does not fully occur for the particles consid-p 5 e see that the attenuation varies with frequency in a
ered here. As the frequency is increased particles undergayner complicated manner at high frequencies owing to vari-
several resonances as described in more detail below, angls yegonances. We should note here that the behavior of this
this IS responsible for the seyergl peaks seen in Fig. 1. . kind for polystyrene particles has also been reported by other

Figure 3 shows the contributions to the total attenua,t'or]nvestigators in the past. For example, Anson and Chiers
z;%rﬂjnewae)cgzgilgggﬁ.s -I(_)?E’::;I;O mtgdle cirrlestpotrr:ds to raldl_al and Ma, Varadan, and Varad&hwho restricted their analy-

: S particlesy 0 the transla sis to scattering losses only, found essentially the same be-
tional oscillationsn=2 to the ellipsoidaP,-shape deforma- havior, and in earlier investigatioHs® mainly focusing on

the determination of waves reflected by immersed objects,
high-amplitude reflected waves were found at certain reso-
nance frequencies.

Figure 4 shows attenuation as a function of nondimen-
sional wave numbek;a for particles of radii 50 and 79
microns. We see that the curves for these two radii are es-
sentially the same, indicating that, at least for polystyrene
particles, the thermal or viscous effects have negligible in-
fluence on the resonance frequency. The first resonance cor-
responding tan=2 appears ak.a=1.4.

Allegra and Hawleytested(22) extensively against their
experiments and found very good agreement. However, their
particles were always smaller thanun radius, so that the
wavelength was always much greater than the particle size.
No resonance behavior was observed in their experiments.
Although the above-mentioned paper by Ma, Varadan, and
Varadart* presents experimental data on light scattering in
the small-wavelength regime, no data on attenuation of
sound waves by particles were presented. To test how well
o o o o the theory works for larger particle sizes, we carried out an

FREQUENCY (Hz) experiment that will be described in detéillong with more
FIG. 3. Contributions from the first five modesin (19)—(21) to the total eXp_enmentS on Conce_mrated Slur)leseWheré's In this ex- .
attenuatiorfthe imaginary part oke, which is given by(12)]. Polystyrene periment the attenuation of sound waves was measured in a
particles in water. frequency range of 1-10 MHz in a solid—liquid mixture of

10"
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(=3 o (=]
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FIG. 4. Attenuation divided by wave number as a function of the wave

number times the particle radius in the scattering regime for monodisperselllG. 5. Comparison with experimental data for the attenuation as a function
polystyrene particleé—, a=79 um; ---,a=50 um). The volume fractions  of frequency. Polystyrene particles of radias79 um and 0.05 volume

of the particles in both cases are the same and equal to 0.05. fraction. O, experiments; , theory for monodispersed particles;
-.-.-., theory for monodispersed particles with effective medium correction
for finite volume fraction effects; ---, theoretical result with a particle size
distribution with a mean particle radius of f#n and standard deviation of
2.5 um (this is within the range specified by the manufacturer

polystyrene particles with 793 mean radius and 1.%
standard deviation at 0.05 volume fraction. Monochromatic

tonebursts, at incremental frequencies, were transmitted by a . . o . :
transducer on one side of a small vessel in which the mixturgIormal particle size distribution was introduced with a mean

was being stirred; a second transducer received the sign([aﬁld'us of 77 and 2.5um standard deviation, which lies

and sent it to a LeCroy 9310A digital oscilloscope. The am-WVithin the manufacturers’ specifications. The result for the

plitude of the signal for pure water was measured, as Wagttenuatmn, the dashed curve in Fig. 5, shows close agree-

that for the solid—liquid mixture. The excess attenuation wa%1ent with the data. Thus, we concllude that the agreement
determined by etween the theory and experiment is excellent, and that the

small observed differences are due to small polydispersity of
1 V mix the suspension.
a=- a' g( ) The attenuation behavior displayed by polystyrene par-
ticles is not generic, as can be seen from Fig. 6 which shows
whered is the distance between the transducers\ggdand  the attenuation behavior for glass particles. Since the density
V0 are the voltage amplitudes of the received signals in thesf the glass particles is significantly different from that of
mixture and pure water, respectively. The distance betweewater, the glass particles execute significant translational os-
the transducers was 2 in. at low frequencies and 1 in. atillations. As a consequence, the low-frequency behavior is
higher frequencies; this was necessary because the attenummpletely governed by the viscous effects and thel
tion at higher frequencies was too large to produce signifimode. Note that the small frequency attenuation is about two
cant signal-to-noise ratio in the larger vessel. orders of magnitude greater for glass particles than for the
Figure 5 shows the comparison between theory and expolystyrene particles. Also we see a considerably different
periment. At the two gaps in the frequency doméivhere  behavior at higher frequencies. The attenuation does not
the theory predicts very high pegkthe attenuation became seem to peak at several frequencies. Rather, for aash
again so large that the signal-to-noise ratio vanished even igee broad “hills” separated by narrow “valleys.” The total
the smallest vessel. Good agreement is found between esttenuation does not appear to go through several resonances.
periments and the theory except near resonance frequenci€he difference in the behavior for the glass and polystyrene
where small differences are seen. There are two possiblearticles at these high frequencies seems to arise mainly
reasons for these small differences. The first is concernefiom the different elastic properties of the two materials.
with the finite volume-fraction effect. To investigate this we
have also pIotte.d in Elgﬁ a resuIF from an'effectlve-medl'um {V. THE INVERSE PROBLEM
approach described in the previous section. The resulting at-
tenuation changes, but in the wrong direction. The second We now consider the inverse problem: given the total
reason is that the particles were not exactly monodisperseditenuationy,, as a function of we wish to determines(a)
Using the method described in the previous section, a logusing (23). The straightforward method of solving the inte-

V0
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water as a function of frequency and the contributions from the first three
modesn in (19)—(21) to the total attenuatiofithe imaginary part ok,

which is given by(12)]. 10'L

gral equations, i.e., discretizing the integral domain into a
number of elements and converting the integral equation into ~
a system of linear equations in unknowfi&a,) at a selected
number of points, in the domain, cannot be used since the
resulting equations will be ill conditioned. Figure 7 illus-
trates the ill-posed nature of the problem. Figufa) Bhows
two very different particle distributions whose attenuation — g2}
versus frequency curves are seen in Fih) 7o be essen-
tially the same. These curves were obtained by starting with
a smooth, log-normal particle size distributipthe dashed 102}
curve in Fig. 7a)] and generating the attenuation versus fre-
guency data using the forward theofthe circles in Fig.
7(b)]. A 1% random noise was then added to the data and o

(25 with e=0, which is equivalent to the integral equation () FREQUENCY (Hz)
(23), was subsequently solved to yield the particle size dis-

tribution indicated by the solid line in Fia(3. The pluses in F_IG. 7 Influence of fluct_uations superimposed on the volume fraction dis-
y g(i) P tributions (a) on attenuation daté&). In (b) the circles correspond to the

Fig- 7(b) correqund to the attenuf"‘tion _de?em’_'ined from theresult when using the dashed distribution(af and the pluses when using
forward theory using the new particle distribution. Note thatthe solid line in(a).

the attenuation is evaluated with a smaller frequency incre- . L
ment than the one used for the original distribution. We se@'€Sent study, we shall use primarily a regularization tech-

that the attenuation from the two distributions agree withhidue due to T'khomﬁ’_Wh'Ch was successfully used for
each other to within 1% for the frequencies marked byPuPPly liquids by Dura|svx{anﬁ.A_r1 alternative method is
circles. The highly oscillatory particle distribution does showPrésented at the end of this section. Accordingly, we multi-
an oscillatory behavior in between the frequency increment®ly (23 with «(f,a)df and integrate over the frequency
particularly at 10 MHz, but these oscillations occur only for fange to obtain a simpler integral equation in which the
a very narrow frequency range and would have been missedght-hand side is only a function @
altogether had the attenuation been determined only at thj
f

10° L

1071

ATTENUATION {CM

107

fmax [ @max~ ~
a(f,a)a(f,a’)p(a’)da’' df

min ¥ @min

input frequencies.

f

A. Method =b(a)= f " e f)a(f,a)df, (24)
Since the true particle distribution is expected to be Frmin

smooth, we must only allow solutions that are reasonablwhere @min,@may and (fmin.fmay are the radius and fre-

smooth. There are several ways of accomplishing this. In thgquency ranges. The above integral equation is now regular-
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ized as explained below by adding a small tewfip  tion of (25 gave negative values @f. The computed value

—12¢") (where primes denote derivatiye® its left-hand  of E for a givene is then based owp(a)=0.

side. Thus, we obtain The integro-differential equatiof25) was solved as fol-
lows. After discretizing the domainag,,—ama,) into N—1

e[ p(a)—1%¢"(a)]+ famaXK(a,a')qs(a')da’:b(a), (25) equal segments and the frequency domain Mte 1 loga-

amin rithmically equal segments we first evaluate the kernel
where| is a suitably chosen lengthscale akda,a’) is a  K(&i,a)) fori,j=1,2,..N [cf. (26)] using a trapezoidal rule
kernel defined by for the integration over the.frequency range. As pointed out
. by Duraiswam? it is essential to calculate the integral over
K(a,a’)zf max&(f,a)&(f,a’)df. (26) 'partlcl.e radllus very accurately. We assume ihéd) varied
frmin in a piecewise linear manner in each segment and use a 12-

. . . L . . point Gauss—Legendre quadrature to evaluate the integral in
Equation(25) is an integro-differential equation and needs(25). A second-order central difference formula was used to

two boundary conditions. Usual practice is to take the de- ” . X
rivative of ¢(a) to be zero at the two end points: evaluateg’(a) at all points except the end poinds,, and

amax- The boundary conditiong’ (amin)=0 and ¢’ (amay

&' (Amin) = &' (Amay = 0. (27) =0 were approximated using, respectively, second-order for-
ward and backward difference formulas. Application(2%5)

at all the discretization points together with the boundary
conditions can be expressed with the above scheme as a sys-
tem of linear equations:

Note thata,,,, and a,,x are not knowna priori in general.
One expectsp to be zero also at the two end points. Thus,
the range &,,,—ama) Must be determined by trial and error
so that both¢ and its derivatives are approximately zero at
the extreme values af.

Now it can be shown that the solution (#5) subject to N
the boundary conditions given E27) minimizes > Aijdi=Db;, i=12,..N, (30)
=1
amax
e+ e | @)+ @) 1da 28
8min

_ where¢; = ¢(a;) andb;=b(a;). The above set of equations
whereE is the measure of error between the actual attenuagas normalized by dividing all the equations with the great-

tion and the computed attenuation: est element of the kerné(a; ,a;), K, for all i,j, times the
frmax [ Amax. 2 segment length\a= (anax—amin)/(N—1). This set of equa-
EZJ J a(f,a)p(a)da—a(f)| df. (29 tions was subsequently solved using a standard IMSL sub-
Fimin | < @min routine for linear equations.
Since bothE and the second term i(28), i.e., the integral, Once ¢; are determined for a selected value efwe

are non-negative, minimization ¢28) ensures that the solu- satisfy the constraing;=0 by setting, as mentioned earlier,
tion of (25) will be free from large oscillations iw. In other  ¢;=0 for all negatives; . The errork as given by(29) was
words, highly oscillatory distributions such as the one showrsubsequently evaluated using a trapezoidal rule for integra-
in Fig. 7(a) are rendered inadmissible whéB5) is solved tion over the frequency range. The optimum valuesafas
with finite, positivee in place of the original integral equa- determined by stepping logarithmically through several val-
tion (24). Thus, we have regularized the problem of deter-ues ofe and plottingE versuse.
mining ¢. A typical result(N=30, M=112, f,;,=0.1 MHz, f .«

If we choose a large, then we decrease the oscillations =17 MHz, a,j,=15 um anda,,,=35xm) for the errorE in
in ¢ but increase the error ig(a) since then the equation the resulting attenuation as a functionedé shown in Fig. 8.
solved is significantly different from the original integral Note thate here is the actuat divided byK ,Aa. We see a
equation. Smalk, on the other hand, yields unrealistiga) clearly defined optimum value ef Computations were also
having large oscillations when the datg,(f) are not exact. made with largerM to confirm that the resulting volume
An optimum choice ofe then depends on the magnitude of fraction distribution was not affected by the further refine-
uncertainty/error in the attenuation-frequency data. In thament in the integration over the frequency range. A remark
calculations we shall present here the exagi(f) is first  should also be made of the choice for the lerigth(25). We
determined using the forward theory for a givé(a) and a may regard botte andl as parameters to be chosen so as to
small random noise of about 1% magnitude is added to itminimize the erroE. Takingl = (a2 amin)/N We computed
before the inverse calculations are mdtte effect of noise E by varying bothe and n with n varied from 1 toN. The
magnitude is discussed belpwhus, we have an estimate of three-dimensional plot oE versusn and e showed thate
the error in the data, but in general this estimate may not bevas much more sensitive to the choiceethan it was ton.
known reasonably accurately. To determine the optimaim In general, the results with close toN were slightly better
we solve(25) for several different’s and plotE versuse to than with those nean=1. Based on this observation we
find a minimum inE. This, however, may lead to distribu- chosen=30. For larger values dlii(N>40) we found that
tions in which ¢(a) may have unphysical negative values choosingn=N led to more oscillatory behavior fap; . This
for somea. The constrainip(a)=0 for all a is satisfieda is to be expected since choosing largeand, hence, smaller
posterioriby settingg(a) =0 for all a's for which the solu- |, permits larger values ob’(a).
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FIG. 8. Typical dependence of the error in the attenuation for the solved-IG. 9. Solving the inverse problem for polystyrene particles. The solid line

volume fraction distribution as a function of the regularization parameter s the volume fraction distribution used to generate attenuation[datavn

The (small) parametek should be chosen such that this error is minimized. in Fig. 12a), with f,,,, as indicated by a squdrethe dashed line is the

The minimum was always found to be well-defined. solution of the inverse problem when taking the particle radius range to be
1-100um and using 50 “bins” of particle sizes.

B. Results and discussion rigid and much heavier than water; the physical properties

We now present results for the volume fraction distribu-used in the present calculations are listed in Table I.
tion obtained using the above technique. As mentioned ear- We begin with the results for polystyrene particles with
lier, we used the forward theory to generate attenuation data narrow size distribution in the range of 20—gfn. The
for an assumed volume fraction distribution. Small randomparticle size range for the inverse calculations is first taken to
noise can be added to the data thus generated to mimic pose much greater—5-10@m; the frequency range was
sible errors arising in the attenuation measurement. This i68.1-17 MHz. Figure 9 shows that the volume fraction distri-
satisfactory since we are primarily interested in assessing theution as evaluated from the inverse technique is in very
procedure for solving the inverse problem. If the proceduregood agreement with the input distribution. The result for the
gives erroneous results even for this case, it will certainlysize distribution can be improved further by making the par-
break down in practice using the experimentally generateticle size range smallgia close-up of the improved result is
data. shown in Fig. 11

The frequency range over which the attenuation mea- In Fig. 10 we consider a more complicated, bimodal size
surements are carried out in our laboratory is 0.1-15 MHzdistribution in the range of 20—4&m with peaks at about 25
We shall choose here the same range to investigate the suaad 38 um. The attenuation as a function of frequency for
cess and limitations of the above technique to solve the inthis distribution is shown in Fig. 10a. The maximum fre-
verse problem although we shall also consider cases with @uency used for inverse calculations is indicated by a square;
larger frequency range to inquire if better estimategh(d) it is seen that the frequency range includes the first two reso-
could be achieved if the attenuation data at higher frequemance peaks of the attenuation curve. From Figbjl@e see
cies were to be made available. This is important since thence again that the inverse procedure recovers this distribu-
acoustic instruments operating up to 150 MHz are availabletion very well.

We consider first particle sizes that are of the same order One of the difficulties in solving an ill-posed problem is
of magnitude as the wavelength somewhere in this frequenchat small errors in the inpufattenuation data can cause
range, which is the case for particles of about 10—-100 large changes in the solution. Of course, errors are always
radius(for larger particles observed behavior of the attenuapresent in the experimentally obtained attenuation data. The
tion is shifted to lower frequencigsA particle size distribu-  calculations presented so far were made with no added noise.
tion that is often used is a log-normal distribution, which To mimic the practical situation, we added random noise of
results in volume fraction distributions such as the smoot5% standard deviation to the input data; this is about the
one shown in Fig. (&). We attempt therefore to recover that same as the order of magnitude of the errors present in the
distribution from the corresponding attenuation data. As inexperimental results shown in Fig. 5. The resulting volume
the forward problem, we shall investigate polystyrene parfraction distribution, shown in Fig. 11, does confirm that
ticles and glass particles in water, as the first are almossmall fluctuations in the input data only cause small devia-
neutrally buoyant and deformable while the latter are vengions in the output. When the calculations were repeated with
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FIG. 11. Solution of the inverse problem when random noise of 5% stan-
dard deviation is introduced in the attenuati@mput) data. Solid line is the
70¢ . 1 exact result; the broken line is the result when no noise is introdaled
ready shown in Fig. 8 and the dash—dotted curve is the result after intro-
P duction of the noise. Polystyrene particles in water.
-5 60}
&
5 50t . .
'g-'_; occurs roughly spe_aklng dr_g_a=0(1). If the particles are
2 very small, then this transition may not occur over a fixed
z frequency range. However, as we shall presently see, the
g results are very sensitive to the frequency range chosen for
£ 30r computations even when this transition is included in the
3 range.
g 20¢ Figure 12 shows the effect of varyirfg,,, on the com-
puted distribution. As seen in the figure the resonance in the
10} shape oscillations of thépolystyreng particles leads to a
+ . . .
. change in the slope of the curve just before the first reso-
olst” : . ol . bt nance. This transition occurs just beyond the point marked
1.5 2 25 3 3.5 4 45
b) ’ " PARTICLE RADIUS (CM) T 10.5’ by a circle in Fig. 12a). We see a marked improvement in

the results in Fig. 1®) whenf ., is chosen corresponding
FIG. 10. Attenuatior(a) and the solution of the inverse problein) for a  to a point marked plus in Fig. 18 over those obtained with
bimodal distribution of polystyrene particles, using 30 particle size bins. Ing point Corresponding to the circle which does not include

(b), the solid line is the exact result, markers represent the inverse problerﬂ,]e second chanae in slobe. The point marked blus corre-
solution when using fof ,,, the value indicated by a square (#@. Results 9 pe. p p

when cutting of the frequency range at the point marked by a triangle ar&PoNds to a frequency greater than the frequency at which the
discussed along with Fig. 14. second change in slope occurs for larger particles but smaller

than that for smaller particles. This seems to give rise to an

inverse solution which is reasonably accurate for larger par-
a noise of 10% standard deviation, the computed particle sizécles but not for smaller particles. Also shown in Fig.(i2
distribution was found to be considerably different from theare the results whef,,,, is chosen to coincide with the end
input distribution, although the main features of the size dis-of first peak, the point marked square in Fig(d2 This is
tribution were preserved by the inverse computations. seen to yield very accurate results for the size distribution.

The results discussed so far suggest that the inverse One might suppose that covering a broad enough fre-

problem can be solved with reasonable success. We noguency range will alleviate the difficulties seen above. This,
illustrate some limitations. The inverse method gave erroneunfortunately, is not the case. Figure 13 shows the results for
ous particle size distributions for smaller particles when thehree differentf,,,. The dashed curve corresponds to cutting
same frequency range as the above was used. Of course, off the frequency range at the end of first peak as in Fig. 12,
order that the size of the particles be determined there mushe dashed—dotted line to the end of three peaks, and the
be at least one transition—from the thermal attenuatiordotted line to 18Hz, a frequency about 50 times greater
dominated regime to the scattering dominated regime whicthan the first resonance frequency. We see that the results of
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FIG. 13. Too big a frequency range over which the attenuation is available

° for polystyrene particles also deteriorates the result: the solid line is the

exact result; the dashed line is the inverse problem result when using attenu-
ation data of Fig. 1@&) below the point marked by [,” the dashed-dotted

line represents the result when this end point is shifted to the point marked

by “ & and the dotted line is the result when this end point is shifted to

100l 1000 MHz.

particle, or may correspond toR, mode of a smaller par-
ticle. In our calculations we used only up to the first six
modes (=<5), but in practice the acoustic response may be
further complicated by the higher-order modes for frequen-
cies of order 1®Hz considered here.

Since including a wide frequency range with several
resonance peaks seems to adversely affect the inverse calcu-
lation, one may consider cutting off the attenuation data be-
yond first peak. This, however, may not work if the distribu-
A5 s 5% 3 tion is truly bimodal as was the case considered earlier in

(b) PARTICLE RADIUS (CM) x 10°% Fig. 10. If we omit the second resonance peak from the at-
tenuation data by considering a maximum frequency that is
FIG. 12. Influence of the size of the frequency range over which attenuatiofags than the point marked square in Fig(al0say, that

is specified on the solution of the inverse problem. Polystyrene partieles. ked by th ircl t . . h .
Input-attenuation data and four different upper bounds on the frequésjcy. marke y the circle, we get a poor Inversion as shown In

Results from the inverse problem from these different ranges, using th&ig. 14. The inverse technique computes accurately the vol-
same marker type. The solid line is the exact restlityesult when cutting  ume fraction distribution of larger particles whose resonance

off the frequency range just at the end of the first peak in the attenuation; was included in the data but fails to predict that for smaller
result when cutting of the frequency range after the second change in slope

50+

VOLUME FRACTION DISTRIBUTION (CM™)

n0anp g

i)

of the attenuation; an@®, result when cutting off before the second change partlc_les. ] o
in slope. Cutting off the frequency range at the point marked™is dis- Figure 15 shows results for a broad, unimodal distribu-
cussed along with Fig. 13. tion. The resonance peaks of different particles overlap in

this case resulting in the absence of peaks in the attenuation-

frequency curvéFig. 15a)]. Figure 15b) shows the results
inverse calculations actually deteriorate if a much largemf inversion for three different cut-off frequencies. The larg-
range of frequency is employed, notwithstanding the fact thaest frequency, marked by a square in FigialSs larger than
measurements over such a broad frequency range could itsélife second transition frequency of small as well as large
be a very challenging task. One may rationalize this result aparticles, and this seems to produce excellent inverse results.
follows. As seen in Figl a monodisperse suspension will In most of the inverse calculations shown so far which
exhibit several resonance frequencies corresponding to varyelded poor results, we note that the failure is particularly
ous shape oscillatioR,, (n=2,3,...) modes. Thus, a second severe for smaller particles. One may rationalize this by ob-
peak in the attenuation-frequency curve for polystyrene parserving that the total errdt will be dominated by the errors
ticles may correspond either to sayPPa mode of a larger at large frequencies since the attenuation there is very large.
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Whenk.anmin<1 in the frequency domain that is considered, <

=
the small particles’ volume fraction is seen from Figs(k2 g 80r
and 14 to be underestimated, while the large particles’ vol- g
ume fraction is overestimated. To decrease the relative im—"g’
portance of the attenuation at high frequencies, we solved ag 6o
slightly different inverse problem in which both the attenua- g
tion and a were divided byf2. However, only small im- % a0l

provements were found by modifying the attenuation data g
this way. The inverse-problem result shown in Fig. 14 was in
fact obtained in this way. 20l
Some insight into why the choice &f,, drastically af-
fects the results may be gained from Fig. 16, which shows

the three-dimensional plots for the kerri€(a; ,a;) for the 0 . %o

. . 0 ] : 2
same values of ,,, as considered in Fig. 12. We see that () PARTICLE RADIUS (CM) x 107
when f,,=10.4 MHz, corresponding to the circle in Fig. _ ' S
12(a), the kernel has a maximum faxzaj = Aax- The ker- FIG. 15. As Fig. 12, but with a broader size distribution.

nel for smaller particles is very small and, as a consequence,
the inverse technique could determine the larger particle size
volume fraction correctly but failed for smaller particles. In Fig. 17c). The main reason for the success of the inverse
contrast to this the kernel fdr,,,=17.1 MHz, corresponding technique for bubbly liquids seems to be that there is one
to the end of first peak, shows significant variations for aresonance frequency for bubbles of each size. As long as the
wide range of values dd; anda;, and this apparently leads frequency range is broad enough to cover the resonance fre-
to a much better inverse solution. Finally, the kernel forquency of all the bubbles, it is possible to determine the size
fmax=30.4 MHz, corresponding to the end of the third reso-distribution.
nance peak, shows a less pronounced structure. The results presented so far were for polystyrene par-
It is also instructive to examine the kernel and the resultgicles. We have also carried out inverse calculations for glass
of inverse calculations for the problem of determining particles. As indicated earlidcf. Fig. 6 there is no clear,
bubble-size distribution in bubbly liquids examined by sharp resonance frequency peak for glass particles. As a con-
Duraiswam# The inverse procedure works very well for sequence, the inverse calculations for the glass particles did
bubbly liquids as can be seen from Fig.(&7which shows not show, in general, good agreement with the input size
the input and computed bubble size distributions to be irdistribution.
excellent agreement. The kernel for this case has smooth The results presented so far show that the success of
variations over a wide range of bubble radii as seen in Figur&ikhonov regularization to solve the inverse problem is lim-
17(b). The attenuation as a function of frequency is shown inited. Although we have given plausible reasons for why the
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the original inverse problem as an optimization problem. The
simplest scheme is to minimize the error

meax
f

min

Jamax&(f,am(a)da— a F)|dF. (31)

min

instead of the integral of the square of the quantity enclosed
by two vertical bars at each frequency. Constraints on the
solution are used priori in optimization via linear program-
ming; here we use thap(a)=0. Imposing an upper bound
on the total volume fractiofmaximum packingcan also be
incorporated but is not essential. After discretizing the fre-
quency range by and ¢(a) in N discrete values we write

N
21 Bijqﬁ(aj)—atot(fi):ui—vi, U; ,UiBO, i=12,... M.
i=

(32

Here, B; is the discretized form of the integral operator in
(31 andu; andv; are, as yet, unknown, non-negative vari-
ables. Now, it can be showhthat minimizing the absolute
value of(32) is equivalent to minimizing

M
21 (U +v;) (33)

with (32) as a constraint together with the constrains v;
=0 (i=1,..M) and¢(a;)=0 (i=1,...N). Essential here is
the notion that at the optimum;v;=0 for eachi, which
makes the solutions of the two minimization proble(84)
and (33) identical.

The above scheme was applied to a number of cases that
were also examined using the Tikhonov method. It was
found that, in general, the linear programing scheme pro-
duced inferior results. A typical example is shown in Fig. 18
where the Tikhonov method is seen to yield far better results
for the size distributions. This technique also did not yield
good inverse results for the case of glass particles.

V. CONCLUSION

A theory for the attenuation and wave speed of solid—
liquid suspensions at low particle volume fractions is de-
scribed. The theory is shown to be in excellent agreement
with the experimental data measured in our laboratory.
Tikhonov regularization and linear programing techniques
are employed to solve the inverse problem of determining
the particle size distribution from the attenuation-frequency
data. Although these techniques are successful in solving the
inverse problem in several cases, we have also shown that
the results are very sensitive to the choice of frequency
range, the physical properties of the particles, and the nature

method works well for bubbles but not for all particles, it is of particle size distributiofunimodal, bimodal, etg. Since

possible that other techniques for solving the inverse probthe same techniques worked very well for bubbly liquids, we
lem may be more successful. For that reason we have attribute the failure in solving the inverse problem satisfac-
tempted an alternative methfotf:® based on linear program- torily to the complex resonance behavior of slurries. We con-

ing that we shall briefly describe here.

The constraint¢(a)=0 for all a was satisfied onlya

clude therefore that the prospects of using acoustic probes
for on-line monitoring of particle size distribution of slurries

posterioriin the Tikhonov scheme. To ensure that the errorare somewhat limited unless some additional information on
is minimized while satisfying this constraint, we reformulate the particle size distributiofe.g., unimodalis available.
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n this appendix we give the set of linear equations for  _~ % v5 '3\ 1 B.B.3-1'(3 Al
unknowns that include the coefficiems required to calcu- T(AnbeZeln(Ze) + Babrzrin(27)) (A4)
late the attenuation fronfl2) and (19)—(21) or (22). These (- vour)([(22—222)jn(2e) — 223)1(2e) 1+ ALl (22
equations are derived from the boundary conditions on the

surface of a test particle. In addition to the coefficiefits —2z2)h(20) — 225Ny (2) 1+ B[ (22— 225)hi(z7)

A, of the solution of(1) outside and inside the particle, re- a2y / _

spectively, similar coefficients arise due to the solutiof2f 227hn(2r) ]+ Co2n(n+1)[zhn(20) ~a(25)])
and(3), denoted byB,, andC,,. Note that(3) is an equation =A[(0%pa®—2u72)jn(ze) — 2122 1(Z) ]

for the vectorA rather than a scalar velocity potential, but

only the azimuthal component &éf is nonzero, hence only a +B[(w?pa®—2uz2)jn(zr) — 20Z31(z1)]

scalar coefficienC,,. In the following, we use the notation o o ~

zc=kca, Z-|-=k-|-a, andzsz ksa: +Cn2Mn(n+1)[Zsjr,1(zs)_jn(zs)]y (AS)
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