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An effective-medium theory (EMT) is developed to predict the effective permittivity εeff of dense random disper-
sions of high optical-conductivity metals such as Ag, Au, and Cu. Dependence of εeff on the volume fraction ϕ,
a microstructure parameter κ related to the static structure factor and particle radius a, is studied. In the electro-
static limit, the upper and lower bounds of κ correspond to Maxwell–Garnett and Bruggeman EMTs, respectively.
Finite size effects are significant when jβ2�ka∕n�3j becomes O�1�, where β, k, and n denote the nanoparticle polar-
izability, wavenumber, and matrix refractive index, respectively. The coupling between the particle and effective
medium results in a red-shift in the resonance peak, a nonlinear dependence of εeff on ϕ, and Fano resonance
in εeff . © 2012 Optical Society of America
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1. INTRODUCTION
Nanoparticulate plasmonic composite materials have recently
become technologically important, especially in the growing
interdisciplinary fields of plasmonics and metamaterials [1–6].
Fabrication of such plasmonic nanocomposites is accom-
plished through well-established methods such as surfactant
mediated self-assembly [7], laser dewetting of thin films [8],
sol-gel assembly [9–11], ion-implantation [12,13], and vacuum
evaporation of thin films [14], among others. Technologically,
such composites are important in the fields of energy harvest-
ing [7,15–17], random lasers [18], sensing [16,19], photo-
catalysis [20], etc. Free electrons in noble metal nanoparticles
(NPs) give rise to a characteristic plasmon resonance wherein
the NPs absorb and scatter radiation with a marked intensity
[3,21–23]. The linear optical response of such materials can be
described by Maxwell equations in both the dispersed and
continuous phases when the particle size is greater than a
few nanometers. In the case of metal NPs in a transparent
medium, the matrix phase can be treated as a dielectric with
real electrical permittivity εm, while the NPs should be treated
as materials with complex, frequency-dependent permittivity
εp. A plasmon resonance occurs for ℜ�εp∕εm� � −2 in the
case of spheres. The overall optical response of such compo-
site materials can be determined by numerically solving
Maxwell equations in both phases subject to the continuity
of tangential components of magnetic and electric fields at
the interface of the embedded particles and the surrounding
matrix phase. Such calculations are possible by utilizing com-
putational techniques such as the finite difference time do-
main method [24–26]. However, substantial computational
effort is required, especially near resonant frequencies where
steep field gradients necessitate the use of very fine spatial
resolution [26]. Hence, theories capable of accurately predict-
ing the average optical properties of random composites

could be a valuable tool in the knowledge-based design of
plasmonic composites.

Composite media are inherently inhomogeneous. Hence,
their average electromagnetic behavior depends on the
permittivities and volume fractions of the constituent compo-
nents. Effective-medium theories have been used to parame-
terize the properties of such media [27]. In the case of
monodisperse spherical particulate composites, where the
particle radius a is much smaller than the wavelength of ex-
citing radiation λ, the effective permittivity can be modeled
under the quasistatic approximation wherein the wave nature
of the electromagnetic fields can be neglected. Specifically,
for the case of plasmonic composites in the optical frequency
range, the magnetic response in the optical range is the same
as that of vacuum, and the classical Maxwell–Garnett theory
(MGT) [28] can be used to predict the effective permittivity.
Similarly, in the case λ ≪ a, ray optics can be utilized.
However, for nanoscopic plasmonic composites in the optical
range, λ can be O�a� or ka≡ 2π ���εp

a∕λ is O�1�. Hence, the ef-
fects of diffraction and scattering by the NPs become signifi-
cant and simple models designed for either one of the extreme
cases are not applicable. Extended Maxwell–Garnett theories
have been developed in the literature for this regime [29–32].
However, they are correct only up to O�ϕ� (ϕ: volume fraction
of the dispersed phase) and do not account for the effect of
microstructure on the permittivity. In this work, we have de-
veloped a self-consistent theoretical framework for the pre-
diction of the effective linear optical properties of dense
random monodisperse spherical particulate plasmonic com-
posites with particle size on the order of the exciting wave-
length of radiation. This effective-medium theory (EMT) is
a method employed for the accurate prediction of sound at-
tenuation and phase speed in acoustically resonant monodis-
perse suspensions of microspheres by Spelt et al. [33]. The
microstructure information is incorporated through the static
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structure factor S�0�. It has been shown that the leading order
correction term in terms of the particle volume fraction to the
velocity field in Stokes flow, i.e., “slow” flow of a viscous li-
quid in which inertial forces are negligibly small, for infinite
randomly distributed monodisperse spheres depends linearly
on the static structure factor S�0� [34]. Both Stokes flow equa-
tions and Maxwell wave equations take the form of a vector
Helmholtz equation for the fluid velocity and electric field, re-
spectively. Hence, the methodology developed by Spelt et al.
[33] can be adapted to derive an EMT for electromagnetic
wave propagation problems in heterogeneous media. Specifi-
cally, the composite medium is represented by a layered
structure in which the particle, in its immediate vicinity, is sur-
rounded by the dielectric matrix up to a distance R, which is a
function of S�0�. The structure is assumed to be embedded in
an effective continuum whose permittivity εeff is determined
by the self-consistent solution of Maxwell equations. The EMT
is mathematically identical to the Maxwell–Garnett model in
the limit as the particle diameter dp and volume fraction ϕ
approach zero. However, for finitely large volume fractions,
the variations in the permittivity with respect to ϕ and dp
are highly nonlinear.

The paper is organized as follows. Problem formulation and
the derivation of the ensemble-averaged Maxwell equations
are presented in Section 2. The EMT is discussed in Subsec-
tion 2.A. Section 3 contains a summary of the solution tech-
nique and computational methods used to calculate the
conditionally averaged electric field. Analytical and numerical
results are discussed in Section 4. Results of the scalar EMT
are discussed in Subsection 4.A, and those of the vector EMT
are discussed in Subsection 4.B. Ag nanoparticulate compo-
site in an εm � 7 dielectric is used as a model system. A dis-
cussion of the conditions under which the effective
permittivity is resonant is presented in Subsections 4.A and
4.B. Effects of particle radius are also discussed in Subsec-
tion 4.B. Subsection 4.C contains a discussion of Fano reso-
nance that results from particle-effective-medium coupling.
Conclusions are offered in Section 5.

2. ENSEMBLE-AVERAGED MAXWELL
EQUATION
We consider a random monodisperse, nonoverlapping spheri-
cal particulate composite in which the electrical permittivity
of the matrix is assumed to be real, positive, and constant,
while that of the plasmonic particles is complex and
frequency-dependent. Further, as mentioned in the introduc-
tion, we assume the magnetic permeabilities of the matrix and
the particle phase to be equal to that of vacuum; i.e., μm �
μp � μ0. This assumption is justified for dielectric matrices
such as glass or water and particles of noble metals such
as Ag or Au. The particle diameter is assumed to be much
greater than the electron mean free path in the metal. Hence,
quantum confinement effects are neglected. The embedding
medium is isotropic and homogenous and could either be a
liquid or a solid phase. For such a system, ensemble-averaged
Maxwell equations can be derived as described below.

Time-harmonic electric and magnetic fields in a source-free
homogenous medium satisfy Maxwell’s wave equations. For
the matrix, these equations are given by

∇ × Em � iωμmHm; ∇ ×Hm � −iωεmEm; (1)

where Em and Hm are the amplitudes of the electric and mag-
netic fields, respectively, ω is the frequency, μm and εm are the
magnetic permeability and electric permittivity, respectively,
and the subscriptm denotes the matrix medium. Similar equa-
tions apply in the particulate phase with the subscript m
replaced by the particle phase subscript p.

To obtain a macroscopic description of a random compo-
site, we must first obtain ensemble-averaged equations. Let gp
denote an indicator function for the particle phase whose
value at a point x is unity if that point lies inside a particle,
and zero otherwise. Note that an ensemble-average of this
function is equal to the volume fraction of the particles;
i.e.,hgpi�x� � ϕ, where the angular brackets denote an ensem-
ble-averaged quantity. The ensemble-averaged Maxwell’s
equations for the random composites are obtained by multi-
plying the Maxwell’s equations for the particle phase by its
indicator function gp and those for the matrix phase by 1 − gp,
and adding the two resulting equations:

∇ × hEi � h∇gp × �Em − Ep�i � iωμ0hHi; (2a)

∇ × hHi � h∇gp × �Hm −Hp�i � −iω�εmhEi � �εp − εm�hgpEi�:
(2b)

Note that ∇gp is zero at all points except at the matrix-
particle interface where it is directed along the normal to the
interface. Hence, its cross productwith the difference inE orH
across the interface is zero due to the fact that the tangential
components of the electric and magnetic fields are continuous
across the interface. Therefore, the second terms on the left-
hand side of Eqs. (2a) and (2b) vanish. The term in square
brackets on the right-hand side of Eq. (2b) represents the aver-
aged electric displacement hDi in the medium. We let hDi �
εeffhEi. Hence, the effective permittivity can be defined as

εeffhEi � εmhEi � �εp − εm�hgpEi: (3)

The wavenumber, defined as k2v � ω2μvεv, v � p, m, also
obeys Eq. (3). Hence, the effective wavenumber is given by
k2eff � ω2μ0εeff . Equations (2a), (2b), and (3) can be combined
using a curl operation on Eq. (2a). The resulting ∇ ×∇ × hEi
term can be shown to be equal to −∇2hEi because ∇ ·
�∇hEi� � 0 in the absence of free charge.

The averaged field inside the particles, given by hgpEi, is an
unknown quantity defined as

hgpEi�r�≡
Z
jr−r1j≤a

hE�r�jr1iP�r1�dV r1 : (4)

Here, P�r1� � 3ϕ∕4πa3 is the probability of finding a particle
at r1, ϕ is the particle volume fraction, and hE�r�jr1i is the
conditionally averaged electric field. Since the governing
equations are linear and the medium is overall assumed to be
macroscopically isotropic, hgpEi can be expressed as

hgpEi�r� � Ω�ϕ; keff�ϕhEi�r�; (5)

where Ω is a constant that depends on keff , ϕ, and the
microstructure. Combination of Eqs. (3) and (5) gives εeff
or equivalently keff as follows:
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k2eff � k2m − �k2p − k2m�Ωϕ: (6)

The ensemble-averaged Maxwell equation given by

�∇2 � k2eff�hEi � 0 (7)

is obtained by eliminating H from Eqs. (2a) and (2b) followed
by a substitution of k2eff from Eq. (6). Ω can be evaluated by
solving Eq. (7) followed by substitution of hEi and hgpEi into
Eqs. (5) and (6). However, because Ω is a function of keff ,
Eqs. (6) and (7) need to be solved by an iterative numerical
method for the evaluation of the zeros of the following
function:

Λ�k2eff� � k2eff − k2m − ϕ�k2p − k2m�Ω�k2eff� � 0: (8)

A. The Effective-Medium Model
To determine Ω, we must determine the conditionally aver-
aged E with one particle fixed and then evaluate the integral
in Eq. (4). We shall use an effective-medium model that has
been shown to provide excellent predictions, consistent with
rigorous computations that take into account multiparticle
interactions of the conditionally averaged field and effective
properties such as elastic moduli, attenuation and speed of
acoustic waves, hydraulic permeability, effective viscosity,
and particle diffusivity in suspensions [33–38]. As illustrated
in Fig. 1, in this model, the conditionally averaged fields satisfy
the governing equations for the suspending medium up to a
distance R from the center of the particle and the governing
equations for the effective medium beyond that distance. R is
related to the static structure factor S�0� as

R
a
� κ �

�
1 − S�0�

ϕ

�1
3

; (9)

where

S�0�≡
Z

∞

0
�P�rjr1� − P�r1��dr: (10)

In Eq. (10), P�rjr1� is the conditional probability density of
the spheres. The quantity S�0� can be interpreted as the inte-
gral of excess probability with respect to the uniform distri-
bution. It needs to be accounted for if the random medium
is to be replaced with a homogenous effective medium. In
Fig. 1, O denotes the origin and O0 denotes the center of the
particle, and the particle is located at r1. Position vectors r0

originate at O0 such that r � r1 � r0.
As pointed out by Dodd et al. [35], the above choice of R is

necessary to ensure that the conditionally averaged field has
the correct behavior at large distances from the test particle
for the problem of determining the averaged diffusivity of in-
tegral membrane proteins. Subsequent studies showed that
the above choice also yields excellent estimates of the effec-
tive properties even when it has no rigorous basis (see, e.g.,
[33,39]). Random suspensions with a hard-sphere potential
have a nonzero S�0� even in the dilute limit, which is accu-
rately given by the Carnahan–Starling approximation [40] as

S�0� � �1 − ϕ�4
1� 4ϕ� 4ϕ2 − 4ϕ3 � ϕ4 : (11)

As ϕ → 0, κ � 2 − 3
2ϕ� O�ϕ2�. On the other hand, well-

separated dilute random arrays [41] have P�rjr1� � 0 for
2 < r0 < ϕ−1∕3, S�0� � 0 and hence, κ � ϕ−1∕3. We study both
cases to elucidate the differences between them. Our EMT is
used to evaluate hE�r�jr1i in Eq. (4).

3. SOLUTION TECHNIQUE
This section is devoted to a discussion on the determination of
hE�r�jr1i for r0 < a, and, subsequently, the numerical calcula-
tion of εeff . We first show that for composites with spheres
that are small compared to the wavelength of the exciting light
(or equivalently, as ka → 0), hE�r�jr1i, and hence εeff can be
determined analytically by solving the electrostatic Maxwell
equations (which is equivalent to setting ka � 0). Further,
we show that both the electrostatic approximation and
Maxwell wave equations can be reduced to the Laplace equa-
tion for a scalar potential in the limit as ka → 0. However, the
boundary conditions for these two problems are different
from each other. Since only a scalar potential is necessary
to describe a static E field, the resulting EMT is referred to
as the “scalar EMT.” Thereafter, an iterative method for the
numerical evaluation of εeff using Maxwell wave equations
for arbitrary large values of ka is outlined. EMT based on
Maxwell wave equations is referred to as the “vector EMT,”
as it involves solution of a vector Helmholtz equation. The
boundary conditions for these two problems differ from each
other as explained below.

A. Scalar EMT
In this section, we will show that in the limit as ka → 0,
Maxwell wave equations given by �∇2 � k2�E � 0 can be ap-
proximated by the electrostatic Maxwell equation given by∇ ·
ES � 0 for which ka≡ 0, even though these equations require
different boundary conditions. The electrostatic approxima-
tion is valid only for problems with a spherical symmetry

Fig. 1. A schematic of the geometry considered for the EMT. The
problem of finding the conditionally averaged field in a random med-
ium was approximated with the problem of calculating the fields in
this geometry. As r → ∞, hEi�r� � x̂ exp�ikeffz�. The unconditionally
averaged wave is assumed to be X-polarized in the present analysis.
The choice of r1 is arbitrary for a given origin O.

Wani et al. Vol. 29, No. 6 / June 2012 / J. Opt. Soc. Am. B 1445



and hence is not applicable to systems involving multiple
spheres or nonspherical particles.

The static electric field ES obeys ∇ · ES � 0; hence, it can
be represented as the gradient of a scalar potential Θ such
that Es � ∇Θ. Therefore, ∇2Θ � 0. Across an interface con-
taining no free charge, Θ and the electric displacement Ds ≡

εEs are continuous. Therefore, across a spherical interface be-
tween the particle and the medium shown in Fig. 1,

Θp � Θm �12a�

and

εp
∂Θ
∂r

����
p
� εm

∂Θ
∂r

����
m
: (12b)

At an interface with no free charge and current, E andH are
required to have continuous tangential components. A com-
parative analysis can be performed by decomposing E and
H into toroidal Ψ and poloidal Φ scalar potentials in the fol-
lowing way [33,41–42]. Let

E � ∇ × �rΨ� �∇ ×∇ × �rΦ� (13a)

and

H � −iωε∇ × �rΦ� � 1
iωμ0

∇ ×∇ × �rΨ�; (13b)

whereΨ andΦ are solutions to the scalar Helmholtz equation.
Tangential components Eθ, Eϕ, Hθ, and Hϕ can be expressed
as follows [42–43]:

Eθ �
1

sin θ
∂Ψ
∂ϕ � 1

r
∂2�rΦ�
∂r∂θ ; (14a)

Eϕ � ∂Ψ
∂θ � 1

r
∂2�rΦ�
∂r∂ϕ ; (14b)

Hθ �
−iωε
sin θ

∂Φ
∂ϕ � 1

iωμ0r
∂2�rΨ�
∂r∂θ ; (14c)

and

Hϕ � iωε ∂Φ
∂θ � 1

iωμ0r
∂2�rΨ�
∂r∂ϕ : (14d)

Continuity of the above tangential components of E and H at
the interface necessitate that

Ψp � Ψm; (15a)

∂

∂r
�rΨ�

����
p
� ∂

∂r
�rΨ�

����
m
; (15b)

εpΦp � εmΦm; (15c)

and

∂

∂r
�rΦ�

����
p
� ∂

∂r
�rΦ�

����
m
: (15d)

As ka → 0, ∇2Ψ � 0 and ∇2Φ � 0. For a nonmagnetic sys-
tem,Ψ is an indeterminable constant that does not contribute
to E as seen from Eq. (13a). Hence, although the governing
equations for the electrostatic and wave problems are identi-
cal, their boundary conditions differ from each other.

As discussed in Subsection 2.A, our EMT is based on esti-
mating the conditionally averaged fields using an effective-
mediummodel shown in Fig. 1. Hence, hΘ�r�jr1i and hΦ�r�jr1i
are obtained by the solution of Laplace equations forΘ andΦ
subject to the boundary conditions given in Eqs. (13) and (15),
respectively. In order to solve the Laplace problem, the uncon-
ditionally averaged far-field given by hEi � x̂ exp�ikeff · r� can
be expressed in terms of the first Laplace harmonic in the
following way. One may consider rotating the coordinate sys-
tem in Fig. 1 about the y-axis such that x̂ is replaced by ŷ and
hence E points in the direction of the zenith. Since r � r1 � r0,
exp�ikeff · r� → exp�ikeff · r1� as r0 → 0. Hence, far-field scalar
potentials hΘi and hΦi � exp�ikeff · r1�r0 cos θ. hE�r�jr1i and
hES�r�jr1i are given by ∇hΘ�r�jr1i and ∇hΦ�r�jr1i, respec-
tively. We find that the coefficient of the first regular harmonic
is identical for Θ and Φ and consequently, hE�r�jr1i �
hES�r�jr1i

� exp�ikeff · r1�
3εm

εp � 2εm
ẑ; r0 < a (16)

for a sphere in an infinite matrix. A similar procedure can be
employed to show that

hES�r�jr1i � exp�ikeff · r1�
9εmεeff

�εp � 2εm��2εeff � εm� − 2κ−3�εp � εm��εeff � εm�
ẑ; r0 < a

(17)

for a sphere in an effective medium shown in Fig. 1. The ex-
ponential term in Eqs. (16) and (17) is a phase factor that de-
pends on the location of the sphere. Equations (4), (5), and (6)
can be used in that order to obtain an expression for εeff .
Required algebraic manipulations are discussed in Subsec-
tion 3.B below. Exact expressions for εeff are presented in
Subsection 4.A.

B. Vector EMT
The determination of hE�r�jr1i for a finitely large value of ka
requires the solution of the vector Helmholtz equation for a
2-layer sphere geometry shown in Fig. 1. E inside a particle
can be found by utilizing a multipole expansion. The solution
given by Hightower and Richardson [43] was adapted here to
obtain the following relations for hE�r�jr1i for r0 < a:

hEr�r�jr1i � exp�ikeff · r1�
−i sin θ0 cos ϕ0

k2pr02

X∞
n�1

dnin�2n� 1�πn�θ0�ψn�kpr0�; (18a)
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hEθ�r�jr1i � exp�ikeff · r1�
cos ϕ0

kpr0

×
X∞
n�1

in
�2n� 1�
n�n� 1� �cnπn�θ

0�ψn�kpr0�

− idnτn�θ0�ψ 0
n�kpr0��; (18b)

and

hEϕ�r�jr1i � exp�ikeff · r1�
sin ϕ0

kpr0

×
X∞
n�1

−in
�2n� 1�
n�n� 1� �cnτn�θ

0�ψn�kpr0�

− idnπn�θ0�ψ 0
n�kpr0��: (18c)

In Eqs. (18a)–(18c), primed coordinates �r0; θ0;ϕ0� are with
respect to the origin O0, n is the order of the multipole,
πn � P1

n�cos θ�∕ sin θ and τn � dP1
n�cos θ�∕dθ are the polar

angle dependent functions related to the associated Legendre
polynomials P1

n of degree 1, ψn�z�≡ zjn�z� are Riccati–Bessel
functions associated with the spherical Bessel functions jn�z�,
and cn and dn are the corresponding Mie coefficients [21]. The
expressions of cn and dn are given in Appendix A. In general,
both cn and dn are functions of a and keff [21].

Bessel functions and their derivatives were calculated using
established iterative techniques [44]. The volume integral of
hE�r�jr1i over the particle volume was determined to evaluate
hgpEi and subsequently Ω using Eqs. (4) and (5). Phase factors
exp�ikeff · r1� in Eqs. (18) were expressed as exp�ikeff · r�
exp�−ikeff · r0� so that exp�ikeff · r� in the right-hand side of
Eq. (5) would cancel out with the left-hand side. A two dimen-
sional composite Simpson’s rule [45] was used since the ana-
lytical evaluation of the integral in Eq. (4) over r and θ was
not possible due to the presence of the exponential term
exp�−ikeff · r0�. Only the x-component of hgpEi was found to
be nonzero, consistentwith the isotropic nature of the effective
medium. keff and equivalently εeff were calculated by finding
the zeros of Λ in Eq. (7) using Newton–Raphson iterations.
Since Λ was not necessarily analytic in the complex variable
keff , it was treated as a function of two variables, which
were the real and imaginary parts of keff necessitating
the use of a two dimensional Newton–Raphson method [46].
For large ϕ, Eq. (8) permitted multiple solutions that were
close to one other. Hence, the solution corresponding to the
limit as ϕ → 0 was traced by using zero order continuation.
The procedure was repeated for λ values in the visible
range (300–800 nm). Permittivity data for noble metals was ob-
tained from [47]. All computations were performed using
MATLAB.

4. RESULTS AND DISCUSSION
A. Scalar EMT
In the limit as ϕ → 0, εeff → εm. Hence, due to the absence
of particle-effective-medium coupling, hE�r�jr1i is given by
Eq. (16). The corresponding εeff is given by the following
equation:

εeff∕εm � 1� 3βϕ; β �
� εp − εm
εp � 2εm

�
: (19)

Here, β is the electric polarizability per unit volume for a small
sphere. As will be shown later in this section, the linear de-
pendence shown in Eq. (19) is a general result that is indepen-
dent of the microstructure since β is a material property. In the
case of a finitely large ϕ and arbitrary κ, hE�r�jr1i is given by
Eq. (17), for which εeff is found to be the following:

εeff∕εm � 1� 9εeff
�2εeff � εm� − 2κ−3β�εeff − εm�

γ; γ ≡ βϕ: (20)

For a well-separated system, κ � ϕ−1∕3, which in conjunction
with Eq. (20) gives the following result:

εeff∕εm � 1� 2γ
1 − γ � 1� 3γ � 3γ2 � O�γ3�: (21)

Equation (21) is identical to the classical MGT, which is also a
scalar EMT in which the presence of other particles is ac-
counted through the modification of the averaged far-field
[28,48]. The lower bound, κ � 1, can be substituted in Eq. (20)
to give the well-known Bruggeman mixing rule (BMR):

ϕ
� εp − εeff
εp � 2εeff

�
� �1 − ϕ�

� εm − εeff
εm � 2εeff

�
� 0; (22)

which is based on a symmetric mixing approach for the inclu-
sions and matrix phase. As a consequence, BMR can model
percolation effects [27]. A similar concentric-shell model with
a variable shell thickness was also proposed by Hashin and
Shtrikman [27]. However, the dependence of the shell thick-
ness parameter κ on the microstructure was not demon-
strated. MGT and BMR can be seen as the upper and lower
Hashin–Strikman bounds of the scalar EMT. Garcia et al.,
among others, have derived self-consistent mixing rules
for ternary plasmonic composites based on Hashin–Strikman
formalism [49]. Within the framework of the EMT presented in
this work, κ is a physical parameter that can be determined
from the structure factor (or equivalently the radial distribu-
tion function) of the composite. Conversely, if κ were to be
determined by fitting spectroscopic data to the EMT predic-
tions, it can be used to glean microstructure information re-
garding the distribution of particles within the composite.

For a random system, κ can be expanded about ϕ � 0 using
Eqs. (9) and (11) to give κ � 2 − 4

3ϕ� O�ϕ2�. This can be sub-
stituted in Eq. (20) to obtain the following expansion for εeff
valid for γ ≪ 1:

εeff∕εm � 1� 3γ � 3
4
�β� 4�γ2 � O�γ3�: (23)

Note that all scalar EMTs based on Eq. (20) indeed yield
εeff � εp for ϕ � 1.

1. Resonance conditions
A particle undergoes an electric resonance when hE�r�jr1i is
singular. For a finitely large ϕ, however, a different resonance
condition that takes into account the particle-effective-
medium coupling effect will result. Hence, in this section, a
discussion on the conditions under which scalar εeff shows
a resonance is presented.
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Resonance of a single sphere requires that

jβj → ∞; or equivalently; εp � −2εm; (24)

as can seen from Eqs. (16) and (19). Presence of an effective
medium, on the other hand, leads to a condition that the de-
nominator in Eqs. (17) and (20) vanish. Hence, one obtains a
resonance condition given by

2β
� εeff − 1
2εeff � 1

�
� κ3: (25)

In the specific case of a well-separated system (or MGT), sub-
stitution of κ � ϕ−1∕3 in Eq. (25) gives the following resonance
condition:

β ≈ 1
ϕ : (26)

The above equation can also be obtained by letting the de-
nominator in Eq. (21) be zero. Similar to the way by which
Eq. (26) was obtained, a substitution of κ � 2 − 4

3ϕ� O�ϕ2�
in Eq. (25) under the limit as γ → 0 leads to the following
resonance condition for random hard-sphere composites:

β ≈ 2����
ϕ

p : (27)

As seen from Eqs. (26) and (27), for dense systems, the reso-
nance wavelength is different from that of a single particle.
Hence, the scaling of β with ϕ depends on the microstructure
of the system through the static structure factor. This trend is
consistent with the reported red-shift in plasmon resonance
for ion-implanted composites [13]. We note that substitution
of κ � 1 in Eq. (25) in the limit as γ → 0 gives the resonance
condition in the “Bruggeman limit” as β ≈ 1∕2

����
ϕ

p
.

Since the equations for dense systems [Eqs. (17), (20), and
(24)] include particle-effective-medium coupling, they are im-
plicit in εeff . Conversely, the inverse problem, i.e., when εeff
is given and εp or ϕ are unknown, is explicit in all cases.
Hereafter, we only consider the solution of Eq. (20) that ap-
proaches unity as ϕ → 0.

2. Ag plasmonic composite
Resonant plasmonic nanospheres made of noble metals such
as Ag, Au, and Cu have an εp that has a large negative real part
and a small positive imaginary part for the visible range of the
electromagnetic spectrum as shown in Fig. 2. Their β values
show a resonance as a consequence. We consider Ag in our
further discussion since it has the smallestℑ�εp� over a broad
wavelength range and hence the most prominent β. Further, a
medium with a relatively large εm can shift this resonance to
the red region and make it more prominent. For this work we
will consider εm � 7. Semiconductors such as ZnO, Si, TiO2,
etc. have similar values of εm. Values of β for Ag spheres in an
εm � 7 medium are shown in Fig. 3.

The permittivity of high conductivity metals such as Ag can
be evaluated approximately by using the Drude model given
by εp � 1 − ω2

p∕ω2 � iωωc [50]. Here, plasma frequency ωp ≈

2.321 × 1015 Hz and collision frequency ωc ≈ 5.513 × 1012 Hz
for Ag in the visible range [51]. The peak inℑ�β� occurs at the

resonance frequency given by ωR � ωp�����������
2εm�1

p or equivalently re-

sonance wavelength λR � 2πc
�����������
2εm�1

p
ωp

, where c is the speed of

light in vacuum. Hence, the resonance wavelength for small

spheres scales as
������������������
2εm � 1

p
, resulting in a red-shift as εm is

increased. The peak value βR at resonance is given by βR �
−� εm−1

2εm�1� � i ωp

ωc

3εm
�2εm�1�3∕2 for a Drude metal.

The real and imaginary parts of β represent the reactive
and dissipative components, respectively. At resonance
(λ ≈ 600 nm), ℑ�β� is a large positive number and ℜ�β� � 0,
as shown in Fig. 3. As jγj → 0, the dissipative term for all scalar
EMTs is given byℑ�εeff∕εm� ≈ 3ϕℑ�β�. The quadratic term for
random systems is − 3

4 �ℑ�β��3ϕ2. As a result, ℑ�εeff� is highly
nonlinear in ϕ. For β shown in Fig. 3, ℑ�εeff∕εm� ≈ 69ϕ −

912525ϕ2 at resonance. In contrast, it is identically zero for

Fig. 2. Real and imaginary parts of the permittivity of high optical-
conductivity metals Ag, Au, and Cu that are considered in this work.
Permittivity data is taken from [47]. Ag has the lowest imaginary per-
mittivity over a broad range of wavelengths.

Fig. 3. β for Ag spheres in a εm � 7 medium. Resonance occurs for
λ ≈ 600 nm and β ≈ 23i. ℑ�β� is a small number away from resonance,
and ℜ�β� changes sign from negative to positive upon moving from
blue to red regions about resonance.
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a well-separated composite. Hence, quadratic coupling does
not lead to any loss in a well-separated composite.ℜ�εeff∕εm�
is identically one under resonance for a random system.
Hence, the reaction originates only from the medium. For
a well-separated system, quadratic and even powered
coupling contributes to the reaction such that ℜ�εeff∕εm�≈
1 − 3�ℑ�β�ϕ�2.

At off-resonance, ℜ�β� is greater than zero for λ > λR and
less than zero for λ < λR.ℑ�β� is smaller in comparison for the
most part. For instance, at λ ≈ 680 nm, β � 4.973� 0.973i, and
at λ ≈ 520 nm, β � −3.546� 0.816i. The red regions exhibit a
“concentration resonance,”which occurs when the resonance
condition given in Eq. (24) is satisfied. In the case of a well-
separated system, the condition is βϕ � 1, and for a random
system, it is β2ϕ ≈ 4, as given in Eqs. (25) and (26). Figure 4
shows ℑ�εeff∕εm� as a function of ϕ for λ ≈ 680 nm. A peak
appears at ϕ ≈ 13% for a random system and at ϕ ≈ 20% for
a well-separated system. The peak for a random system is less
prominent compared to that for a well-separated system. The
resonance concentration shifts to higher values of ϕ as εm is
decreased.

Figure 5 shows the effect of ϕ on εeff . It is evident that a
well-separated system couples more intensely with the inci-
dent field as compared to a random one. Peaks corresponding
to random systems occur for λ values that are larger than
those for well-separated systems due to the difference in the
scaling of β with respect to ϕ under resonance, as shown in
Eqs. (26) and (27). The quadratic coefficient for a random sys-
tem is 3

4 β3 � 3β2 [Eq. (22)] in comparison to 3β2 [Eq. (21)] for a
well-separated system. The coefficients of the cubic and high-
er order terms in ϕ also depend on higher powers of β for a
random system. Hence, the resonance condition for the coef-
ficient of the quadratic term in the power series expansion of
εeff�ϕ� will depend on that of the linear term, while the reso-
nance condition for cubic coefficient will depend on those of
the quadratic and linear terms, etc. As a consequence, the
peak inℑ�εeff� for random systems is not symmetric about its
maximum and is broader in comparison to that for a well-
separated system or a single sphere.

B. Vector EMT
This subsection describes the effect of ka on numerically cal-
culated values of εeff . An analysis of vector EMT in the limit as
ϕ → 0 and ka → 0 is first presented. Resonance analysis in the

limit as ϕ → 0, followed by a discussion on the numerical re-
sults for finitely large ϕ and ka will also be presented.

In the vector EMT, hE�r�jr1i is not a constant vector but
depends on the toroidal (corresponding to coefficients cn)
and poloidal (corresponding to coefficients dn) multipoles
shown in Eqs. (18). Only poloidal modes are capable of gen-
erating hEr jr1i, which only toroidal modes generate hHr jr1i.
Hence, we will refer to the poloidal modes as the electric
modes and the toroidal modes as magnetic modes following
the standard convention [42].

For subsequent analysis, the following expansion is used to
express the dependence of εeff on ϕ:

εeff∕εeff � 1� Aϕ� Bϕ2 � O�ϕ3�: (28)

As in Subsection 3.A, only the linear and quadratic coefficients
are of interest here. Coefficients A and B in Eq. (28) depend on
ka, εp, and εm. Riccati–Bessel functions in Eqs. (18) can be
expanded into a Taylor series as ψn�z� � Cnzn�1 � O�zn�3�,
where Cn �

��πp
4Γ�n�3∕2�, where Γ denotes the gamma function.

Hence, as z → 0 or equivalently kpa → 0, the terms corre-
sponding the c1 mode in Eqs. (18) are O�z�, while those cor-
responding to the d1 mode are O�1�. As a result, only the d1
term contributes significantly as z → 0. In the limit as ϕ → 0,
only the linear coefficient A in Eq. (28) is relevant irrespective
of the microstructure. hE�r�jr1i from Eqs. (18) can be used
together with Eqs. (4) and (5) to obtain the parameter Ω. It
can be shown that Ω � d1 and as kpa → 0, where d1 is given
by d1 � 3

�εp�2� �1� i 23 β�k�a�3� � O��k�a�6�. Subsequently, A can

obtained by using Eq. (6) as

A � 3β� i2β2�k�a�3 � O��k�a�6�; (29)

where k� � kp∕neff . Note that as ϕ → 0, neff → nm; hence, k�

can be modified appropriately in the dilute limit. Mallet et al.
[29] have recently rederived MGT for finitely large particles

Fig. 4. ℑ�εeff � predicted by the scalar EMT for random and well-
separated microstructures. Here, λ ≈ 680 nm and β � 4.973� 0.973i.
β has a resonance peak at λ ≈ 600 nm, as shown in Fig. 3.

Fig. 5. εeff for a composite with Ag NPs in an εm � 7 medium calcu-
lated with the scalar EMT. Random (a) and (b) and well-separated
random composites (c) and (d) for ϕ � 2% (solid), 6% (dashed),
and 10% (dotted) were considered. The resonance peak is more
red-shifted and broad for a random system. A well-separated system
shows a more intense resonance with a symmetric peak in compar-
ison. Stronger coupling in a random system leads to a tail in the blue
region.
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that can exhibit scattering using rigorous Foldy–Lax multiple
scattering equations (see Eq. (22) in [29]). The linear term is
identical to the one obtained here in Eq. (29). The cubic de-
pendence on the particle radius implies that the size effect be-
comes significant only when jβ2�k�a�3j is O�1�. Since β2 is a
large negative number at resonance as shown in the Fig. 3
inset, size effects become significant even for relatively small
radii for resonant systems. For example, jβ2j � 500 at reso-
nance for an Ag sphere shown in Fig. 3. Hence, jβ2�k�a�3j �
1∕2 for jk�aj ≈ 0.063. Here, since k� � 0.0005� 0.0147i nm−1,
a relatively small radius of a ≈ 34 nm can significantly affect
εeff even in the dilute limit.

1. Resonance conditions
Resonance occurs when hE�r�jr1i given by Eqs. (18) is singu-
lar. In turn, this requires that the coefficients cn and dn are
singular. Magnetic resonances represented by singular cns
do not occur in plasmonic systems since μp � μm � μ0. Vector
EMT exhibits only electric multipole resonances that corre-
spond to dn that are given in Appendix A. The conditions
are complicated for Helmholtz multipoles, as they involve
the Riccati–Bessel functions. However, the underlying physi-
cal aspects can be appreciated by utilizing the simpler Laplace
multipoles [52]. The nth Laplace multipole has a size indepen-
dent polarizability βn defined as

βn � εp − εm
εp � n�1

n εm
: (30)

A dipole resonance requires that β1 → ∞ or equivalently
εp � −2εm; quadrupole resonance occurs when β2 → ∞ or
εp � − 3

2 εm and so on [53]. Hence, higher order multipoles be-
come resonant at smaller negative values of εp, or equivalently
for smaller values of λ, as inferred from the εp − λ curve shown
in Fig. 2. Mie coefficients An, an, and dn are polynomials of k�a
and βn in the limit as k�a → 0 such that higher order βn be-
comes significant only for an O�1� k�a [21,53]. For an arbitrary
k�a, Helmholtz multipole electric polarizabilities dn depend on
k�a [53] such that their resonance peak red-shifts with k�a.
Hence, both A and B red-shift as k�a increases.

The above mentioned physical trends in the resonance con-
ditions are also seen in the numerical results obtained for the
vector EMT. Figure 6 shows A as a function of λ for diameters

dp � 10, 30, 50, and 100 nm. Here, k�a ≈
0.45dp

����εpp
λ , where dp and

λ are in nanometers. A was calculated by fitting the data for
εeff obtained for ϕ � 0.01% to Eq. (28) as

A � 1
ϕ

�εeff
εm

− 1
�
: (31)

For a small value of dp such as 10 nm, only the dipole mode is
significant. Hence, A � 3β. Relatively larger particles, e.g.,
dp � 50 nm, show a significant quadrupole resonance. The
dotted curves in Fig. 6 show a quadrupole peak at λ ≈ 580 nm.
A further larger dp � 100 nm results in an octupole peak as
depicted in the insets of Fig. 6. Each peak red-shifts for larger
dp. For example, the quadrupole peak for dp � 100 nm occurs
at λ ≈ 650 nm. E becomes highly localized at the particle sur-
face for relatively large k�a values. Consequently, the magni-
tude of A and εeff is diminished for relatively large dp values as
shown in Fig. 6. In the large size limit (k�a → ∞), A � 0.

Further, an inspection of Eqs. (3) and (18) shows that εeff �
εm for arbitrarily large ϕ, in the limit as k�a → ∞. This is con-
sistent with the ray optics scenario.

By neglecting cubic and higher order terms in Eq. (28), the
coefficient B was obtained using the following expression
with ϕ � 1%:

B � 1
ϕ2

�εeff
εm

− 1 − Aϕ
�
: (32)

Figure 7 shows the values of B calculated for random [κ given
by Eqs. (9) and (11)] and well-separated (κ � ϕ−1∕3) random
systems. B represents the strength of interparticle coupling.
Hence, random systems have a larger B. The nth multipole
decays as r−�n�2� in general. Hence, dipoles can couple most
strongly due to a r−3 dependence, while higher order multi-
poles such as quadrupoles and octupoles couple weakly.
The dotted (dp � 30 nm) and dashed (dp � 50 nm) curves
and the solid curve in the inset (dp � 100 nm) in Fig. 7 have
a lower magnitude in comparison to the solid curve as a result.
In Fig. 7(b), the solid curve for dp � 10 nm shows a prominent
radiant peak for λ ≈ 610 nm withℑ�B� ≈ −3000. For larger par-
ticles such as the ones with dp � 30 nm and dp � 50 nm, peak
values of ℑ�B� are greatly diminished due to reduced cou-
pling. Hence, the dashed curves in Fig. 7(b), have a peak at
∼ − 900 and the dotted curve at ∼ − 100. The corresponding
A values do not vary proportionately, as can be seen from
Fig. 6. Hence, linear approximation is appropriate only for
large dp values. This is not surprising since for a given ϕ, in-
creasing dp results in reducing particle number density, and

Fig. 6. Linear coefficient A for composites in an εm � 7 matrix with
Ag NPs with diameters dp � 10 (solid), 30 (dashed), 50 (dotted), and

100 nm (inset). Here, k�a ≈
0.45dp

����εpp
λ < 1 only for the blue curve. Quad-

rupolar and octupolar resonance peaks are present for large particles,
as seen in the curves in the insets. Dipole resonance is most prominent
and red-shifts as dp is increased. The linear coefficient becomes less
significant for large particles as they screen most of the E field from
their interior.
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consequently interparticle coupling. The linear approximation
is also applicable to well-separated systems since they have
small values of B in comparison to a random system. A max-
imum inℑ�B� also occurs upon increasing dp while keeping ϕ
and λ constant, leading to a size resonance. Thus, εeff exhibits
resonances as a function of all system parameters.

C. Fano Resonance
High conductivity metals are typically described by adding to
the Drude model a number of Lorentz oscillators that capture
effects of lattice polarizability and interband and intraband
electron transitions [54]. The Lorentz model is based on a
damped harmonic oscillator with finite mass. The Drude mod-
el, however, does not include the harmonic force and hence is
able to model free electrons well. The Lorentz model predicts
a symmetric profile for the intensity versus frequency curve
for systems with a small damping. Interestingly, β that is based
on a Drude model for εp has a lineshape of a Lorentz oscillator.
Hence, a single plasmonic particle is a Lorentz oscillator. In
the limit as ϕ → 0, the susceptibility of the effective medium
is given by χeff � εeff∕εm − 1 � 3βϕ� O�ϕ2�. Hence, the effec-
tive medium is also a Lorentz oscillator in the limit as ϕ → 0.
However, the coupling between the particle and the effective
medium becomes stronger; i.e., for large ϕ or small κ, εeff can
be expected to possess the characteristics of a coupled oscil-
lator system that deviates from the Lorentzian symmetric line-
shape. It is well-known that an unusual lineshape that is
asymmetric about the extremum, known as Fano resonance,
is observed in resonant coupled oscillator systems such as
plasmonic nanostructures [55–58].

Within the framework of the EMT presented here, for a gi-
ven ϕ, κ represents the extent of coupling between the particle
and the effective medium. Consequently, εeff − λ curves show
unusual resonance shapes for relatively small values of κ.
Figure 8 shows a plot of εeff for Ag NP composite in an

εm � 7 matrix for ϕ � 5%. The scalar EMT was used in the
calculations. Hence, the results are representative of those
for small particles. For random systems, κ has two bounds:
an upper bound given by κ � ϕ−1∕3 for a system with well-
separated particles and a lower one given by κ � 1, represent-
ing a locally dense composite, which we refer to as the
Bruggeman limit. Close to the upper bound, the particle-
effective-medium coupling is relatively weak, resulting in a
symmetric Lorentzian εeff even for relatively large ϕ. This
can be seen in the shape of the solid curve in Fig. 8. The
dashed curve in Fig. 9 is the locus for the upper bound in
the κ − ϕ space. Black circles in Fig. 9 denote the locations
at which the shape of εeff − λ curve is Lorentzian. As κ is

Fig. 7. Quadratic coefficient B calculated for random (a) and (b) and
well-separated random (c) and (d) composites in an εm � 7 matrix
containing Ag NPs with diameters dp � 10 (solid), 30 (dashed), 50

(dotted), and 100 nm (inset). Here, k�a ≈
0.45dp

����εpp
λ < 1 is less than 1

only for the solid curve that is given by 3
4 �β� 4�β2 for (a) and (b);

and 3β2 for (c) and (d). Weak coupling in well-separated random sys-
tems leads to a smaller B in comparison to random systems.

Fig. 8. Effect of κ on εeff for ϕ � 5%. Microstructures with κ �
ϕ−1∕3 ≈ 2.71 (solid curve), κ ≈ 1.75 (dashed curve), and κ ≈ 1.25 (dotted
curve). Small values of κ lead to a stronger coupling that distorts the
Lorentzian shape of εeff even for relatively small values of ϕ such as
5%. Calculations were performed with the scalar EMT.

Fig. 9. Characterization of the dielectric response of a random plas-
monic composite in the κ − ϕ space. The dashed line represents the
upper bound for a random composite with well-separated particles,
and the gray dotted line represents a random hard-sphere composite.
Locations of Lorentzian and Fano responses are shown in black and
gray circles, respectively. Unfilled circles denote locations in which
broad lineshapes are observed.
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reduced, the shapes of the curves become distorted due to
increased coupling. The resonance location shifts to larger va-
lues of λ, and the resonant peak becomes broader. ℑ�εeff∕εm�
has an asymmetric shape for intermediate values of κ, as
shown in dashed curves in Fig. 8. The κ − ϕ space locations
for which an asymmetric response is predicted are shown
in Fig. 9 as gray circles. For κ values that are close to unity,
ℑ�εeff∕εm� curve becomes very broad, as can be seen from the
dotted lines in Fig. 8. Unfilled circles in Fig. 9 represent this
type of response. The trends in Figs. 8 and 9 are also present in
composites with a finitely large ka.

Fano resonance can also be understood as the interference
between the absorbing and radiating modes in plasmonic
structures [55,56]. Our analysis in the limit as ϕ → 0 suggests
that the interference manifests through the Taylor coefficients
of εeff . A negative extreme in the imaginary quadratic coeffi-
cient ℑ�B� [Figs. 7(b) and 7(d)], for example, represents a
coupled “radiating mode” that is present in conjunction with
the “absorbing mode” of a single particle given by a positive
ℑ�A� [Fig. 6b].

5. CONCLUSIONS
Plasmonic NPs undergo an electric resonance when their
electric dipole polarizability β is a large positive imaginary
number. As a result, the particles absorb intensely. For a re-
latively large volume fraction ϕ and/or when particle size is
comparable to that of the exciting wavelength, interparticle
coupling becomes important. Consequently, the effective per-
mittivity εeff can no longer be treated as the sum of the polar-
izabilities of the individual particles and, hence, it does not
vary linearly with ϕ. Hence, quadratic and higher order effects
in ϕ on the polarizability have to be determined to obtain
accurate predictions of εeff .

In this work, we have developed an EMT to account for
such nonlinear effects on the effective permittivity of dense
random dispersions of equi-sized spheres of high optical-
conductivity metals such as Ag, Au, and Cu. The EMT is based
on the idea that the region surrounding a given particle in a
composite can be modeled as an effective continuum that be-
gins after a distance R � ka from the center of the particle
(κ > 1). Within this framework, κ is interpreted as a micro-
structure parameter that correlates with the static structure
factor of the composite. For a homogenous random compo-
site, κ is bounded such that 1 < κ < ϕ−1∕3. The upper bound
corresponds to a well-separated random system that can be
modeled as a Maxwell–Garnett composite. The lower bound
corresponds to Bruggeman’s mixing rule which, as in the case
of MGT, is based on the electrostatic approximation [27]. In
general, a random hard-sphere microstructure would have a κ
value that lies in between these two bounds, which, in prin-
ciple, can be determined from the knowledge of the radial
distribution function. Hence κ is a physical rather than an ad-
justable fitting parameter. Conversely, if κ were to be deter-
mined by fitting spectroscopic data to the EMT predictions,
it can be used to better understand the internal microstructure
of the composite.

The scalar (electrostatic) approximation is valid only for
particles much smaller than the exciting wavelength. The
EMT presented here takes into account both the microstruc-
ture and finite size effects in a self-consistent fashion. Speci-
fically, two scenarios were examined, one in which ka → 0

in which the conditionally averaged electric field can be
obtained by the solution of the Laplace equation for the elec-
trostatic potential (scalar EMT) and a more general case for
finitely large spheres for which a solution of vector Helmholtz
equation for E is required (vector EMT).

Resonance conditions for individual particles were found
to depend on κ and ϕ. In the limit as ka → 0, the scaling of
the particle polarizability at resonance with ϕ depends on
the microstructure. A well-separated random composite has
an εeff resonance when β ≈ 1∕ϕ. In contrast, for a random
hard-sphere composite, the resonance condition is given by
β ≈ 2∕

����
ϕ

p
. Hence, for a given ϕ, the resonance peak is more

red-shifted for random systems. For finite sized spheres,
the vector EMT problem was solved numerically to obtain
the a quadratic approximation for εeff as a function of ϕ.
As the particle size is increased, εeff versus the λ curve exhibits
multiple peaks corresponding to quadrupolar, octupolar, and
higher order resonances in addition to the dipolar resonance.
Size effect on εeff becomes significant when jβ2�k�a�3j is O�1�.
Hence, for composites consisting of high conductivity metals
such as Ag in a medium with large refractive index in the visi-
ble range such as TiO2, ZnO, and Si, size effects could manifest
even for particle diameters of a few tens of nanometers.

Particle-effective-medium coupling gives rise to a non-
Lorentzian resonance behavior in εeff . In order to characterize
the resonant optical response in the κ − ϕ space, a “phase dia-
gram”was constructed. Three regionswere identified based on
the lineshape of I�εeff�: (i) Lorentzian (symmetric peak),
(ii) Fano (distinctly asymmetric peak), and (iii) Bruggeman
(broad). For an Ag NPs in a high refractive index medium, the
Fano resonance region is enveloped by the Lorentzian (large κ
or largeϕ) andBruggeman (small κ or smallϕ) regions. Overall,
the predictions of the EMT are in qualitative agreement with
experimental trends observed for plasmonic composites [13].
This work motivates experimental investigations to quantify
the effect of volume fraction on the optical response of plasmo-
nic nanocomposites with well-characterized microstructures.
As discussed in Appendix B, the EMT presented here can be
extended to describe linear optical response of polydisperse
and multiple species systems by adapting the methodology
described by Koo and Sangani [39]. Garcia et al.’s approach
for the description of nonlinear optical properties of multiple
species of nanocomposites can also be incorporated to further
extend the EMT [59].

APPENDIX A: cn AND dn
Mie coefficients, cn and dn, for E inside a particle in a layered
sphere geometry shown in Fig. 1 are discussed in Section 3.
Hightower and Richardson showed that they can be calcu-
lated in the following fashion [43]:

cn�
�
kpψn�kma�−Bnkpχn�kma�

kmψn�kpa�

��
kmψn�keffR�−bnkmζn�keffR�

ψn�kmR�−Bnχn�kmR�

�

(A1a)

and

dn �
�ψn�kma� − Anχn�kma�

ψn�kpa�

��ψn�keffR� − anζn�keffR�
ψn�kmR� − Anχn�kmR�

�
:

(A1b)

Here, kν, ν � p;m; eff denotes the wavenumber in the particle,
medium, and effective medium, respectively. Particle radius is
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a, and R is the shell radius as shown in Fig. 1. Riccati–Bessel
functions ψn, χn, and ζn are defined as

ψn�z�≡ zjn�z�; (A2a)

χn�z�≡ −zyn�z�; (A2b)

and

ζn�z�≡ zh�1�n �z�: (A2c)

Here, jn, yn, and h�1�n , respectively, are the regular, singular,
and outward propagating spherical Bessel functions. Note
that spherical Hankel functions of the first kind are defined
as h�1�n � jn � iyn [45]. The coefficients An and Bn have the
following form:

An � kmψn�kma�ψ 0
n�kpa� − ψ 0

n�kma�ψn�kpa�
kmχn�kma�ψ 0

n�kpa� − χ 0n�kma�ψn�kpa�
�A3a�

and

Bn � kmψ 0
n�kma�ψn�kpa� − ψn�kma�ψ 0

n�kpa�
kmχn�kma�ψ 0

n�kpa� − χ 0n�kma�ψn�kpa�
: (A3b)

The primes in Eqs. (A3) denote a differentiation. The coeffi-
cients an and bn in Eqs. (A1) have the following form:

an � ψn�keffR��ψ 0
n�kmR� − Anχ 0n�kmR�� − kmψ 0

n�keffR��ψn�kmR� − Anχn�kmR��
ζn�keffR��ψ 0

n�kmR� − Anχ 0n�kmR�� − kmζ0n�keffR��ψn�kmR� − Anχn�kmR��
�A4a�

and

bn � kmψn�keffR��ψ 0
n�kmR� − Bnχ 0n�kmR�� − ψ 0

n�keffR��ψn�kmR� − Bnχn�kmR��
kmζn�keffR��ψ 0

n�kmR� − Bnχ 0n�kmR�� − kmζ0n�keffR��ψn�kmR� − Bnχn�kmR��
: (A4b)

APPENDIX B: EXTENSIONS TO
POLYDISPERSE AND/OR MULTIPLE
SPECIES COMPOSITES
Let the composite be made of N different types of spherical
particles. Particle type q has a radius aq and a permittivity εq
and occupies a volume fraction ϕq. Note that

P
ϕq � 1 − ϕm,

where ϕm is the volume fraction of the matrix. Further, let
indicator functions gq�r� indicate the locations of the qth type
of particles. The effective permittivity of such a composite can
be expressed as

εeff � εm �
XN
q�1

��εq − εm�hgqEi�: (B1)

The averaged field inside a qth type particle, hgqEi�r�, can be
evaluated using Eq. (4) by replacing the subscript pwith q and

particle center locations r1 with rq. Equation (8) can be mod-
ified in a manner similar to Eq. (B1) to give the following ob-
jective function Λ�k2eff�:

Λ�k2eff� � k2eff − k2m −
XN
q�1

�ϕq�k2q − k2m�Ωq�k2eff��; (B2)

where the constants Ωq need to be evaluated. The condition-
ally averaged field in the integral of Eq. (4) should be evalu-
ated for each qth type of particle. For this purpose, hE�r�jrqi
can be evaluated by solving Eq. (7) simultaneously for all q
spheres. The effective-medium model of Fig. 1 will now have
q� 1 layers for each qth particle. The layers arise from the
terms in the summation in Eqs. (B1) and (B2).

A bidisperse system is considered here to demonstrate the
above-mentioned methodology. In this case, a first type par-
ticle is surrounded by a medium with permittivity εm up to a
radius R11 followed by an effective medium with permittivity
εeff;1 � εm � ϕ1�ε1 − εm�Ω1 up to a radius R12 followed by
the gross effective medium with permittivity εeff � εm�
ϕ1�ε1 − εm�Ω1 � ϕ2�ε2 − εm�Ω2. For a second type particle,
the layered structure has the radii and permittivity values
of εm, R21, εeff;2, R22, and εeff . The nondimensional radii can
be defined as κqr ≡ Rqr∕aq for the rth layer around the qth par-
ticle (q � 1; 2). The radii are related to the static structure fac-
tors Sqr�0� through an expression similar to Eqs. (9) and (10)
given by [39]

κqr �
�δqr − Sqr�0�

ϕq

�1
3

: (B3)

In Eq. (B3), δqr is the Kronecker delta. The structure factors
are defined in the following manner:

Sqr �
Z
�P�r; aqj0; ar� − P�r; aq��dV r: (B4)

Here, P�r; aqj0; ar� is the probability density of finding a qth
type particle at r given an rth type of particle at the origin
0. However, evaluation of Sqr�0� is rather complicated even
for a bidisperse system as discussed in [39]. We will note that
for hard-sphere random systems, in the limit as ϕ1 � ϕ2 → 0,
Sqr � δqr − ϕq�aq � ar�3∕a3q.

Wani et al. Vol. 29, No. 6 / June 2012 / J. Opt. Soc. Am. B 1453



ACKNOWLEDGMENTS
R. S. and S. W. would like to thank National Science Founda-
tion for financial support through grants CMMI 0855949,
administered as a subcontract by University of Tennessee,
Knoxville to Syracuse University, and CBET 1049454.

REFERENCES
1. J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza,

and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv.
Mater. 20, 1211–1217 (2008).

2. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considera-
tions for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808
(2010).

3. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G.
Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale
optical devices,” Adv. Mater. 13, 1501–1505 (2001).

4. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv.
Mater. 19, 3771–3782 (2007).

5. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G.
Nuzzo, “Functional nanostructured plasmonic materials,” Adv.
Mater. 22, 1102–1110 (2010).

6. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A.
Boltasseva, “Searching for better plasmonic materials,” Laser
Photon. Rev. 4, 795–808 (2010).

7. T. Cong, S. N. Wani, P. A. Paynter, and R. Sureshkumar, “Struc-
ture and optical properties of self-assembled multicomponent
plasmonic nanogels,” Appl. Phys. Lett. 99, 043112 (2011).

8. J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R.
Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic
metal films: theory and experiments,” Phys. Rev. B 75,
235439 (2007).

9. T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, and
J. H. Adair, “Preparation of Ag/SiO2 nanosize composites by a
reverse micelle and sol–gel technique,” Langmuir 15, 4328–4334
(1999).

10. D. D. Smith, L. A. Snow, L. Sibille, and E. Ignont, “Tunable
optical properties of metal nanoparticle sol–gel composites,”
J. Non-Cryst. Solids 285, 256–263 (2001).

11. L. M. Liz-Marzán, “Tailoring surface plasmons through the
morphology and assembly of metal nanoparticles,” Langmuir
22, 32–41 (2006).

12. A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V.
Zaporojtchenko, F. Faupel, and T. Strunskus, “Tunable multiple
plasmon resonance wavelengths response from multicompo-
nent polymer-metal nanocomposite systems,” Appl. Phys. Lett.
84, 2655–2657 (2004).

13. Z. Liu, H. Wang, H. Li, and X. Wang, “Red shift of plasmon
resonance frequency due to the interacting Ag nanoparticles em-
bedded in single crystal Sio2 by implantation,” Appl. Phys. Lett.
72, 1823–1825 (1998).

14. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface
plasmon enhanced silicon solar cells,” J. Appl. Phys. 101,
093105–093108 (2007).

15. H. A. Atwater and A. Polman, “Plasmonics for improved photo-
voltaic devices,” Nat. Mater. 9, 205–213 (2010).

16. S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar,
“Plasmon-enhanced microalgal growth in miniphotobioreac-
tors,” Appl. Phys. Lett. 97, 043703–043703 (2010).

17. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy
applications,” Nat. Photon. 5, 583–590 (2011).

18. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from
dye-gold nanoparticles in polymer films: enhanced gain at
the surface-plasmon-resonance wavelength,” Appl. Phys. Lett.
89,191116 (2006).

19. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon
sensor with gold colloid monolayers deposited upon glass sub-
strates,” Opt. Lett. 25, 372–374 (2000).

20. A. Dawson and P. V. Kamat, “Semiconductor–metal nanocompo-
sites. Photoinduced fusion and photocatalysis of gold-capped
TiO2 (TiO2/Gold) nanoparticles,” J. Phys. Chem. B 105,
960–966 (2001).

21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of

Light by Small Particles (Wiley, 1998).

22. S. A. Maier, Plasmonics (Springer Science+Business Media,
2007).

23. E. Ozbay, “Plasmonics: merging photonics and electronics at
nanoscale dimensions,” Science 311, 189–193 (2006).

24. C. Oubre and P. Nordlander, “Optical properties of metallodi-
electric nanostructures calculated using the finite difference
time domain method,” J. Phys. Chem. B 108, 17740–17747
(2004).

25. A. Taflove and S. C. Hagness, Computational Electrodynamics:

The Finite-Difference Time-Domain Method (Artech House,
2005).

26. F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference
time-domain modeling of decay rates in the near field of
metal nanostructures,” J. Comp. Theor. Nanosci. 4, 635–643
(2007).

27. T. C. Choy, Effective Medium Theory (Oxford University, 1999).
28. J. C. M. Garnett, “Colours in metal glasses and in metallic films,”

Phil. Trans. R. Soc. A 203, 385–420 (1904).
29. P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell–Garnett mix-

ing rule in the presence of multiple scattering: derivation and
accuracy,” Phys. Rev. B 72, 014205 (2005).

30. R. Ruppin, “Evaluation of extended Maxwell–Garnett theories,”
Opt. Commun. 182, 273–279 (2000).

31. V. Yannopapas, “Effective-medium description of disordered
photonic alloys,” J. Opt. Soc. Am. B 23, 1414–1419 (2006).

32. D. M. Wood and N. W. Ashcroft, “Effective medium theory of the
optical properties of small particle composites,” Philos. Mag. 35,
269–280 (1977).

33. P. D. M. Spelt, M. A. Norato, A. S. Sangani, M. S. Greenwood, and
L. L. Tavlarides, “Attenuation of sound in concentrated suspen-
sions: theory and experiments,” J. Fluid Mech. 430, 51–86
(2001).

34. G. Mo and A. S. Sangani, “A method for computing Stokes flow
interactions among spherical objects and its application to
suspensions of drops and porous particles,” Phys. Fluids 6,
1637–1652 (1994).

35. T. L. Dodd, D. A. Hammer, A. S. Sangani, and D. L. Koch, “Nu-
merical simulations of the effect of hydrodynamic interactions
on diffusivities of integral membrane proteins,” J. Fluid Mech.
293, 147–180 (1995).

36. A. S. Sangani and C. Yao, “Bulk thermal conductivity of compo-
sites with spherical inclusions,” J. Appl. Phys. 63, 1334–1341
(1988).

37. A. S. Sangani, “A pairwise interaction theory for determining the
linear acoustic properties of dilute bubbly liquids,” J. Fluid
Mech. 232, 221–284 (1991).

38. A. S. Sangani and W. Lu, “Elastic coefficients of composites con-
taining spherical inclusions in a periodic array,” J. Mech. Phys.
Solids 35, 1–21 (1987).

39. S. Koo and A. S. Sangani, “Effective-medium theories for pre-
dicting hydrodynamic transport properties of bidisperse suspen-
sions,” Phys. Fluids 14, 3522–3533 (2002).

40. N. F. Carnahan and K. E. Starling, “Equation of state for nonat-
tracting rigid spheres,” J. Chem. Phys. 51, 635–636 (1969).

41. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stabi-

lity (Clarendon Press, 1961).
42. R. F. Harrington, Time-Harmonic Electromagnetic Fields

(IEEE, 2001).
43. R. L. Hightower and C. B. Richardson, “Resonant Mie scattering

from a layered sphere,” Appl. Opt. 27, 4850–4855 (1988).
44. M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions: With Formulas, Graphs, and Mathematical tables

(Dover, 1970).
45. D. Zwillinger, Handbook of Integration (Jones and Bartlett,

1992).
46. C. T. Kelley, Iterative Methods for Linear and Nonlinear Equa-

tions (SIAM, 1995).
47. N-k database, http://www.sopra‑sa.com.
48. A. H. Sihvola, Electromagnetic Mixing Formulas and Applica-

tions (Institution of Electrical Engineers, 1999).
49. H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-

consistent determination of plasmonic resonances in ternary
nanocomposites,” Phys. Rev. B 75, 045439 (2007).

50. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart, and Winston, 1976).

1454 J. Opt. Soc. Am. B / Vol. 29, No. 6 / June 2012 Wani et al.

http://www.sopra-sa.com
http://www.sopra-sa.com
http://www.sopra-sa.com


51. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the
ideal plasmonic nanoshell: the effects of surface scattering
and alternatives to gold and silver,” J. Phys. Chem. C 113,
3041–3045 (2009).

52. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The op-
tical properties of metal nanoparticles: the influence of size,
shape, and dielectric environment,” J. Phys. Chem. B 107,
668–677 (2003).

53. See Appendix A.
54. E. D. Palik,Handbook of Optical Constants of Solids (Academic

Press, 1985).
55. U. Fano, “Effects of configuration interaction on intensities and

phase shifts,” Phys. Rev. 124, 1866 (1961).

56. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plas-
mons in strongly coupled metallic nanostructures,” Chem. Rev.
111, 3913–3961 (2011).

57. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P.
Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance
in plasmonic nanostructures and metamaterials,” Nat. Mater. 9,
707–715 (2010).

58. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano reso-
nances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298
(2010).

59. H. Garcia, R. Kalyanaraman, and R. Sureshkumar, “Nonlinear
optical properties of multi-metal nanocomposites in a glass
matrix,” J. Phys. B 42, 175401 (2009).

Wani et al. Vol. 29, No. 6 / June 2012 / J. Opt. Soc. Am. B 1455


