
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1998

Towards a Java Environment for SPMD Programming Towards a Java Environment for SPMD Programming

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center, dbc@npac.syr.edu

Guansong Zhang
Syracuse University, Northeast Parallel Architectures Center, zgs@npac.syr.edu

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Xiaoming Li
Syracuse University, Northeast Parallel Architectures Center, lxm@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Carpenter, Bryan; Zhang, Guansong; Fox, Geoffrey C.; and Li, Xiaoming, "Towards a Java Environment for
SPMD Programming" (1998). Northeast Parallel Architecture Center. 48.
https://surface.syr.edu/npac/48

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science
at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215687802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/48?utm_source=surface.syr.edu%2Fnpac%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Towards a Java Environment for SPMDProgrammingBryan Carpenter, Guansong Zhang, Geo�rey FoxXiaoming Li?, Xinying Li and Yuhong WenNPAC at Syrause UniversitySyrause, New York,NY 13244, USAfdb,zgs,gf,lxm,xli,weng�npa.syr.eduAbstrat. As a relatively straightforward objet-oriented language, Javais a plausible basis for a sienti� parallel programming language. Weoutline a onservative set of language extensions to support this kindof programming. The programming style advoated is Single ProgramMultiple Data (SPMD), with parallel arrays added as language primi-tives. Communiations involving distributed arrays are handled througha standard library of olletive operations. Beause the underlying pro-gramming model is SPMD programming, diret alls to other ommuni-ation pakages are also possible from this language.1 IntrodutionJava boasts a diret simpliity reminisent of Fortran, but also inorporatesmany of the important ideas of modern objet-oriented programming. Of ourseit omes with an established trak-reord in the domains of Web and Internetprogramming. The idea that Java may enable new programming environments,ombining attrative user interfaes with high performane omputation, is gain-ing inreasing attention amongst omputational sientists [7, 8℄.This artile will fous spei�ally on the potential of Java as a languagefor sienti� parallel programming. We envisage a framework alled HPJava.This would be a general environment for parallel omputation. Ultimately itshould ombine tools, lass libraries, and language extensions to support variousestablished paradigms for parallel omputation, inluding shared memory pro-gramming, expliit message-passing, and array-parallel programming. This is arather ambitious vision, and the urrent artile only disusses some �rst stepstowards a general framework. In partiular we will make spei� proposals forthe setor of HPJava most diretly related to its namesake: High PerformaneFortran.For now we do not propose to import the full HPF programming model toJava. After several years of e�ort by various ompiler groups, HPF ompilersare still quite immature. It seems diÆult justify a omparable e�ort for Java? Current address: Peking University

before suess has been onviningly demonstrated in Fortran. In any ase thereare features of the HPF model that make it less attrative in the ontext of theintegrated parallel programming environment we envisage. Although an HPFprogram an interoperate with modules written in other parallel programmingstyles through the HPF extrinsi proedure interfae, that mehanism is quiteawkward. Rather than follow the HPF model diretly, we propose introduingsome of the harateristi ideas of HPF|spei�ally its distributed array modeland array intrinsi funtions and libraries|into a basially SPMD programmingmodel. Beause the programming model is SPMD, diret alls to MPI [1℄ or otherommuniation pakages are allowed from the HPJava program.The language outlined here provides HPF-like distributed arrays as languageprimitives, and new distributed ontrol onstruts to failitate aess to the loalelements of these arrays. In the SPMD mold, the model allows proessors thefreedom to independently exeute omplex proedures on loal elements: it isnot limited by SIMD-style array syntax. All aess to non-loal array elementsmust go through library funtions|typially olletive ommuniation opera-tions. This puts an extra onus on the programmer; but making ommuniationexpliit enourages the programmer to write algorithms that exploit loality, andsimpli�es the task of the ompiler writer. On the other hand, by providing dis-tributed arrays as language primitives we are able to simplify error-prone taskssuh as onverting between loal and global array subsripts and determiningwhih proessor holds a partiular element. As in HPF, it is possible to writeprograms at a natural level of abstration where the meaning is insensitive tothe detailed mapping of elements. Lower-level styles of programming are alsopossible.2 Multidimensional ArraysFirst we desribe a modest extension to Java that adds a lass of true multi-dimensional arrays to the standard Java language. The new arrays allow regularsetion subsripting, similar to Fortran 90 arrays. The syntax desribed in thissetion is a subset of the syntax introdued later for parallel arrays and algo-rithms: the only motivation for disussing the sequential subset �rst is to simplifythe overall presentation.No attempt is made to integrate the new multidimensional arrays with thestandard Java arrays: they are a new kind of entity that oexists in the lan-guage with ordinary Java arrays. There are good tehnial reasons for keepingthe two kinds of array separate2. The type-signatures and onstrutors of themultidimensional array use double brakets to distinguish them from ordinaryarrays:int [[,℄℄ a = new int [[5, 5℄℄ ;2 For example, the run-time representation of our multi-dimensional arrays inludesextra desriptor information that would enumber the large lass \non-sienti�"Java appliations.

float [[,,℄℄ b = new float [[10, n, 20℄℄ ;int [[℄℄ = new int [[100℄℄ ;a, b and are respetively 2-, 3- and one- dimensional arrays. Of ourse isvery similar in struture to the standard array d, reated byint [℄ d = new int [100℄ ; and d are not idential, though. For example, allows setion subsripting (seebelow), whereas d does not. The value would not be assignable to d, or vieversa..Aess to individual elements of a multidimensional array goes through asubsripting operation involving single brakets, for examplefor(int i = 0 ; i < 4 ; i++)a [i, i + 1℄ = i + [i℄ ;For reasons that will beome learer in later setions, this style of subsript-ing is alled loal subsripting. In the urrent sequential ontext, apart fromthe fat that a single pair of brakest may inlude several omma-separatedsubsripts, this kind of subsripting works just like ordinary Java array sub-sripting. Subsripts always start at zero, in the ordinary Java or C style (thereis no Fortran-like lower bound).Our HPJava imports a Fortran-90-like idea of array regular setions. Thesyntax for setion subsripting is di�erent to the syntax for loal subsripting.Double brakets are used. These brakets an inlude salar subsripts or sub-sript triplets. A setion is an objet in its own right|its type is that of a suitablemulti-dimensional array. It desribes some subset of the elements of the parentarray.int [[℄℄ e = a [[2, 2 :℄℄ ;foo(b [[: , 0, 1 : 10 : 2℄℄) ;e beomes an alias for the 3rd row of elements of a. The proedure foo shouldexpet a two-dimensional array as argument. It an read or write to the set ofelements of b seleted by the setion. As in Fortran, upper or lower bounds anbe omitted in triplets, defaulting to the atual bound of the parent array, andthe stride entry of the triplet is optional.In general our language has no idea of Fortran-like array assignments. Inint [[,℄℄ e = new int [[n, m℄℄ ;...a = e ;the assignment simply opies a handle to objet referened by e into a. There isno element-by-element opy involved. On the other hand the language providesa standard library of funtions for manipulating its arrays, losely analogous tothe array transformational intrinsi funtions of Fortran 90:

int [[,℄℄ f = new int [[5, 5℄℄ ;HPJlib.shift(f, a, -1, 0, CYCL) ;float g = HPJlib.sum(b) ;int [[℄℄ h = new int [[100℄℄ ;HPJlib.opy(h,) ;The shift operation with shift-mode CYCL exeutes a yli shift on the datain its seond argument, opying the result to its �rst argument|an array of thesame shape. In the example the shift amount is -1, and the shift is performedin dimension 0 of the array|the �rst of its two dimensions. The sum operationsimply adds all elements of its argument array. The opy operation opies theelements of its seond argument to its �rst|it is something like an array as-signment. These funtions an be overloaded to apply to some �nite set of arraytypes. In the initial implementation of the language, the new arrays will be re-strited to taking elements of primitive type. This is not regarded as an essentiallimit to the language, but it simpli�es various aspets of the implementation,suh as the ommuniation library.3 Distributed ArraysHPJava adds lass libraries and some additional syntax for dealing with dis-tributed arrays. These arrays are viewed as oherent global entities, but theirelements are divided aross a set of ooperating proesses. As a preliminary tointroduing distributed arrays we disuss the proess arrays over whih theirelements are sattered.A base lass Group desribes a general group of proesses. It has sublassesPros1, Pros2, . . . , representing one-dimensional proess arrays, two-dimen-sional proess arrays, and so on.Pros2 p = new Pros2(2, 2) ;Pros1 q = new Pros1(4) ;These delarations set p to represent a 2 by 2 proess array and q to representa 4-element, one-dimensional proess array. In either ase the objet reated de-sribes a group of 4 proesses. At the time the Pros onstrutors are exeutedthe program should be exeuting on four or more proesses. Either onstru-tor selets four proesses from this set and identi�es them as members of theonstruted group.The multi-dimensional struture of a proess array is reeted in its set ofproess dimensions. An objet is assoiated with eah dimension. These objetsare aessed through the inquiry member dim:Dimension x = p.dim(0) ;Dimension y = p.dim(1) ;Dimension z = q.dim(0) ;

As indiated, the objet returned by the dim inquiry has lass Dimension.Now, some or all of the dimensions of a multi-dimensional array an bedelared as distributed ranges. In general a distributed range is represented byan objet of lass Range. A Range objet de�nes a range of integer subsripts,and de�nes how they are mapped into a proess array dimension. For example,the lass BlokRange is a sublass of Range whih desribes a simple blok-distributed range of subsripts. Like BLOCK distribution format in HPF, it mapsbloks of ontiguous subsripts to eah element of its target proess dimension3.The onstrutor of BlokRange usually takes two arguments: the extent of therange and a Dimension objet de�ning the proess dimension over whih thenew range is distributed.The syntax of Set. 2 is extended in the following way to support distributedarrays{ A distributed range objet may appear in plae of an integer extent in the\onstrutor" of the array (the expression following the new keyword).{ If a partiular dimension of the array has a distributed range, the orrespond-ing slot in the type signature of the array should inlude a # symbol. (Fromthe point of view of the type hierarhy, the sequential multi-dimensional ar-rays of the last setion are regarded as a speialization of the more generaldistributed distributed array lass embellished with # symbols).{ In general the onstrutor of the distributed array must be followed by anon lause, speifying the proess group over whih the array is distributed.Distributed ranges of the array must be distributed over distint dimensionsof this group. The on lause an be omitted in some irumstanes|seeSet. 4.For example, inPros2 p = new Pros2(3, 2) ;Range x = new BlokRange(100, p.dim(0)) ;Range y = new BlokRange(200, p.dim(1)) ;float [[#,#℄℄ a = new float [[x, y℄℄ on p ;a is reated as a 100 � 200 array, blok-distributed over the 6 proesses in p.The fragment is essentially equivalent to the HPF delarations!HPF$ PROCESSORS p(3, 2)REAL a(100, 200)!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO pBeause a is delared as a olletive objet we an apply olletive operationsto it. The HPJlib funtions introdued in Set. 2 apply equally well to distributedarrays, but now they imply inter-proessor ommuniation.3 Other range sublasses inlude CyliRange, whih produes the equivalent ofCYCLIC distribution format in HPF.

float [[#,#℄℄ b = new float [[x, y℄℄ on p ;HPJlib.shift(a, b, -1, 0, CYCL) ;At the edges of the loal segment of a the shift operation auses the loalvalues of a to be overwritten with values of b from a proessor adjaent in the xdimension.Subsripting operations on distributed arrays are subjet to a strit restri-tion. As already emphasized, the HPJava model is expliitly SPMD. An arrayaess suh asa [17, 23℄ = 13 ;is legal, but only if the loal proess holds the element in question. The languageprovides several distributed ontrol onstruts to alleviate the inonveniene ofthis restrition.4 The on Construt and the Ative Proess GroupThe lass Group (of whih the proess array lasses are speial ases) has amember funtion alled loal. This returns a boolean value whih is true if theloal proess is a member of the group, false otherwise. Inif(p.loal()) {...}the ode inside the onditional is exeuted only if the loal proess is a memberp. We an say that inside this onstrut the ative proess group is restrited top. Our language provides a short way of writing this onstruton(p) {...}The on onstrut provides some extra value. The language inorporates a formalidea of the ative proess group (APG). At any point of exeution some proessgroup is singled out as the APG. An on(p) onstrut spei�ally hanges thevalue of the APG to p. On exit from the onstrut, the APG is restored to itsvalue on entry.Elevating the ative proess group to a part of the language allows somesimpli�ations. For example, it provides a natural default for the on lause inarray onstrutors. More importantly, formally de�ning the ative proess groupsimpli�es the statement of various rules about what operations are legal insidedistributed ontrol onstruts like on.

5 Loations and the at ConstrutReturning to the example at the end of Set. 3, we need a mehanism to ensurethat the array aessa [17, 23℄ = 13 ;is legal, beause the loal proess holds the element in question. In general de-termining whether an element is loal may be a non-trivial task.In pratise it is unusual to use integer values diretly as loal subsripts indistributed array dimensions. Instead the idea of a loation is introdued. A lo-ation an be viewed as an abstrat element, or \slot", of a distributed range.Conversely, a range an be thought of as a set of loations. An individual loa-tion is desribed by an objet of the lass Loation. Eah Loation element ismapped to a partiular slie of a proess grid. In general two loations are iden-tial only if they ome from the same position in the same range. A subsriptingsyntax is used to represent loation n in range x:Loation i = x [n℄This is an important idea in HPJava. By working in terms of abstrat loa-tions|elements of distributed ranges|one an usually respet loality of ref-erene without resorting expliitly to low-level loal subsripts and proess ids.In fat the loation an be viewed as an abstrat data type inorporating theselower-level o�sets. The data �elds of Loation inlude dim and rd. The �rst isthe proess dimension of the parent range. The seond is the oordinate in thatdimension to whih the element is mapped.Loations are used to parametrize a new distributed ontrol onstrut alledthe at onstrut. This is analogous to on, exept that its body is exeuted onlyon proesses that hold the spei�ed loation. Loations an also be used diretlyas array subsripts, in plae on integers. So the aess to element a [17, 23℄ould now be safely written as follows:Loation i = x [17℄, j = y [23℄ ;at(i)at(j)a [i, j℄ = 13 ;Loations used as array subsripts must be elements of the orresponding rangesof the array.There is a restrition that an at(i) onstrut should only appear at a pointof exeution where i.dim is a dimension of the ative proess group. In theexamples of this setion this means that an at(i) onstrut, say, should normallybe nested diretly or indiretly inside an on(p) onstrut.The range lass has a member funtion idx whih an be used to reover theinteger subsript, given a loation in the range.

6 Distributed LoopsThe at mehanism of the previous setion is often useful, but in pratie goodparallel algorithms do not spend muh time assigning to isolated elements ofdistributed arrays. A more urgent requirement is a mehanism for parallel aessto distributed array elements.The last and most important distributed ontrol onstrut in the languageis alled over. It implements a distributed parallel loop. Coneptually it is quitesimilar to the FORALL onstrut of Fortran, exept that the over onstrut spe-i�es exatly where its parallel iterations are to be performed. The argument ofover is a member of the speial lass Index. This lass is a sublass of Loation,so it is syntatially orret to use an index as an array subsript (the e�et ofsuh subsripting is only well-de�ned inside an over onstrut parametrised bythe index in question). Here is an example of a pair of nested over loops:float [[#,#℄℄ a = new float [[x, y℄℄,b = new float [[x, y℄℄ ;...Index i, j ;over(i = x | :)over(j = y | :)a [i, j℄ = 2 * b [i, j℄ ;The body of an over onstrut exeutes, oneptually in parallel, for every lo-ation in the range of its index (or some subrange if a non-trivial triplet isspei�ed). An individual \iteration" exeutes on just those proessors holdingthe loation assoiated with the iteration. The net e�et of the example aboveshould be reasonably lear. It assigns twie the value of eah element of b tothe orresponding element of a. Beause of the rules about where an individ-ual iteration iterates, the body of an over an usually only ombine elementsof arrays that have some simple alignment relation relative to one another. Theidx member of range an be used in parallel updates to yield expressions thatdepend on global index values.With the over onstrut we an give some useful examples of parallel pro-grams.Figure 1 gives a parallel implementation of Cholesky deomposition in theextended language. The �rst dimension of a is sequential (\ollapsed" in HPFparlane). The seond dimension is distributed (ylially, to improve load-balaning). This a olumn-oriented deomposition. The example involves onenew operation from the standard library. The funtion remap opies the ele-ments of one distributed array or setion to another of the same shape. The twoarrays an have any, unrelated deompositions. In the urrent example remap isused to implement a broadast. Beause b has no range distributed over p, itimpliitly has repliated mapping; remap aordingly opies idential values to allproessors. This example also illustrates onstrution of setions of distributedarrays, and use of non-trivial triplets in the over onstrut.Figure 2 gives a parallel implementation of red-blak relaxation in the ex-tended language. To support this important stenil-update paradigm, ghost re-

Pros1 p = new Pros1(P) ;on(p) {Range x = new CyliRange(N, p.dim(0));float [[,#℄℄ a = new float [[N, x℄℄ ;float [[℄℄ b = new float [[N℄℄ ; // buffer// ... some ode to initialise `a'Loation l ;Index m ;for(int k = 0 ; k < N - 1 ; k++) {at(l = x [k℄) {float d = Math.sqrt(a [k, l℄) ;a [k, l℄ = d ;for(int s = k + 1 ; s < N ; s++)a [s, l℄ /= d ;}HPJlib.remap(b [[k + 1 : ℄℄, a [[k + 1 : , k℄℄);over(m = x | k + 1 :)for(int i = x.idx(m) ; i < N ; i++)a [i, m℄ -= b [i℄ * b [x.idx(m)℄ ;}at(l = x [N - 1℄)a [N - 1, l℄ = Math.sqrt(a [N - 1, l℄) ;} Fig. 1. Choleksy deomposition.gions are allowed on distributed arrays. Ghost regions are extensions of theloally held blok of a distributed array, used to ahe values of elements heldon adjaent proessors. In our ase the width of these regions is spei�ed ina speial form of the BlokRange onstrutor. The ghost regions are expliitlybrought up to date using the library funtion writeHalo. Its arguments are anarray with suitable extensions and a vetor de�ning in eah dimension the widthof the halo that must atually be updated.Note that the new range onstrutor and writeHalo funtion are libraryfeatures, not new language extensions. One new piee of syntax is needed: theaddition and subtration operators are overloaded so that integer o�sets an be

Pros2 p = new Pros2(P, P) ;on(p) {Range x = new BlokRange(N, p.dim(0), 1) ; // ghost width 1Range y = new BlokRange(N, p.dim(1), 1) ; // ghost width 1float [[#,#℄℄ u = new float [[x, y℄℄ ;int [℄ widths = {1, 1} ; // Widths updated by `writeHalo'// ... some ode to initialise `u'for(int iter = 0 ; iter < NITER ; iter++) {for(int parity = 0 ; parity < 2 ; parity++) {HPJlib.writeHalo(u, widths) ;Index i, j ;over(i = x | 1 : N - 2)over(j = y | 1 + (x.idx(i) + parity) % 2 : N - 2 : 2)u [i, j℄ = 0.25 * (u [i - 1, j℄ + u [i + 1, j℄ +u [i, j - 1℄ + u [i, j + 1℄) ;}}} Fig. 2. Red-blak iteration using writeHalo.
added or subtrated to loations, yielding new, shifted, loations. This kind ofshifted aess is illegal if it implies aess to o�-proessor data. It only works ifthe subsripted array has suitable ghost extensions.We have overed most of the important language features we propose to im-plement. Two additional features that are quite important in pratie but havenot been disussed are subranges and subgroups. A subrange is simply a rangewhih is a regular setion of some other range, reated by syntax like x [0 : 49℄.Subranges an be used to reate distributed arrays with general HPF-like align-ments. A subgroup is some slie of a proess array, formed by restriting proessoordinates in one or more dimensions to single values. Subgroups formally de-sribe the state of the ative proess group inside at and over onstruts. For amore omplete desription of a slightly earlier version of the proposed language,see [3℄.

7 DisussionWe have desribed a onservative set of extensions to Java. In the ontext of anexpliitly SPMD programming environment with a good ommuniation library,we laim these extensions provide muh of the onise expressiveness of HPF,without relying on very sophistiated ompiler analysis. The objet-oriented fea-tures of Java are exploited to give an elegant parameterization of the distributedarrays in the extended language. Beause of the relatively low-level programmingmodel, interfaing to other parallel-programming paradigms is more natural thanin HPF. With suitable are, it is possible to make diret alls to, say, MPI fromwithin the data parallel program (in [2℄ we suggest a onrete Java binding forMPI).The language extensions desribed were devised partly to provide a onve-nient interfae to a distributed-array library developed in the PCRC projet[5, 4℄. Hene most of the run-time tehnology needed to implement the languageis available \o�-the-shelf". The existing library inludes the run-time desriptorfor distributed arrays and a omprehensive array ommuniation library. TheHPJava ompiler itself is being implemented initially as a translator to ordinaryJava, through a ompiler onstrution framework also developed in the PCRCprojet [12℄.The distributed arrays of the extended language will appear in the emittedode as a pair|an ordinary Java array of loal elements and a Distributed ArrayDesriptor objet (DAD). Details of the distribution format, inluding non-trivialdetails of global-to-loal translation of the subsripts, are managed in the run-time library. Aeptable performane should nevertheless be ahievable, beausewe expet that in useful parallel algorithms most work on distributed arrayswill our inside over onstruts. In normal usage, the formulae for addresstranslation an then be linearized. The non-trivial aspets of address translation(inluding array bounds heking) an be absorbed into the startup overheads ofthe loop. Sine distributed arrays are usually large, the loop ranges are typiallylarge, and the startup overheads (inluding all the run-time alls assoiated withaddress translation) an be amortized. This approah to translation of parallelloops is disussed in detail in [4℄.Note that if array aesses are genuinely irregular, the neessary subsriptingannot usually be diretly expressed in our language, beause subsripts an-not be omputed randomly in parallel loops without violating the fundamentalSPMD restrition that all aesses be loal. This is not regarded as a shortom-ing: on the ontrary it fores expliit use of an appropriate library pakage forhandling irregular aesses (suh as CHAOS [6℄). Of ourse a suitable bindingof suh a pakage is needed in our language.A omplementary approah to ommuniation in a distributed array envi-ronment is the one-sided-ommuniation model of Global Arrays (GA) [9℄. Fortask-parallel problems this approah is often more onvenient than the shedule-oriented ommuniation of CHAOS (say). Again, the language model we ad-voate here appears quite ompatible with GA approah|there is no obvious

reason why a binding to a version of GA ould not be straightforwardly inte-grated with the the distributed array extensions of the language desribed here.Finally we mention two language projets that have some similarities. Spar[11℄ is a Java-based language for array-parallel programming. There are somesimilarities in syntax, but semantially Spar is very di�erent to our language.Spar expresses parallelism but not expliit data plaement or ommuniation|itis a higher level language. ZPL [10℄ is a new programming language for sienti�omputations. Like Spar, it is an array language. It has an idea of performingomputations over a region, or set of indies. Within a ompound statementpre�xed by a region spei�er, aligned elements of arrays distributed over the sameregion an be aessed. This idea has ertain similarities to our over onstrut.Referenes1. Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox, Donald Leskiw, and Xiaoming Li.Experiments with HPJava. Conurreny: Pratie and Experiene, 9(6):633, 1997.2. Bryan Carpenter, Geo�rey Fox, Xinying Li, and Guansong Zhang. A draft Javabinding for MPI. http://www.npa.syr.edu/projets/pr/do.3. Bryan Carpenter, Guansong Zhang, Geo�rey Fox, Xinying Li, and Yuhong Wen.Introdution to Java-Ad. http://www.npa.syr.edu/projets/pr/do.4. Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRC run-time kernel de�nition. Tehnial Report CRPC-TR97726, Center for Re-searh on Parallel Computation, 1997. Up-to-date version maintained athttp://www.npa.syr.edu/projets/pr/do.5. Parallel Compiler Runtime Consortium. Common runtime support for high-performane parallel languages. In Superomputing `93. IEEE Computer SoietyPress, 1993.6. R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communiation optimizations forirregular sienti� omputations on distributed memory arhitetures. Journal ofParallel and Distributed Computing, 22(3):462{479, September 1994.7. Geo�rey C. Fox, editor. Java for Computational Siene and Engineering|Simulation and Modelling, volume 9(6) of Conurreny: Pratie and Experiene,June 1997.8. Geo�rey C. Fox, editor. Java for Computational Siene and Engineering|Simulation and Modelling II, volume 9(11) of Conurreny: Pratie and Expe-riene, November 1997.9. J. Nieploha, R.J. Harrison, and R.J. Little�eld. The Global Array: Non-uniform-memory-aess programming model for high-performane omputers. The Journalof Superomputing, 10:197{220, 1996.10. Lawrene Snyder. A ZPL programming guide. Tehnial report, University ofWashington, May 1997. http://www.s.washington.edu/researh/projets/zpl/.11. Kees van Reeuwijk, Arjan J. C. van Gemund, and Henk J. Sips. Spar: A program-ming language for semi-automati ompilation of parallel programs. Conurreny:Pratie and Experiene, 9(11):1193{1205, 1997.12. Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xiaoming Li, Xinying Li, andYuhong Wen. PCRC-based HPF ompilation. In 10th International Workshopon Languages and Compilers for Parallel Computing, 1997. To appear in LetureNotes in Computer Siene.

This artile was proessed using the LATEX maro pakage with LLNCS style

	Towards a Java Environment for SPMD Programming
	Recommended Citation

	tmp.1285252205.pdf.3FY2L

