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EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON

LINE BUNDLES

DAN COMAN AND GEORGE MARINESCU

Abstract. Let (L, h) be a holomorphic line bundle with a positively curved sin-
gular Hermitian metric over a complex manifold X . One can define naturally the
sequence of Fubini-Study currents γp associated to the space of L2-holomorphic sec-
tions of L⊗p. Assuming that the singular set of the metric is contained in a compact
analytic subset Σ of X and that the logarithm of the Bergman kernel function of
L⊗p |

X\Σ
grows like o(p) as p → ∞, we prove the following:

1) the currents γk
p converge weakly on the whole X to c1(L, h)k, where c1(L, h)

is the curvature current of h.
2) the expectations of the common zeros of a random k-tuple of L2-holomorphic

sections converge weakly in the sense of currents to c1(L, h)k.
Here k is so that codim Σ ≥ k. Our weak asymptotic condition on the Bergman
kernel function is known to hold in many cases, as it is a consequence of its as-
ymptotic expansion. We also prove it here in a quite general setting. We then
show that many important geometric situations (singular metrics on big line bun-
dles, Kähler-Einstein metrics on Zariski-open sets, artihmetic quotients) fit into our
framework.
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1. Introduction

Let X be a compact complex manifold of dimension n, L −→ X be a positive
holomorphic line bundle, and h be a smooth Hermitian metric on L whose curvature
c1(L, h) is a positive (1,1) form on X . Let Φp : X −→ P

dp−1 be the Kodaira map
defined by an orthonormal basis of H0(X,Lp) with respect to the inner product given
by the metric induced by h on Lp := L⊗p and a fixed volume form on X , where
dp = dimH0(X,Lp). The pull-back Φ⋆p(ωFS) of the Fubini-Study form ωFS is a
smooth (1,1) form for all p sufficiently large, since Φp is an embedding by Kodaira’s
embedding theorem. A theorem of Tian [T] (with improvements by Ruan [R]) asserts
that 1

p
Φ⋆p(ωFS) → c1(L, h) as p→ ∞, in the C∞ topology on X .

Tian’s theorem is a consequence of the asymptotic expansion of the Bergman ker-
nel function associated to the inner product on H0(X,Lp) mentioned above. In the
context of positive line bundles this asymptotic expansion is proved in various forms
in [T, Ca, Z, DLM, MM1, MM2, MM3, BBS]. For line bundles endowed with arbi-
trary smooth Hermitian metrics the Bergman kernel function behavior and important
consequences are studied in [Be] and [BB].
In the case of holomorphic Hermitian line bundles over complete Hermitian mani-

folds the asymptotic expansion of the Bergman kernel function associated to the cor-
responding spaces of L2-holomorphic sections was proved in [MM3] (see also [MM1,
MM2]). In particular, a version of Tian’s theorem was obtained for a big line bundle
L over a (compact) manifold X . Such a line bundle admits a singular Hermitian
metric h, smooth outside a proper analytic subvariety Σ ⊂ X , and whose curvature
current c1(L, h) is strictly positive. It is shown in [MM2, Section 6.2] that there exist
a smooth positively curved Hermitian metric hε on L |

X\Σ
, which is a small perturba-

tion of h, and a smooth positive (1,1) form Θ defining a generalized Poincaré metric
on X \Σ, so that the following hold. If H0

(2)(X \Σ, Lp) is the space of L2-holomorphic

sections of Lp |
X\Σ

relative to the metrics hε and Θ then H0
(2)(X \Σ, Lp) ⊂ H0(X,Lp),

so a Kodaira map Φp : X 99K Pdp−1 can be defined by using an orthonormal basis of
H0

(2)(X \Σ, Lp). Let γp = Φ⋆p(ωFS) and ω = c1(L |
X\Σ

, hε). Then
1
p
γp → ω as p→ ∞,

locally uniformly in the C∞ topology on X \ Σ.
Since γp are currents on X it is natural to try and study the weak convergence of

the sequence {γp/p}, and to ask whether a global version of Tian’s theorem holds in
this setting. We will show that this is indeed the case.

Let us work in the following more general setting:

(A) X is a complex manifold of dimension n (not necessarily compact), Σ is a
compact analytic subvariety of X , and Ω is a smooth positive (1, 1) form on X .
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(B) (L, h) is a holomorphic line bundle onX with a singular (semi)positively curved
Hermitian metric h which is continuous on X \ Σ.

(C) The volume form on X \Σ is fΩn, where f ∈ L1
loc(X \Σ,Ωn) verifies f ≥ cx > 0

Ωn-a.e. in a neighborhood Ux of each x ∈ (X \ Σ) ∪ Σn−1
reg . Here Σn−1

reg is the set of
regular points y where dimy Σ = n− 1.

We denote the curvature current of h by γ = c1(L, h) and consider the space
H0

(2)(X \Σ, Lp) of L2-holomorphic sections of Lp |
X\Σ

relative to the metric hp induced

by h and the volume form fΩn on X \ Σ, endowed with the inner product

(S, S ′)p =

∫

X\Σ

〈S, S ′〉hp fΩ
n , where 〈S, S ′〉hp = hp(S, S

′), S, S ′ ∈ H0
(2)(X \ Σ, Lp).

We let ‖S‖2p = (S, S)p. Since H
0
(2)(X \Σ, Lp) is separable, let {Spj }j≥1 be an orthonor-

mal basis and denote by Pp the Bergman kernel function defined by

(1) Pp(x) =
∞∑

j=1

|Spj (x)|
2
hp, |Spj (x)|

2
hp := 〈Spj (x), S

p
j (x)〉hp, x ∈ X \ Σ.

Note that this definition is independent of the choice of basis, and the function Pp is
continuous on X \ Σ (see Section 3).
Next we define the Fubini-Study currents γp on X \ Σ by

(2) γp |U=
1

2
ddc log

(
∞∑

j=1

|spj |
2

)
, U ⊂ X \ Σ open ,

where dc = 1
2πi

(∂ − ∂), Spj = spje
⊗p, and e is a local holomorphic frame for L on U .

One of our main results is the following:

Theorem 1.1. If X,Σ, (L, h), f,Ω verify assumptions (A)-(C) then H0
(2)(X\Σ, Lp) ⊂

H0(X,Lp) and γp extends to a positive closed current on X defined locally by formula
(2) and which is independent of the choice of basis {Spj }j≥1. Assume further that

(3) lim
p→∞

1

p
logPp(x) = 0, locally uniformly on X \ Σ.

Then 1
p
γp → γ weakly on X. If, in addition, dimΣ ≤ n−k for some 2 ≤ k ≤ n, then

the currents γk and γkp are well defined on X, respectively on each relatively compact

neighborhood of Σ, for all p sufficiently large. Moreover, 1
pk
γkp → γk weakly on X.

This theorem is proved in Section 3. The proof relies on a local property of the
complex Monge-Ampère operator which is of independent interest (see Theorem 3.4).
Some background material about singular Hermitian metrics and pluripotential the-
ory needed in the paper is recalled in Section 2.

We examine in Section 6 a series of important situations where condition (3) of
Theorem 1.1 holds, as it is an immediate consequence of deep results regarding the
asymptotic expansion of the Bergman kernel function Pp(x) ∼ b0(x)p

n + b1(x)p
n−1 +

. . . . Especially, Theorem 1.1 yields equidistribution results for singular metrics on
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big line bundles (Sections 6.1, 6.2), on Zariski-open sets of bounded negative Ricci
curvature (Section 6.3), on toroidal compactifications of arithmetic quotients (Section
6.4), and finally on 1-convex manifolds (Sections 6.6, 6.7).
The point of view adopted in Theorem 1.1 is that once some information is known

on the asymptotic behavior of Pp on the set where the metric is continuous, then
the global weak convergence on X of the currents γp/p and their powers follows.
Hypothesis (3) is obviously a much weaker condition than the asymptotic expansion
of Pp mentioned above. Indeed, in Section 5 we give a simple proof that (3) holds in
the case of line bundles over compact Kähler manifolds endowed with metrics that
are assumed to be only continuous outside of Σ (see Theorems 5.3 and 5.4). In this
case the asymptotic expansion of Pp is not known.
We also prove in Theorem 5.1 that Tian’s theorem [T] holds for any singular metric

with strictly positive curvature. Namely, let (X,Ω) be a compact Kähler manifold
and (L, h) be a holomorphic line bundle on X with a singular metric h so that c1(L, h)
is a strictly positive current. If γp are the Fubini-Study currents defined by (2) for
the spaces of L2-holomorphic sections of Lp relative to the metric induced by h and
the volume form Ωn, then 1

p
γp → c1(L, h) in the weak sense of currents on X . The

proofs of Theorems 5.1 and 5.3 rely on techniques developed by Demailly [D3, D5].

In a series of papers including [SZ1, SZ2, SZ3], Shiffman and Zelditch describe the
asymptotic distribution of zeros of random holomorphic sections of a positive line
bundle over a projective manifold endowed with a smooth positively curved metric.
They also study the distribution of zeros of quantum ergodic eigenfunctions. To prove
these results they develop interesting new techniques, based in part on methods in
complex dynamics from [FS2].
Later, using different methods, Dinh and Sibony [DS2] obtain sharper estimates

for the speed of convergence in the asymptotic distribution of zeros of random holo-
morphic sections. In [DMS] these results are generalized to the case of complete
Hermitian manifolds. The problem of the distribution of zeros of random sections of
line bundles appears in other contexts as well. For example, the case of canonical line
bundles over towers of covers is studied in [To].
We show here how some of the important results of Shiffman and Zelditch can be

obtained in our setting from Theorem 1.1, assuming in addition that X is compact.
More precisely, following the framework in [SZ1], we let λp be the normalized surface
measure on the unit sphere Sp of H0

(2)(X \Σ, Lp), defined in the natural way by using

a fixed orthonormal basis (see Section 4). We denote by λkp the product measure on

(Sp)k, and by [S = 0] the current of integration (with multiplicities) over the analytic
hypersurface {S = 0} determined by a nontrivial section S ∈ H0(X,Lp). We prove
in Section 4 the following generalization of some results of Shiffman and Zelditch
[SZ1, SZ3] to our situation:

Theorem 1.2. In the setting of Theorem 1.1, assume that X is compact, dimΣ ≤
n− k for some 1 ≤ k ≤ n, and that (3) holds. Then, for all p sufficiently large:
(i) [σ = 0] := [σ1 = 0] ∧ . . . ∧ [σk = 0] is a well defined positive closed current of

bidegree (k,k) on X, for λkp-a.e. σ = (σ1, . . . , σk) ∈ (Sp)k.
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(ii) The expectation Ek
p [σ = 0] of the current-valued random variable σ → [σ = 0],

given by

〈Ek
p [σ = 0], ϕ〉 =

∫

(Sp)k
〈[σ = 0], ϕ〉 dλkp,

where ϕ is a test form on X, is a well defined current and Ek
p [σ = 0] = γkp .

(iii) We have 1
pk
Ek
p [σ = 0] → γk as p→ ∞, weakly in the sense of currents on X.

In particular, this theorem together with [SZ1, Lemma 3.3] yields an equidistri-
bution result for the zeros of a random sequence of sections {σp}p≥1 ∈

∏∞
p=1 S

p, i.e.
1
p
[σp = 0] → γ as p→ ∞, in the weak sense of currents on X (see Theorem 4.3).

Acknowledgement. Dan Coman is grateful to the Alexander von Humboldt Founda-
tion for their support and to the Mathematics Institute at the University of Cologne
for their hospitality.

2. Preliminaries

We recall here a few of the notions that we will need. We start with the notion of
singular Hermitian metric in Section 2.1 and some necessary notions about desingu-
larization in Section 2.2. In Section 2.3 we introduce the generalized Poincaré metric
on a manifold and an associated metric on a line bundle with strictly positive curva-
ture current. In Section 2.4 we recall a few facts regarding the definition of complex
Monge-Ampère operators.

2.1. Singular Hermitian metrics on line bundles. Let L −→ X be a holomor-
phic line bundle over a complex manifold X and fix an open cover X =

⋃
Uα for

which there exist local holomorphic frames eα : Uα −→ L. The transition functions
gαβ = eβ/eα ∈ O⋆

X(Uα ∩ Uβ) determine the Čech 1-cocycle {(Uα, gαβ)}.
Let h be a smooth Hermitian metric on L. If |eα(x)|

2
h = h(eα(x), eα(x)) for x ∈ Uα,

we recall that the curvature form c1(L, h) of h is defined by

c1(L, h) |Uα
= −ddc log |e|h =

i

2π
RL,

where RL is the curvature of the holomorphic Hermitian connection ∇L on (L, h).
If h is a singular Hermitian metric on L then (see [D2], also [MM2, p. 97]) h(eα, eα) =

e−2ϕα, where the functions ϕα ∈ L1
loc(Uα) are called the local weights of the metric h.

One has ϕα = ϕβ + log |gαβ| on Uα ∩ Uβ, and the curvature of h,

c1(L, h) |Uα
= ddcϕα,

is a well defined closed (1,1) current onX . We say that the metric h is (semi)positively
curved if c1(L, h) is a positive current. Equivalently, the weights ϕα can be chosen to
be plurisubharmonic (psh) functions.

Let L′ −→ X be a holomorphic line bundle isomorphic to L. A metric hL on L
induces a metric hL

′
on L′ with curvature current c1(L, h

L) = c1(L
′, hL

′
).
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Suppose now that M is a complex manifold and f : M −→ X is a locally bi-
holomorphic map. A metric hL on L induces a metric f ⋆hL on f ⋆L whose curvature
current is c1(f

⋆L, f ⋆hL) = f ⋆
(
c1(L, h

L)
)
.

2.2. Desingularization. We recall here Hironaka’s embedded resolution of singular-
ities theorem (see e.g. [BM], [MM2, Theorem 2.1.13]). Let X be a complex manifold
and Σ ⊂ X be a compact analytic subvariety of X . Then there exists a finite sequence
of blow up maps σj+1 : Xj+1 −→ Xj with smooth centers Yj,

Xm
σm−→

Σm
Em

Xm−1 −→ . . .
Σm−1

Em−1

−→ Xj+1
σj+1

−→
Σj+1

Ej+1

Xj −→ . . .
Σj
Ej

−→ X1
σ1−→

Σ1

E1

X0 = X
Σ0 = Σ
E0 = ∅

,

such that:
(i) Yj is a compact submanifold of Xj with dimYj ≤ dimX − 2 and Yj ⊂ Σj ,
(ii) Σj+1 = Σ′

j is the strict transform of Σj by σj+1,

(iii) Ej+1 = E ′
j ∪ σ

−1
j+1(Yj) is the set of exceptional hypersurfaces in Xj+1,

(iv) Σm is a smooth hypersurface and Σm∪Em is a divisor with normal crossings.

Let τj = σ1 ◦ . . . ◦ σj : Xj −→ X . Since σj+1 : Xj+1 \ Ej+1 −→ Xj \ (Ej ∪ Yj) is a
biholomorphism, it follows that

τm : Xm \ Em −→ τm(Xm \ Em) = X \ Y

is a biholomorphism, where

Y = Y0 ∪ τ1(Y1) ∪ τ2(Y2) ∪ . . . ∪ τm−1(Ym−1).

As Yj ⊂ Σj and σj(Σj) ⊂ Σj−1, we have τj(Yj) ⊂ Σ for every j = 1, . . . , m − 1.
Since Yj is compact τj : Yj −→ X is proper, so τj(Yj) is an analytic subvariety of
X of dimension ≤ dim Yj. Hence Y is an analytic subvariety of X , Y ⊂ Σ and
dimY ≤ dimX − 2.

In conclusion, setting X̃ = Xm, E = Em, and π = τm : X̃ −→ X , we have:

Theorem 2.1 (Hironaka). Let X be a complex manifold and Σ ⊂ X be a compact

analytic subvariety of X. Then there exist a complex manifold X̃, an analytic subva-

riety Y ⊂ Σ with dimY ≤ dimX−2, and a surjective holomorphic map π : X̃ −→ X
with the following properties:

(i) π : X̃ \ E −→ X \ Y is a biholomorphism, where E = π−1(Y ).

(ii) the strict transform Σ′ = π−1(Σ \ Y ) is smooth and π−1(Σ) = Σ′ ∪ E is a
divisor with normal crossings.

2.3. Special metrics. Let X be a complex manifold of dimension n. Assume that
L −→ X is a holomorphic line bundle with a singular Hermitian metric h which is
continuous outside a proper compact analytic subvariety Σ ⊂ X , and whose curvature
γ = c1(L, h) is a strictly positive closed (1,1) current on X (i.e. it dominates a smooth
positive (1,1) form on X). We write

Σ = Z1 ∪ Z2,
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where Z1, Z2 are analytic subvarieties ofX , Z1 has pure dimension n−1, and dimZ2 ≤
n− 2. Let π : X̃ −→ X be a resolution of singularities of Σ as in Theorem 2.1. Then

π : X̃ \ E −→ X \ Y is a biholomorphism, where Y ⊂ Σ is an analytic subvariety
with dimY ≤ n− 2, E = π−1(Y ), Z2 ⊂ Y , Σ′ = Z ′

1 is smooth, and π−1(Σ) = Z ′
1 ∪ E

is a divisor with normal crossings.

2.3.1. The metric Θ. We recall here the construction and properties of the generalized

Poincaré metric on X \ Σ (cf. [MM2, Lemma 6.2.1]). Let Ω̃ be a smooth positive

(1,1) form on X̃ . When X is not compact we take Ω̃ so that the associated metric is

complete on X̃ .
Let Σ1, . . . ,ΣN be the irreducible components of π−1(Σ), so Σj is a smooth hy-

persurface in X̃. Let σj be holomorphic sections of the associated holomorphic line
bundle OX̃(Σj) vanishing to first order on Σj and let | · |j be a smooth Hermitian
metric on OX̃(Σj) so that |σj |j < 1. We define

(4) Θ̃δ = Ω̃ + δddcF, where δ > 0, F = −
1

2

N∑

j=1

log(− log |σj |j).

If δ is small enough, Θ̃δ defines a complete Hermitian metric on X̃ \π−1(Σ) and we

have Θ̃δ ≥ Ω̃/2 in the sense of currents on X̃ . Moreover, if X is compact then so is

X̃ and we have that Θ̃δ has finite volume (see [MM2, Lemma 6.2.1]). Fixing such a
δ, we define the Poincaré metric on X \ Σ as the metric associated to the (1, 1) form

Θ = (π−1)⋆Θ̃δ.

This metric has the same properties on X \ Σ as Θ̃δ does on X̃ \ π−1(Σ).
Let now x ∈ Σn−1

reg and local coordinates z1, . . . , zn be chosen so that x = 0, Σ =

{z1 = 0}. Then Θn ∼ (|z1| log |z1|)
−2 dλ near x, where λ is the Lebesgue measure in

coordinates (see [MM2, (6.2.11)]). In particular, we have that Θn = fΩn, where the
function f verifies assumption (C) stated in the introduction.

2.3.2. The metric hε. It is necessary to perturb the original metric h of L in order
to obtain a metric on L |

X\Σ
whose curvature current dominates a small multiple of

Θ. By [MM2, Lemma 6.2.2] there exists a holomorphic line bundle L̃ −→ X̃ which

has a singular Hermitian metric hL̃, continuous on X̃ \ π−1(Σ), and such that L̃ |
X̃\E

is isomorphic to π⋆
(
Lk |

X\Y

)
, for some k ∈ N. Moreover, c1(L̃, h

L̃) = k π⋆γ + θ is a

strictly positive current on X̃ , where θ is a smooth real closed (1, 1) form supported
in a neighborhood of E and strictly positive along E.
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Since L̃ |
X̃\E

∼= π⋆
(
Lk |

X\Y

)
the metric hL̃ induces a singular Hermitian metric hL

′

on L′ = π⋆
(
L |

X\Y

)
with curvature current γ′ = π⋆γ+ θ′, where θ′ = θ/k. For ε > 0,

hL
′

ε = hL
′
N∏

j=1

(− log |σj |j)
ε

is a singular Hermitian metric on L′ with curvature current

γ′ε = γ′ + εddcF = π⋆γ + θ′ + εddcF,

where F is given in (4). Since γ′ is a strictly positive current it follows that γ′ε is a

strictly positive current on X̃ , provided that ε is sufficiently small (cf. [MM2, Lemma

6.2.1]). We fix such an ε and note that, as π : X̃ \E −→ X \ Y is a biholomorphism,
the metric hL

′

ε on L′ induces a singular metric hε on L |
X\Y

which is continuous on

X \ Σ. When X is compact the curvature current of hε dominates a small multiple
of Θ on X \ Σ.

2.4. Wedge products of singular currents. We recall here a few facts that we
need regarding the definition of complex Monge-Ampère operators. Let T be a posi-
tive closed current of bidimension (l, l), l > 0, on an open set U in Cn. The coefficients
of T are complex Radon measures and their total variations are dominated, up to mul-
tiplicative constants, by the trace measure of T , |T | = T ∧ Ωl, where Ω is any fixed
smooth positive (1, 1) form on U . If u is a psh function on U so that u ∈ L1

loc(U, |T |)
we say that the wedge product ddcu ∧ T is well defined. This is the positive closed
current of bidimension (l − 1, l − 1) defined by ddcu ∧ T = ddc(uT ).
If u1, . . . , uq are psh functions on U we say that ddcu1 ∧ . . . ∧ dd

cuq is well defined
if one can define inductively as above all intermediate currents

ddcuj1 ∧ . . . ∧ dd
cujl = ddc(uj1dd

cuj2 ∧ . . . ∧ dd
cujl), 1 ≤ j1 < . . . < jl ≤ q.

The wedge product is well defined for locally bounded psh functions [BT1, BT2], for
psh functions that are locally bounded outside a compact subset of a pseudoconvex
open set U , or when the mutual intersection of their unbounded loci is small in a
certain sense [S, D4, FS1]. We recall here one such situation [D4, Corollary 2.11]: if
u1, . . . , uq are psh functions on U so that uj is locally bounded outside an analytic
subset Aj of U and codim (Aj1 ∩ . . . ∩ Ajl) ≥ l for each l, 1 ≤ j1 < . . . < jl ≤ q, then
ddcu1∧ . . .∧ dd

cuq is well defined. We also note that the natural domain of definition
of the Monge-Ampère operator u→ (ddcu)n is completely described in [Bl1, Bl2, Ce].
If T is a positive closed current of bidegree (1, 1) on a complex manifold X then

locally T = ddcu for a psh function u. Hence defining T1 ∧ . . . ∧ Tq for such currents
Tj amounts to verifying locally one of the conditions mentioned above for their psh
potentials uj. We conclude this brief overview by noting that when X is compact the
class of currents for which the wedge product can be globally defined so that it has
good continuity properties is larger than the one for which it is well defined by local
considerations as above (see e.g. [GZ1, GZ2, CGZ]).
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3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We start with a rather elementary
property of the Bergman kernel function Pp in Lemma 3.1 and show in Lemma 3.2
that logPp is, locally on X , the difference of two psh functions. Moreover, the Fubini-
Study currents γp are well defined, and if the codimension of Σ is bigger than k ≥ 2,
then also the wedge products γkp are well defined (Lemma 3.3). We continue with
the crucial Theorem 3.4 about the local continuity properties of the Monge-Ampère
operator. This result is of independent interest. With these preparations we can then
prove Theorem 1.1.
For the convenience of the reader, we include a proof of the following properties of

the function Pp in our setting.

Lemma 3.1. If Pp is the Bergman kernel function defined in (1) then the definition
is independent of the basis {Spj }j≥1 and the function Pp is continuous on X \ Σ.

Proof. By the Riesz-Fischer theorem we have that S ∈ H0
(2)(X \ Σ, Lp) if and only

if there exists a sequence a = {aj} ∈ l2 so that S = Sa, where Sa =
∑∞

j=1 ajS
p
j and

‖Sa‖p = ‖a‖2.

Fix x ∈ X \ Σ and a neighborhood Uα ⊂⊂ X \ Σ of x with a holomorphic frame
eα of L over Uα and so that f ≥ c > 0 on Uα. We write Sa = sae

⊗p
α , Spj = spje

⊗p
α , and

we let ψα be a continuous psh weight of h on Uα. It follows that sa =
∑∞

j=1 ajs
p
j and

the series converges locally uniformly on Uα. As this holds for every sequence a ∈ l2

we have that {spj (z)} ∈ l2 for all z ∈ Uα.
We fix compacts Ki so that x ∈ intK1, K1 ⊂⊂ K2 ⊂⊂ K3 ⊂ Uα. For z ∈ K2

consider the sections Sz =
∑∞

j=1 s
p
j (z)S

p
j ∈ H0

(2)(X \ Σ, Lp), and write Sz = sze
⊗p
α .

Then
(

∞∑

j=1

|spj(z)|
2

)2

= |sz(z)|
2 ≤ C1

∫

K3

|sz|
2e−2pψα fΩn ≤ C1‖Sz‖

2
p = C1

∞∑

j=1

|spj(z)|
2,

for some constant C1. This implies that
∞∑

j=1

|spj(z)|
2 ≤ C1, ∀ z ∈ K2.

We have

|spj(y)|
2 ≤ C2

∫

K2

|spj |
2Ωn, ∀ y ∈ K1,

where C2 is a constant. Therefore

∞∑

j=1

max
K1

|spj |
2 ≤ C2

∫

K2

(
∞∑

j=1

|spj |
2

)
Ωn ≤ C1C2

∫

K2

Ωn,

so the series
∑∞

j=1 |s
p
j |

2 converges uniformly on K1. This shows that the function

Pp =
∑∞

j=1 |s
p
j |

2e−2pψα is continuous near x.
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To see that Pp does not depend on the choice of basis, observe that

Pp(x) = max{|S(x)|2hp : S ∈ H0
(2)(X \ Σ, Lp), ‖S‖p = 1}.

Indeed, using the above notations we have for a ∈ l2 with ‖a‖2 = 1,

|Sa(x)|
2
hp =

∣∣∣∣∣

∞∑

j=1

ajs
p
j(x)

∣∣∣∣∣

2

e−2pψα(x) ≤

(
∞∑

j=1

|spj(x)|
2

)
e−2pψα(x) = Pp(x).

Moreover, if

a =
{
c−1 spj (x)

}
j≥1

, c :=

(
∞∑

j=1

|spj(x)|
2

)1/2

,

then ‖a‖2 = 1, Sa(x) = ce⊗pα , so |Sa(x)|
2
hp

= Pp(x). �

We start the proof of Theorem 1.1 with two lemmas.

Lemma 3.2. If X, Σ, (L, h), f, Ω are as in Theorem 1.1 then:
(i) H0

(2)(X \ Σ, Lp) ⊂ H0(X,Lp).

(ii) γp extends to a positive closed current of bidegree (1,1) on X defined locally by
formula (2) and which is independent of the choice of basis {Spj }.
(iii) logPp ∈ L1

loc(X,Ω
n) and ddc logPp = 2γp − 2pγ as currents on X.

Proof. (i) Let x ∈ Σn−1
reg and let eα be a holomorphic frame of L on a neighborhood

Uα of x. A section S ∈ H0
(2)(X \ Σ, Lp) can be written on Uα as S = se⊗pα where s is

a holomorphic function on Uα \Σ. We may assume that h has a psh weight ψα which
is bounded above on Uα and that f ≥ c > 0 on Uα for some constant c. Then∫

Uα\Σ

|s|2Ωn ≤ C

∫

Uα\Σ

|s|2e−2pψα fΩn ≤ C‖S‖2p <∞.

By Skoda’s lemma [MM2, Lemma 2.3.22], this implies that S extends holomorphically
near x.
Thus any section S ∈ H0

(2)(X \ Σ, Lp) extends holomorphically to a section of Lp

over X \ Y , where Y = Σ \ Σn−1
reg , and hence to a holomorphic section of Lp since Y

is an analytic subvariety of X of codimension ≥ 2.

(ii) Let x ∈ Σ, Uα be a neighborhood of x as above, and set

up := log

(
∞∑

j=1

|spj |
2

)
on Uα.

By Lemma 3.1 it follows that the function eup = Ppe
2pψα is continuous on Uα\Σ, hence

up is psh since it satisfies the subaverage inequality. This implies that γp is a positive
closed current on X \Σ. We may assume that there exists coordinates (z1, . . . , zn) on
Uα so that x = 0 and Uα ∩ Σ is contained in the cone {|zn| ≤ max(|z1|, . . . , |zn−1|)}.
Applying the maximum principle on complex lines parallel to the zn axis, we see that
there exist a neighborhood V ⊂ Uα of x and a compact set K ⊂ Uα \ Σ so that
supz∈V e

up ≤ supz∈K e
up . This implies that the function up is bounded above, hence
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psh, on V . So γp extends to a positive closed current on X defined locally by formula
(2). The current γp does not depend on the choice of basis {Spj } since the function
Pp is independent of the choice of basis.

(iii) If x ∈ Σ and Uα are as above, then by (ii) logPp = up − 2pψα, Ω
n-a.e. on Uα.

So logPp is locally the difference of two psh functions. �

Lemma 3.3. If dimΣ ≤ n − k for some 2 ≤ k ≤ n and hypothesis (3) holds then
the currents γk and γkp are well defined on X, respectively on each relatively compact
neighborhood of Σ, for all p sufficiently large.

Proof. The current γk is well defined by [D4, Corollary 2.11], since dimΣ ≤ n− k.
Let Ap = {x ∈ X : Spj (x) = 0, ∀ j ≥ 1}. Lemma 3.2 shows that the current γp

has local psh potentials which are continuous away from Ap. By [D4, Corollary 2.11],
it suffices to show that given any relatively compact neighborhood U of Σ we have
dim(Ap ∩ U) ≤ n− k for all p sufficiently large.
Assuming the contrary, there exist m > n − k and a sequence pj → ∞ so that

each analytic set Apj ∩U has an irreducible component Yj of dimension m. It follows
from (3) that, given any ε-neighborhood Vε of Σ, Yj ⊂ Apj ∩ U ⊂ Vε for all j
sufficiently large, hence Yj are compact. Let |Yj| =

∫
Yj
Ωm and Tj = [Yj ]/|Yj|, where

[Yj] denotes the current of integration on Yj. Since Tj have unit mass, we may assume
by passing to a subsequence that Tj converges weakly to a positive closed current T
of bidimension (m,m). But T is supported by Σ, so T = 0 by the support theorem
as dimΣ ≤ n − k < m. On the other hand 〈T,Ωm〉 = limj→∞〈Tj ,Ω

m〉 = 1, a
contradiction. �

We will need the following local property of the complex Monge-Ampère operator:

Theorem 3.4. Let U be an open set in Cn, Σ be a proper analytic suvariety of U ,
and v be a psh function on U which is continuous on U \ Σ. Assume that vp, p ≥ 1,
are psh functions on U so that vp → v locally uniformly on U \ Σ. Then:
(i) The sequence {vp} is locally uniformly upper bounded in U .
(ii) Assume that dimΣ ≤ n−k and the currents (ddcvp)

k are well defined on U for
some k ≥ 1. Then (ddcvp)

k → (ddcv)k weakly in the sense of currents on U .

Proof. (i) The sequence {vp} is clearly locally uniformly upper bounded in U \ Σ. If
x ∈ Σ we may assume that there exists coordinates (z1, . . . , zn) on some neighborhood
V of x = 0 so that V ∩ Σ is contained in the cone {|zn| ≤ max(|z1|, . . . , |zn−1|)}.
Applying the maximum principle on complex lines parallel to the zn axis, we see
that there exist a neighborhood V1 ⊂ V of x and a compact set K ⊂ V \ Σ so that
supV1 vp ≤ supK vp. Hence {vp} is uniformly upper bounded on V1.

(ii) Recall that the current (ddcv)k is well defined on U since dimΣ ≤ n − k [D4,
Corollary 2.11]). Since vp → v locally uniformly on U \ Σ and v is continuous there
we have that (ddcvp)

k → (ddcv)k weakly in the sense of currents on U \ Σ (see e.g.
[BT1, BT2], also [D4, Corollary 1.6]). We divide the proof into three steps.
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Step 1. We prove here assertion (ii) when k = n. Then Σ consists of isolated points
of U . Let x ∈ Σ and χ ≥ 0 be a smooth function with compact support in U so that
χ = 1 near x and suppχ ∩ Σ = {x}. Then
∫
χ (ddcvp)

n =

∫
vp(dd

cvp)
n−1 ∧ ddcχ→

∫
v(ddcv)n−1 ∧ ddcχ =

∫
χ (ddcv)n,

since vp → v locally uniformly in a neighborhood of supp ddcχ and v is continuous
there. This shows that the sequence of positive measures (ddcvp)

n has locally bounded
mass on U and that if ν is any weak limit point of this sequence then ν({x}) =
(ddcv)n({x}) for each x ∈ Σ. It follows that (ddcvp)

n → (ddcv)n weakly in the sense
of measures on U .

We assume in the sequel that 1 ≤ k ≤ n− 1.

Step 2. We show that the currents (ddcvp)
k have locally uniformly bounded mass

in U . Note that we only have to show this near points x ∈ Σ. The proof is quite
standard in the case k = 1 and when k > 1 it follows from Oka’s inequality for
currents due to Fornæss and Sibony [FS1].
Consider first the case k = 1. Fix V ⊂ U a relatively compact neighborhood of x

and compacts Kj ⊂ V so that x ∈ intK1, K1 ⊂ intK2, and K3 ⊂ V \ Σ has positive
Lebesgue measure. Subtracting a constant we may assume that vp, v < 0 on V . There
exists a constant C(K1, K2) so that ‖ddcvp‖K1

≤ C(K1, K2)
∫
K2

|vp| for every p (see

e.g. [D4, Remark 1.4]). By [Ho, Theorem 3.2.12], the family of psh functions u on V
so that u < 0 and

∫
K3

|u| = 1 is compact in L1
loc(V ). Hence there exists a constant

C(K2, K3) so that
∫
K2

|vp| ≤ C(K2, K3)
∫
K3

|vp| for every p. We conclude that the
currents ddcvp have uniformly bounded mass on K1.

Asume next that 2 ≤ k ≤ n−1. Let x be a regular point of Σ so that dimxΣ = n−k.
By a change of coordinates near x we may assume that

x = (1/2, . . . , 1/2) ∈ ∆
n
⊂ U , Σ ∩∆

n
= {z = (z1, . . . , zn) : z1 = . . . = zk = 1/2},

where ∆ is the unit disc in C. We may also assume that vp, v < 0 near ∆
n
. Consider

the (k − 1, n− k + 1) Hartogs figure

H = {(z′, z′′) ∈ C
k−1 × C

n−k+1 : ‖z′‖ ≤ 1, ‖z′′‖ ≤ 1/4} ∪

{(z′, z′′) ∈ C
k−1 × C

n−k+1 : 3/4 ≤ ‖z′‖ ≤ 1, ‖z′′‖ ≤ 1},

where ‖z′‖ = max(|z1|, . . . |zk−1|). The current T = vp(dd
cvp)

k−1 is a negative current

near ∆
n
of bidegree (k − 1, k − 1) and ddcT = (ddcvp)

k ≥ 0. By Oka’s inequality
applied to T [FS1, Theorem 2.4],

‖vp(dd
cvp)

k−1‖K + ‖(ddcvp)
k‖K ≤ C‖vp(dd

cvp)
k−1‖H

for some absolute constant C, where K = ∆
n

3/4 is the polydisc of radius 3/4. Note

that x ∈ intK. Since H ∩ Σ = ∅ we have vp(dd
cvp)

k−1 → v(ddcv)k−1 near H . It
follows that ‖(ddcvp)

k‖K are uniformly bounded.
Therefore we showed that the currents (ddcvp)

k have locally bounded mass on U\Y ,
where Y ⊂ Σ is an analytic set of codimension ≥ k + 1. Oka’s inequality applied
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to the currents (ddcvp)
k implies that they have locally uniformly bounded mass near

each y ∈ Y (see also [FS1, Corollary 2.6]).

Step 3. We now prove that (ddcvp)
k → (ddcv)k weakly on U . Since the currents

(ddcvp)
k have locally uniformly bounded mass on U , it suffices to prove that any weak

limit point T of (ddcvp)
k is equal to (ddcv)k. Let us write

Σ = Y ∪
⋃

j≥1

Yj ,

where Yj are the irreducible components of dimension n− k and dimY ≤ n− k − 1.
Recall that T = (ddcv)k on U \Σ. Hence by Federer’s support theorem ([Fe], see also
[H, Theorem 1.7]), T = (ddcv)k on D = U \ ∪j≥1Yj, since Y is an analytic subvariety
of D of dimension ≤ n− k − 1.
By Siu’s decomposition formula ([Si], see also [D4, Theorem 6.19]) we write

T = R +
∑

j≥1

cj[Yj ] , (dd
cv)k = S +

∑

j≥1

dj[Yj] ,

where [Yj] denotes the current of integration on Yj, cj , dj ≥ 0, and R, S are positive
closed currents of bidegree (k, k) on U which do not charge any Yj (i.e. the trace
measure of R is 0 on Yj). It follows by above that R = S. To conclude the proof we
have to show that cj = dj for each j. This will be done using slicing.
Without loss of generality, let j = 1 and x ∈ Y1 be a regular point of Σ. By a

change of coordinates z = (z′, z′′) near x we may assume that x = 0 ∈ ∆
n
⊂ U and

Σ ∩ ∆n = Y1 ∩ ∆n = {z′ = 0}, where z′ = (z1, . . . , zk), z
′′ = (zk+1, . . . , zn). Since

vp → v locally uniformly on U \ Σ and v is continuous there, it follows that for each
z′′ ∈ ∆n−k the functions vp,z′′(z

′) = vp(z
′, z′′), vz′′(z

′) = v(z′, z′′), are locally bounded
near the boundary of ∆k, so their Monge-Ampère measures (ddcvp,z′′)

k, (ddcvz′′)
k are

well defined on ∆k (see [D4, Corolary 2.3]). Arguing as in the proof of Step 1, it
follows that (ddcvp,z′′)

k → (ddcvz′′)
k weakly on ∆k as p→ ∞, for each z′′ ∈ ∆n−k.

Let χ1(z
′) ≥ 0 (resp. χ2(z

′′) ≥ 0) be a smooth function with compact support in
∆k (resp. ∆n−k) so that χ1 = 1 near 0 ∈ Ck (resp. χ2 = 1 near 0 ∈ Cn−k). Let
β = i/2

∑n
j=k+1 dzj ∧ dzj be the standard Kähler form in C

n−k. One has the slicing

formula (see e.g. [DS1, formula (2.1)])
∫

∆n

χ1(z
′)χ2(z

′′)(ddcvp)
k ∧ βn−k =

∫

∆n−k

(∫

∆k

χ1(z
′)(ddcvp,z′′)

k

)
χ2(z

′′)βn−k,

and similarly for (ddcv)k. Note that
∫
χ1 (dd

cvp,z′′)
k =

∫
vp,z′′(dd

cvp,z′′)
k−1 ∧ ddcχ1.

Since ddcχ1 is supported away from Σ, the Chern-Levine-Nirenberg estimates imply
that this integral is locally uniformly bounded as a function of z′′. Letting p → ∞
we infer by above that

∫

∆n

χ1(z
′)χ2(z

′′)T ∧ βn−k =

∫

∆n

χ1(z
′)χ2(z

′′)(ddcv)k ∧ βn−k.
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By Siu’s decomposition formulas of T and (ddcv)k, and since R = S, this implies
that

c1

∫

{z′=0}

χ2(z
′′)βn−k = d1

∫

{z′=0}

χ2(z
′′)βn−k.

As
∫
{z′=0}

χ2(z
′′)βn−k > 0 we see that c1 = d1, and the proof is complete. �

We finish now the proof of Theorem 1.1 by showing that 1
pk
γkp → γk weakly on X .

Since this is local, we fix x ∈ X and let Uα be a relatively compact neighborhood of x
such that there exists a holomorphic frame eα of L over Uα. Let ψα be a psh weight
of h on Uα and let

vp =
1

2p
log

(
∞∑

j=1

|spj |
2

)
, where Spj = spje

⊗p
α , spj ∈ O(Uα).

By Lemma 3.2 the function vp is psh on Uα and we have 1
p
γp = ddcvp, γ = ddcψα.

Moreover, Lemma 3.3 shows that the currents (ddcvp)
k are well defined on Uα for all

p sufficiently large. Note that ψα is continuous on Uα \ Σ. Since
1
2p

logPp = vp − ψα,

hypothesis (3) implies that vp → ψα locally uniformly on Uα\Σ. It follows by Theorem
3.4 that 1

pk
γkp = (ddcvp)

k → (ddcψα)
k = γk weakly on Uα. This concludes the proof

of Theorem 1.1.

Remark 3.5. In the setting of Theorem 1.1, assume that dimΣ ≤ n − k and that
(3) holds. The proof of Lemma 3.3 shows that all currents γjp ∧ γl, j + l ≤ k are

well defined positive closed currents on X. By Lemma 3.2 logPp ∈ L1
loc(X,Ω

n) and
ddc logPp = 2γp − 2pγ is a current of order 0 on X. It follows that (ddc logPp)

j,
j ≤ k, are currents of order 0 on X which can be defined inductively by

(ddc logPp)
j+1 = ddc

(
logPp (dd

c logPp)
j
)
, j < k,

since locally, logPp is integrable with respect to the measure coefficients of (ddc logPp)
j.

Moreover, we have

(
1

2p
ddc logPp

)k
=

(
1

p
γp − γ

)k
=

k∑

j=0

(
k

j

)
(−1)k−j

pj
γjp ∧ γ

k−j.

A straightforward adaptation of the proof of Theorems 1.1 and 3.4 shows that

p−jγjp ∧ γ
k−j → γk , as p→ ∞,

weakly on X. Hence p−j(ddc logPp)
j → 0 as p→ ∞ in the weak sense of currents of

order 0 on X, for all 1 ≤ j ≤ k.

Remark 3.6. Observe that the hypothesis f ≥ cx > 0 Ωn-a.e. in a neighborhood
Ux of each x ∈ Σn−1

reg was only needed in the proof of Lemma 3.2 (i), i.e. to show

that H0
(2)(X \ Σ, Lp) ⊂ H0(X,Lp). Therefore, Theorem 1.1 also holds provided that

X,Σ, (L, h), f,Ω verify assumptions (A), (B), (C’) and (D), where:
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(C’) The volume form on X\Σ is fΩn, where f ∈ L1
loc(X\Σ,Ωn) verifies f ≥ cx > 0

Ωn-a.e. in a neighborhood Ux of each x ∈ X \ Σ.

(D) H0
(2)(X \ Σ, Lp) ⊂ H0(X,Lp) for every p ≥ 1.

This variant of Theorem 1.1 will be useful to us for some applications in Section 6,
where the fact that the sections in H0

(2)(X \Σ, Lp) extend holomorphically to sections

of Lp over X is known to hold by other considerations (see Sections 6.3 and 6.4).

4. Distribution of zeros of random sections

The purpose of this section is to give the proof of Theorem 1.2. As a consequence we
show in Theorem 4.3 that zeros of random holomorphic sections are equidistributed
with respect to the curvature current.
Let X,Σ, (L, h), f,Ω verify assumptions (A)-(C) stated in the introduction. In

addition, we assume in this section that X is compact. By Lemma 3.2, H0
(2)(X \

Σ, Lp) ⊂ H0(X,Lp). Let

dp = dimH0
(2)(X \ Σ, Lp), {Spj }1≤j≤dp a fixed orthonormal basis of H0

(2)(X \ Σ, Lp).

The currents γp can now be described as pullbacks γp = Φ⋆p(ωFS), where Φp : X 99K

Pdp−1 is the Kodaira map defined by {Spj } and ωFS is the Fubini-Study form on Pdp−1.
Recall that if Spj = spje

⊗p
α where eα is a holomorphic frame for L on an open set Uα

then
Φp(x) = [sp1(x) : . . . : s

p
dp
(x)], x ∈ Uα.

Following the framework in [SZ1], we identify the unit sphere Sp of H0
(2)(X \Σ, Lp)

to the unit sphere S2dp−1 in Cdp by

a = (a1, . . . , adp) ∈ S2dp−1 −→ Sa =

dp∑

j=1

ajS
p
j ∈ Sp,

and we let λp be the probabilty measure on Sp induced by the normalized surface
measure on S2dp−1, denoted also by λp (i.e. λp(S

2dp−1) = 1). We let λkp denote the

product measure on (Sp)k determined by λp. Given a nontrivial section S ∈ H0(X,Lp)
we denote by [S = 0] the current of integration (with multiplicities) over the analytic
hypersurface {S = 0} of X .

We give now the proof of Theorem 1.2. Let us note that some of the main ideas
involved in proving this theorem are similar to those in [SZ1, SZ3], however special
attention has to be given as we have to work with currents rather than smooth
forms and the subspaces of sections we consider have nonempty base locus. To prove
assertion (i) we will need the following version of Bertini’s theorem:

Proposition 4.1. Let L −→ X be a holomorphic line bundle over a compact complex
manifold X of dimension n. Assume that:
(i) V is a vector subspace of H0(X,L) with basis S1, . . . , Sd, and with base locus

Bs(V ) = {S1 = . . . = Sd = 0} ⊂ X so that dimBs(V ) ≤ n− k.

(ii) Z(h) := {x ∈ X :
∑d

j=1 hjSj(x) = 0}, where h = [h1 : . . . : hd] ∈ Pd−1.
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(iii) νl is the product measure on (Pd−1)l induced by the Fubini-Study volume µd−1

on Pd−1.
Then dimZ(h1) ∩ . . . ∩ Z(hk) = n− k, for νk-a.e. (h

1, . . . , hk) ∈ (Pd−1)k.

The proof is included at the end of this section for the convenience of the reader,
since we could not find it in the literature. Assertion (ii) of Theorem 1.2 is proved
by repeated application of the following proposition:

Proposition 4.2. Let L −→ X, V, S1, . . . , Sd, be as in Proposition 4.1. Assume that:

(i) S :=
{∑d

j=1 ajSj :
∑d

j=1 |aj|
2 = 1

}
is endowed with the probability measure λ

induced via the natural identification by the normalized surface measure on S2d−1.
(ii) β := Φ⋆(ωFS), where Φ : X 99K Pd−1 is the Kodaira map defined by {Sj}.
(iii) T is a positive closed current on X of bidimension (l, l), l > 0, such that the

current [S = 0] ∧ T is well defined for λ-a.e. S ∈ S.
Then the current β∧T is well defined on X. Moreover, if ϕ is a smooth (l−1, l−1)

form on X the function S → 〈[S = 0] ∧ T, ϕ〉 is in L1(S, λ) and
∫

S

〈[S = 0] ∧ T, ϕ〉 dλ(S) = 〈β ∧ T, ϕ〉.

We postpone for the time being the proof of Proposition 4.2, and we continue with
the proof of Theorem 1.2.

Proof of Theorem 1.2. (i) Lemma 3.3 (and its proof) show that

dimBs(H0
(2)(X \ Σ, Lp)) ≤ n− k,

for all p sufficiently large. It follows from Proposition 4.1 that the analytic subset
{σ1 = 0}∩. . .∩{σk = 0} has pure dimension n−k for λkp-a.e. σ = (σ1, . . . , σk) ∈ (Sp)k.
Hence for such σ, the set {σi1 = 0} ∩ . . . ∩ {σil = 0} has pure dimension n − l for
every i1 < . . . < il in {1, . . . , k}. Therefore the current [σ = 0] is well defined [D4,
Corollary 2.11], and it equals the current of intersection with multiplicities along
{σ1 = 0} ∩ . . . ∩ {σk = 0} [D4, Proposition 2.12].

(ii) If σ = (σ1, . . . , σk) ∈ (Sp)k is so that the set {σ1 = 0} ∩ . . . ∩ {σk = 0} has
pure dimension n − k, Corollary 2.11 in [D4] and the considerations from (i) show
that [σi1 = 0]∧ . . .∧ [σil = 0]∧ γp is a well defined positive closed current of bidegree
(l + 1, l + 1) on X , for every i1 < . . . < il in {1, . . . , k}, l < k.
By adding to ϕ a large multiple of Ωn−k we may assume that ϕ is a strongly positive

(n−k, n−k) test form onX . Hence the integral in (ii) can be evaluated as an iterated
integral by Tonelli’s theorem. We apply Proposition 4.2 with

V = H0
(2)(X \ Σ, Lp), T = [σ2 = 0] ∧ . . . ∧ [σk = 0].

Then for λk−1
p -a.e. (σ2, . . . , σk) ∈ (Sp)k−1,

∫

Sp

〈[σ = 0], ϕ〉 dλp(σ1) = 〈T ∧ γp, ϕ〉 = 〈[σ2 = 0] ∧ . . . ∧ [σk = 0] ∧ γp, ϕ〉,



EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES 17

since [σ = 0] = [σ1 = 0]∧T . Proposition 4.1 shows that Proposition 4.2 can be applied
again for λk−2

p -a.e. (σ3, . . . , σk) ∈ (Sp)k−2 with T = [σ3 = 0] ∧ . . . ∧ [σk = 0] ∧ γp, so∫

Sp

∫

Sp

〈[σ = 0], ϕ〉 dλp(σ1) dλp(σ2) =

∫

Sp

〈[σ2 = 0] ∧ . . . ∧ [σk = 0] ∧ γp, ϕ〉 dλp(σ2)

= 〈[σ3 = 0] ∧ . . . ∧ [σk = 0] ∧ γ2p , ϕ〉.

Continuing like this we obtain that the k-th iterated integral in (ii) equals 〈γkp , ϕ〉.
This proves (ii), and then (iii) follows at once from Theorem 1.1. �

Let us now consider the probability space S∞ =
∏∞

p=1 S
p endowed with the prob-

ability measure λ∞ =
∏∞

p=1 λp. The proof of the variance estimate from Lemma 3.3

in [SZ1] goes through with no change. Combined with Theorem 1.2, it implies that
Theorem 1.1 of [SZ1] holds in our setting. Namely, we have the following:

Theorem 4.3. In the setting of Theorem 1.1, assume that X is compact and that
(3) holds. Then, in the weak sense of currents on X,

lim
p→∞

1

p
[σp = 0] = γ, for λ∞-a.e. sequence {σp}p≥1 ∈ S∞.

Proof of Proposition 4.2. We fix a holomorphic frame eα of L over an open set Uα,
and write S = seα, Sj = sjeα, where S =

∑d
j=1 ajSj ∈ S is chosen so that the current

[S = 0] ∧ T is well defined. Then

log |s| = log

∣∣∣∣∣

d∑

j=1

ajsj

∣∣∣∣∣ ≤
1

2
log

(
d∑

j=1

|sj |
2

)
.

Since the latter function is locally bounded above on Uα and log |s| ∈ L1
loc(Uα, |T |),

we conclude that log(
∑d

j=1 |sj|
2) ∈ L1

loc(Uα, |T |), so β ∧ T is well defined.

For S ∈ S we define the function N(S) on X by

N(S) |
Uα
= log

|s|√
|s1|2 + . . .+ |sd|2

.

Note that N(S) ∈ L1(X,Ωn), where Ω is a smooth positive (1, 1) form onX , since it is
locally the difference of psh functions. Moreover, for λ-a.e. S ∈ S, N(S) ∈ L1(X, |T |).
Therefore we have

[S = 0] = β + ddcN(S), [S = 0] ∧ T = β ∧ T + ddc(N(S)T ).

Indeed, the first formula follows from the definition of the function N(S), while for
the second, working locally on Uα, we have

[S = 0] ∧ T = ddc(log |s| T ) = ddc
(
log
√
|s1|2 + . . .+ |sd|2 T

)
+ ddc(N(S)T )

= β ∧ T + ddc(N(S)T ).

Thus, for λ-a.e. S ∈ S,

〈[S = 0] ∧ T, ϕ〉 = 〈β ∧ T, ϕ〉+

∫

X

N(S) T ∧ ddcϕ,
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and the proof is finished if we show that the function S →
∫
X
N(S) T ∧ ddcϕ belongs

to L1(S, λ) and ∫

S

(∫

X

N(S) T ∧ ddcϕ

)
dλ(S) = 0 .

We may assume that ϕ is real, so ddcϕ is a real (l, l) from on X . There exists a
constant M so that ddcϕ+MΩl is a strongly positive (l, l) form, so T ∧ (ddcϕ+MΩl)
is a positive measure. It follows that we can write T ∧ ddcϕ = µ1 − µ2, where µj are
positive measures and N(S) ∈ L1(X, µj) for λ-a.e. S ∈ S. Note also that N(S) ≤ 0
on X . Hence by Tonelli’s theorem,

∫

S

(∫

X

N(S) dµj

)
dλ(S) =

∫

X

(∫

S

N(S) dλ(S)

)
dµj .

Since on Uα the function log(|s1|
2 + . . .+ |sd|

2) is locally integrable with respect to
|T |, hence with respect to µj, we have |s1|

2 + . . .+ |sd|
2 > 0 µj-a.e. on Uα. So

uα :=

(
s1√

|s1|2 + . . .+ |sd|2
, . . . ,

sd√
|s1|2 + . . .+ |sd|2

)
,

is a well defined function µj-a.e. on Uα with values in the unit sphere S2d−1 in Cd.
We have

N(S) = N(a1S1 + . . .+ adSd) = log |a · uα| on Uα,

where a = (a1, . . . , ad) and a · u = a1u1 + . . .+ adud. Therefore∫

S

N(S)(x) dλ(S) =

∫

S2d−1

log |a · uα(x)| dλ(a) = Cd,

for µj-a.e. x ∈ Uα, where Cd < 0 is a dimensional constant. It follows that
∫

S

(∫

X

N(S) dµj

)
dλ(S) = Cdµj(X) > −∞,

so the function S →
∫
X
N(S) dµj is in L

1(S, λ), hence so is the function

S →

∫

X

N(S) T ∧ ddcϕ =

∫

X

N(S) dµ1 −

∫

X

N(S) dµ2.

Finally, since T is closed we have
∫

S

(∫

X

N(S) T ∧ ddcϕ

)
dλ(S) = Cd(µ1(X)− µ2(X)) = Cd

∫

X

T ∧ ddcϕ = 0.

This concludes the proof. �

Proof of Proposition 4.1. We divide the proof in three steps.

Step 1. We show that for νk−1-a.e. (h
1, . . . , hk−1) ∈ (Pd−1)k−1 the set

Z(h1) ∩ . . . ∩ Z(hk−1) ∩ (X \Bs(V ))

is a complex submanifold of X \Bs(V ) of dimension n− k + 1.
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Consider the set I ⊂ (X \Bs(V ))× (Pd−1)k−1 defined by

(x, h1, . . . , hk−1) ∈ I ⇐⇒
d∑

j=1

hijSj(x) = 0, 1 ≤ i ≤ k − 1,

where hi = [hi1 : · · · : hid]. If z = (x, h1, . . . , hk−1) ∈ I then x 6∈ Bs(V ), and we may
assume that for each i, hiji = 1 for some 1 ≤ ji ≤ d. For each i there exists li 6= ji so
that Sli(x) 6= 0. Indeed, otherwise Sl(x) = 0 for all l 6= ji, so

Sji(x) =
∑

l 6=ji

hilSl(x) + Sji(x) = 0,

hence x ∈ Bs(V ), a contradiction. We obtain that for z′ = (x′, ζ1, . . . , ζk−1) near z,
I is the graph

ζ ili = −
Sji(x

′)

Sli(x
′)
−
∑

l 6=li,ji

Sl(x
′)

Sli(x
′)
ζ il , 1 ≤ i ≤ k − 1.

Thus I is a submanifold of (X \Bs(V ))× (Pd−1)k−1 of dimension n+ (k− 1)(d− 2).
We claim that the projection

π2 : I −→ (Pd−1)k−1, π2(x, h
1, . . . , hk−1) = (h1, . . . , hk−1),

is surjective. Indeed, Z(hi) 6= X since (S1, . . . , Sd) is a basis of V , so dimZ(h1) ∩
. . . ∩ Z(hk−1) ≥ n − k + 1. As dimBs(V ) ≤ n − k, we can find x ∈ Z(h1) ∩ . . . ∩
Z(hk−1) ∩ (X \Bs(V )), so (x, h1, . . . , hk−1) ∈ I.
By Sard’s theorem, for νk−1-a.e. (h

1, . . . , hk−1) ∈ (Pd−1)k−1 the set

π−1
2 (h1, . . . , hk−1) = {(x, h1, . . . , hk−1) : x ∈ Z(h1) ∩ . . . ∩ Z(hk−1) ∩ (X \Bs(V ))}

is a submanifold of I of dimension dim I − (k − 1)(d − 1) = n − k + 1. Since
π1 : (X \Bs(V ))×{(h1, . . . , hk−1)} −→ X \Bs(V ) is a biholomorphism, we conclude
that Z(h1)∩ . . .∩Z(hk−1)∩ (X \Bs(V )) is a submanifold of X \Bs(V ) of dimension
n−k+1. In particular, Z(h1)∩. . .∩Z(hk−1) is analytic subset of X of pure dimension
n− k + 1, smooth away from Bs(V ).

Step 2. We show that the set Gk is open, where

Gk = {(h1, . . . , hk) ∈ (Pd−1)k : dimZ(h1) ∩ . . . ∩ Z(hk) = n− k}.

Indeed, assume for a contradiction that (h1, . . . , hk) ∈ Gk but there exist sequences
hiN → hi in Pd−1, as N → ∞, so that the set Z(h1N) ∩ . . . ∩ Z(h

k
N) has an irreducible

component AN of dimension m, for some m > n − k. Consider the currents TN =
(volAN)

−1[AN ], where [AN ] is the current of integration on AN . Since TN have unit
mass, we may assume by passing to a subsequence that TN converge weakly to a
positive closed current T of unit mass and bidimension (m,m). Note that the sets
AN cluster to the analytic set A = Z(h1)∩ . . .∩Z(hk), so T is supported on A. Since
dimA = n− k < m, T = 0 by the support theorem, a contradiction.

Step 3. We show that the complement Gc
k = (Pd−1)k \Gk has νk measure 0. Let

Gk−1 = {(h1, . . . , hk−1) ∈ (Pd−1)k−1 : dimZ(h1) ∩ . . . ∩ Z(hk−1) = n− k + 1}.
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By steps 1 and 2, the set Gk−1 is open and νk−1(G
c
k−1) = 0. We have

Gc
k ⊂

(
Gc
k−1 × P

d−1
)
∪
(
Gc
k ∩ (Gk−1 × P

d−1)
)
.

Note that νk(G
c
k−1×Pd−1) = 0 and the set Fk = Gc

k ∩ (Gk−1×Pd−1) is νk measurable.
For (h1, . . . , hk−1) ∈ Gk−1 consider the slice

Fk(h
1, . . . , hk−1) = {h ∈ P

d−1 : (h1, . . . , hk−1, h) ∈ Fk}

= {h ∈ P
d−1 : (h1, . . . , hk−1, h) ∈ Gc

k}.

Since Gc
k is closed, the above slices are closed. We are done if we show that they have

µd−1 measure 0. Indeed, since Fk is measurable this will imply that νk(Fk) = 0.
To this end we let Y := Z(h1) ∩ . . . ∩ Z(hk−1) = Y1 ∪ . . . ∪ YN , where Yl are the

irreducible components of Y . Since all of them have dimension n − k + 1 it follows
that

Fk(h
1, . . . , hk−1) =

N⋃

j=1

Ej , Ej := {h ∈ P
d−1 : Yj ⊂ Z(h)}.

Note that the sets Ej are closed. We will be done if we show that µd−1(Ej) = 0.
Let us fix j. The basis sections Si cannot all vanish identically on Yj, since dimYj =

n− k + 1 and dimBs(V ) ≤ n− k. We may assume that Sd 6≡ 0 on Yj. So

Ej ⊂ {ζ1 = 0} ∪Hj , Hj := {(ζ2, . . . , ζd) ∈ C
d−1 : [1 : ζ2 : . . . : ζd] ∈ Ej}.

Note that Hj is closed in Cd−1, and we are done if we show that it has Lebesgue
measure 0. This follows since for each (ζ2, . . . , ζd−1) ∈ C

d−2 the slice

Hj(ζ2, . . . , ζd−1) = {ζ ∈ C : (ζ2, . . . , ζd−1, ζ) ∈ Hj}

contains at most one element. Indeed, if ζ 6= ζ ′ ∈ Hj(ζ2, . . . , ζd−1) then

S1 + ζ2S2 + . . .+ ζd−1Sd−1 + ζSd ≡ 0 , S1 + ζ2S2 + · · ·+ ζd−1Sd−1 + ζ ′Sd ≡ 0

on Yj, hence Sd ≡ 0 on Yj, a contradiction. �

5. Asymptotic behavior of the Bergman kernel function

Using techniques of Demailly from [D3, Proposition 3.1], [D5, Section 9] we prove
here two theorems about the asymptotic behavior of the Bergman kernel function.
The first one hereafter holds for arbitrary singular metrics with strictly positive cur-
vature, while the second one, Theorem 5.3, shows that our hypothesis (3) is satisfied
in a quite general setting.

Theorem 5.1. Let (X,Ω) be a compact n-dimensional Kähler manifold and (L, h) be
a holomorphic line bundle on X with a singular Hermitian metric h so that c1(L, h)
is a strictly positive current. If Pp, γp are the Bergman kernel function, resp. the
Fubini-Study currents, defined by (1)-(2) for the spaces H0

(2)(X,L
p) of L2-holomorphic

sections of Lp relative to the metric induced by h and the volume form Ωn, then as
p→ ∞,

1

p
logPp → 0 in L1(X,Ωn) ,

1

p
γp → c1(L, h) ,

1

p
[σp = 0] → c1(L, h)
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for λ∞-a.e. sequence {σp}p≥1 ∈ S∞, in the weak sense of currents on X, where
S∞, λ∞ are as in Theorem 4.3.

We will need the following existence theorem for ∂ in the case of singular Hermitian
metrics. The smooth case goes back to Andreotti-Vesentini and Hörmander, while
the singular case was first observed by Bombieri and Skoda and proved in generality
by Demailly [D1, Theorem 5.1].

Theorem 5.2 (L2-estimates for ∂). Let (M,Θ) be a complete Kähler manifold, (L, h)
be a singular Hermitian line bundle and ϕ a quasi-psh function on M . Assume that
there exist constants a > 0, C > 0 such that

c1(L, h) > 2aΘ, ddcϕ > −CΘ, c1(KM , h
KM ) < CΘ ,

where hKM is the metric induced on KM by Θ. Then there exists p0 = p0(a, C) such
that for any p ≥ p0 and for any form g ∈ L2

0,1(M,Lp) satisfying ∂g = 0 there exists

u ∈ L2
0,0(M,Lp) with ∂u = g and

∫

M

|u|2hpe
−ϕ dvM ≤

1

ap

∫

M

|g|2hpe
−ϕ dvM .

Proof of Theorem 5.1. Let x ∈ X and Uα ⊂ X be a coordinate neighborhood of x on
which there exists a holomorphic frame eα of L. Let ψα be a psh weight of h on Uα.
Fix r0 > 0 so that the ball V := B(x, 2r0) ⊂⊂ Uα and let U := B(x, r0).
We show that there exist constants C1 > 0, p0 ∈ N so that

(5) −
logC1

p
≤

1

p
logPp(z) ≤

log(C1r
−2n)

p
+ 2

(
max
B(z,r)

ψα − ψα(z)

)

holds for all p > p0, 0 < r < r0 and z ∈ U with ψα(z) > −∞.

For the upper estimate, fix z ∈ U with ψα(z) > −∞ and r < r0. Let S ∈
H0

(2)(X,L
p) with ‖S‖p = 1 and write S = se⊗pα . Repeating an argument of Demailly

we obtain

|S(z)|2hp = |s(z)|2e−2pψα(z) ≤ e−2pψα(z)
C1

r2n

∫

B(z,r)

|s|2Ωn

≤
C1

r2n
exp

(
2p

(
max
B(z,r)

ψα − ψα(z)

))∫

B(z,r)

|s|2e−2pψα Ωn

≤
C1

r2n
exp

(
2p

(
max
B(z,r)

ψα − ψα(z)

))
,

where C1 is a constant that depends only on x. Hence

1

p
logPp(z) =

1

p
max
‖S‖p=1

log |S(z)|2hp ≤
log(C1r

−2n)

p
+ 2

(
max
B(z,r)

ψα − ψα(z)

)
.

Note that this estimate holds for all p and it does not require the strict positivity of
the current c1(L, h), nor the hypotheses that X is compact or Ω is a Kähler form.
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For the lower estimate in (5), we proceed as in [D5, Section 9] to show that there
exist a constant C1 > 0 and p0 ∈ N such that for all p > p0 and all z ∈ U with
ψα(z) > −∞ there is a section Sz,p ∈ H0

(2)(X,L
p) with Sz,p(z) 6= 0 and

‖Sz,p‖
2
p ≤ C1|Sz,p(z)|

2
hp .

Observe that this implies that

1

p
logPp(z) =

1

p
max
‖S‖p=1

log |S(z)|2hp ≥ −
logC1

p
.

Let us prove the existence of Sz,p as above. By the Ohsawa-Takegoshi extension
theorem [OT] there exists a constant C ′ > 0 (depending only on x) such that for any
z ∈ U and any p there exists a function vz,p ∈ O(V ) with vz,p(z) 6= 0 and

∫

V

|vz,p|
2e−2pψαΩn ≤ C ′|vz,p(z)|

2e−2pψα(z) .

We shall now solve the ∂-equation with L2-estimates in order to extend vz,p to a
section of Lp over X . We apply Theorem 5.2 for (X,Ω) and (L, h). Let θ ∈ C∞(R)
be a cut-off function such that 0 ≤ θ ≤ 1, θ(t) = 1 for |t| ≤ 1

2
, θ(t) = 0 for |t| ≥ 1.

Define the quasi-psh function ϕz on X by

ϕz(y) =

{
2nθ
(
|y−z|
r0

)
log |y−z|

r0
, for y ∈ Uα ,

0, for y ∈ X \B(z, r0) .

Note that there exist a > 0, C > 0 such that the hypotheses of Theorem 5.2 are
satisfied for (X,Ω), (L, h) and all ϕz, z ∈ U . Let p0 be as in Theorem 5.2. Consider
the form

g ∈ L2
0,1(X,L

p), g = ∂
(
vz,pθ

(
|y−z|
r0

)
e⊗pα
)
.

By Theorem 5.2, for each p > p0 there exists u ∈ L2
0,0(X,L

p) such that ∂u = g and
∫

X

|u|2hpe
−ϕz Ωn ≤

1

ap

∫

X

|g|2hpe
−ϕzΩn <∞ .

Here the second integral is finite since ψα(z) > −∞ and
∫

X

|g|2hpe
−ϕzΩn =

∫

V

|vz,p|
2|∂θ( |y−z|

r0
)|2e−2pψαe−ϕzΩn ≤ C ′′

∫

V

|vz,p|
2e−2pψαΩn,

where C ′′ > 0 is a constant that depends only on x. Near z, e−ϕz(y) = r2n0 |y − z|−2n

is not integrable, thus u(z) = 0. Define

Sz,p := vz,pθ
( |y−z|

r0

)
e⊗pα − u.

Then ∂Sz,p = 0, Sz,p(z) = vz,p(z)e
⊗p
α (z) 6= 0, Sz,p ∈ H0

(2)(X,L
p). Since ϕz ≤ 0 on X ,

‖Sz,p‖
2
p ≤ 2

(∫

V

|vz,p|
2e−2pψαΩn +

∫

X

|u|2hpe
−ϕz Ωn

)

≤ 2C ′

(
1 +

C ′′

ap

)
|vz,p(z)|

2e−2pψα(z) = C1|Sz,p(z)|
2
hp,
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with a constant C1 > 0 that depends only on x. This concludes the proof of (5).

Recall that logPp ∈ L1(X,Ωn), as it is locally the difference of psh functions.
Observe that, by the upper semicontinuity of ψα, (5) implies that 1

p
logPp → 0 as

p → ∞, Ωn-a.e. on X . Since ψα is psh on Uα, it is integrable on U . By dominated
convergence, (5) implies that 1

p
logPp → 0 in L1(U,Ωn), hence in L1(X,Ωn), so

γp − c1(L, h) =
1

2p
ddc logPp → 0 weakly on X.

The conclusion about the equidistribution of zeros of random sequences of sections
now follows as in [SZ1, Theorem 1.1] (see Section 4 and Theorem 4.3). �

We return to the main setting of the paper, given by assumptions (A)-(C) stated
in the introduction, and we take here f ≡ 1.

Theorem 5.3. Let X,Σ, (L, h),Ω verify (A)-(B) and assume that X is compact, Ω
is a Kähler form, and c1(L, h) is a strictly positive current on X. Then (3) holds for
the Bergman kernel function Pp defined in (1) for the space H0

(2)(X \ Σ, Lp).

Proof. Let x ∈ X \ Σ, Uα ⊂ X \ Σ, ψα, V , U , be as in the proof of Theorem 5.1.
Then (5) shows that 1

p
logPp → 0 as p → ∞ uniformly on U , thanks to the uniform

continuity of ψα on V . �

Combining Theorems 1.1, 5.3 and 1.2 we obtain the following equidistribution
theorem for big line bundles:

Theorem 5.4. Let (L, h) be a line bundle over the compact Kähler manifold (X,Ω)
endowed with a singular Hermitian metric h which is continuous outside a proper
analytic subset Σ and so that γ := c1(L, h) is a strictly positive current. If γp is the
current defined by (2) for the space H0

(2)(X \ Σ, Lp) then 1
p
γp → γ weakly on X. If

dimΣ ≤ n− k for some 2 ≤ k ≤ n, then the currents γk and γkp , for all p sufficiently

large, are well defined and 1
pk
γkp → γk weakly on X. Moreover, the conclusions of

Theorems 1.2 and 4.3 hold in this setting.

Note that in Theorems 5.1 and 5.4 the bundle L is a big line bundle and X is
Moishezon, by a theorem of Ji and Shiffman [JS] (cf. also [MM2, Th. 2.3.28, 2.3.30]).
Hence X is in fact a projective manifold, since it is assumed to be Kähler (see e. g.
[MM2, Th. 2.2.26]).

6. Applications

Let X,Σ, (L, h), f,Ω verify assumptions (A)-(C) stated in the introduction and as-
sume in addition that γ = c1(L, h) is a strictly positive current. To emphasize the
metrics that are used, we denote throughout this section the corresponding spaces of
L2-holomorphic sections by H0

(2)(X \ Σ, Lp, h, fΩn). We discuss here several impor-

tant situations in which the Bergman kernel function Pp defined in (1) satisfies our
hypothesis (3). In Sections 6.1, 6.2 we consider singular Hermitian metrics on big
line bundles, and we deduce equidistribution results for L2 holomorphic sections with
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respect to the Poincaré metric and for sections of Nadel multiplier sheaves. In Section
6.3 we turn to Zariski-open manifolds with bounded negative Ricci curvature, and we
generalize a theorem of Tian [T, Theorem C] in our framework. Natural examples of
Kähler-Einstein manifolds of negative Ricci curvature are the arithmetic quotients.
We show in Section 6.4 how our results apply for toroidal compactifications of such
manifolds. In Section 6.5 we point out what simplifications occur in the case of adjoint
bundles. Finally, in Sections 6.6, 6.7 we exhibit some results for 1-convex manifolds.

6.1. Properties of hε. For some of the applications, we will have to work with the
Poincaré metric Θ on X \ Σ and with a small perturbation hε of the metric h on L.
Let us begin by listing certain properties of these special metrics.
We refer to Section 2.3 for the construction of the metrics Θ, hε, and we shall use

the notations introduced there. In particular, Θn = fΩn with a function f as in (C)
(see Section 2.3.1). Note that hε is in fact a metric on L |

X\Y
, where Y ⊂ Σ is an

analytic subset of dimension ≤ n− 2 (Section 2.3.2). We recall the following fact:

Lemma 6.1. Let L be a holomorphic line bundle over a complex manifold X and Y
be an analytic subvariety of X with codimY ≥ 2. Then any positively curved singular
metric hL on L |

X\Y
extends to a positively curved singular metric on L. Moreover,

if c1(L |
X\Y

, hL) ≥ δΩ on X \ Y , for some δ > 0, then the same estimate holds for
the curvature current of the extended metric on X.

Proof. If Uα is a neighborhood of some point y ∈ Y on which L has a holomor-
phic frame eα, then hL(eα, eα) = e−2ϕα for some psh function ϕα on Uα \ Y . Since
codimY ≥ 2 the function ϕα is locally upper bounded near the points of Uα ∩ Y ,
hence it extends to a psh function on Uα. The second conclusion follows since the
current c1(L, h

L) does not charge Y by Federer’s support theorem ([Fe], see also [H,
Theorem 1.7]). �

We denote the extended metric still by hǫ and we let ω = c1(L, hε), so ω is a positive
closed (1, 1) current on X .

Proposition 6.2. (i) We have ω = γ + π⋆(θ
′ + εddcF ), where F is defined in (4)

and θ′ is a smooth real closed (1, 1) form on X̃.
(ii) Let A be an irreducible component of Σ of dimension n− 1. Then the generic

Lelong numbers ν(γ, A) = ν(ω,A). Moreover, any section in H0
(2)(X \Σ, Lp, hε, fΩ

n)

vanishes at least to order pν(ω,A) on A.

Proof. (i) Recall from Section 2.3.2 that the metric hε on L |
X\Y

was induced via

the biholomorphism π : X̃ \ E −→ X \ Y by a metric hL
′

ε on L′ = π⋆
(
L |

X\Y

)
with

curvature current γ′ε = π⋆γ + θ′ + εddcF . The map π : X̃ −→ X is proper so π⋆γ
′
ε is

a well defined positive closed (1,1) current on X which satisfies π⋆γ
′
ε = ω on X \ Y .

As dim Y ≤ n − 2, Federer’s support theorem [Fe] implies that π⋆γ
′
ε = ω on X .

Similarly, we have that π⋆π
⋆γ = γ on X \ Y , and hence on X . The formula for ω in

the statement now follows.
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(ii) Fix a point x ∈ A \ Y . Then x ∈ Σn−1
reg , so we can find a neighborhood

Vx ⊂ X of x and local coordinates z1, . . . , zn on Vx so that π : π−1(Vx) −→ Vx is a
biholomorphism, x = 0, Σ ∩ Vx = A ∩ Vx = {z1 = 0}, and f ≥ c > 0 on Vx.
By (i) we have

ω = γ + (π−1)⋆θ′ + εddcF ◦ π−1 on Vx.

We can assume that there exist functions ϕ, u on Vx so that ϕ is psh, u is smooth,
ddcϕ = γ, ddcu = (π−1)⋆θ′. Then the function ϕε = ϕ + u + εF ◦ π−1 is psh
on Vx and ddcϕε = ω. It follows by the definition (4) of F that near x we have
F ◦ π−1 = − log(g − log |z1|) +O(1), where g is a smooth function. Thus

ϕε = ϕ− log(g − log |z1|) +O(1),

which shows that the Lelong numbers ν(ϕε, x) = ν(ϕ, x). Since x ∈ A \ Y was
arbitrary this implies that ν(ωε, A) = ν(ω,A).
Next, let S ∈ H0

(2)(X \ Σ, Lp, hε, fΩ
n) be defined on Vx by S = se⊗pα , where eα is a

local frame for L, and let ν = ν(ω,A). As f ≥ c we have
∫

Vx\A

|s|2e−2pϕε dλ <∞,

where λ is the Lebesgue measure in coordinates. By the results of [Si], ddcϕε =
νddc log |z1| + T , where T is a positive closed current, so T = ddcv for some psh
function v on Vx. It follows that the function ϕε − ν log |z1| − v is pluriharmonic on
Vx. Hence, by shrinking Vx if necessary, we have

ϕε ≤ ν log |z1|+O(1), hence

∫

Vx\A

|s|2|z1|
−2pν dλ <∞.

This implies that s vanishes at least to order pν along A. �

Remark 6.3. The proof of Proposition 6.2 shows in fact that the currents ω and γ
have the same Lelong numbers at each point of Σn−1

reg . However, the Lelong numbers
of ω are bigger than those of γ at other points of Σ. For instance, if Σ is a finite

set then X̃ is simply the blow up of X at each of the points of Σ. Then, in local
coordinates z near a point x = 0 ∈ Σ, we have π⋆θ

′ = a ddc log ‖z‖, for some a > 0.

6.2. Singular metrics on big line bundles. Let L be a big line bundle over the
compact complex manifold X . Then X is Moishezon and L admits a singular metric
h, smooth outside a proper analytic subset Σ ofX , and with strictly positive curvature
current γ = c1(L, h) (see e. g. [MM2, Lemma 2.3.6]).

6.2.1. Special metrics on Moishezon manifolds. Let Θ be the Poincaré metric onX\Σ
and hε be the small perturbation of the metric h on L constructed in Section 2.3.
It is shown in [MM1, MM3] (see also [MM2, Chapter 6]) that the Bergman kernel
function Pp of the space H

0
(2)(X \Σ, Lp, hε,Θ

n) has a full asymptotic expansion locally

uniformly on X \ Σ. This clearly implies (3), so we have the following:

Theorem 6.4. The conclusions of Theorems 1.1, 1.2 and 4.3 hold for the spaces
H0

(2)(X \ Σ, Lp, hε,Θ
n) and for ω = c1(L, hε).
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Note that in this case X is not assumed to be Kähler.

Let us give here a simple alternate proof of the convergence 1
p
γp → ω, taking

advantage of the fact that X is compact. Let Z1 = A1 ∪ . . . ∪ Al, where Aj are the
irreducible components of Σ of dimension n − 1, and let η be a Gauduchon form on
X , i.e. a smooth positive (1,1) form with ddc(ηn−1) = 0 [Ga]. Then by Lemma 3.2,

∫

X

ddc logPp ∧ η
n−1 = 0, so

∫

X

1

p
γp ∧ η

n−1 =

∫

X

ω ∧ ηn−1.

By Proposition 6.2, the generic Lelong number of γp/p on Aj is at least νj = ν(ω,Aj).
Siu’s decomposition theorem ([Si], see also [D4]) implies that

1

p
γp = Rp +

l∑

j=1

νj[Aj ] , ω = R +

l∑

j=1

νj [Aj ],

where [Aj ] denotes the current of integration on Aj, Rp, R are positive closed currents
on X , and R does not charge Z1 (i.e. the trace measure of R is 0 on Z1). We have

∫

X

Rp ∧ η
n−1 =

∫

X

R ∧ ηn−1,

so the sequence of currents {Rp} has uniformly bounded mass on X . It suffices to
show that any limit point T of this sequence is equal to R. By (3), T = R on X \Σ.
Hence by the support theorem T = R on X \Z1, as Σ = Z1 ∪Z2 and dimZ2 ≤ n− 2.
Since T ≥ 0 and R does not charge Z1 it follows that T ≥ R. But T and R have the
same mass, so T = R. �

6.2.2. Multiplier ideal sheaves. We recall first the notion of multiplier ideal sheaf. Let
ϕ ∈ L1(X,R). The Nadel multiplier ideal sheaf I (ϕ) is the ideal subsheaf of germs
of holomorphic functions f ∈ OX,x such that |f |2e−2ϕ is integrable with respect to
the Lebesgue measure in local coordinates near x.
If h′ is a smooth Hermitian metric on L then h = h′e−2ϕ for some function ϕ ∈

L1(X,R). The Nadel multiplier ideal sheaf of h is defined by I (h) = I (ϕ); the
definition does not depend on the choice of h′. The space of global sections in the
sheaf L⊗ I (h) is given by

(6) H0(X,L⊗ I (h)) =
{
s ∈ H0(X,L) :

∫

X

∣∣s
∣∣2
h
Ωn =

∫

X

∣∣s
∣∣2
h′
e−2ϕΩn <∞

}
,

where Ω is a fixed smooth positive (1, 1) form on X . We have

H0(X,Lp ⊗ I (hp)) = H0
(2)(X \ Σ, Lp, h,Ωn),

where hp is the metric induced by h on Lp. If {Spj } is an orthonormal basis of

H0(X,Lp ⊗ I (hp)) we define the Fubini-Study currents γp on X as in (2).

Theorem 6.5. Let L be a big line bundle over a compact Kähler manifold X and
h be a singular Hermitian metric on L, smooth outside a proper analytic subset Σ
of X, and with strictly positive curvature current γ = c1(L, h). The conclusions of
Theorems 1.1, 1.2 and 4.3 hold for the spaces H0(X,Lp ⊗ I (hp)) and for γ.
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Proof. Conditions (A) -(C) are obviously verified in the present situation. Moreover,
(3) follows from Theorem 5.3. It can also be seen as a consequence of the full asymp-
totic expansion of the Bergman kernel function proved in [HsM]. Therefore, Theorem
1.1 implies the desired conclusion. �

Note that X is in fact a projective manifold, since it is Moishezon and Kähler (see
e. g. [MM2, Th. 2.2.26]).

6.3. Zariski-open manifolds with bounded negative Ricci curvature. Let
(M,J, ω) be a Kähler manifold, let gTM be the Riemannian metric associated to
ω by gTM(Ju, Jv) = gTM(u, v) for all u, v ∈ TxM , x ∈ M . Let Ric be the Ricci
curvature of gTM . The Ricci form Ricω is defined as the (1, 1)-form associated to Ric
by

Ricω(u, v) = Ric(Ju, v) , for any u, v ∈ TxM , x ∈M.

The volume form ωn induces a metric hK
∗
M on K∗

M , whose dual metric on KM is
denoted by hKM . Since the metric gTM is Kähler, we have (see e. g. [MM2, Prob. 1.7])

Ricω = iRK∗
M = −iRKM .

We denote by H0
(2)(M,Kp

M) the space of L2-pluricanonical sections with respect to

the metric hK
p
M and the volume form ωn.

We consider in this section the following setting:

(I) X is a compact complex manifold of dimension n, Σ is an analytic subvariety
of X , M := X \ Σ.

(II)M admits a complete Kähler metric ω such that Ricω ≤ −λω, for some constant
λ > 0.

Note that KM = KX |
Σ
. Moreover, condition (II) implies that the volume form

ωn is integrable over X ; indeed, by Yau’s Schwarz lemma [Ya, Theorem 3] it follows
that ωn . Θn, where Θ is the generalized Poincaré metric on M (see e. g. [Na, Prop.
1.10]) and Θn is integrable over X . We have the following:

Theorem 6.6. Let X, Σ, M, ω be as in (I), (II), and assume that dimΣ ≤ n − k,
k ≥ 2. Then the following hold:
(i) H0

(2)(M,Kp
M) ⊂ H0(X,Kp

X).

(ii) The currents (−Ricω)
j, γjp, 1 ≤ j ≤ k, are well defined on X for p sufficiently

large, where γp are the Fubini-Study currents defined by (2) for H0
(2)(M,Kp

M).

(iii) 1
pj
γjp → (− 1

2π
Ricω)

j weakly on X as p→ ∞, for 1 ≤ j ≤ k.

Proof. We only have to check condition (B). Since codimΣ ≥ 2, Lemma 6.1 implies
that the metric hKM extends to a positively curved (singular) metric on KX over X ,
which we denote by h. Moreover,

−Ricω = iRKM = 2πc1(KM , h
KM ) = 2πc1(KX , h) |M

extends to a positive closed current on X .
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Condition (3) holds, as shown by Tian [T, Theorem 4.1] (this follows also from the
more general result in [MM2, Th. 6.1.1]). Therefore, Theorem 1.1 implies the desired
conclusion. �

Note that Tian [T, §5] considered the situation when X, Σ, M verify assumptions
(I), (II), X is projective and k = 1. In that case he shows that the sections of
H0

(2)(M,Kp
M) extend meromorphically to X , with poles of order at most p− 1 along

Σ, and −Ricω extends to a positive closed current on X [T, Theorem C].
This situation is more difficult, as the metric hKM does not extend to a positively

curved metric on KX . Nevertheless, we shall now show how this case fits into our
framework from Theorem 1.1. In view of Theorem 6.6 (and its proof), we may assume
without loss of generality that

(III) Σ has pure dimension n− 1.

For this purpose, consider the line bundle L := KX ⊗ OX(Σ), where OX(Σ) is the
line bundle associated to the divisor Σ. Let σ be the canonical section of OX(Σ)
(cf. [MM2, p. 71]) and denote by hσ the metric induced by σ on OX(Σ) (cf. [MM2,
Example 2.3.4]). Note also that c1(OX(Σ), hσ) = [Σ] by [MM2, (2.3.8)]. Consider the
metric naturally defined by hKM ,

(7) hM,σ := hKM ⊗ hσ on L |
M
= KM ⊗ OX(Σ) |M

∼= KM .

We recall the following simple fact, whose proof is left to the reader.

Lemma 6.7. Let X, Σ, M verify assumptions (I) and (III). Assume that (E, hE) is
a singular Hermitian line bundle on X and p ≥ 1. Then

Iσ : H0(M,E |
M
) −→ H0(M, (E ⊗ OX(Σ)

p) |
M
), Iσ(S) = S ⊗ σ⊗p,

is an isomorphism and we have |S|2hE = |Iσ(S)|
2
hE⊗hpσ

pointwise on M , where hpσ is

the metric induced by hσ on OX(Σ)
p.

Lemma 6.8. Let X, Σ, M, ω verify assumptions (I)-(III). The metric hM,σ defined
in (7) extends uniquely to a positively curved metric h on L over X. The curvature
current c1(L, h) is independent of the choice of σ and we have c1(L, h) |M= − 1

2π
Ricω.

Proof. By Lemma 6.1 it suffices to show that the metric hM,σ extends near each
regular point x ∈ Σ. We follow at first the argument of Tian from [T, Lemma 5.1] to
estimate the volume of ω as in [T, (5.3)]. Let D be the unit disc in C. Then x ∈ Σ
has a coordinate neighborhood Ux such that

Ux ∼= D
n, x = 0, Ux ∩ Σ ∼= {z = (z1, . . . , zn) : z1 = 0}, Ux ∩M ∼= D

⋆ × D
n−1.

Consider the complete hyperbolic metric gx on D⋆ × Dn−1 given by the product of
the Poincaré metrics on D

⋆ and D. By (II) and Yau’s Schwarz lemma [Ya, Theorem
3], the volume of ω is dominated on Ux ∩M by a constant multiple of the volume of
gx. On a smaller polydisc D⋆

r × Dn−1
r , r < 1, the volume of gx is ∼ (|z1| log |z1|)

−2. It
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follows that

det[gjk] ≤ C(|z1| log |z1|)
−2 on D

⋆
r × D

n−1
r , where ω = i

n∑

j,k=1

gjkdzj ∧ dzk,

for some constant C > 0.
We may assume that there exists a psh weight ϕ of the metric hM,σ on Ux ∩M ∼=

D⋆ × Dn−1. By above,

e2ϕ = |z1|
2 det[gjk] ≤ C(log |z1|)

−2 on D
⋆
r × D

n−1
r ,

which implies that ϕ(z) → −∞ as z → Σ, so ϕ is upper bounded near x. Hence ϕ
extends to a psh function on Ux, and hM,σ extends uniquely to a positively curved
metric h on L. Moreover,

c1(L, h) |M= c1(KM , h
KM ) + c1(OX(Σ) |M , hσ) = −

1

2π
Ricω .

Since X is compact, any section σ′ of OX(Σ) that vanishes on Σ is a constant
multiple of σ, hence the metric hσ′ is a constant multiple of hσ. This shows that
c1(L, h) is independent of the choice of σ. �

Theorem 6.9. Let X, Σ, M, ω verify assumptions (I)-(III). Let hKM be the metric
induced by ω on KM and H0

(2)(M,Kp
M) be the space of L2-pluricanonical sections with

respect to the metric hK
p

M and the volume form ωn. Then we have:
(i) The Fubini-Study currents γp of H

0
(2)(M,Kp

M) extend naturally as closed currents

of order 0 on X defined locally by formula (2), and 1
p
γp + [Σ] ≥ 0 on X.

(ii) 1
p
γp + [Σ] converge weakly on X to a positive closed current T so that T |

M
=

− 1
2π

Ricω and T = c1(L, h) for a singular Hermitian metric h on L = KX ⊗ OX(Σ).

Proof. By [Na, Prop. 1.11] (see also [T, Lemma 5.1]) the sections in H0
(2)(M,Kp

M)

extend to meromorphic sections of Kp
X over X , with poles in Σ of order at most p−1.

This yields (i).
Let hM,σ be the metric defined in (7) on L |M , and h be its extension to L provided in

Lemma 6.8, so c1(L, h) |M= − 1
2π

Ricω. It follows from Lemma 6.7 and [Na, Prop. 1.11]
that Iσ(H

0
(2)(M,Kp

M)) = H0
(2)(M,Lp, h, ωn) ⊂ H0(X,Lp). So X, Σ, (L, h) and the

volume form ωn verify assumptions (A), (B), (C’), (D) (see Remark 3.6).
Lemmas 6.7 and 6.8 imply that Iσ maps an orthonormal basis of H0

(2)(M,Kp
M) onto

an orthonormal basis of H0
(2)(M,Lp, h, ωn) and that the Bergman kernel functions Pp

defined by (1) for these spaces are equal. Condition (3) holds, as shown by [T, §4] or
[MM2, Th. 6.1.1]. By Theorem 1.1 and Remark 3.6 we have 1

p
γ′p → c1(L, h) weakly

on X , where γ′p are the Fubini-Study currents defined by (2) for H0
(2)(M,Lp, h, ωn).

Observe that Lemmas 6.7 and 6.8 imply γ′p = γp + p[Σ] on X . This completes the
proof. �

Remark 6.10. Note that assumptions (I) -(III) are verified if X is a compact projec-
tive manifold, Σ is an effective divisor of X, and L = KX ⊗O(Σ) is ample, due to a
result by R. Kobayashi [Ko] about the existence of Kähler-Einstein metrics on X \Σ.
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Conversely, let X, Σ, M, ω verify assumptions (I)-(III) as in Theorem 6.9. By the
proof of [Na, Prop. 1.12] we see that the following properties hold:
(a) There exists p0 such that H0(X,Lp0) separates the points of M and gives local

holomorphic coordinates on M ,
(b) M is biholomorphic to a quasiprojective manifold; in fact the meromorphic

Kodaira map Φp0 : X 99K PN defined by H0(X,Lp0) induces a birational morphism
to a normal projective variety Y such that Φp0(M) is Zariski open in Y and Φp0 :
M −→ Φp0(M) is biholomorphic,
(c) L is big and X is Moishezon.

Note that L is not necessarily ample in the case of toroidal compactifications consid-
ered in the Section 6.4.

6.4. Arithmetic quotients. Let D be a bounded symmetric domain in Cn and let
Γ be a neat arithmetic group acting properly discontinuously on D (see [Mu, p. 253]).
Then U := D/Γ is a smooth quasi-projective variety, called an arithmetic variety. By
[AMRT], U admits a smooth toroidal compactification X . In particular, Σ := X \U is
a divisor with normal crossings. The Bergman metric ωB

D onD descends to a complete
Kähler metric ω := ωB

U on U . Moreover, ω is Kähler-Einstein with Ricω = −ω. We
denote by hKU the Hermitian metric induced by ω on KU . We wish to study the
spaces H0

(2)(U,K
p
U) of L

2-pluricanonical sections with respect to the metric hK
p
U and

the volume form ωn.
As in Section 6.3, consider the line bundle L := KX ⊗ OX(Σ) and the metric hU,σ

on L |
U
defined in (7). By Lemma 6.8 hU,σ extends uniquely to a positively curved

metric h on L and c1(L, h) |U=
ω
2π
. Clearly, Theorem 6.9 holds in this setting:

Theorem 6.11. Let X be a smooth toroidal compactification of an arithmetic quotient
U = D/Γ and set Σ = X \ U , L = KX ⊗ OX(Σ). Let ω be the induced Bergman
metric on U and let hKU be the metric induced by ω on KU . Then we have:
(i) The metric hKU defines a singular metric h on L such that c1(L, h) is a positive

current on X which extends ω
2π
.

(ii) H0
(2)(U, L

p, h, ωn) ⊂ H0(X,Lp) for all p ≥ 1, so the currents γp given by (2)

for H0
(2)(U, L

p, h, ωn) extend naturally to positive closed currents on X.

(iii) 1
p
γp → c1(L, h) and

1
p
[σp = 0] → c1(L, h) in the weak sense of currents on X,

for λ∞-a.e. sequence {σp}p≥1 ∈ S∞, where S∞, λ∞ are as in Theorem 4.3.

By Lemma 6.7, H0
(2)(U,K

p
U)

∼= H0
(2)(U, L

p, h, ωn). Let us describe this space in more

detail. By [Mu, Prop. 3.3, 3.4(b)],

H0(X,Lp) ∼=
{
modular forms with respect to the p -th power

of the canonical automorphy factor
}
,

so H0
(2)(U,K

p
U) ⊂ H0(X,Lp) are modular forms. The space

H0(X,Lp ⊗ OX(Σ)
−1) = H0(X,Kp

X ⊗ OX(Σ)
p−1)

of modular forms vanishing on the boundary is called the space of cusp forms.
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We will need the following definition from Mumford [Mu, p. 242]. Let D be the
unit disc in C. Every x ∈ Σ has a coordinate neighborhood Vx ∼= Dn such that for
some 1 ≤ l ≤ n,

(8) Vx ∼= D
n, x = 0, Vx ∩ Σ ∼= {z = (z1, . . . , zn) : z1z2 . . . zl = 0} .

Definition 6.12. A smooth Hermitian metric h on L |
U
is said to be good on X if

for all x ∈ Σ and all holomorphic frames e of L in a neighborhood Vx ∼= Dn of x as
in (8) we have

(i) |e|2h, |e|
−2
h ≤ C(

∑l
k=1 log |zk|)

2α, for some C > 0, α ≥ 1 ,
(ii) The forms η = ∂ log |e|2h and dη have Poincaré growth on V .

Examples of Hermitian line bundles with good metrics are provided by the following
class of line bundles over arithmetic quotients considered by Mumford in [Mu, p. 256].
Namely, if D is a bounded symmetric domain, then D ∼= K\G, where G is a semi-
simple adjoint group and K a maximal compact subgroup. Let E0 be a G-equivariant
holomorphic line bundle over D. Let U = D/Γ be an arithmetic quotient and X be
a smooth toroidal compactification of U . Then Γ acts on E0 and EU = E0/Γ is a
holomorphic line bundle on U . Moreover, E0 carries a G-invariant Hermitian metric
h0 which induces a Hermitian metric hU on EU . By [Mu, Main Theorem 3.1], EU
admits a unique extension to a holomorphic line bundle E over X such that the metric
hU on E |U= EU is good on X .
Consider the G-invariant line bundle (E0, h0) = (KD, h

KD) on D, where hKD is
induced by ωB

D. Note that the Bergman metric ωB
D is G-invariant and so is hKD . Then

(EU , hU) = (KU , h
KU ), where hKU is induced by ωB

U . By [Mu, Main Thr. 3.1, Prop.
3.4] the extension KU of KU satisfies the following condition: for any x ∈ Σ and any
open coordinate neighborhood V ∼= Dn of x as in (8), a holomorphic frame of KU |V is
of the form e = (z1z2 . . . zl)

−1dz1∧ . . .∧dzn. This shows that KU
∼= KX⊗OX(Σ) =: L

and the metric hU,σ induced by hKU (see (7)) on L |
U
∼= KU is good on X . Hence we

obtain by condition (i) of Definition 6.12 that

(9) ωn &

l∏

j=1

|zj |
−2
( l∑

k=1

log |zk|
)−2α

Ωn on V \ Σ ,

where α ≥ 1 and Ω is a positive (1,1) form on X , and

(10) |e|2hU,σ
.
( l∑

k=1

log |zk|
)2α

on V \ Σ .

Lemma 6.13. Let U = D/Γ be an arithmetic quotient and let X be a smooth toroidal
compactification of U . Then H0

(2)(U,K
p
U)

∼= H0(X,Kp
X ⊗OX(Σ)

p−1), i. e. the space of

L2-pluricanonical sections is the space of cusp forms.

Proof. By [Na, Prop. 1.11] we have H0
(2)(U,K

p
U) ⊂ H0(X,Kp

X ⊗ OX(Σ)
p−1). If S ∈

H0(X,Kp
X ⊗ OX(Σ)

p−1), then S = fe⊗p, in a neighborhood Vx of x ∈ Σ as in (8),
where f ∈ O(Vx) vanishes on Σ and e is a frame of L over Vx . Estimate (10) together
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with the fact that ωn is integrable over X [Na, Prop. 1.10] imply that
∫

Vx\Σ

|S|2hU,σ
ωn =

∫

Vx\Σ

|f |2|e⊗p|2hU,σ
ωn .

∫

Vx\Σ

|f |2
( l∑

k=1

log |zk|
)2pα

ωn <∞,

thus S ∈ H0
(2)(U, L

p, h, ωn) ∼= H0
(2)(U,K

p
U). �

Theorem 6.11 shows that the zero-divisors of random cusp forms {σp} (where σp
is a p -pluricanonical section) are equidistributed with respect to the extension of the
Bergman metric on a smooth toroidal compactification of an arithmetic quotient. The
equidistribution on the arithmetic quotient D/Γ itself was shown in [DMS]. In this
framework the equidistribution of zeros is a variant of the Quantum Unique Ergodicity
conjecture of Rudnick-Sarnak [RS], cf. Rudnick [Ru], Holowinsky and Soundararajan
[HS], Marshall [Mar].
The case of arithmetic quotients of dimension 1 is particularly interesting.

Corollary 6.14. Let Γ ⊂ SL2(Z) be a subgroup of finite index acting freely and prop-
erly discontinuously on the hyperbolic plane H via linear fractional transformations.
Set U = H/Γ and let ω be the induced Poincaré metric on U . Let X be a compact Rie-
mann surface such that U ⊂ X and X \U = Σ is a finite set. Let L = KX ⊗OX(Σ).
Then the space S2p(Γ) of cusp forms of weight 2p of Γ is isomorphic to H0

(2)(U,K
p
U)

and assertions (i)-(iii) of Theorem 6.11 hold for the Fubini-Study currents γp defined
by S2p(Γ) and for the zero-sets of random sequences of cusp forms.

We can extend the results of this section for the class of invariant line bundles
considered by Mumford [Mu, p. 256].

Theorem 6.15. Let D, U, X, (E0, h0) be as above and assume that iR(E0,h0) ≥ εωB
D

on D, for some ε > 0. Let (EU , hU) be the induced line bundle on U and E be its
unique extension to X so that the metric hU on E |U is good on X. Then hU extends
to a singular Hermitian metric h on E such that c1(E, h) is a positive current on X
which extends c1(EU , hU), and the conclusions of Theorems 1.1, 1.2 and 4.3 hold for
the spaces H0

(2)(U,E
p, h, ωn) and for c1(E, h).

Proof. Let x ∈ Σ and V be a coordinate neighborhood of x as in (8) on which there
exists a holomorphic frame e of E. Then the local weights ϕ = − log |e|hU verify

− log

∣∣∣∣∣

l∑

k=1

log |zk|

∣∣∣∣∣−
logC

2α
≤
ϕ

α
≤ log

∣∣∣∣∣

l∑

k=1

log |zk|

∣∣∣∣∣+
logC

2α
on V \ Σ.

Since the metric hU is positively curved, the function ϕ is psh on U∩V = V \Σ. Hence
ϕ is psh on V , in view of the previous upper bound and of Lemma 6.16 hereafter.
Thus c1(E, h) ≥ 0 and condition (B) is fulfilled.
To prove that (C) holds, we write ωn = fΩn for some fixed positive (1,1) form

Ω on X . Let x ∈ Σn−1
reg and local coordinates z1, . . . , zn be chosen so that x = 0,

Σ = {z1 = 0}. Estimate (9) implies that f & |z1|
−2(log |z1|)

−2α near x, where α ≥ 1.
Hence f ≥ cx > 0 Ωn-a.e. in a neighborhood Ux of each x ∈ (X \ Σ) ∪ Σn−1

reg .
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Condition (3) holds due to [MM2, Th. 6.1.1], which applies since iR(E,h) ≥ εωB
U on

U . By Theorem 1.1 we infer the conclusion. �

Lemma 6.16. Let V ⊂ Cn be an open set and Σ be a proper analytic subvariety of
V . Suppose that u is a psh function on V \ Σ which verifies

u(z) ≤ Cz0 log | log dist(z,Σ)|

for z ∈ V \ Σ near each point z0 ∈ Σn−1
reg , with a constant Cz0 > 0. Then u is locally

upper bounded near each point of Σ hence it extends to a psh function on V .

Proof. It suffices to show that u is locally upper bounded near each point z0 ∈ Σn−1
reg .

We may assume that z0 = 0, Σ = {z1 = 0} ⊂ V = Dn and that u(z1, z
′) ≤

C log | log |z1|| for z ∈ V with 0 < |z1| < e−1, where C > 0 is a constant. The
function u(·, z′) is subharmonic on D \ {0}, so r → max|z1|=r u(z1, z

′) is a convex
function of log r for r > 0. The above upper bound on u implies that this function is
also increasing, so u is upper bounded in a neighborhood of z0 = 0. �

6.5. Remark on adjoint bundles. Let us consider the following setting:

(A′) X is a complex manifold of dimension n (not necessarily compact), Σ is a
compact analytic subvariety of X , and Ω is a smooth positive (1, 1) form on X \ Σ.

(B′) (L, h) is a holomorphic line bundle on X with a singular (semi)positive her-
mitian metric h which is continuous on X \ Σ.

Consider the space H0
(2)(X \Σ, Lp⊗KX) of L

2-holomorphic sections of Lp⊗KX |
X\Σ

relative to the metric hp induced by h and the volume form Ωn on X \ Σ, endowed
with the inner product

(S, S ′)p =

∫

X\Σ

〈S, S ′〉hp,Ω Ωn , S, S ′ ∈ H0
(2)(X \ Σ, Lp ⊗KX).

The interesting point is that the space H0
(2)(X \ Σ, Lp ⊗ KX) does not depend on

the choice of the form Ω. Indeed, for any (n, 0)-form S with values in Lp, and any
metrics Ω, Ω1 on X \ Σ, we have pointwise |S|2hp,ΩΩ

n = |S|2hp,Ω1
Ωn1 . Therefore, we

can take Ω to be a smooth positive (1,1) form on X . Then Skoda’s lemma [MM2,
Lemma2.3.22] shows that sections in H0

(2)(X \ Σ, Lp ⊗KX) extend holomorphically

to X , thus H0
(2)(X \ Σ, Lp ⊗KX) ⊂ H0(X,Lp ⊗KX). Using an orthonormal basis of

the space H0
(2)(X \ Σ, Lp ⊗ KX) we define the Bergman kernel function Pp and the

Fubini-Study currents γp as in (1) -(2).
Proceeding as above for the proof of Theorem 1.1 we obtain the following. Under

conditions (A′)-(B′) and assuming (3) we have 1
p
γp → γ weakly on X . If, in addition,

dimΣ ≤ n − k for some 2 ≤ k ≤ n, then the currents γk and γkp are well defined on
X , respectively on each relatively compact neighborhood of Σ, for all p sufficiently
large. Moreover, 1

pk
γkp → γk weakly on X .



34 DAN COMAN AND GEORGE MARINESCU

6.6. 1-convex manifolds. A complex manifold X is called 1-convex if there exists a
smooth exhaustion function ψ : X → R which is strictly psh outside a compact set of
X . This is equivalent to the following condition (see e. g. [AG]): There exists a Stein
space Y , a proper holomorphic surjective map ρ : X → Y satisfying ρ⋆OX = OY , and
a finite set A ⊂ Y such that the induced map X \ ρ−1(A) → Y \A is biholomorphic.
The Stein space Y is called the Remmert reduction of X and Σ := ρ−1(A) the
exceptional set of X .
Consider a strictly psh smooth exhaustion function ϕY of Y , such that ϕY ≥ 0 and

{ϕY = 0} = A. Then ϕ = ϕY ◦ ρ is a smooth psh exhaustion function of X , such
that ϕ ≥ 0, {ϕ = 0} = Σ and ϕ is strictly psh on X \ Σ.
We consider in the sequel a holomorphic line bundle (L, h) on X with singular

metric h, which is smooth outside the exceptional set Σ and has strictly positive
curvature current in a neighborhood U of Σ. By using a modification X̃ of X we
construct as in Section 2.3 the Poincaré metric Θ on X \Σ and also the metric hε on

L |
X\Σ

. We may suppose that Θ is complete on X \ Σ (the metric Ω̃ on X̃ may be

taken to be complete, by setting Ω̃ = Ψeη, where Ψ is an arbitrary metric on X̃ and
η is a fast increasing function at infinity).
Let us consider a convex increasing function χ : R → R and endow L with the

Hermitian metric hεe
−χ(ϕ). Consider the L2 inner product on the space Ω0,∗

0 (X\Σ, Lp)
of sections with compact support, induced by the metrics hεe

−χ(ϕ) on L and Θ on
X \ Σ. Set

L2
0,∗(X \ Σ, Lp) := L2

0,∗(X \ Σ, Lp, hεe
−χ(ϕ),Θn) ,

H0
(2)(X \ Σ, Lp) := L2

0,0(X \ Σ, Lp) ∩ ker ∂ .

We denote by ∂
∗

χ and �p,χ the adjoint of ∂ with respect to this L2 inner product and
the corresponding Kodaira Laplace operator.
Let us denote by T = [i(Θ), ∂Θ] the Hermitian torsion of the Poincaré metric Θ.

Set L̃p = Lp ⊗K∗
X . There exists a natural isometry

Ψ =∼ : Λ0,q(T ∗X)⊗ Lp −→ Λn,q(T ∗X)⊗ L̃p,

Ψ s = s̃ = (w1 ∧ . . . ∧ wn ∧ s)⊗ (w1 ∧ . . . ∧ wn),

where {wj}
n
j=1 is a local orthonormal frame of T (1,0)X and {wj}nj=1 is the dual frame.

The Bochner-Kodaira-Nakano formula [MM2, Cor. 1.4.17] shows that for any s ∈
Ω0,1

0 (X \ Σ, Lp) we have

3

2

(
‖∂s‖2 + ‖∂

∗

χs‖
2
)
≥
(
RLp⊗K∗

X (wj, wk)w
k ∧ iwj

s, s
)

−
1

2

(
‖T ∗s̃‖2 + ‖T s̃‖2 + ‖T

∗
s̃‖2
)
.

(11)

Set T = 1
2
(T T ∗ + T

∗
T + T T

∗
). Define the continuous function

(12) τ : X \ Σ → R , τ(x) = sup
{
〈Tα, α〉/〈α, α〉 : α ∈ Λn,1T ∗

xX \ {0}
}
.
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Then for any x ∈ X \ Σ, p ∈ N and α ∈ Lpx ⊗ Λn,1T ∗
xX we have

〈Tα, α〉 ≤ τ(x)〈α, α〉 .

Hence (11) gives for all s ∈ Ω0,1
0 (X \ Σ, Lp)

(13)
3

2

(
‖∂s‖2 + ‖∂

∗

χs‖
2
)
≥
(
RLp⊗K∗

X (wj, wk)w
k ∧ iwj

s , s
)
−

∫

X\Σ

τ(x)|s|2 .

Lemma 6.17. There exists an increasing convex function χ : R → R and constants
a, b > 0, such that:

(14a) c1(L, hεe
−χ(ϕ)) ≥ aΘ ,

(14b) c1(L, hεe
−χ(ϕ)) + iRK∗

X − τΘ ≥ −bΘ ,

on X \ Σ.

Proof. We have

c1(L, hεe
−χ(ϕ)) = c1(L, hε) +

1

2
ddcχ(ϕ) = c1(L, hε) +

i

2π
(χ′(ϕ)∂∂ϕ+ χ′′(ϕ)∂ϕ ∧ ∂ϕ).

Since ϕ is psh, for any increasing convex function χ this is ≥ c1(L, h
L), hence positive

on U . Thus (14a) holds on U by construction of hε. Moreover, [MM2, Lemma6.2.1]
shows that iRK∗

X and the torsion operators of Θ, hence τ , are bounded with respect
to Θ on U . Thus (14b) also holds on U , thanks to (14a).
Consider c > 0 such that Σ ⊂ Xc ⋐ U , where Xc := {ϕ < c}. Note that ϕ is

strictly psh outside Xc. Thus we we can choose χ increasing fast enough such that
(14a) -(14b) are satisfied on X \Xc. �

Lemma 6.18. Let χ : R → R be as in Lemma 6.17. Then:

(i) There exist constants a1, b1 > 0 such that for any p ∈ N we have

(15) ‖∂s‖2+‖∂
∗

χs‖
2 ≥ (p a1−a1−b1)‖s‖

2 , s ∈ Dom(∂)∩Dom(∂
∗

χ)∩L
2
0,1(X\Σ, Lp).

(ii) The spectrum of �p,χ on L2
0,0(X \ Σ, Lp) satisfies

(16) Spec(�p,χ) ⊂ {0} ∪ (p a1 − a1 − b1,+∞).

(iii) The Bergman kernel function Pp of H
0
(2)(X \Σ, Lp) has a full asymptotic expan-

sion on any compact set of X \ Σ.

Proof. (i) Since Ω0,1
0 (X \ Σ, Lp) is dense in Dom(∂) ∩ Dom(∂

∗

χ) ∩ L2
0,1(X \ Σ, Lp)

(Andreotti-Vesentini density lemma, see [MM2, Lemma3.3.1]) it suffices to prove
(15) for s ∈ Ω0,1

0 (X \Σ, Lp). But in this case, (15) follows immediately from (13) and
(14a) -(14b).

(ii) Once we have (15), the assertion about the spectrum of �p,χ on L2
0,0(X \ Σ, Lp)

follows as in the proof of [MM2, Th. 6.1.1].

(iii) Since the Kodaira Laplacian �p,χ on L2
0,0(X \ Σ, Lp) has a spectral gap, by the

argument in [MM2, §4.1.2], we can localize the problem, and we obtain the result
from [MM2, Th. 4.2.9], as in the proof of [MM2, Th. 4.2.1]. �
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Theorem 6.19. Let X be a 1-convex manifold and (L, h) be a holomorphic line
bundle on X with singular metric h. Assume that h is smooth outside the exceptional
set Σ and that it has strictly positive curvature current in a neighborhood of Σ. Let
Θ be a complete Poincaré metric on X, hε be constructed in Section 2.3, and let χ be
as in Lemma 6.17. The conclusions of Theorems 1.1, 1.2 and 4.3 hold for the spaces
H0

(2)(X \ Σ, Lp, hεe
−χ(ϕ),Θn) and for ω = c1(L, hεe

−χ(ϕ)).

Proof. Conditions (A) -(C) are satisfied by construction and condition (3) follows from
Lemma 6.18. �

6.7. Strongly pseudoconvex domains. We give now a variant ‘with boundary’ of
the previous result. Let M be a complex manifold and let X ⋐ M be a strongly
pseudoconvex domain with smooth boundary. We consider a defining function ̺ ∈
C∞(M,R) of X , i.e., X = {x ∈M : ̺(x) < 0} and d̺ 6= 0 on ∂X . Since X is strongly
pseudoconvex, the Levi form of ̺ is positive definite on the complex tangent space
to ∂X . It is well-known that one can modify the defining function ̺ such that in a
neighborhood of ∂X , ̺ is strictly psh and d̺ 6= 0. Thus, for c ≥ 0 small enough,
Xc = {x ∈ M : ̺(x) < c} is strongly pseudoconvex.
Let ηc : (−∞, c) → R be a convex increasing function such that ηc(t) → ∞, as

t → c. Then ηc ◦ ̺ is an exhaustion function for Xc, which is strictly psh outside a
compact set of Xc. Therefore Xc is a 1-convex manifold.
Let Σ be the exceptional set of Xc (it is the same exceptional set as for X) and let

ϕ : Xc → R be a smooth psh exhaustion function ofXc, such that ϕ ≥ 0, {ϕ = 0} = Σ
and ϕ is strictly psh on Xc \ Σ.
Let (L, h) be a holomorphic line bundle on M with singular metric h which is

smooth outside the exceptional set Σ and which has strictly positive curvature current

in a neighborhood U of Σ. By using a modification M̃ ofM we construct as in Section
2.3 the Poincaré metric Θ on M \ Σ and also the metric hε on L |

M\Σ
.

Let A > 0. On the space Ω0,∗
0 (X \Σ, Lp) of sections with compact support in X \Σ

we introduce the L2 inner product with respect to the metrics Θ and hεe
−Aϕ and set

L2
0,∗(X \ Σ, Lp) := L2

0,∗(X \ Σ, Lp, hεe
−Aϕ,Θn) ,

H0
(2)(X \ Σ, Lp) := L2

0,0(X \ Σ, Lp) ∩ ker ∂ .

We consider the L2 ∂-Neumann problem on X \ Σ and show that the ∂-Neumann
Laplacian on L2

0,1(X \ Σ, Lp) has a spectral gap. Here we work with ∂-Neumann

boundary conditions at the end ∂X of X \ Σ and with a complete metric at the end
corresponding to Σ. This kind of analysis was already used in [MD] in connection to
the compactification of hyperconcave manifolds.

We denote by ∂
∗
= ∂

Lp,∗
the Hilbert space adjoint of the maximal extension of ∂

on L2
0,1(X \ Σ, Lp). Integration by parts [FK, Prop. 1.3.1–2] yields

B0,1(X \ Σ, Lp) := {s ∈ Ω0,1
0 (X \ Σ, Lp) : ∗∂̺ ∧ ∗s = 0 on ∂X}

= Dom(∂
∗
) ∩ Ω0,1

0 (X \ Σ, Lp) .
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The space B0,1(X \ Σ, Lp) is dense in Dom(∂) ∩ Dom(∂
∗
) with respect to the graph

norm s 7→ (‖s‖2 + ‖∂s‖2 + ‖∂
∗
s‖2)1/2 (cf. [MD, Lemma2.2]).

Let us consider a defining function ̺ of X such that |d̺| = 1 on ∂X . We denote by
L̺ the Levi form of ̺ (cf. [MM2, Def. 1.4.20]). The Bochner-Kodaira-Nakano formula
with boundary term [MM2, Cor. 1.4.22] shows that for any s ∈ B0,1(X \ Σ, Lp) we
have

3

2

(
‖∂s‖2 + ‖∂

∗
s‖2
)
≥
(
RLp⊗K∗

X (wj, wk)w
k ∧ iwj

s, s
)

+

∫

∂X

L̺(s, s) dv∂X −
1

2

(
‖T ∗s̃‖2 + ‖T s̃‖2 + ‖T

∗
s̃‖2
)
.

Since X is strongly pseudoconvex the boundary integral is non-negative. Therefore
we obtain for all s ∈ B0,1(X \ Σ, Lp) the estimate

3

2

(
‖∂s‖2 + ‖∂

∗

χs‖
2
)
≥
(
RLp⊗K∗

X(wj, wk)w
k ∧ iwj

s , s
)
−

∫

X\Σ

τ(x)|s|2 ,

where τ is defined on Xc \ Σ as in (12). Making use of the compactness of X we
obtain:

Lemma 6.20. There exist constants A, a, b > 0 such that c1(L, hεe
−Aϕ) is a strictly

positive (1, 1) current on a neighborhood of X and

(17a) c1(L, hεe
−Aϕ) ≥ aΘ ,

(17b) c1(L, hεe
−Aϕ) + iRK∗

X − τΘ ≥ −bΘ ,

on X \ Σ.

Let us now fix A > 0 as in Lemma 6.20. Using (13), (17a) and (17b), we deduce
immediately the estimate (15) for any s ∈ B0,1(X \Σ, Lp) and, by density, for any s ∈
Dom(∂)∩Dom(∂

∗
)∩L2

0,1(X \Σ, Lp). This shows that �p acting on L
2
0,0(X \Σ, Lp) has

a spectral gap as in (16). Therefore, the Bergman kernel function Pp ofH
0
(2)(X\Σ, Lp)

has a full asymptotic expansion on any compact set of X \ Σ.
The preceding discussion leads to the following.

Theorem 6.21. Let X be a strongly pseudoconvex domain with smooth boundary in
a complex manifold M . Let (L, h) be a holomorphic line bundle on M with singular
metric h which is smooth outside the exceptional set Σ and which has strictly positive
curvature current in a neighborhood U of Σ. The conclusions of Theorems 1.1, 1.2
and 4.3 hold for the spaces H0

(2)(X \ Σ, Lp, hεe
−Aϕ,Θn) and for ω = c1(L, hεe

−Aϕ).

Remark 6.22. In the same vein, we can obtain a variant of Theorem 6.21 for Nadel
multiplier sheaves. Assume that X ⋐M is a strongly pseudoconvex domain as above.
Let (L, h) be a holomorphic line bundle on M with singular metric h which is smooth
outside the exceptional set Σ. Assume for simplicity that the curvature current of
h is strictly positive in a whole neighborhood of X. The conclusions of Theorems
1.1, 1.2 and 4.3 hold for the spaces H0(X,Lp ⊗ I (hp)) (defined as in (6)) and for
γ = c1(L, h).
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