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Local Theory of Almost Split Sequences for Comodules

William Chin, Mark Kleiner, and Declan Quinn

Abstract. We show that almost split sequences in the category of comodules
over a coalgebra Γ with finite-dimensional right-hand term are direct limits of
almost split sequences over finite dimensional subcoalgebras. In previous work
we showed that such almost split sequences exist if the right hand term has a
quasifinitely copresented linear dual. Conversely, taking limits of almost split
sequences over finte-dimensional comodule categories, we then show that, for
countable-dimensional coalgebras, certain exact sequences exist which satisfy a
condition weaker than being almost split, which we call “finitely almost split”.
Under additional assumptions, these sequences are shown to be almost split
in the appropriate category.

1. Introduction

In [CKQ] we approached the problem of proving the existence of almost split
sequences for comodules following the approach used in [ARS]. In this paper we
focus on the local theory and we study how almost split sequences relate to al-
most split sequences over finite dimensional subcoalgebras. Rather than the more
functorial approach of [CKQ] and [Tak], we lean here toward using limits to obtain
results from ones known in the finite-dimensional case. The results make use of
techniques using duality and idempotents in the dual algebra. This approach is
amply represented in other recent work on coalgebras, e.g. [DT, Si].

A fundamental, but surprisingly difficult, result in [CKQ] is the fact that the
functor ∗ is a duality on quasifinite injectives. We begin by giving an easy proof
of this result using the characterization of the cohom functor as the direct limit of
duals of Hom’s.

We show in 3.2 that the almost split sequences with finite-dimensional right-
hand terms are direct limits of almost split sequences over some finite-dimensional
subcoalgebras. This follows from our result in 3.1 which shows that the transpose
of a comodule can be expressed as a direct limit of finite-dimensional transposes.

In section 4, we attempt to construct almost split sequences over a coalgebra Γ
from such sequences over finite-dimensional subcoalgebras. We show that (4.3 The-
orem 2), for countable-dimensional coalgebras, starting with a finite-dimensional
comodule on the right, certain exact sequences exist which satisfy a condition sim-
ilar to, but weaker than, being almost split. This type of sequence, which we call
“right finitely almost split”, was investigated by E. Green and E. Marcos [GM] in a
different setting. The assumption on dimension seems to be a mild one, as any inde-
composable coalgebra with a locally countable Ext-quiver (i.e., dimkExt1−Γ(S, T ) is
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2 WILLIAM CHIN, MARK KLEINER, AND DECLAN QUINN

countable for all simple comodules S, T ) has countable dimension. The dimension
assumption arises mainly from the need to construct a direct system of almost split
sequences; to do this (in the proofs of Theorems 2 and 3) we need to work with a
chain of finite-dimensional subcoalgebras whose union is Γ, a condition equivalent
to Γ being of countable dimension. Under additional assumptions these sequences
are shown to be almost split in the quasifinite comodule category in Theorem 2.
This result is predicted by [CKQ, Corollary 4.3] along with our results in Section 1.
In addition, the result from [CKQ] says that the sequences so obtained are almost
split in the comodule category.

The situation in Theorem 2 dualizes. We start with a finite-dimensional co-
module on the left and construct a left finitely almost split sequence in the category
of prorational modules, which consists of inverse limits of finite-dimensional comod-
ules. These modules form a dual category to the category of comodules and are
developed in 4.2. As for the right-hand variant, these sequence are almost split un-
der appropriate hypotheses. This result can predicted from the result (4.3, Theorem
4), that dualizes [CKQ, Corollary 4.3] by working in the prorational category.

The Mittag-Leffler condition concerns the exactness of the inverse limit. It is
the main tool for showing that the sequences in Section 4 might be almost split.
The relevant special case is discussed briefly in 4.1.

We close by presenting some examples of almost split sequences over path
coalgebras. Our examples include almost split sequences, starting with finite-
dimensional comodules on either the left or right, that may not be in the finite-
dimensional comodule category. One of the examples exhibits how the direct limit
of almost split sequences may fail to be almost split. More examples of almost split
sequences and AR quivers for comodules appear in the recent article [KS].

Notation Let Γ denote a coalgebra over the fixed base field k. Set the following
MΓ the category of right Γ-comodules.

M
Γ

f the category of finite-dimensional right Γ -comodules

M
Γ

q the category of quasifinite right Γ -comodules

M
Γ

qc the category of quasifinitely copresented right Γ -comodules

IΓ the category of quasifinite injective left Γ-comodules
R =DΓ the dual algebra Homk(Γ,k)
MR the category of right R-modules
DΓ the category of duals of left Γ -comodules
DΓ

q the category of duals of quasifinite left Γ -comodules

h−Γ( , ) the cohom functor
� the cotensor product (over Γ)
D the linear dual Homk( ,k)
(−)∗ the functor h−Γ( , Γ).

We will use the obvious left-handed variants of these notations. We shall gen-
erally follow the conventions of [CKQ] an the books [Mo, Sw]. The socle of a
comodule M ∈ MΓ is denoted by soc(M). If M = Γ then soc(M)=corad(Γ), the
coradical. The coefficient space of M in Γ is denoted by cf(M).
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M is said to be quasifinite if Hom−Γ(F, M) is finite-dimensional for all F ∈ MΓ
f .

Equivalently, the simple summands of soc(M) have finite (but perhaps unbounded)
multiplicities [Ch].

An injective copresentation of M is an exact sequence 0 → M → I0 → I1, where
I0 and I1 are injectives. The comodule M is said to be quasifinitely copresented if
I0 and I1 can be chosen to be quasifinite.

Assume for the moment that Γ is a finite-dimensional, so that MΓ
f ≈ mod R.

Let tr denote the usual transpose on modR, as in the representation theory of
finite-dimensional algebras (defined using projective resolutions, see [ARS, §IV]).
It is easy to see from duality that for finite-dimensional comodules that DTrD= tr,
so we can say Dtr = TrD and trD=DTr.

2. Duality for quasifinite injective comodules

We define the contravariant functor ∗ as in [CKQ] as h−Γ(−, Γ) : MΓ
q → MΓ

(also the version on the left as well)
With R = DΓ, we have the right and left hit actions of R on Γ (more generally

on any Γ, Γ-bicomodule), usually denoted by the symbols ↼, ⇀ as in e.g. [Mo, Sw].
Here we will omit these symbols and simply use juxtapostion, e.g., eΓ = e ⇀ Γ,
e ∈ R. Notice that Γe is an injective right comodule.

Theorem 1 (CKQ). ∗ restricts to a duality on the category of quasifinite in-
jective comodules IΓ.

We first collect some facts concerning duality and injectives.

Lemma 1. Let e = e2 ∈ R. Then:
(a) D(Γe) ∼= eR as right R-modules.
(b) If Γ is of finite dimension, then D(eR) ∼= Γe as left R-modules
(c) Hom−Γ(Λ, Γe) = Hom−Γ(Λ, Λe) for every subcoalgebra Λ ⊂ Γ
(d) (Γe)∗ ∼= eΓ as left Γ-comodules.

Proof. The statement in (a) is essentially the definition of the right hit action
as dual to the left multiplication by R. We leave the details to the reader. The proof
of (b) follows from (a) and the duality D for finite dimensional (co)modules.

For (c), observe that the image of any comodule map on the left-hand term
has its image in ∆−1(Γe ⊗ Λ) ∼= Γe�Λ. The result follows immediately from the
additivity of the cotensor product, as Γe is a summand of Γ.

Lastly we prove (d). Let Λ denote a finite-dimensional subcoalgebra of Γ. Then
we have

Hom−Γ(Λ, Γe) = Hom−Γ(Λ, Λe)

∼= HomR(D(Λe), DΛ)

∼= HomR(e(DΛ), DΛ)

∼= (DΛ)e(2.1)
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by applying the part (c), the duality D, and part (a). Note too that we consider e
to act on DΛ via the ring map DΓ → DΛ given by restriction. Now we obtain

(Γe)∗ = lim
→

DHom−Γ(Λ, Γe)

∼= lim
→

D((DΛ)e)

∼= lim
→

eΛ

∼= eΓ

where the direct limits are over the finite-dimensional subcoalgebras Λ, using the
definition of ∗, (1) above, and part (b). This completes the proof of the Lemma. �

Proof. (of the Theorem) Let I be a quasifinite injective comodule. Then I is
the direct sum of indecomposable injectives, all of the form Γe, where is a primitive
idempotent in R. Part (d) of the Lemma and its right-handed counterpart yield
I∗∗ ∼= I, an isomorphism that is easily seen to be natural. �

3. Direct Limits

3.1. The Transpose. Let M ∈ MΓ
qc. The transpose TrM ∈ ΓM is defined

in [CKQ] to be by 0 → TrM → I∗0 → I∗1 where 0 → M → I0 → I1is a minimal
quasifinite injective copresentation of M . Actually, it is easy to see that that we
can use any quasifinite injective copresentation of M to define Tr M , i.e., we may
omit the minimality requirement from the definition. For a finite-dimensional
subcoalgebra Λ ⊂ Γ, TrΛ M denotes the transpose of M ∈ MΛ

qc

Lemma 2. Let M ∈ MΓ
f be a finite-dimensional quasifinitely copresented co-

module. Then for every finite-dimensional subcoalgebra Λ ⊂ Γ containing cf(M)

Tr
Λ

M ∼= Λ� TrM

Proof. Let Λ be as in the statement. Let

0 → M → I0�Λ → I1�Λ

be an injective copresentation of M . We obtain an injective copresentation

0 → M → I0�Λ → I1�Λ

for M in MΛ. The defining copresentation for the transpose in MΛ using “∗ in
MΛ” is

0 → Tr
Λ

M → h−Λ(I1�Λ, Λ) → h−Λ(I0�Λ, Λ).

On the other hand, the defining copresentation

0 → TrM → h−Γ(I1, Γ) → h−Γ(I0, Γ)

for M in MΓ can be cotensored with Λ, yielding

0 → Λ� TrM → Λ�h−Γ(I1, Λ
′) → Λ�h−Γ(I0, Λ)

In view of [Tak, 1.14(b)], which says that Λ�h−Γ(M, Γ) ∼= h−Λ(M, Λ), the result
is established. �
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Assume that Λ is a finite-dimensional coalgebra. We see next that the transpose
commutes with certain direct limits: Let trDΛ and TrΛ denote the transposes in the
module category DΛM and the comodule category MΛ, respectively. Since coten-
soring commutes with direct limits and is left exact, it follows from the preceding
lemma that

Proposition 1. Suppose that M ∈ MΓ
qc finite-dimensional, indecomposable

and not injective. Then

lim
−→
L

TrΛ M = TrM

for the direct system L of finite-dimensional subcoalgebras of Γ.

Remark 1. The preceding result gives a way of constructing indecomposables
which are unions of chains of indecomposable subcomodules. See Example 3 at the
end of this paper for an example of such an infinite-dimensional indecomposable.

We show next that the almost split sequences (e.g. those whose existence is pro-
vided by [CKQ]) are direct limits of almost split sequences over finite-dimensional
subcoalgebras.

3.2. Almost Split Sequences as Direct Limits.

Proposition 2. Suppose that C ∈ MΓ
qc is finite-dimensional. Let

d : 0 → A → B → C → 0

be an almost split sequence in MΓ. Then d is the direct limit of almost split
sequences (d�Λ)Λ∈L for some direct system L of finite-dimensional subcoalgebras
of Γ.

Proof. Let Λ be any finite-dimensional coalgebra of Γ containing both the
coefficient space of C, and a finite-dimensional subspace of B mapping onto C. It
is clear that the sequence d�Λ : B�Λ → C�Λ = C → 0 is exact (onto C) for any
finite-dimensional subcoalgebra Λ ⊆ Γ, provided Λ ⊇ Λ′. It is trivial to check
that B�Λ → C → 0 is right almost split in MΛ.

The direct system L of subcoalgebras is taken to be the finite-dimensional
subcoalgebras Λ as just described, ordered by inclusion. The Lemma ensures that
A�Λ =TrΛD(C), and TrΛD(C) is indecomposable by the finite-dimensional theory.
This is the left-hand term of the right almost split sequence d�Λ, so by the standard
result of Auslander (see [CKQ], 4.3 Proof) δ�Λ is in fact an almost split sequence
in MΛ. The maps between the sequences is the obvious one using inclusions. �

4. Finitely Almost Split Sequences

4.1. The Mittag-Leffler Condition. For abelian groups, the direct limit (or
filtered colimit) is an exact functor but (inverse) limits are left exact but not always
right exact. The Mittag-Leffler condition [Gro] (see also [Ha, p.119]) guarantees
that inverse limits of certain inverse systems of exact sequences are exact. It has
the following special case:

Proposition 3. Let

di : 0 → Mi → Ei → Ni → 0
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be an inverse system of exact sequences of vector spaces where the index set has a
countable cofinal subset. If each Mi is finite-dimensional, then

lim
←

di = d : 0 → M → E → N → 0

is exact.

The reader may consult the references just mentioned, or [Je, Proposition 2.3]
for a simple proof.

4.2. Prorational Modules. Define D : ΓM → DΓ to be the functor D with
range being the full subcategory of MR having objects DM , M ∈ ΓM. We let DΓ

q

denote the full subcategory of duals of quasifinite comodules. Note that the objects
in DΓ are precisely the inverse limits of finite-dimensional rational right R-modules.
Accordingly the finite-dimensional objects in DΓ are precisely the finite-dimensional
rational right R-modules. We refer to the objects of DΓ as prorational right R-
modules. We shall freely use the variant of D (denoted by the same symbol) with
opposite categories, e.g. D : MΓ → ΓD.

Definition 1. We say that DM ∈ DΓ is coquasifinite if HomR(DM, F ) is
finite-dimensional for all finite-dimensional F ∈ DΓ.

The dual notion “quasifinite” was introduced in [Tak]. The objects of DΓ
q are

coquasifinite prorational right R-modules.
We show below that DΓ (resp. DΓ

q ) is the dual category of the category of
(resp. quasifinite) comodules.

If ρ : M → M ⊗ Γ is the structure map of M ∈ MΓ, then by restricting to
DM ⊗ R ⊂ D(M ⊗ R) and abusing notation, we obtain the map

Dρ : DM ⊗ R → DM

It is straightforward to check that this coincides with the rational right R-module
structure on DM which arises from the left Γ−comodule structure on DDM , which
in turn comes from ρ.

Note that the objects in DΓ are precisely the inverse limits of finite-dimensional
rational right R-modules. Accordingly the finite-dimensional objects in DΓ are pre-
cisely the finite-dimensional rational right R-modules (i.e. left comodules). We
refer to the objects of DΓ as prorational modules.

In the following lemma, a finite-dimensional cotensor product of comodules is
seen to be dual to the tensor product.

Lemma 3. Let M ∈ MΓ and N ∈ ΓM and assume that M�N is finite-
dimensionsal. Then D(M�N) is isomorphic to DM ⊗R DN .

Proof. Let ρ : M → M ⊗ Γ and λ : N −→ Γ ⊗ N be the structure maps of
M and N respectively. Then as is noted above, DM is a left comodule and is a
(rational) right R-module. Similarly DN is a left R-module.

The cotensor M�N is defined by the usual equalizer

M�N → M ⊗ N
ρ⊗1

⇉
1⊗λ

M ⊗ Γ ⊗ N.

Dualizing, we have the coequalizer

D(M ⊗ Γ ⊗ N)
D(ρ⊗1)

⇉
D(1⊗λ)

D(M ⊗ N)
p

−→ D(M�ΓN) −→ 0.
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By hypothesis M�ΓN is finite-dimensional, so the density of D(M) ⊗ D(N)
in D(M ⊗ N) implies that the restriction DM ⊗ DN −→ D(M�N) is onto. The
kernel of this map is kerp ∩ (DM ⊗ DN). Thus we have the coequalizer

DM ⊗ DΓ ⊗ DN
Dρ⊗1

⇉
1⊗Dλ

DM ⊗ DN
p

−→ D(M�ΓN).

This finishes the proof of the lemma. �

Let Λ denote a finite-dimensional subcoalgebra of Γ. The finite-dimensional
algebra DΛ is isomorphic to DΓ/Λ⊥, where Λ⊥ is the ideal of functionals in R = DΓ
vanishing on Λ. The following is now immediate. Let L denote the direct system
of finite-dimensional subcoalgebras of Γ. Lemma 2 immediately yields

Proposition 4. Let MΛ denote M�Λ, M ∈ MΓ
q . Then

(a) D(MΛ) ∼= DM ⊗R DΛ ∼= DM/MΛ⊥.
(b) DM ∼= lim

←
L

DMΛ.

Proposition 5. (a) D: ΓM → DΓ is a duality
(b) D restricts to a duality ΓMq → DΓ

q

(c) DM is coquasifinite for all M ∈ ΓMq.

Proof. A functor D′:DΓ → ΓM can be defined by setting D′DM = M , giving
a correspondence on objects. Suppose f ∈ HomR(DN,DM). We put D′f = lim

→
Dfi

where fi = f ⊗ Ri. One can check that the functor D′ is an inverse duality for D.
We are done with (a). Part (c) follows from the duality, and part (b) is clear. �

4.3. Finitely Almost Split Sequences.

Definition 2. We say that a nonsplit exact sequence of objects 0 → A → B →

C → 0 in RM is right finitely almost split if
1. C is indecomposable
2. every morphism X → C with X ∈ MΓ

f , which is not a split epimorphism,
lifts to B.

Dually, the sequence is said to be left finitely almost split if A is indecompos-
able if every morphism A → X with X ∈ MΓ

f , which is not a split monomorphism,
extends to B.

These definitions are a coalgebraic version of the definition of finitely almost
split sequences given for “local nests of quivers” given in [GM], where they are
called “special sequences”. Further extending their work we have

Theorem 2. Let Γ be a countable-dimensional coalgebra. If C ∈ MΓ
f is non-

projective and indecomposable, then there exists a right finitely almost split sequence

d : 0→A→B→C→0

in MΓ
q . If DC is quasifinitely copresented, then d can be chosen to be an almost

split sequence in MΓ
q .

Proof. We can write Γ = ∪Γi as the ascending union of a chain of finite-
dimensional subcoalgebras (not necessarily the coradical filtration) Γi where we
may assume that C�Γ0 = C.
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It is easy to check that C is not projective in MΛi for all i. For, let p : B → C
be a surjection in MΓ; then B�Λi → C�Λi = C is a surjection in MΛi . Were C
projective in MΛi , then a splitting map C → B�Λi in MΛi would also split p.

Let tri and Tri denote the transposes in the module category DΛi
M and in MΛi ,

respectively, (as mentioned in the introduction). By results for finite-dimensional
algebras, there exists an almost split sequence

di : 0 → Ai → Bi → C → 0

in MΓi

f with Ai=Dtri C=TriDC, i ∈ N. We obtain exact sequences indexed by N,
along with maps di → di+1 obtained by assigning the identity map on C, and then
a little diagram chasing using the fact that di+1 is almost split. Furthermore, the
maps Ai → Ai+1 and Bi → Bi+1are monomorphisms. This can be seen as follows.
Suppose that Ai → Ai+1 has kernel Ki 6= 0. Then we obtain an exact sequence

d′i : 0 → A′i → B′i → C → 0

where A′i = Ai/K and B′i = Bi/K, with epimorphisms di → d′i (identity map
on C). It follows easily from the fact that di is almost split that d′i is split. But
this immediately implies that di splits. Thus we obtain a direct system of exact
sequences (di)i∈N with monomorphic connecting maps di → di+1, each being the
identity on C.

The direct limit is an exact sequence

d : 0→A→B→C→0.

since the direct limit is an exact functor.
We show that d is right finitely almost split. The sequence is not split, for

otherwise a splitting map C → B would have its image in Bi for some i (since C
is finite-dimensional). This would then be a splitting of di, a contradiction. Let X
∈ MΓ

f , so that X ∈ MΓi for some i. Then any morphism X → C, which is not a
split epimorphism, lifts to Bi. Composing with the inclusion map Bi → B, we get
the required lifting. This shows that d is right finitely almost split.

Now assume as in the statement that DC is quasifinitely copresented. To show
that d is right almost split in MΓ

q , it suffices to show that the sequence Hom(X, d)

0 → Hom(X, A) → Hom(X, B) → Hom(X, C) → 0

is exact for all X ∈ MΓ
q . Let Xi = X�Γi, which is a finite-dimensional comod-

ule (since X is quasifinite). Note that Hom(Xi, d) is an inverse system of short
exact sequences. By the Mittag-Leffler condition (Proposition 3), it suffices to
show Hom(Xi, A) is finite-dimensional for all i. Thus it suffices to know that A is
quasifinite. First, we have A = lim

→
Ai=lim

→
TriDC =TrDC (3.1 Lemma 2). Sec-

ondly, the rudimentary property of Tr [CKQ, Lemma 3.2] states in fact that TrDC
is quasifinite (because DC is quasifinitely copresented).

By duality, DC in indecomposable and noninjective. By [CKQ, 3.2] and 3.1
Lemma 2, A = TrDC is also indecomposable noninjective. By a result of Auslander
(see [CKQ, 4.3]), d is an almost split sequence.

This completes the proof of the Theorem. �

Remark 2. The second statement of the theorem holds ([CKQ, Corollary 4.3])
without the assumption on dimension, and the almost sequences obtained are almost
split in all of MΓ
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The argument of the theorem dualizes.

Theorem 3. Let Γ be a countable-dimensional coalgebra. Let A ∈ MΓ
f . If

A is noninjective and indecomposable, then there exists a left finitely almost split
sequence

d : 0→A→B→C→0

in DΓ
q . If A is quasifinitely copresented, then d can chosen to be an almost split

sequence in DΓ
q .

Proof. Since the proof is dual to the one above we only give sample details.
Assume as in the statement that A is quasifinitely copresented and we have a left
finitely almost split sequence

d : 0→A→B→C→0

in DΓ
q . Here d is obtained as the inverse limit of sequences di : 0→A→Bi→Ci→0 ,

that are almost split in DΓi

q . To show that d is left almost split in MΓ
q , it suffices

to show that the sequence Hom(d, Y ) is exact for all Y ∈ DΓ
q . We have Y = lim

←−
Yi

where the Yi are finite dimensional rational R-modules. According to the Mittag-
Leffler condition, it suffices to show Hom(A, Yi) is finite-dimensional for all i. Thus
we want to know that A is coquasifinite. First, we have

C = lim
←−

Ci = lim
←−

DTri A = D lim
→

CA = DTr A

Secondly [CKQ, Lemma 3.2] states that Tr A is quasifinite. Therefore C = DTr A
is coquasifinite.

By [CKQ, 3.2] and 3.1 Lemma 2, TrA is an indecomposable noninjective co-
module. Hence C = DTr A is indecomposable and nonprojective in DΓ

q . �

By dualizing [CKQ], Corollary 4.3(b), we obtain a result extending the second
statement of the Thereom above. We leave the details to the reader.

Theorem 4. Let A ∈ MΓ
f . If A is quasifinitely copresented, indecomposable

and not injective, then exists an almost split sequence 0 → A → B → C → 0 in DΓ

with C = DTr A.

Remark 3. With A in the hypothesis, DA is coquasifinitely presented. This
means that there exists a projective resolution DI1 → DI0 → DA → 0 in DΓ, with
the DIi coquasifinite. If I is a finitely cogenerated injective comodule (see [Ch]),
then DI is a projective as an R-module. But if I is only assumed to be quasifinite
injective, we do not know this to be the case.

Remark 4. The construction of almost split sequences as limits gives a way
of showing that the category of finite-dimensional comodules does not have almost
split sequences. Let C be a finite-dimensional comodule such that TrDC is infinite-
dimensional. Then there is no almost split sequence in MΓ

f ending in C. Dually,
if Tr A is infinite-dimensional, then there is no almost split sequence starting with
A in MΓ

fd. An example of this type is given below. On the other hand, if MΓ
f

has almost split sequences (e.g. if Γ is right semiperfect, see [CKQ]), then the
Auslander-Reitan quiver exists. Examples of AR-quivers for MΓ

f for various path

coalgebras are given in [NS].
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5. Examples

The coalgebras in the next two examples are neither right nor left semiperfect,
and finite-dimensional indecomposables have finite-dimensional transposes. The
almost split sequences are almost split in the category of finite-dimensional comod-
ules. In these examples, the almost split sequence obtained is the same as the one
obtained over a finite-dimensional subcoalgebra (i.e. over a finite subquiver).

In contrast, the third example shows that a simple comodule can have an
infinite-dimensional transpose. So the category of finite-dimensional comodules does
not have almost split sequences.

1. Let Q be the quiver of type A∞∞ with vertices labeled by the integers and
arrows ai : i → i + 1, i ∈ Z . We write S(i) for the simple in MkQ corresponding
to each vertex i and denote its injective hull by I(i)

By the theory of Nakayama algebras and Dynkin quivers (see [ARS] and [Ga]),
the isomorphism classes of finite-dimensional indecomposable comodules are given
by the representations Vij = (V, f)ij ( for all i ≤ j) defined by Vt =k for i ≤ t ≤ j,
zero otherwise; the linear maps are ft : Vt → Vt+1 given by ft = 1 for i ≤ t < j and
zero otherwise. We compute injective envelope of Vij to be

I(Vij) = I(j)

and we find that I(Vij)/Vij
∼= I(i − 1). Thus

0 → Tr(Vij) → I(i − 1)∗ → I(j − 1)∗

is a copresentation yielding DTr(Vij) = Vi−1,j−1. The almost split sequences are

0 → Vi,j → Vi−1,j ⊕ Vi,j−1 → Vi−1,j−1 → 0

with irreducible maps Vi,j → Vi,j+1 and Vi−1,j → Vi,j being the obvious monomor-
phism into the first summand and epimorphism onto the second summand. The
map on the right is given by natural epimorphism and monomorphism with alter-
nate signs.

2. Similarly, let Q denote the quiver with one vertex and one loop. Then
there is a unique finite-dimensional indecomposable right comodule Vn of dimension
n ≥ 0. It is straightforward to see that DTr Vn = Vn and that the almost split
sequences are given by

dn : 0 → Vn → Vn−1 ⊕ Vn+1 → Vn → 0

(just as in [ARS, p. 141]). Following the ideas in this article. one might hope to
take the limit of these sequences to get and almost split sequence for the infinite-
dimensional indecomposable V = lim

→
Vn

∼= kQ. Unfortunately, the sequence so

obtained is split.

3. Let Q be the quiver of type D∞ with vertices labeled by positive integers
and two special vertices 0, 0′. The arrows are defined to be ai : i → i + 1, i ∈ Z+,
and a0 : 0 → 1, a0′ : 0′ → 1.

We compute the transpose of the simple right noninjective comodule S(1).
I(1) is given by the representation V = (V, f) defined by Vt = k for t = 1, 0, 0′

and zero otherwise, with linear maps are ft : Vt+1 → Vt given by ft = 1 for t = 0, 0′.
Thus I(1)/S(1) is S(0) ⊕ S(0)′, the direct sum of two simple injectives.
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Next observe that I(S(0)⊕S(0)′)∗ = I(0)∗⊕I(0′)∗ is given by the representation
V = (V, f) with by Vt = k for t = 0, 0′, Vt = k2 for t > 0, and zero otherwise. We
leave the maps to the reader.

I(1)∗is given by the representation V = (V, f) with by Vt = 0 for t = 0, 0′,
Vt = k for t > 0, and zero otherwise.

Finally, 0 → Tr(S(1)) → I(S(0) ⊕ S(0)′)∗ → I(1)∗ is a copresentation yielding
Tr(1) = V where the representation V = (V, f) of Qop is defined by Vt = k for all
vertices t, with linear maps are ft : Vt+1 → Vt given by ft = 1 for all t. We know

that V is an infinite-dimensional indecomposable left comodule; thus M
kQ
f does

not have an almost split sequence starting at S(1). The almost split sequence in
DkQ

q given by the Theorem 4 is of the form

0 → S(1) → B → DV → 0

.

References

[ARS] M. Auslander, I. Reiten, S. O. Smalø,. Representation Theory of Artin Algebras, Cambridge
Studies in Advanced Mathematics, 36. Cambridge University Press, 1997.

[Ch] W. Chin, A Brief introduction to coalgebra representation theory, in: Hopf Algebras (Conf.
Proceedings, DePaul Univ.) Lecture Notes in Pure and Applied Math., vol. 237, 109-131,
Marcel Dekker Inc., New York 2004.

[CKQ] W. Chin, M. Kleiner and D. Quinn, Almost split sequences for comodules, J. Alg. 249
(2002) no. 1, 1-19.

[DT] J. Cuadra and J. Gomez-Torrecillas, Idempotents and Morita-Takeuchi theory, Comm.
Algebra 30(2002), 2405-2426.

[Ga] P. Gabriel, Unzerlegbare darstellungen I, Manuscripta Math. 6(1972), 71-103.
[Gr] J.A. Green, Locally finite representations, J. of Algebra, 41 (1976), 137-171.
[GM] E. Green and E. Marcos, Graded quotients of path algebras: a local theory. J. Pure Appl.

Algebra 93 (1994), no. 2, 195–226.
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