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Transport processes in random arrays of cylinders. I. Thermal conduction

A. 8. Sanganiand C. Yao

Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, New York

13244-1190
(Received 6 May 1987; accepted 31 May 1988)

A numerical method is developed that takes into account the many-particle interactions in a
rigorous manner to determine the effective thermal conductivity X,, of a composite medium
consisting of parallel circular cylinders of thermal conductivity ak suspended in a matrix of
conductivity k. Numerical results for K, are presented for a wide range of & and ¢, the area
fraction of the cylinders, after averaging over several computer-generated random arrays of
cylinders. The results obtained via this exact method are compared with those of various
approximate analytical methods to assess their utility in predicting K, .

1. INTRODUCTION

Transport of mass, momentum, or energy in heterogen-
eous media consisting of particles suspended in a fluid or
another solid medium plays an important role in a wide va-
riety of physical operations. Consequently, there have been
numerous studies in the past whose goal is to provide a suit-
able framework for describing quantitatively the transport
processes in such systems. A large number of these studies
involve approximations that are often ad hoc in nature. Rig-
orous treatments are available for relatively simple transport
processes in relatively simple systems such as those in which
either the volume fraction of the particles is very small com-
pared to unity or in which the transport properties of the
particles are not too different from those of the surrounding
medium. Two exceptions to this are the expressions for the
bounds on various macroscopic transport coefficients and
the exact results for a few selected spatially periodic arrange-
ments of the particles. Unfortunately, the former gives
bounds that require rather tedious computations of the high-
er-order moments of the spatial distribution of the particles,
whereas the latter is sometimes criticized for its highly ideal-
ized spatial distribution.

The main objective of this series of two papers is to illus-
trate a numerical method for evaluating the macroscopic
transport coefficients by computing exactly the many-parti-
cle interactions in systems with an arbitrary size and spatial
distribution of the cylindrical particles. In this paper, the
problem of determining the macroscopic or effective ther-
mal conductivity of the suspensions is considered; that of
determining the permeability or, equivalently, the average
pressure gradient in a viscous fluid steadily moving through
an assemblage of fixed particles is treated in the second pa-
per. In addition to providing the exact results for the above
transport coefficients for a few realistic spatial distributions
of the particles, the method can also be used to obtain de-
tailed temperature and velocity distributions that may prove
valuable in the study of more complex transport processes
such as the filtration of aerosols by fibrous materials.

The organization of the paper is as follows. In Sec. II, an
exact method is described for determining the temperature
field around N interacting parallel cylinders in a periodic
domain. This method is applied to several computer-genera-
ted random arrays in Sec. III to determine the average mac-
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roscopic or effective thermal conductivity of such arrays as a
function of ¢, the area fraction of the cylinders. In Sec. IV,
these results are compared with the predictions of various
approximate methods, asymptotic expressions, and bounds
on the effective conductivity to assess the range of useful-
ness/validity of these methods, at least as far as their applica-
tion to the random arrays of cylinders is concerned. In par-
ticular a method is described for determining rigorously the
higher-order bounds on the thermal conductivity of arrays
of cylinders, and using this method a constant appearing in
the third-order bounds is evaluated and compared with an
approximate method suggested in the literature to evaluate
the same bound. The predictions of the approximate meth-
ods are also compared with the exact results for the periodic
arrays of cylinders.

Il. THE METHOD

A. An exact solution for the temperature field for ¥
interacting particles in a periodic domain

Consider a composite medium consisting of infinitely
long parallel cylinders of thermal conductivity ak suspend-
ed in a substance whose thermal conductivity is &. The medi-
um is spatially periodic with its unit cell of dimensions 4 X A,
and the centers of the particles within a representative unit
cell are given by

r=R", =12,.,N. (n

The radius of the nth particle is ‘™.

We wish to determine the temperature field resulting
from heat conduction when a temperature gradient is exter-
nally imposed on the above composite medium. Since this
field satisfies the Laplace equation, a general expression for
the temperature at any point in the matrix can be written in
terms of .S,, the periodic singular solution of the Laplace
equation, as follows. As shown by Hasimoto,’

1
S (r) =—— k %exp 2mik,r 2)
1(r) 52 kLZ#O L 1Y L (
satisfies
1
V2Sl=41T('h—2 — rzé(r—rL)), (3)
where
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I, = h(llel + Izez )’
kL =h _I(lle| + 1282), ll,lz = 0, i 1, i 2,..., (4)

and e, and e, are unit vectors along the x, and x, axes. Al-
though S, itself does not satisfy the Laplace equation, its
derivatives do, and hence the temperature can be expressed
in terms of the derivatives of S, as

N © 1
o+ § 5 3 ap

n=1l=1m=0

a I—m a m
< 2} 5,(r —R™), 5
(5 (&) se-rn©

where G is the imposed or the mean temperature gradient in
the composite medium. Note that the derivatives of S, with
order 2 or greater in x, can be expressed as a linear combina-
tion of the terms already included in (5) by making use of
(3), and hence (5) represents the most general expression
for the temperature at any point in the matrix.

To complete the solution for the temperature field, we
must determine the unknown coefficients 4,,, appearing in
(5). This is done by applying the condition of the continuity
of temperature and flux at the surface of each of the & parti-
cles. We first express the temperature inside the nth particle
in terms of the polar coordinates (s,8) with respect to its
center as

T(r)

T (r) = i (E {s? cos p6
p=0

+ E‘f,”’s” sin p8), for s<a'”, (6a)

where s=|r —R‘”|, @ is the angle between the vector
r — R and the x, axis, and E | and E ™ are additional
unknown coefficients. Similarly, the temperature field just
outside the nth particle can be expressed as

T™()=C§ + 3 (Cs°+ DMs™P)cos pb
p=1
+ (CMs°+ D s~ P)sinph, for s>a',
(6b)
where C”, D™, C{”, and D (™ are related to A,,,.
The continuity of the temperature and flux at s = a*”
gives
BCW = —D"(a"™)~%, PB=(a—1)/(a+1),
(7
J

plus a similar relationship between C and D Now to relate
the coefficients D, and D to A, , we use the following ex-
pansion of S, near s =0 (see Ref. 2):

+ ECZn

n=1

cos 4nd,

(8)

where ¢ = 2.6232 and c,,, & *" are related to Rayleigh’s® sums
2471 by

o h

S.(s) = —210g7 -+ =

" =3,,/2n. 9

The numerical values for Rayleigh’s sums are reported in
Ref. 4. Thus all the constants appearing in (8) are known,
and S can be eyaluated to a sufficiently high accuracy at any
point inside the unit cell containing s = 0.

Since the singular terms (s ~?) in (6b) can result only
from the differentiation of the logarithmic term in (8), we
find that

D™= —(n/2)A%, (10a)
D= — (/)AL (10b)

On the other hand, the growing harmonics in (6b) arise
upon differentiating the nonsingular part of S,(r —r'™),
m = 1,2,...,N. The contribution due to the nth particle can be
directly evaluated from (8) whereas that from any other
particle can be evaluated by employing the following
theorem for the Laplace functions.

Theorem: Let 1 be a solution of the Laplace equation
and regular in some domain D containing R, Then for any
point in D, ¥ can be expressed as

Y(r) = i (¢ps’cosp6+1~ﬁps"sinp9),
p=0

s=|r—R"|, (11)
where
vo =— (=) R, (122)
p! \ox,
- 1 /3y ! a
= _ | R™ 12b
Y p (c?x,) Ix, Y )- ( )

The proof of the above theorem is quite straightforward. On
making use of the above theorem together with (5), (7), and
(10), we finally arrive at the following set of linear equations
relating the unknowns 4,,,:

n — (= 1)Ba")’ [ ( 7] )'+P 3 \+e=1/ 9
418 = AL 4 (m( ) (__)]
° ( - )!l' mz_l le ax] + axl axz

m#n

S\ (R™ —

20— nHmn

m#£n
.SI(R(n) —- R(m)) A (n)c (l+p)' + 5“(

where
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R™) + 4 @c, (I +p)+ 6, (G. + i’r 4 ig’)]

<','>=—(—1)’B(a‘”’)2’[ 3 [A(m( )’ﬂ’—'a +A<m>(a)’+"—’(i)2]
m—lp—l X axz ax, axz !

(13)

(14)
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Cuspmres if (I4+p)/4 is an integer,
¢ = . (15)
0, otherwise,

and G, and G, are the components of G along the x, and x,
axes. We note that the above equations contain various de-
rivatives of S, to be evaluated at the vector difference
R™ — R‘™. These quantities are computed by differentiat-
ing each term in (8) separately and adding the result. The
formulas required for this purpose are collected in the Ap-
pendix. The series computed from (8) diverges for higher-
order derivatives and for s = |[R“” — R[> & /2. An alter-
nate expression is therefore needed to evaluate the
higher-order derivatives of S, for s> 4 /2. This expression is
also given in the Appendix.

This completes the description of the formal solution for
the temperature field around N interacting cylinders in a
periodic domain. The solution given by (5), (13), and (14)
can be used either to compute the macroscopic or effective
thermal conductivity of the composites which are periodic
with each unit cell containing N particles or to study the
temperature field around a finite number of particles in an
infinite medium provided that there is no net source or sink
of heat in the medium. In the latter case, # = « and, in licu
of (8), the derivatives of §; may be computed by taking
S, = — 2log s. Inthe present study, we shall be interested in
the determination of the effective conductivity of the compo-
sites.

B. Effective thermal conductivity

The mean heat flux in the composite medium described
in Sec. II A is proportional to the mean temperature gradi-
ent G;, and the proportionality is known as the effective con-
ductivity of the composite. In general, for an arbitrary
choice of R', the medium is anisotropic and the conductiv-
ity is a second-order tensor k } as given by

(g;) = — k3G,

¥G;, (16)
with K } = k *. Here, { ) denotes the average over a unit cell.
The average heat flux can be calculated as follows. We de-

compose (g;) to

N
hg)= —k ar ar

—dV—a —dV

Y OX; n=1J¥, OX;

N
z_k(c;,.h2+(a—1) S

i=1J3V,

Tn, d4 ) (17)

where ¥V, denotes the region occupied by the matrix, ¥,
denotes the region occupied by the nth cylinder whose sur-
face is dV,,, and n, is the unit outward normal vector on the
surface v,.

The integral in (17) is related to the coefficients of sin 8
and cos ¢ in the expansion of T near the center of nth parti-
cle, and hence it can be readily related to the constants 4,
and 4,, by making use of (6), (7), and (10). For example,

47A P
j Tn,dA = . (18)
av, a—1
On substituting (18) into (17), we obtain
N
kllGl + k12G2 Gl + s Z A4 53) s (19a)

n=1
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ﬂ' N
kz]G + kzzG2 G2 "h—" ; ;’ kk: .
(19b)

Thus, in order to determine all the components of the
effective conductivity tensor, we need to solve only two
problems. In the first problem, G, = 1 and G, =0, i.e., the
mean temperature gradient is along the x, axis. The solution
of this problem yields k,, and k,,. In the second problem,
G, = 0and G, = 1, the solution of which determines &,, and
k,,. Of course, if the temperature gradient is in the x, direc-
tion, i.e., parallel to the axes of the cylinders, then all 4, are
identically zero and k&, is then trivially determined from

ks =[1+ (a~1)¢]6;, (20)
where the area fraction ¢ is given by
Z (a(n))z (21)

n=1
Since k; = kj,, only three independent scalars need to be
determlned Rather than presenting these three scalars as
k11, kx, and k,,, it is more useful to give the components of
k; along its major and minor axes and the angle |¢/| between
one of the principal axes and the x, axis. Thus the results of
the computations will be presented in terms of K., K ;, and ¢/
defined by

K, = (k;+ k)72, (22a)
tan 29 = 2k ./ (kyy — kyy), (22b)
K, = |k, sin 2¢ + 1(k,; — k,,)cos 2¢]. (22¢)

The components of k; along its major and minor axes in the
X, — x, plane are given by

kmaj = Km + Kd’ (233)
kmin = Km - Kd' (23b)
ill. RESULTS

The method described in Sec. II was first applied to the
case in which the N particles within a unit cell were them-
selves arranged in a periodic array forming a unit cell whose
dimension is an integral fraction of 4. The infinite set of
equations given by (13) and (14) was truncated to a finite

* set by retaining 4,,, with / smaller than some integer N,. In

terms of multipole expansions, this means retaining all the
terms with multipoles of order less than 2*7, This resulted in
a total of 2N, N linear equations in an equal number of un-
knowns. The resulting equations were then solved and X,,,,
K, and 3 were determined for the selected values of & and ¢.
This procedure was repeated for larger values of N, until K,
no longer changed appreciably. For ¢ = 0.7, the results con-
verged for Np>8. The convergence was even more rapid for
smaller values of ¢. The calculated values of K, were less
than 107 '%in all the cases examined and K, agreed with the
results for the square arrays of cylinders reported by Perrins
et al.* for the complete range of & and ¢. The calculations
were made for NV equal to 1, 4, 9, and 16 and no significant
loss in the accuracy was observed as N increased from 1 to
16.

Next, the calculations were performed with arrays in
which the centers of the N equal-sized particles were deter-
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 mined by means of a computer program for generating ran-
dom -arrays similar to the Monte Carlo simulation tech-
niques used for generating the hard-cylinder equilibrium
distribution (see, for example, Chae et al.®). Briefly, the par-
ticles were first placed on a square lattice and then moved
sequentially by a normally distributed random displace-
ment. When all the particles were given a displacement once,
one “random” configuration of the N particles was genera-
ted. In this manner, about 10° configurations were generated
and the centers of the particles and the radial distribution
function of the array were recorded at the interval of every
10* configurations. A computer program by Venkatesan®
was employed for this purpose after a few modifications. The
radial distribution function obtained by averaging over sev-
eral (typically 6-11) configurations with ¢ = 0.7 is given in
Table I for various N. Although the standard deviation
(s.d.) among the arrays with N = 36 is generally smaller
than for those with N =9, it is seen that the changes in the
radial distribution function as N is increased from 9 to 36 are
relatively insignificant. The radial distribution functions for
the arrays with ¢ = 0.1, 0.3, and 0.5 are given in Table II.
Although the fluctuations in g(r) at larger values of r are
somewhat larger in comparison with the values reported by
Chae et al> who calculated g(7) using N = 208, the agree-
ment in g(#/d) for r/d close to unity is generally good.

The convergence of the numerical results for k,, and &,
for two arrays with ¢ = 0.7 and 0.3 is shown in Table II1.
The particles are infinitely conducting (¢ = « ) and N = 16
in these calculations. Also the total number of unknowns is
2N, N. All the subsequent calculations were made with N,

= 10 for ¢ = 0.7 and ¢ = 0.5 and with N, = 5 for ¢ = 0.3
and ¢ =0.1.

The calculated values of the mean and standard devi-
ation (over eight to ten configurations) of X,,,, K, and ||
for the random arrays with ¢ = 0.7 are given in Table IV.
Once again, no significant change is observed as N is in-
creased from 9 to 36. Here || was expected to vary uniform-
ly between 0° and 45°. A large standard deviation in [¢/| in
Table IV indicates that there was no significant bias in the
orientation of the arrays generated in the study. Similarly a
large standard deviation in K, indicates that the degree of
anisotropy varied considerably among the arrays chosen for
the computations. Since no significant change in K,, was
observed, all the subsequent calculations were made with

TABLE I The radial distribution function g(r/d), d being the diameter of
the cylinders, for simulated arrays with ¢ = 0.7.

TABLE 11 The radial distribution functions for arrays with ¢ = 0.1, 0.3,
and 0.5. The number of cylinders per unit cell is 16 in all cases.

r/d $=01 $=03 $=05
11 1.54 1.74 2.77
1.3 1.30 1.59 0.77
1.5 121 125 0.54
17 0.99 0.98 0.83
1.9 0.73 0.89 1.20
2.1 0.68 0.93 1.29
2.3 1.02 1.03 0.83
2.5 1.08 1.04 0.83
2.7 0.65 101 1.04
2.9 1.30 0.99 112

N = 16. Theresults for ¢ = 0.5, 0.3, and 0.1 are also present-
ed in Table IV. This constitutes the principal results of the
present study. In Sec. IV A K, as a function of a for a few
selected values of ¢ is presented.

V. COMPARISON WITH OTHER METHODS

One possible application of the results presented in Sec.
II1is to provide estimates of the effective thermal conductiv-
ity of the random arrays that can be used to assess the range
of validity or the usefulness of various methods suggested in
the literature to predict the effective conductivity, at least as
far as their applicability to the composites with cylindrical
inclusions is concerned. We shall compare the results in de-
tail using three different approaches.

A. Bounds

The only known exact results for the effective conduc-
tivity to date are for the square and hexagonal arrays of cyl-
inders.* A detailed comparison of these exact results with
various bounds on the thermal conductivity was made by
McPhedran and Milton.” In this section, we shall compare
various bounds with the results obtained in Sec. III. Hashin
and Shtrikman® have shown that the effective conductivity
ofisotropic (in the x,-x, plane) arrays of parallel cylinders is
bounded by X, and K, given by

Ki=1+¢/[V/(a—-1)+(1—¢)/2],
K,=a+ (1-¢)/[1/(1 —a)+ ¢/2al,

(24a)
(24b)

TABLE I11. Convergence of the numerical results for k,, and k,, for two
arrays with ¢ = 0.7 and 0.3. The conductivity of the particles is infinite, N,
the number of particles per unit cell is 16, and the total number of unknowns
is2N,N.

r/d N=136 N=25 N=16 N=9
mean + s.d. mean + s.d. mean + s.d. mean + s.d. N, $=07 ¢=03

1.1 3.41+0.13 3.3940.11 3.45+0.11 3.36 - 0.13 ky, kyy ky kys

1.3 0.76 £ 0.17 09 +0.17 0.75 4+ 0.13 0.55+0.22

1.5 056+0.1 04 +01 0.46 +0.13 1.03 + 0.5 i1 7.66 7.92

1.7 052 +0.1 0.52 +0.1 0.51 +0.1 0.4 4+ 0.12 10 7.64 7.91

1.9 094 +0.38 1.03 4+ 0.38 0954023 0.40 +0.36 9 7.61 7.87 B e

2.1 1.66+0.1 1.65+ 0.1 1.77 4+ 0.25 1.75 4+ 0.59 8 7.56 7.83 2.05 1.98

23 1174026 1.15 + 0.15 1.08 4 0.21 1.24 +0.43 7 7.51 7.78 2.05 1.98

25 070+02 0.71 + 0.15 0.62 +0.16 0.99 +0.17 6 7.39 7.70 2.05 1.98

2.7 071402 075+ 0.1 0.76 + 0.11 0.5 +0.36 5 7.25 7.56 2.05 1.98

29 093402 097 +0.12 1.03 +0.23 0.64 022 4 s 2.04 1.97
2429 Phys. Fluids, Vol. 31, No. 9, September 1988 A. 8. Sangani and C. Yao 2429



TABLEIV.K,,, K, and || [see (22)] for the arrays of infinitely conduct-
ing (@ = «) cylinders.

N K., K, [¥] é
(mean +s.d.) {mean + s.d.) (mean +s.d.)
9 7.7 4005 0.70 40.33 19.4 4+ 13.8
16 79 4034 0.67 +0.40 158+ 74
25 79 4025 0.83 +0.48 18.8 + 12.1 0.7
36 7.8 4034 037 +0.24 21.7+ 0.34

16 340 +006 022 +026
16 197 +£003 007 +005
16 123040002  0.020 4+ 0.027

233 + 122 0.5
36 + 67 0.3
229+ 124 0.1

where K ’s are nondimensionalized by the conductivity of the
matrix. As - w0, i.e.,, when the conductivity of the cylin-
ders is very large, K, approaches infinity for any nonzero ¢,
whereas K, approaches a constant equal to (1 ¢)/
(1 — ¢). Since K, and K, are equal to each other up to
O(B?), where B=(a — 1)/(a + 1), the bounds given by
(24) are sometimes referred to as the second-order bounds.
A comparison of X, with X, calculated in Sec. III is shown
in Table V, where it is seen that the difference between K,
and K, at ¢ = 0.7 and a = « is approximately 30%, the
difference being lower for smaller values of @ or ¢.

1. The third-order bounds and the evaluation of Milton’s
number

Hashin and Shtrikman have shown that their bounds
are the best possible ones when the only known information
about the composite medium is the volume fractions and the
conductivities of the individual phases. In order to obtain
bounds in which the difference between K, and K, is smaller,
additional information about the geometry of the composite
medium must be given. Beran® and Silnutzer'® have given
the third-order bounds, i.e., bounds in which X, and X, co-
incide to O(B?), which require, in addition to ¢ and o, a
parameter related to the three-point correlation function of
the geometry of the composite medium. There are several
other equivalent expressions of the third-order bounds, all of
which require the three-point correlation functions. The
evaluation of the parameter appearing in the third-order
bounds has been the subject of many articles by Torquato
and co-workers (see, for example, Refs. 11-13) in recent
years. These investigators have simplified a key integral ap-
pearing in the expression for the third-order bounds and
then by invoking a superposition approximation according
to which a three-point correlation function is expressed as a
product of two-point correlation functions, a parameter

TABLE V. The Hashin-Shtrikman (second-order) and higher-order lower
bounds on the effective conductivity of random arrays of infinitely conduct-
ing (@ = o0 ) cylinders. The tenth-order bound coincides with the exact re-
sults for these arrays.

¢ Second-order Fourth-order Tenth-order
0.7 5.66 6.75 7.65
0.5 3.00 325 3.36
0.3 1.86 1.98 2.02
0.1 1.222 1.226 1.227
2430 Phys. Fluids, Vol. 31, No. 8, September 1988

known as Milton’s number { is evaluated for various geomet-
rical configurations of the composite medium. Since the two
third-order bounds coincide to O(B?), it is not surprising
that this parameter is related to the coefficients Q, in the
expansion of X, in powers of 8 defined by

K.=1+ 3 0,8

n
n== ) n!

(25)

The exact relationship between @, and ¢ for the array of
cylinders, i.e., the two-dimensional arrays, is

§=11/2¢(1~4)] (10: —2¢%). (26)

This connection between @, and £ provides us with an
alternate method to evaluate the third-order bounds rigor-
ously. Thus we first expand each of the coefficients 4,,, in
(13) and (14) in powers of # and obtain a recursion relation
among the coefficients in the expansion of 4,,, in powers of
B. The series for 4, is then related to Q, in (25) via (19).
Then, on using (26), § could be computed for the cases of
mean temperature gradients in the x, and x, directions sepa-
rately. An arithmetic average of £ computed from these two
cases should yield a reasonable estimate of Milton’s number.
The results are shown in Table VI, where the mean and the
standard deviation of (£, + §,,)/2 and [§,; ~ §,,|/2 are
given for several configurations with ¢ ranging from 0.1 to
0.7. The convergence of Milton’s number with &, was found
to be very rapid. Although various arrays chosen for the
calculation of Milton’s number were anisotropic to different
extents, the mean (£, + £»,)/2 showed a relatively minor
variation among the arrays generated. Torquato and Lado"®
have recently calculated Milton’s number for similar ran-
dom arrays by invoking the approximate method described
earlier. Their estimates of Milton’s parameter are also given
in Table V1. We see that the agreement between the two
methods is very good for ¢ less than 0.3. This is not surpris-
ing, as the superposition approximation invoked by Tor-
quatoand Lado is exact to O(¢?). At ¢ = 0.5, however, their
results are about 40% higher. Whether this difference at
higher values of ¢ is a consequence of the superposition ap-
proximation employed by these authors or a consequence of
using only 16-32 particles per unit cell in our simulations is
difficult to assess at present. It is known that the effective
conductivity of the arrays of cylinders is a relatively insensi-
tive function of the packing and the geometrical parameter
£. Thus even though the effective conductivity of the random
arrays appears to have approached a nearly constant value as
N is increased to 36, it is quite possible that a much larger
value of N may by necessary in order to obtain accurate

TABLE V1. Results for the third-order bounds.

¢ N &y + &) e — £l Torquato ~
mean +- s.d. mean + s.d. Lado®
0.7 36 020 40016 0.06 4 0.04 e
0.5 16 0.118 4-0.018 0.020 + 0.009 0.165
03 16 0.091 4+ 0.019 0.010 4+ 0.010 0.092
0.1 16 0.031 +0.008  0.005+0.003 0.032
®See Ref. 13,
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estimates of {. We understand that Torquato and co-workers
are currently undertaking rigorous calculations of { for ar-
rays with a much larger N. Their calculations may provide
the definitive answer in assessing the accuracy of the super-
position approximation.

2. Higher-order bounds

Milton'* has shown how the higher-order bounds are
related to @, . Thus for example, a lower bound of order 2N,
isan [N, /N, ] Padé approximant of the series (25) truncat-
ed to n<2N,,. Similarly an upper bound of order 2N, is an
[N, + 1/N, + 1] Padé approximant of (25) with the first
2N, coefficients retained in it and with two additional con-
straintsthat K, == o fora = « and X, = Ofora = 0. Since
it is rather straightforward to evaluate the coefficients of Q,
by the method described in Sec. IV A 1, it is possible to com-
pute K, or K, to arbitrarily high orders in 8. In Table V, the
results for the second-, fourth-, and tenth-order lower
bounds are given for various ¢ when a = «. These results
are obtained for only one representative array for each value
of ¢ and thus the conductivity obtained from the tenth-order
bound is slightly different from the mean over several config-
urations reported in Table IV. Because of the anisotropy of
the chosen array, @, computed for two different orthogonal
directions were different from each other and an arithmetic
mean of Q, for each n was employed in determining the
bounds. A separate calculation of K,, using the direct meth-
od described in Sec. ITI showed that the results for the tenth-
order lower bounds coincided with the exact value of X,,.
We see that the fourth-order lower bound is only 13% lower
than the exact value of the effective conductivity at @ = «
and ¢ = 0.7, and that the deviation between the two is much
smaller at smaller values of ¢.

The evaluation of the effective thermal conductivity via
the determination of the higher-order lower bounds provides
an efficient numerical method to determine the effective con-
ductivity as it does not require solving a system of linear
equations. In fact, this was exploited by the present investi-
gators'’ recently to estimate the effective conductivity of the
composites containing random arrays of spherical particles.
Once Q, is determined, it is computationally far more effi-
cient to compute K, as a function of a. Figure 1 shows X, as

o ! 1 L

i 10 102 10°
a

FIG. 1. The effective thermal conductivity as a function of a for various
values of ¢.
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a function of « for various ¢ for the arrays used in computing
the bounds in Table V. Although these estimates are for only
one configuration for each ¢, the mean over several configu-
rations with the same ¢ is expected to be quantitatively simi-
lar.

B. Approximate methods

These are methods in which rather than solving for the
temperature field in a two-phase medium in which the dis-
persed phase is distributed homogeneously throughout the
composite medium, one determines the temperature field in
a “model” of the composite medium in which a particle is
placed in a medium whose properties are suitably defined.
Probably the most well-known example of such methods is
the self-consistent scheme according to which the properties
of the medium are defined as

1, if r<g™"?

K,, if r>¢—'2, (27)

k, (r)= [
where K, is the conductivity to be determined in a self-
consistent manner by first solving (27) in terms of K, and
then determining the strength of thermal dipole at the origin
and relatingitto X, {cf. (31) below]. This scheme yields an
estimate of X, that coincides with the Hashin-Shtrikman
lower bound, which was shown to be approximately 30%
lower than the actual value of K, at¢ = 0.7and @ == o. The
estimate from this method is very good at lower values of ¢
and a.

Recently Chang et al.'®'” have presented two approxi-
mate methods which they referred to as methods A and B. Of
these two, method B was originally suggested by Buyevich
and Korneev.'® Both of these methods are similar to the self-
consistent scheme except that, in addition to ¢ and a, they
also require the knowledge of the probability density func-
tion p(r) of the dispersed phase in the vicinity of any repre-
sentative particle. For the case of two-dimensional arrays of
interest to us here, p(r) and g(r) are related by

2 (T 2 R*+P -2
p(r) ) g(r)'R cos R
andp(r)-gasr—co.

In method A, the temperature field around a cylinder
situated at the origin satisfies

dR (28)

V:T=0, r<l, (29a)

Ve [k, (VT ] =0, r>l, (29b)

Torcosf, as r— oo, (29¢)

a(—a—T) = (gf—) , r=1, (29d)
ar/ - c7r +

in addition to the continuity of the temperature at the sur-
face of the cylinder. The radius of the cylinder is taken to be
unity. The conductivity of the medium is given by
k,(r)=1+ (K, — Dp(r)/¢, (30)
where K,, is, once again, the effective conductivity to be
determined. We note that, in particular, if we substitute
p(r) =0for r<¢™"? and p(r) = ¢ for r>¢~"* in (30),
method A reduces to the original self-consistent scheme. In
this respect, method A may be regarded as a modification of
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the self-consistent scheme. Once the temperature field is de-
termined, the estimate of K, is obtained from

Km=1+(a—1)(£),
x,/0

where (dT /dx,),is the temperature gradient at the center of
the particle.

Method B is similar to method A. Here, one solves for
the disturbance temperature ¢ instead of 7, i.e., one solves

(31)

T=x+t (32a)

V:[k,(r)V:] =0, r>1, (32b)

V=0, r<l, (32¢)

a[x1+(§5) ]=Kmx,+(ﬂ) . at r=1, (32d)
ar) _ ar/ ¢

t—0, as r— oo, (32e)

where, once again, k,, (7) is given by (30). Chang et al.'”
showed that, as ¢ and S approach zero, the estimates of X,
obtained by method A become exact, and thus provided a
rigorous justification for method A. Method B, however,
which does not yield exact estimates for K,,, at small ¢ and 3,
was shown to yield estimates of the effective thermal con-
ductivity of the random arrays of spheres which were in bet-
ter agreement with the corresponding experimental results
at large values of ¢ and a. '

Using the radial distribution functions of the random
arrays simulated in the present study, p(r) was computed
for each ¢ and, on solving (29)-(32), the estimates of the
effective conductivity on the random arrays of cylinders
were obtained. These are compared with the corresponding
values obtained from the exact method of Sec. III in Table
VII. Similar calculations for the square and hexagonal ar-
rays of cylinders were also made and the values for these
arrays are also given in Table VII. The following observa-
tions may be made.

(i) The self-consistent scheme, which does not require
any information on the geometry of the two-phase medium
other than ¢, always underestimates K, . This is not surpris-
ing, since, as mentioned earlier, the estimate obtained by this
scheme coincides with the Hashin—-Shtrikman lower bound.

(ii) The estimates obtained from method A are better
than those obtained from method B for almost the whole
range of ¢ and a. In particular, method B always overesti-
mates K,, and fails severely at large ¢. This is in contrast to
the arrays of spherical particles for which method B gave
better estimates of X,,."”

(iii)Method A gives better estimates than the self-con-
sistent scheme in all the cases given in Table VII with an
exception for a hexagonal array with ¢ = 0.7 and ¢ = 0.85.
The particles are more effectively separated from each other
in the case of a hexagonal array than for the square and
random arrays and, hence it is not surprising that the self-
consistent scheme, which assumes k,, = 1 for r<¢ /%,
yields a relatively better estimate K,,. A closer examination
of the results presented in Table VII, however, reveals that
method A does not seem to yield estimates consistent with
the changes in the radial distribution function. For example,
the estimates from method A for the square, random, and
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TABLE VIL Comparison of the effective conductivity of the random
(RA), square (SA), and hexagonal (HA) arrays of infinitely conducting
(@ = o) cylinders estimated via the exact, self-consistent scheme (SC),
and methods A and B (MA and MB).

@ Array Exact SC MA MB
0.85 HA 15.67 12.73 10.9 > 10?
0.75 SA 12.75 7.0 8.1 > 10?
0.7 SA 7.43 5.66 7.2 24
0.7 HA 5.81 5.66 8.2 71
0.7 RA 79+03 5.66 6.1 31
0.5 RA 3.4 4 0.06 3.00 33 5.1
0.5 SA 3.08 3.00 2.8 35
0.3 RA 1.97 4 0.03 1.86 1.97 2.04
0.3 SA 1.86 1.86 1.81 191
0.1 RA 1.23 1.22 1.23 1.24

hexagonal arrays, all with ¢ = 0.7, are, respectively, 7.2, 6.1,
and 8.2 compared with the exact values for these arrays of
7.43,7.9 4+ 0.3, and 5.81. In other words, although the meth-
od requires an additional piece of information, viz., p(r) of
the composite medium, over that required by the self-consis-
tent scheme, it does not seem to utilize it adequately, even in
the qualitative sense.

C. Asymptotic methods

Peterson and Hermans'® have obtained an expression
for the effective thermal conductivity of the random arrays
of cylinders with ¢ €1 by taking into account the pairwise
interactions using a technique similar to the one employed
later by Jeffrey?® who treated the analogous case for the ar-
rays of spheres. In both of these studies, the random arrays
are defined by

(r)_{O, r<d,
7=, >4,

d being the diameter of the particles. Peterson and Hermans
showed that for such arrays K, is given by

(33)

K, =1+2B8¢ +28°K(B)¢* + O(4*), (34a)
where
K(B) =1+ 4(1 +0.083582 + 0.019487
+0.005 0586 + +-+). (34b)

For the infinitely conducting cylinders (8= 1), K(1) is
approximately 1.37 and (34) gives the estimates of K, at
¢ =0.1, 0.3, and 0.5 to be, respectively, 1.227, 1.85, and
2.69, which on comparison with the exact results of Sec. II1
(cf. TableIV), viz., K, equal to 1.230 4 0.002, 1.97 + 0.03,
and 3.40 + 0.06, suggests that (34) gives a reasonably accu-
rate estimate up to ¢ = 0.3. It is interesting to note that a
Padé approximant of (34), viz.,

K, ={1+B[2-K(B))¢}/[1 —BK(B) ], (35)
which yields K, equal to 4.2 for 8 = 1 and ¢ = 0.5, does not
give any better estimate of K, as compared with (34) at
higher ¢.

If the particle conductivity is very large and the gap or
the minimum distance between the neighboring particles is
small compared to the diameter of the particles, then the
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heat flux in the gaps between the pairs of two nearly touching
particles with unequal temperatures tends to dominate the
overall heat flux and hence the effective conductivity of the
medium. For a special case of random arrays with large ¢ in
which the gap width between the neighboring particles is
nearly equal for all of the particles, it is possible to obtain an
estimate of K, at large ¢ and a. Batchelor and O’Brien?!
have derived expressions for X,,, applicable to such random
arrays for the case of spherical particles. A similar treatment
for the cylindrical particles yields*?

(AN2)Ze. [1— (/)] "V + Ky,
¢_’¢t’
¢ = ¢t’

(36)

K, = a= w,
1Z¢,a/log a + K,,

a— o,

where Z is the coordination number of the array, i.e., the
average number of nearest neighbors per particle, ¢, corre-
sponds to the area fraction of the particle in the closely
packed configuration, and K| and X, are O(1) constants.
This special class of random arrays may be simulated nu-
merically via a two step procedure. In the first step, the pro-
cess of dropping a large number of equal-sized particles in a
container is simulated. This results in a closely packed ran-
dom array with an area fraction ¢,. Several investigators
have simulated such arrays and their results are summarized
by Berryman.?? According to these investigations, ¢, is in
the range 0.81-0.89 with most studies quoting a value of
approximately 0.82. We have also simulated such arrays re-
cently with as many as 1600 cylinders in a container and
found ¢, to be approximately 0.824. The average coordina-
tion number Z was found to be 4.2. In the second step, the
centers of the cylinders generated by the above procedure are
assumed to remain fixed while the diameter of each of the
particles is reduced by a fraction y. This results in an array
whose area fraction ¢ is related to y by

X = (4/¢.)"". (37)
The particles in such random arrays have a nearly uniform
gap-size distribution while the random arrays described in
Sec. III need not have a uniform gap-size distribution. In
fact, the simulation procedure of Sec. III does not exclude
the possibility of “cluster” formations within the random
array. If the “clusters” are present, the conduction of heat is
not uniformly distributed among the particles and, conse-
quently, the effective conductivity computed in Sec. I1I need
not show the asymptotic behavior in accordance with (36)
at large ¢ and a. Nevertheless it is interesting to compare the
estimates obtained from (36) with those of Sec. II1. For the
purpose of comparison we choose X to be such that X, — 1
as ¢ — 0, i.e., for the case of perfectly conducting particles, we
rewrite (36) as ‘

K, =1+ (/42)Z¢,{[1— (¢/¢,)*] "> -1}
(38)

(a= o).

A comparison of X, estimated from (38) with Z = 4.2 and
¢, = 0.82 with the results obtained in Sec. III is given in
Table VIII. Formula (38) provides a reasonably good esti-
mate for all the quoted values of ¢ (0.1<$<0.7) with the
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maximum deviation of approximately 20% occurring at
¢ = 0.3. A similar comparison between the exact results for
the square and hexagonal arrays as obtained by Perrins et
al.* with formula (38) is also given in Table VIII, where the
values of Z and ¢, are chosen to be, respectively, 4 and 7/
4 = 0.785 for the square and 6 and 7 /2v/3 = 0.907 for the
hexagonal arrays. The approximate formula (38) provides
reasonably good estimates in these cases also.

V. CONCLUSIONS

A numerical method is developed for solving the heat
conduction equation in two-phase composite media consist-
ing of suspensions of long circular cylinders. This method is
applied to the spatially periodic media whose unit cells con-
tain N cylinders arranged randomly and the effective ther-
mal conductivity of the composite media is determined for
several configurations of the N cylinders. The effect of vary-
ing N from N = 9to N = 36 on the effective thermal conduc-
tivity (averaged over several configurations with the same
N) is found to be insignificant and hence it is believed that
the results presented here are applicable to the random ar-
rays of cylinders with N = «. Also, in view of the relatively
small variations in the effective thermal conductivity among
various configurations with the same ¢, the conductivity ap-
pears to be a relatively weak function of the detailed arrange-
ment of the particles and this makes it meaningful to relate
the effective conductivity to the minimal information re-
garding the geometry such as the area or volume fraction
and the radial distribution function of the array, at least for
#<0.7. The results obtained via the exact method were com-
pared with various approximate theories proposed in the lit-
erature to estimate the effective conductivity. The Hashin—
Shtrikman lower bound, or equivalently, the self-consistent
scheme which only requires knowledge of ¢ and a provides a
very satisfactory estimate of K, (accurate to within 30%)
for all o and ¢<0.3. Formula (38) based on a high area
fraction asymptote with @ = « provides fairly accurate esti-
mates of K, for the complete range of ¢. One of the two
approximate methods proposed recently by Chang et al."’
also appears to yield very accurate estimates of the effective
conductivity.

Although the method developed here was employed for
determining the effective conductivity of cylindrical parti-
cles satisfying the classical boundary conditions of the conti-
nuity of the temperature and normal flux, the method is

TABLE VIIIL. Comparison of the exact results for the high area fraction
formula (38).

Random array Square array  Hexagonal array

¢

exact (38) exact® (38) exact? (38)
0.7 78 +0.3 7.4 7.43 8.2 5.81 8.24
0.5 34 +06 3.8 3.08 3.72 3.00 4.73

0.3 1.97 + 0.03 2.44 1.86 2.37 1.86 3.06
0.1 1.23 + 0.002 1.59 1.22 1.55 1.22 1.86

*Taken from Ref. 4.
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equally suitable to treat more complex boundary conditions
including those that arise in the case of reacting or adsorbing
particles, or particles with finite “skin” resistance. The
method could also be used to determine the detailed tem-
perature field around a *“‘cloud” of a finite number of parti-
cles immersed in an infinite medium or to more complex
geometries involving plane walls for which, by devising a
suitable “image” system, the problem can be reduced, once
again, to the study of temperature field around the “cloud”

of particles.

APPENDIX: FORMULAS FOR CALCULATING THE
DERIVATIVES OF S,

For smaller r (r < h /2), the derivatives of S,(r) can be
computed by the termwise differentiation of (8). The re-
quired formulas are easily derived to be

a n+m
——(log r)
x| Ox;

=(—D""'m4+n—=Dlr—"—m

n = even,

Al
n = odd, (ab)

X(( — 1Y% cos(m + n)6,
( — 1)(n+1)/zsin(m +n)0’
am+n
———— (rfcos 9)
Ix7 x5
- i pp—m—n
(p—n—m)!
X[( — 1)"*cos(p —m — n)é,
(— D+ Y25in(p — m — n)é,

n=even,
n =odd.
(A2)

For a higher-order differentiation and for » > /4 /2, the series
computed from the termwise differentiation does not con-
verge. For such situations, it is desirable to start with an
integral representation of .S,

S,(r) = Z(—Zlog(r—rL) +J 2log(r—r’)dr’) s

L
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in which 7 is the unit cell containing r; . The derivative of
the second term in the above expression vanishes whereby

an+m

— §,(r)
Ixy" Ox} !

=Z2( —D™"m4n—1ls—n—m

_ n/2 —
[( 1)"? cos(m + n)6, n = even, (A3)

(—D"+D%6in(m +n)0, n=odd,
where s and 8 are measured with respect to r; as the origin.

'H. Hasimoto, J. Fluid Mech. 5, 317 (1959).

2A. S. Sangani, Ph.D. thesis, Stanford University, 1982.

3R. S. Rayleigh, Philos. Mag. 34, 481 (1892).

*W. T. Perrins, D. R. McKenzie, and R. C. McPhedran, Proc. R. Soc.
London Ser. A 369, 207 (1979).

D. G. Chae, F. H. Ree, and T. Ree, J. Chem. Phys. 50, 1581 (1969).

SM. Venkatesan, Ph.D. thesis, Rensselaer Polytechnic Institute, 1985.

"R. C. McPhedran and G. W. Milton, Appl. Phys. A26, 207 (1981).

Z. Hashin and S. Shtrikman, J. Appl. Phys. A33, 3125 (1962).

°M. Beran, Nuovo Cimento 38, 771 (1965).

'N. Silnutzer, Ph.D. thesis, University of Pennsylvania, 1972.

!1S. Torquato and F. Lado, Phys. Rev. B 33, 6428 (1986).

12S. Torquato and G. Stell, J. Chem. Phys. 77, 2071 (1982).

13S. Torquato and F. Lado, Proc. R. Soc. London 417, 59 (1988).

'“G. W. Milton, Phys. Rev. Lett. 46, 542 (1981).

'SA. S. Sangani and C. Yao, J. Appl. Phys. 63, 1334 (1988).

'5E. Chang and A. Acrivos, J. Appl. Phys. 59, 3375 (1986).

'7E. Chang, B. S. Yendler, and A. Acrivos, in Advances in Multiphase Flow
and Related Problems, edited by G. Papanicolaou (SIAM, Philadelphia,
Pennsylvania, 1986).

'®Y. A. Buyevich and Y. A. Korneev, J. Eng. Phys. 31, 607 (1976).

19J. M. Peterson and J. J. Hermans, J. Compos. Mater. 3, 338 (1969).

2D, J. Jeffrey, Proc. R. Soc. London Ser. A 335, 355 (1973).

21G. K. Batchelor and R. W. O’Brien, Proc. R. Soc. London Ser. A 355, 313
(1977).

2ZR. W. O’Brien, Ph.D. thesis, Cambridge University, 1979.

25, Berryman, Phys. Rev. A 27, 1053 (1983).

A. S. Sangani and C. Yao 2434



