
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1998

Towards a Java Environment for SPMD Programming Towards a Java Environment for SPMD Programming

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center, dbc@npac.syr.edu

Guansong Zhang
Syracuse University, Northeast Parallel Architectures Center, zgs@npac.syr.edu

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Xiaoming Li
Syracuse University, Northeast Parallel Architectures Center, lxm@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Carpenter, Bryan; Zhang, Guansong; Fox, Geoffrey C.; and Li, Xiaoming, "Towards a Java Environment for
SPMD Programming" (1998). Northeast Parallel Architecture Center. 48.
https://surface.syr.edu/npac/48

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science
at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215687802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/48?utm_source=surface.syr.edu%2Fnpac%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Towards a Java Environment for SPMDProgrammingBryan Carpenter, Guansong Zhang, Geo�rey FoxXiaoming Li?, Xinying Li and Yuhong WenNPAC at Syra
use UniversitySyra
use, New York,NY 13244, USAfdb
,zgs,g
f,lxm,xli,weng�npa
.syr.eduAbstra
t. As a relatively straightforward obje
t-oriented language, Javais a plausible basis for a s
ienti�
 parallel programming language. Weoutline a
onservative set of language extensions to support this kindof programming. The programming style advo
ated is Single ProgramMultiple Data (SPMD), with parallel arrays added as language primi-tives. Communi
ations involving distributed arrays are handled througha standard library of
olle
tive operations. Be
ause the underlying pro-gramming model is SPMD programming, dire
t
alls to other
ommuni-
ation pa
kages are also possible from this language.1 Introdu
tionJava boasts a dire
t simpli
ity reminis
ent of Fortran, but also in
orporatesmany of the important ideas of modern obje
t-oriented programming. Of
ourseit
omes with an established tra
k-re
ord in the domains of Web and Internetprogramming. The idea that Java may enable new programming environments,
ombining attra
tive user interfa
es with high performan
e
omputation, is gain-ing in
reasing attention amongst
omputational s
ientists [7, 8℄.This arti
le will fo
us spe
i�
ally on the potential of Java as a languagefor s
ienti�
 parallel programming. We envisage a framework
alled HPJava.This would be a general environment for parallel
omputation. Ultimately itshould
ombine tools,
lass libraries, and language extensions to support variousestablished paradigms for parallel
omputation, in
luding shared memory pro-gramming, expli
it message-passing, and array-parallel programming. This is arather ambitious vision, and the
urrent arti
le only dis
usses some �rst stepstowards a general framework. In parti
ular we will make spe
i�
 proposals forthe se
tor of HPJava most dire
tly related to its namesake: High Performan
eFortran.For now we do not propose to import the full HPF programming model toJava. After several years of e�ort by various
ompiler groups, HPF
ompilersare still quite immature. It seems diÆ
ult justify a
omparable e�ort for Java? Current address: Peking University

before su

ess has been
onvin
ingly demonstrated in Fortran. In any
ase thereare features of the HPF model that make it less attra
tive in the
ontext of theintegrated parallel programming environment we envisage. Although an HPFprogram
an interoperate with modules written in other parallel programmingstyles through the HPF extrinsi
 pro
edure interfa
e, that me
hanism is quiteawkward. Rather than follow the HPF model dire
tly, we propose introdu
ingsome of the
hara
teristi
 ideas of HPF|spe
i�
ally its distributed array modeland array intrinsi
 fun
tions and libraries|into a basi
ally SPMD programmingmodel. Be
ause the programming model is SPMD, dire
t
alls to MPI [1℄ or other
ommuni
ation pa
kages are allowed from the HPJava program.The language outlined here provides HPF-like distributed arrays as languageprimitives, and new distributed
ontrol
onstru
ts to fa
ilitate a

ess to the lo
alelements of these arrays. In the SPMD mold, the model allows pro
essors thefreedom to independently exe
ute
omplex pro
edures on lo
al elements: it isnot limited by SIMD-style array syntax. All a

ess to non-lo
al array elementsmust go through library fun
tions|typi
ally
olle
tive
ommuni
ation opera-tions. This puts an extra onus on the programmer; but making
ommuni
ationexpli
it en
ourages the programmer to write algorithms that exploit lo
ality, andsimpli�es the task of the
ompiler writer. On the other hand, by providing dis-tributed arrays as language primitives we are able to simplify error-prone taskssu
h as
onverting between lo
al and global array subs
ripts and determiningwhi
h pro
essor holds a parti
ular element. As in HPF, it is possible to writeprograms at a natural level of abstra
tion where the meaning is insensitive tothe detailed mapping of elements. Lower-level styles of programming are alsopossible.2 Multidimensional ArraysFirst we des
ribe a modest extension to Java that adds a
lass of true multi-dimensional arrays to the standard Java language. The new arrays allow regularse
tion subs
ripting, similar to Fortran 90 arrays. The syntax des
ribed in thisse
tion is a subset of the syntax introdu
ed later for parallel arrays and algo-rithms: the only motivation for dis
ussing the sequential subset �rst is to simplifythe overall presentation.No attempt is made to integrate the new multidimensional arrays with thestandard Java arrays: they are a new kind of entity that
oexists in the lan-guage with ordinary Java arrays. There are good te
hni
al reasons for keepingthe two kinds of array separate2. The type-signatures and
onstru
tors of themultidimensional array use double bra
kets to distinguish them from ordinaryarrays:int [[,℄℄ a = new int [[5, 5℄℄ ;2 For example, the run-time representation of our multi-dimensional arrays in
ludesextra des
riptor information that would en
umber the large
lass \non-s
ienti�
"Java appli
ations.

float [[,,℄℄ b = new float [[10, n, 20℄℄ ;int [[℄℄
 = new int [[100℄℄ ;a, b and
 are respe
tively 2-, 3- and one- dimensional arrays. Of
ourse
 isvery similar in stru
ture to the standard array d,
reated byint [℄ d = new int [100℄ ;
 and d are not identi
al, though. For example,
 allows se
tion subs
ripting (seebelow), whereas d does not. The value
 would not be assignable to d, or vi
eversa..A

ess to individual elements of a multidimensional array goes through asubs
ripting operation involving single bra
kets, for examplefor(int i = 0 ; i < 4 ; i++)a [i, i + 1℄ = i +
 [i℄ ;For reasons that will be
ome
learer in later se
tions, this style of subs
ript-ing is
alled lo
al subs
ripting. In the
urrent sequential
ontext, apart fromthe fa
t that a single pair of bra
kest may in
lude several
omma-separatedsubs
ripts, this kind of subs
ripting works just like ordinary Java array sub-s
ripting. Subs
ripts always start at zero, in the ordinary Java or C style (thereis no Fortran-like lower bound).Our HPJava imports a Fortran-90-like idea of array regular se
tions. Thesyntax for se
tion subs
ripting is di�erent to the syntax for lo
al subs
ripting.Double bra
kets are used. These bra
kets
an in
lude s
alar subs
ripts or sub-s
ript triplets. A se
tion is an obje
t in its own right|its type is that of a suitablemulti-dimensional array. It des
ribes some subset of the elements of the parentarray.int [[℄℄ e = a [[2, 2 :℄℄ ;foo(b [[: , 0, 1 : 10 : 2℄℄) ;e be
omes an alias for the 3rd row of elements of a. The pro
edure foo shouldexpe
t a two-dimensional array as argument. It
an read or write to the set ofelements of b sele
ted by the se
tion. As in Fortran, upper or lower bounds
anbe omitted in triplets, defaulting to the a
tual bound of the parent array, andthe stride entry of the triplet is optional.In general our language has no idea of Fortran-like array assignments. Inint [[,℄℄ e = new int [[n, m℄℄ ;...a = e ;the assignment simply
opies a handle to obje
t referen
ed by e into a. There isno element-by-element
opy involved. On the other hand the language providesa standard library of fun
tions for manipulating its arrays,
losely analogous tothe array transformational intrinsi
 fun
tions of Fortran 90:

int [[,℄℄ f = new int [[5, 5℄℄ ;HPJlib.shift(f, a, -1, 0, CYCL) ;float g = HPJlib.sum(b) ;int [[℄℄ h = new int [[100℄℄ ;HPJlib.
opy(h,
) ;The shift operation with shift-mode CYCL exe
utes a
y
li
 shift on the datain its se
ond argument,
opying the result to its �rst argument|an array of thesame shape. In the example the shift amount is -1, and the shift is performedin dimension 0 of the array|the �rst of its two dimensions. The sum operationsimply adds all elements of its argument array. The
opy operation
opies theelements of its se
ond argument to its �rst|it is something like an array as-signment. These fun
tions
an be overloaded to apply to some �nite set of arraytypes. In the initial implementation of the language, the new arrays will be re-stri
ted to taking elements of primitive type. This is not regarded as an essentiallimit to the language, but it simpli�es various aspe
ts of the implementation,su
h as the
ommuni
ation library.3 Distributed ArraysHPJava adds
lass libraries and some additional syntax for dealing with dis-tributed arrays. These arrays are viewed as
oherent global entities, but theirelements are divided a
ross a set of
ooperating pro
esses. As a preliminary tointrodu
ing distributed arrays we dis
uss the pro
ess arrays over whi
h theirelements are s
attered.A base
lass Group des
ribes a general group of pro
esses. It has sub
lassesPro
s1, Pro
s2, . . . , representing one-dimensional pro
ess arrays, two-dimen-sional pro
ess arrays, and so on.Pro
s2 p = new Pro
s2(2, 2) ;Pro
s1 q = new Pro
s1(4) ;These de
larations set p to represent a 2 by 2 pro
ess array and q to representa 4-element, one-dimensional pro
ess array. In either
ase the obje
t
reated de-s
ribes a group of 4 pro
esses. At the time the Pro
s
onstru
tors are exe
utedthe program should be exe
uting on four or more pro
esses. Either
onstru
-tor sele
ts four pro
esses from this set and identi�es them as members of the
onstru
ted group.The multi-dimensional stru
ture of a pro
ess array is re
e
ted in its set ofpro
ess dimensions. An obje
t is asso
iated with ea
h dimension. These obje
tsare a

essed through the inquiry member dim:Dimension x = p.dim(0) ;Dimension y = p.dim(1) ;Dimension z = q.dim(0) ;

As indi
ated, the obje
t returned by the dim inquiry has
lass Dimension.Now, some or all of the dimensions of a multi-dimensional array
an bede
lared as distributed ranges. In general a distributed range is represented byan obje
t of
lass Range. A Range obje
t de�nes a range of integer subs
ripts,and de�nes how they are mapped into a pro
ess array dimension. For example,the
lass Blo
kRange is a sub
lass of Range whi
h des
ribes a simple blo
k-distributed range of subs
ripts. Like BLOCK distribution format in HPF, it mapsblo
ks of
ontiguous subs
ripts to ea
h element of its target pro
ess dimension3.The
onstru
tor of Blo
kRange usually takes two arguments: the extent of therange and a Dimension obje
t de�ning the pro
ess dimension over whi
h thenew range is distributed.The syntax of Se
t. 2 is extended in the following way to support distributedarrays{ A distributed range obje
t may appear in pla
e of an integer extent in the\
onstru
tor" of the array (the expression following the new keyword).{ If a parti
ular dimension of the array has a distributed range, the
orrespond-ing slot in the type signature of the array should in
lude a # symbol. (Fromthe point of view of the type hierar
hy, the sequential multi-dimensional ar-rays of the last se
tion are regarded as a spe
ialization of the more generaldistributed distributed array
lass embellished with # symbols).{ In general the
onstru
tor of the distributed array must be followed by anon
lause, spe
ifying the pro
ess group over whi
h the array is distributed.Distributed ranges of the array must be distributed over distin
t dimensionsof this group. The on
lause
an be omitted in some
ir
umstan
es|seeSe
t. 4.For example, inPro
s2 p = new Pro
s2(3, 2) ;Range x = new Blo
kRange(100, p.dim(0)) ;Range y = new Blo
kRange(200, p.dim(1)) ;float [[#,#℄℄ a = new float [[x, y℄℄ on p ;a is
reated as a 100 � 200 array, blo
k-distributed over the 6 pro
esses in p.The fragment is essentially equivalent to the HPF de
larations!HPF$ PROCESSORS p(3, 2)REAL a(100, 200)!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO pBe
ause a is de
lared as a
olle
tive obje
t we
an apply
olle
tive operationsto it. The HPJlib fun
tions introdu
ed in Se
t. 2 apply equally well to distributedarrays, but now they imply inter-pro
essor
ommuni
ation.3 Other range sub
lasses in
lude Cy
li
Range, whi
h produ
es the equivalent ofCYCLIC distribution format in HPF.

float [[#,#℄℄ b = new float [[x, y℄℄ on p ;HPJlib.shift(a, b, -1, 0, CYCL) ;At the edges of the lo
al segment of a the shift operation
auses the lo
alvalues of a to be overwritten with values of b from a pro
essor adja
ent in the xdimension.Subs
ripting operations on distributed arrays are subje
t to a stri
t restri
-tion. As already emphasized, the HPJava model is expli
itly SPMD. An arraya

ess su
h asa [17, 23℄ = 13 ;is legal, but only if the lo
al pro
ess holds the element in question. The languageprovides several distributed
ontrol
onstru
ts to alleviate the in
onvenien
e ofthis restri
tion.4 The on Constru
t and the A
tive Pro
ess GroupThe
lass Group (of whi
h the pro
ess array
lasses are spe
ial
ases) has amember fun
tion
alled lo
al. This returns a boolean value whi
h is true if thelo
al pro
ess is a member of the group, false otherwise. Inif(p.lo
al()) {...}the
ode inside the
onditional is exe
uted only if the lo
al pro
ess is a memberp. We
an say that inside this
onstru
t the a
tive pro
ess group is restri
ted top. Our language provides a short way of writing this
onstru
ton(p) {...}The on
onstru
t provides some extra value. The language in
orporates a formalidea of the a
tive pro
ess group (APG). At any point of exe
ution some pro
essgroup is singled out as the APG. An on(p)
onstru
t spe
i�
ally
hanges thevalue of the APG to p. On exit from the
onstru
t, the APG is restored to itsvalue on entry.Elevating the a
tive pro
ess group to a part of the language allows somesimpli�
ations. For example, it provides a natural default for the on
lause inarray
onstru
tors. More importantly, formally de�ning the a
tive pro
ess groupsimpli�es the statement of various rules about what operations are legal insidedistributed
ontrol
onstru
ts like on.

5 Lo
ations and the at Constru
tReturning to the example at the end of Se
t. 3, we need a me
hanism to ensurethat the array a

essa [17, 23℄ = 13 ;is legal, be
ause the lo
al pro
ess holds the element in question. In general de-termining whether an element is lo
al may be a non-trivial task.In pra
tise it is unusual to use integer values dire
tly as lo
al subs
ripts indistributed array dimensions. Instead the idea of a lo
ation is introdu
ed. A lo-
ation
an be viewed as an abstra
t element, or \slot", of a distributed range.Conversely, a range
an be thought of as a set of lo
ations. An individual lo
a-tion is des
ribed by an obje
t of the
lass Lo
ation. Ea
h Lo
ation element ismapped to a parti
ular sli
e of a pro
ess grid. In general two lo
ations are iden-ti
al only if they
ome from the same position in the same range. A subs
riptingsyntax is used to represent lo
ation n in range x:Lo
ation i = x [n℄This is an important idea in HPJava. By working in terms of abstra
t lo
a-tions|elements of distributed ranges|one
an usually respe
t lo
ality of ref-eren
e without resorting expli
itly to low-level lo
al subs
ripts and pro
ess ids.In fa
t the lo
ation
an be viewed as an abstra
t data type in
orporating theselower-level o�sets. The data �elds of Lo
ation in
lude dim and
rd. The �rst isthe pro
ess dimension of the parent range. The se
ond is the
oordinate in thatdimension to whi
h the element is mapped.Lo
ations are used to parametrize a new distributed
ontrol
onstru
t
alledthe at
onstru
t. This is analogous to on, ex
ept that its body is exe
uted onlyon pro
esses that hold the spe
i�ed lo
ation. Lo
ations
an also be used dire
tlyas array subs
ripts, in pla
e on integers. So the a

ess to element a [17, 23℄
ould now be safely written as follows:Lo
ation i = x [17℄, j = y [23℄ ;at(i)at(j)a [i, j℄ = 13 ;Lo
ations used as array subs
ripts must be elements of the
orresponding rangesof the array.There is a restri
tion that an at(i)
onstru
t should only appear at a pointof exe
ution where i.dim is a dimension of the a
tive pro
ess group. In theexamples of this se
tion this means that an at(i)
onstru
t, say, should normallybe nested dire
tly or indire
tly inside an on(p)
onstru
t.The range
lass has a member fun
tion idx whi
h
an be used to re
over theinteger subs
ript, given a lo
ation in the range.

6 Distributed LoopsThe at me
hanism of the previous se
tion is often useful, but in pra
ti
e goodparallel algorithms do not spend mu
h time assigning to isolated elements ofdistributed arrays. A more urgent requirement is a me
hanism for parallel a

essto distributed array elements.The last and most important distributed
ontrol
onstru
t in the languageis
alled over. It implements a distributed parallel loop. Con
eptually it is quitesimilar to the FORALL
onstru
t of Fortran, ex
ept that the over
onstru
t spe
-i�es exa
tly where its parallel iterations are to be performed. The argument ofover is a member of the spe
ial
lass Index. This
lass is a sub
lass of Lo
ation,so it is synta
ti
ally
orre
t to use an index as an array subs
ript (the e�e
t ofsu
h subs
ripting is only well-de�ned inside an over
onstru
t parametrised bythe index in question). Here is an example of a pair of nested over loops:float [[#,#℄℄ a = new float [[x, y℄℄,b = new float [[x, y℄℄ ;...Index i, j ;over(i = x | :)over(j = y | :)a [i, j℄ = 2 * b [i, j℄ ;The body of an over
onstru
t exe
utes,
on
eptually in parallel, for every lo-
ation in the range of its index (or some subrange if a non-trivial triplet isspe
i�ed). An individual \iteration" exe
utes on just those pro
essors holdingthe lo
ation asso
iated with the iteration. The net e�e
t of the example aboveshould be reasonably
lear. It assigns twi
e the value of ea
h element of b tothe
orresponding element of a. Be
ause of the rules about where an individ-ual iteration iterates, the body of an over
an usually only
ombine elementsof arrays that have some simple alignment relation relative to one another. Theidx member of range
an be used in parallel updates to yield expressions thatdepend on global index values.With the over
onstru
t we
an give some useful examples of parallel pro-grams.Figure 1 gives a parallel implementation of Cholesky de
omposition in theextended language. The �rst dimension of a is sequential (\
ollapsed" in HPFparlan
e). The se
ond dimension is distributed (
y
li
ally, to improve load-balan
ing). This a
olumn-oriented de
omposition. The example involves onenew operation from the standard library. The fun
tion remap
opies the ele-ments of one distributed array or se
tion to another of the same shape. The twoarrays
an have any, unrelated de
ompositions. In the
urrent example remap isused to implement a broad
ast. Be
ause b has no range distributed over p, itimpli
itly has repli
ated mapping; remap a

ordingly
opies identi
al values to allpro
essors. This example also illustrates
onstru
tion of se
tions of distributedarrays, and use of non-trivial triplets in the over
onstru
t.Figure 2 gives a parallel implementation of red-bla
k relaxation in the ex-tended language. To support this important sten
il-update paradigm, ghost re-

Pro
s1 p = new Pro
s1(P) ;on(p) {Range x = new Cy
li
Range(N, p.dim(0));float [[,#℄℄ a = new float [[N, x℄℄ ;float [[℄℄ b = new float [[N℄℄ ; // buffer// ... some
ode to initialise `a'Lo
ation l ;Index m ;for(int k = 0 ; k < N - 1 ; k++) {at(l = x [k℄) {float d = Math.sqrt(a [k, l℄) ;a [k, l℄ = d ;for(int s = k + 1 ; s < N ; s++)a [s, l℄ /= d ;}HPJlib.remap(b [[k + 1 : ℄℄, a [[k + 1 : , k℄℄);over(m = x | k + 1 :)for(int i = x.idx(m) ; i < N ; i++)a [i, m℄ -= b [i℄ * b [x.idx(m)℄ ;}at(l = x [N - 1℄)a [N - 1, l℄ = Math.sqrt(a [N - 1, l℄) ;} Fig. 1. Choleksy de
omposition.gions are allowed on distributed arrays. Ghost regions are extensions of thelo
ally held blo
k of a distributed array, used to
a
he values of elements heldon adja
ent pro
essors. In our
ase the width of these regions is spe
i�ed ina spe
ial form of the Blo
kRange
onstru
tor. The ghost regions are expli
itlybrought up to date using the library fun
tion writeHalo. Its arguments are anarray with suitable extensions and a ve
tor de�ning in ea
h dimension the widthof the halo that must a
tually be updated.Note that the new range
onstru
tor and writeHalo fun
tion are libraryfeatures, not new language extensions. One new pie
e of syntax is needed: theaddition and subtra
tion operators are overloaded so that integer o�sets
an be

Pro
s2 p = new Pro
s2(P, P) ;on(p) {Range x = new Blo
kRange(N, p.dim(0), 1) ; // ghost width 1Range y = new Blo
kRange(N, p.dim(1), 1) ; // ghost width 1float [[#,#℄℄ u = new float [[x, y℄℄ ;int [℄ widths = {1, 1} ; // Widths updated by `writeHalo'// ... some
ode to initialise `u'for(int iter = 0 ; iter < NITER ; iter++) {for(int parity = 0 ; parity < 2 ; parity++) {HPJlib.writeHalo(u, widths) ;Index i, j ;over(i = x | 1 : N - 2)over(j = y | 1 + (x.idx(i) + parity) % 2 : N - 2 : 2)u [i, j℄ = 0.25 * (u [i - 1, j℄ + u [i + 1, j℄ +u [i, j - 1℄ + u [i, j + 1℄) ;}}} Fig. 2. Red-bla
k iteration using writeHalo.
added or subtra
ted to lo
ations, yielding new, shifted, lo
ations. This kind ofshifted a

ess is illegal if it implies a

ess to o�-pro
essor data. It only works ifthe subs
ripted array has suitable ghost extensions.We have
overed most of the important language features we propose to im-plement. Two additional features that are quite important in pra
ti
e but havenot been dis
ussed are subranges and subgroups. A subrange is simply a rangewhi
h is a regular se
tion of some other range,
reated by syntax like x [0 : 49℄.Subranges
an be used to
reate distributed arrays with general HPF-like align-ments. A subgroup is some sli
e of a pro
ess array, formed by restri
ting pro
ess
oordinates in one or more dimensions to single values. Subgroups formally de-s
ribe the state of the a
tive pro
ess group inside at and over
onstru
ts. For amore
omplete des
ription of a slightly earlier version of the proposed language,see [3℄.

7 Dis
ussionWe have des
ribed a
onservative set of extensions to Java. In the
ontext of anexpli
itly SPMD programming environment with a good
ommuni
ation library,we
laim these extensions provide mu
h of the
on
ise expressiveness of HPF,without relying on very sophisti
ated
ompiler analysis. The obje
t-oriented fea-tures of Java are exploited to give an elegant parameterization of the distributedarrays in the extended language. Be
ause of the relatively low-level programmingmodel, interfa
ing to other parallel-programming paradigms is more natural thanin HPF. With suitable
are, it is possible to make dire
t
alls to, say, MPI fromwithin the data parallel program (in [2℄ we suggest a
on
rete Java binding forMPI).The language extensions des
ribed were devised partly to provide a
onve-nient interfa
e to a distributed-array library developed in the PCRC proje
t[5, 4℄. Hen
e most of the run-time te
hnology needed to implement the languageis available \o�-the-shelf". The existing library in
ludes the run-time des
riptorfor distributed arrays and a
omprehensive array
ommuni
ation library. TheHPJava
ompiler itself is being implemented initially as a translator to ordinaryJava, through a
ompiler
onstru
tion framework also developed in the PCRCproje
t [12℄.The distributed arrays of the extended language will appear in the emitted
ode as a pair|an ordinary Java array of lo
al elements and a Distributed ArrayDes
riptor obje
t (DAD). Details of the distribution format, in
luding non-trivialdetails of global-to-lo
al translation of the subs
ripts, are managed in the run-time library. A

eptable performan
e should nevertheless be a
hievable, be
ausewe expe
t that in useful parallel algorithms most work on distributed arrayswill o

ur inside over
onstru
ts. In normal usage, the formulae for addresstranslation
an then be linearized. The non-trivial aspe
ts of address translation(in
luding array bounds
he
king)
an be absorbed into the startup overheads ofthe loop. Sin
e distributed arrays are usually large, the loop ranges are typi
allylarge, and the startup overheads (in
luding all the run-time
alls asso
iated withaddress translation)
an be amortized. This approa
h to translation of parallelloops is dis
ussed in detail in [4℄.Note that if array a

esses are genuinely irregular, the ne
essary subs
ripting
annot usually be dire
tly expressed in our language, be
ause subs
ripts
an-not be
omputed randomly in parallel loops without violating the fundamentalSPMD restri
tion that all a

esses be lo
al. This is not regarded as a short
om-ing: on the
ontrary it for
es expli
it use of an appropriate library pa
kage forhandling irregular a

esses (su
h as CHAOS [6℄). Of
ourse a suitable bindingof su
h a pa
kage is needed in our language.A
omplementary approa
h to
ommuni
ation in a distributed array envi-ronment is the one-sided-
ommuni
ation model of Global Arrays (GA) [9℄. Fortask-parallel problems this approa
h is often more
onvenient than the s
hedule-oriented
ommuni
ation of CHAOS (say). Again, the language model we ad-vo
ate here appears quite
ompatible with GA approa
h|there is no obvious

reason why a binding to a version of GA
ould not be straightforwardly inte-grated with the the distributed array extensions of the language des
ribed here.Finally we mention two language proje
ts that have some similarities. Spar[11℄ is a Java-based language for array-parallel programming. There are somesimilarities in syntax, but semanti
ally Spar is very di�erent to our language.Spar expresses parallelism but not expli
it data pla
ement or
ommuni
ation|itis a higher level language. ZPL [10℄ is a new programming language for s
ienti�

omputations. Like Spar, it is an array language. It has an idea of performing
omputations over a region, or set of indi
es. Within a
ompound statementpre�xed by a region spe
i�er, aligned elements of arrays distributed over the sameregion
an be a

essed. This idea has
ertain similarities to our over
onstru
t.Referen
es1. Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox, Donald Leskiw, and Xiaoming Li.Experiments with HPJava. Con
urren
y: Pra
ti
e and Experien
e, 9(6):633, 1997.2. Bryan Carpenter, Geo�rey Fox, Xinying Li, and Guansong Zhang. A draft Javabinding for MPI. http://www.npa
.syr.edu/proje
ts/p
r
/do
.3. Bryan Carpenter, Guansong Zhang, Geo�rey Fox, Xinying Li, and Yuhong Wen.Introdu
tion to Java-Ad. http://www.npa
.syr.edu/proje
ts/p
r
/do
.4. Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRC run-time kernel de�nition. Te
hni
al Report CRPC-TR97726, Center for Re-sear
h on Parallel Computation, 1997. Up-to-date version maintained athttp://www.npa
.syr.edu/proje
ts/p
r
/do
.5. Parallel Compiler Runtime Consortium. Common runtime support for high-performan
e parallel languages. In Super
omputing `93. IEEE Computer So
ietyPress, 1993.6. R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communi
ation optimizations forirregular s
ienti�

omputations on distributed memory ar
hite
tures. Journal ofParallel and Distributed Computing, 22(3):462{479, September 1994.7. Geo�rey C. Fox, editor. Java for Computational S
ien
e and Engineering|Simulation and Modelling, volume 9(6) of Con
urren
y: Pra
ti
e and Experien
e,June 1997.8. Geo�rey C. Fox, editor. Java for Computational S
ien
e and Engineering|Simulation and Modelling II, volume 9(11) of Con
urren
y: Pra
ti
e and Expe-rien
e, November 1997.9. J. Nieplo
ha, R.J. Harrison, and R.J. Little�eld. The Global Array: Non-uniform-memory-a

ess programming model for high-performan
e
omputers. The Journalof Super
omputing, 10:197{220, 1996.10. Lawren
e Snyder. A ZPL programming guide. Te
hni
al report, University ofWashington, May 1997. http://www.
s.washington.edu/resear
h/proje
ts/zpl/.11. Kees van Reeuwijk, Arjan J. C. van Gemund, and Henk J. Sips. Spar: A program-ming language for semi-automati

ompilation of parallel programs. Con
urren
y:Pra
ti
e and Experien
e, 9(11):1193{1205, 1997.12. Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xiaoming Li, Xinying Li, andYuhong Wen. PCRC-based HPF
ompilation. In 10th International Workshopon Languages and Compilers for Parallel Computing, 1997. To appear in Le
tureNotes in Computer S
ien
e.

This arti
le was pro
essed using the LATEX ma
ro pa
kage with LLNCS style

	Towards a Java Environment for SPMD Programming
	Recommended Citation

	tmp.1285252205.pdf.3FY2L

