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NON-COMMUTATIVE CREPANT RESOLUTIONS:

SCENES FROM CATEGORICAL GEOMETRY

GRAHAM J. LEUSCHKE

ABSTRACT. Non-commutative crepant resolutions are algebraic objects defined by Van den
Bergh to realize an equivalence of derived categories in birational geometry. They are mo-
tivated by tilting theory, the McKay correspondence, and the minimal model program, and
have applications to string theory and representation theory. In this expository article I situ-
ate Van den Bergh’s definition within these contexts and describe some of the current research
in the area.
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INTRODUCTION

A resolution of singularities replaces a singular algebraic variety by a non-singular one
that is isomorphic on a dense open set. As such, it is a great boon to the algebraic geometer,
allowing the reduction of many calculations and constructions to the case of a smooth vari-
ety. To the pure commutative algebraist, however, this process can seem like the end of a
story rather than the beginning: it replaces a well-understood thing, the spectrum of a ring,
with a much more mysterious thing glued together out of other spaces. Put simply, a reso-
lution of singularities of an affine scheme SpecR is almost never another affine scheme (but
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see §L). One cannot in general resolve singularities and stay within the categories familiar
to commutative algebraists.

The usual solution, of course, is to expand one’s landscape on the geometric side to include
more complicated schemes. There are plenty of good reasons to do this other than resolving
singularities, and it has worked well for a century. Locally, the more convoluted objects are
built out of affine schemes/commutative algebra, so one has not strayed too far.

Here is another alternative: expand the landscape on the algebraic side instead, to in-
clude non-commutative rings as well as commutative ones. This suggestion goes by the
name “non-commutative algebraic geometry” or, my preference, “categorical geometry”. For
some thoughts on the terminology, see §F. Whatever the name, the idea is to treat algebraic
objects, usually derived categories, as coming from geometric objects even when no such
geometric things exist. Since one trend in algebraic geometry in the last forty years has
been to study algebraic varieties indirectly, by studying their (derived) categories of quasi-
coherent sheaves, one can try to get along without the variety at all. Given a category of
interest C, one can postulate a “non-commutative” space X such that the (derived) category
of quasicoherent sheaves on X is C, and write C = Db(QchX ). In this game, the derived
category is the geometry and the symbol X simply stands in as a grammatical placeholder;
the mathematical object in play is C.

Of course, such linguistic acrobatics can only take you so far. The bonds between algebra
and geometry cannot be completely severed: the “non-commutative spaces” must be close
enough to the familiar commutative ones to allow information to pass back and forth. This
article is about a particular attempt to make this program work.

The idea of non-commutative resolutions of singularities appeared around the same time
in physics [BL01, BD02, Ber02, DGM97] and in pure mathematics, notably [BKR01, BO02].
In 2002, inspired by Bridgeland’s proof [Bri02] of a conjecture due to Bondal and Orlov, Van
den Bergh [VdB04b] proposed a definition for a non-commutative crepant resolution of a ring
R. This is an R-algebra Λ which is (a) finitely generated as an R-module, (b) generically
Morita equivalent to R, and (c) has finite global dimension. These three attributes are
supposed to stand in for the components of the definition of a resolution of singularities: it
is (a) proper, (b) birational, and (c) non-singular. The additional “crepancy” condition is a
certain symmetry hypothesis on Λ which is intended to stand in for the condition that the
resolution of singularities not affect the canonical sheaf. See §K for details.

My main goal for this article is to motivate the definition of a non-commutative crepant
resolution (Definition K.4). In order to do that effectively, I will attempt to describe the
contexts out of which it arose. These are several, including Morita theory and tilting, the
McKay correspondence, the minimal model program of Mori and Reid, and especially work of
Bondal and Orlov on derived categories of coherent sheaves. Of course, the best motivation
for a new definition is the proof of a new result, and I will indicate where the new concepts
have been applied to problems in “commutative” geometry. Finally, the article contains a
healthy number of examples, both of existence and of non-existence of non-commutative
crepant resolutions. Since it is not at all clear yet that the definitions given below are the
last word, we can hope that reasoning by example will point the way forward.

As Miles Reid writes in [Rei00],

It is widely appreciated that mathematicians usually treat history in a cu-
riously dishonest way, rewriting the history of the subject as it should have
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been discovered [. . . .] The essential difficulty seems to be that the story in
strictly chronological order will not make sense to anyone; the writer wants
to give an explanation based on the logical layout of the subject, whatever
violence it does to historical truth.

This article will be guilty of the dishonesty Reid suggests, intentionally in some places and,
I fear, unintentionally in others. I do intend to build a certain logical layout around the
ideas below, and I sincerely apologize to any who feel that violence has been done to their
ideas.

Here is a thumbnail sketch of the contents. The first few sections consider, on both the
algebraic side and the geometric, the reconstruction of the underlying ring or space from
certain associated categories. The obstructions to this reconstruction—and even to recon-
struction of the commutative property—are explained by Morita equivalence (§A) and tilting
theory (§§C–D). §E contains a central example: Beı̆linson’s “tilting description” of the de-
rived category of coherent sheaves on projective space.

This is not intended to be a comprehensive introduction to non-commutative algebraic
geometry; for one thing, I am nowise competent to write such a thing. What I cannot avoid
saying is in §F.

The next two sections give synopses of what I need from the geometric theory of resolu-
tions of singularities and the minimal model program, followed in §I by some remarks on
purely category-theoretic replacements for resolutions of singularities. Another key exam-
ple, the McKay correspondence, appears in §J.

At last in §K I define non-commutative crepant resolutions. The definition I give is
slightly different from Van den Bergh’s original, but agrees with his in the main case of
interest. The next few sections §§L–O focus on particular aspects of the definition, recap-
ping some related research and focusing on obstructions to existence. In particular I give
several more examples of existence and non-existence of non-commutative crepant resolu-
tions. Two more families of examples take up §P and §Q: rings of finite representation
type and the generic determinantal hypersurface. Here tilting returns, now as a source of
non-commutative crepant resolutions. I investigate a potential theory of “non-commutative
blowups” in §R, and give very quick indications of some other examples in §S. That section
also lists a few open questions and gestures at some topics that were omitted for lack of
space, energy, or expertise.

Some results are simplified from their published versions for expository reasons. In par-
ticular I focus mostly on local rings, allowing some cleaner statements at the cost of gener-
ality, even though such generality is in some cases necessary for the proofs. In any case I
give very few proofs, and sketchy ones at that. The only novel contribution is a relatively
simple proof, in §Q, of the m= n case of the main theorem of [BLV10b].

The reader I have in mind has a good background in commutative algebra, but perhaps
less in non-commutative algebra, algebraic geometry, and category theory. Thus I spend
more time on trivialities in these latter areas than in the first. I have tried to make the
references section comprehensive, though it surely is out of date already.

I am grateful to Jesse Burke, Hailong Dao, Kos Diveris, and Michael Wemyss for insight-
ful comments on earlier drafts, and to Ragnar-Olaf Buchweitz and Michel Van den Bergh for
encouragement in this project, as well as for years of enjoyable mathematical interaction.
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Conventions. All modules will be left modules, so for a ring Λ I will denote by Λ-mod

the category of finitely generated left Λ-modules, and by mod-Λ =Λ
op-mod the category of

finitely generated left Λ
op-modules. Other categories of modules will be defined on the fly.

Capitalized versions of names, namely Λ-Mod, etc., will denote the same categories without
any hypothesis of finite generation.

Throughout R and S will be commutative noetherian rings, usually local, while Λ and its
Greek-alphabet kin will not necessarily be commutative.

A. MORITA EQUIVALENCE

To take a representation-theoretic view is to replace the study of a ring by the study of
its (abelian category of) modules. Among other advantages, this allows to exploit the tools
of homological algebra. A basic question is: How much information do we lose by becoming
representation theorists? In other words, when are two rings indistinguishable by their
module categories, so that Λ-mod and Γ-mod are the same abelian category for different
rings Λ and Γ?

To fix terminology, recall that a functor F : A −→ B between abelian categories is fully
faithful if it induces an isomorphism on Hom-sets, and dense if it is surjective on objects
up to isomorphism. If F is both fully faithful and dense, then it is an equivalence [ML98,
IV.4], that is, there is a functor G : B−→A such that both compositions are isomorphic to the
respective identities. In this case write A≃B. Equivalences preserve and reflect essentially
all “categorical” properties and attributes: mono- and epimorphisms, projectives, injectives,
etc. Thus the question above asks when two module categories are equivalent.

Morita’s theorem on equivalences of module categories [Mor58, Section 3] completely
characterizes the contexts in which Λ-mod≃Γ-mod for rings Λ and Γ. First I define some of
the necessary terms.

Definition A.1. Let Λ be a ring and M ∈Λ-Mod.

(i) Denote by addM the full subcategory of Λ-Mod containing all direct summands of
finite direct sums of copies of M.

(ii) Say M is a generator (for Λ-mod) if every finitely generated left Λ-module is a ho-
momorphic image of a finite direct sum of copies of M. Equivalently, Λ ∈ addM.

(iii) Say M is a progenerator if M is a finitely generated projective module and a gener-
ator. Equivalently, addΛ= addM.

Theorem A.2 (Morita equivalence, see e.g. [Gab62, Chap. V]). The following are equivalent
for rings Λ and Γ.

(i) There is an equivalence of abelian categories Λ-mod≃Γ-mod.
(ii) There exists a progenerator P ∈Λ-mod such that Γ∼=EndΛ(P)op.

(iii) There exists a (Λ-Γ)-bimodule ΛPΓ such that the functor HomΛ(P,−) : Λ-mod −→

Γ-mod is an equivalence.

In this case, say that Λ and Γ are Morita equivalent. �

Interesting bits of the history of Morita’s theorem, as well as his other work, can be found
in [AGHZ97].

An immediate corollary of Morita’s theorem will be useful later.
4



Corollary A.3. Let Λ be a ring and M, N two Λ-modules such that addM = addN, equiva-
lently M is a direct summand of Ns for some s and N is a direct summand of M t for some t.
Then EndΛ(M) and EndΛ(N) are Morita equivalent via the functors HomΛ(M, N)⊗EndΛ(M)−

and HomΛ(N, M)⊗EndΛ(N)−.

Among the consequences of Theorem A.2, the most immediately relevant to our purposes
are those related to commutativity. One can show [Lam99, 18.42] that if Λ and Γ are Morita
equivalent, then the centers Z(Λ) and Z(Γ) are isomorphic. It follows that two commutative
rings R and S are Morita equivalent if and only if they are isomorphic. On the other hand,
in general Morita equivalence is blind to the commutative property. Indeed, the free module
Λ

n is a progenerator for any n Ê 1, so that Λ and the matrix ring EndΛ(Λn) ∼= Matn(Λ) are
Morita equivalent. Even if Λ is commutative, Matn(Λ) will not be for n Ê 2.

The fact that commutativity is invisible to the module category is a key motivation for
categorical geometry. It is interesting to observe that this idea, and even the connection with
endomorphism rings, is already present in the Freyd–Mitchell Theorem [Fre64, Theorem
7.34] classifying abelian categories as categories of modules. In detail, the Freyd–Mitchell
Theorem says that if C is a category whose objects form a set (as opposed to a proper class)
which is closed under all set-indexed direct sums, and C has a progenerator P such that
HomC(P,−) commutes with all set-indexed direct sums, then C ≃ Λ-Mod for Λ = EndC(P).
Different choices of P obviously give potentially non-commutative rings Λ, even if C= R-mod

for some commutative ring R.
The property of P referred to above will recur later: say that P is compact if HomC(P,−)

commutes with all (set-indexed) direct sums.
The following cousin of Morita equivalence will be essential later on.

Proposition A.4 (Projectivization [ARS97, II.2.1]). Let Λ be a ring and M a finitely gener-
ated Λ-module which is a generator. Set Γ=EndΛ(M)op. Then the functor

HomΛ(M,−) : Λ-mod−→Γ-mod

is fully faithful, and restricts to an equivalence

HomΛ(M,−) : addM −→ addΓ .

In particular, the indecomposable projective Γ-modules are precisely the modules of the form
HomΛ(M, N) for N an indecomposable module in addM. �

B. (QUASI)COHERENT SHEAVES

On the geometric side, it has also long been standard operating procedure to study a
variety or scheme X in a representation-theoretic mode by investigating the sheaves on X ,
particularly those of algebraic origin, the quasicoherent sheaves.

Let X be a noetherian scheme. Recall that an OX -module is quasicoherent if it locally can
be represented as the cokernel of a homomorphism between direct sums of copies of OX . A
quasicoherent sheaf is coherent if those direct sums can be chosen to be finite. Write QchX
for the category of quasicoherent sheaves and cohX for that of coherent sheaves. Since X
is assumed noetherian, these are both abelian categories (for the quasicoherent sheaves,
quasi-compact and quasi-separated is enough [BVdB03]).

The category QchX is a natural environment for homological algebra over schemes; for
example, computations of cohomology naturally take place in QchX . Now one may ask
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the same question as in the previous section: What information, if any, is lost in passage
from the geometric object X to the category cohX or QchX? In this case, the kernel is even
smaller: we lose essentially nothing. Indeed, it is not hard to show that for arbitrary complex
varieties X and Y , the categories cohX and cohY are equivalent if and only if X and Y are
isomorphic. The key idea is to associate to a coherent sheaf the closed subset of X on which
it is supported; for example, the points of X correspond to the simple objects in cohX . See
for example [BKS07, Section 8]. More generally, Gabriel [Gab62] taught us how to associate
to any abelian category A a geometric realization: a topological space SpecA, together with a
sheaf of rings OA. (In fact, the sheaf OA is the endomorphism sheaf of the identity functor on
A, reminiscent of the Freyd–Mitchell theorem mentioned in the previous section. The space
SpecA is nothing but the set of isomorphism classes of indecomposable injective objects of
A, with a base for the topology given by Supp M = { [I] | there is a nonzero arrow M −→ I }
for noetherian objects M.) In the case A = QchX for a noetherian scheme X , the pair
(SpecA, OA) is naturally isomorphic to (X , OX ). This construction has been generalized
to arbitrary schemes by Rosenberg [Ros98a, Ros98b], giving the following theorem.

Theorem B.1 (Gabriel–Rosenberg Reconstruction). A scheme X can be reconstructed up to
isomorphism from the abelian category QchX . �

Theorem B.1 implies that there is no interesting Morita-type theory for (quasi)coherent
sheaves. This is not all that surprising, given that Morita-equivalent commutative rings
are necessarily isomorphic. The well-known equivalence between modules over a ring R
and quasicoherent sheaves over the affine scheme SpecR strongly suggests the same sort of
uniqueness on the geometric side as on the algebraic.

For projective schemes, Serre’s fundamental construction [Ser55] describes the quasico-
herent sheaves on X in terms of the graded modules over the homogeneous coordinate ring.
Explicitly, let A be a finitely generated graded algebra over a field, and set X = Proj A, the
associated projective scheme. Let GrModA, resp. grmodA, denote the category of graded,
resp. finitely generated graded, A-modules. The graded modules annihilated by AÊn for
n ≫ 0 form a subcategory TorsA, resp. torsA, and

TailsA =GrModA/TorsA and tailsA = grmodA/torsA

are defined to be the quotient categories. This means that two graded modules M and N are
isomorphic in TailsA if and only if MÊn

∼= NÊn as graded modules for large enough n.

Theorem B.2 (Serre). Let A be a commutative graded algebra generated in degree one over
A0 = k, a field, and set X = Proj A. Then the functor Γ∗ : cohX −→ tailsA, defined by sending
a coherent sheaf F to the image in tailsA of

⊕∞
n=−∞ H0(X ,F (n)), defines an equivalence of

categories cohX ≃ tailsA. �

Serre’s theorem is the starting point for “non-commutative projective geometry,” as we
shall see in §F below. From the point of view of categorical geometry, it is the first instance
of a purely algebraic description of the (quasi)coherent sheaves on a space, and thus opens
the possibility of “doing geometry” with only a category in hand.

C. DERIVED CATEGORIES OF MODULES

Originally introduced as technical tools for organizing homological (or “hyperhomologi-
cal” [Ver96]) information, derived categories have in the last 30 years been increasingly
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viewed as a basic invariant of a ring or variety. Passing from an abelian category to an as-
sociated derived category not only tidies the workspace by incorporating the non-exactness
of various natural functors directly into the notation, but in some cases it allows a “truer
description” [Bri06] of the underlying algebra or geometry than the abelian category does.
For example, there are varieties with non-trivial derived auto-equivalences Db(X ) ≃Db(X )
that do not arise from automorphisms; one might think of these as additional symmetries
that were invisible from the geometric point of view. Another example is Kontsevich’s Ho-
mological Mirror Symmetry conjecture [Kon95], which proposes an equivalence of certain
derived categories related to “mirror pairs” of Calabi-Yau manifolds.

Let us fix some notation. Let A be an abelian category. The homotopy category K(A) has
for objects the complexes over A, and for morphisms homotopy-equivalence classes of chain
maps. The derived category D(A) is obtained by formally inverting those morphisms in K(A)
which induce isomorphisms on cohomology, i.e. the quasi-isomorphisms.

We decorate K(A) and D(A) in various ways to denote full subcategories. For the moment
I need only Kb(A), the full subcategory composed of complexes C having only finitely many
non-zero components, and Db(A), the corresponding bounded derived category of A.

The homotopy category K(A), the derived category D(A) and their kin are no longer abelian
categories, but they have a triangulated structure, consisting of a shift functor (−)[1] shifting
a complex one step against its differential and changing the sign of that differential, and a
collection of distinguished triangles taking the place occupied by the short exact sequences
in abelian categories. A functor between triangulated categories is said to be a triangulated
functor if it preserves distinguished triangles and intertwines the shift operators.

Homomorphisms ϕ : M −→ N in D(A) are diagrams M
f

←−− P
g

−−→ N of homotopy classes
of chain maps, where f : P −→ M is a quasi-isomorphism and we think of ϕ as f −1 g. Much
more usefully,

HomD(A)(M, N[i])=Exti
A(M, N)

for all i ∈Z and all M, N in D(A).
Let us say that two rings Λ and Γ are derived equivalent if there is an equivalence of

triangulated categories Db(Λ-Mod)−→Db(Γ-Mod).
It is nearly obvious that a Morita equivalence between rings Λ and Γ gives rise to a

derived equivalence Db(Λ-Mod) ≃Db(Γ-Mod). (Any equivalence between abelian categories
preserves short exact sequences.) In general, derived equivalence is a much weaker notion.
It does, however, preserve some essential structural information. For example, if Λ and Γ are
derived equivalent, then their Grothendieck groups K0(Λ) and K0(Γ) are isomorphic [Ric89,
Prop. 9.3], as are the Hochschild homology and cohomology groups [Ric91] and the cyclic
cohomologies [Hap89]. If Λ and Γ are derived-equivalent finite-dimensional algebras over a
field k, then they have the same number of simple modules, and simultaneously have finite
global dimension [Hap87, Hap88].

Most importantly for this article, derived-equivalent rings have isomorphic centers [Ric89,
Prop. 9.2]. In particular, if R and S are commutative rings, then Db(R-Mod) ≃Db(S-Mod) if
and only if R ∼= S. Thus there is at most one commutative ring in any derived-equivalence
class, another sign that one should look at non-commutative rings for non-trivial derived
equivalences.
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All these facts follow from Rickard’s Morita theory of derived equivalences, in which the
progenerator of Theorem A.2 is replaced by a tilting object. Here is the main result of
Rickard’s theory.

Theorem C.1 (Rickard [Ric89]). Let Λ and Γ be rings. The following conditions are equiva-
lent.

(i) Db(Λ-Mod) and Db(Γ-Mod) are equivalent as triangulated categories.
(ii) Kb(addΛ) and Kb(addΓ) are equivalent as triangulated categories.

(iii) There is an object T ∈Kb(addΛ) satisfying
(a) Exti

Λ
(T,T)= 0 for all i > 0, and

(b) addT generates Kb(addΛ) as a triangulated category,
such that Γ∼=EndΛ(T).

If Λ and Γ are finite dimensional algebras over a field, then these are all equivalent to
Db(Λ-mod)≃Db(Γ-mod) �

A complex T as in condition (iii) is called a tilting complex for Λ, and Γ is tilted from Λ.
Tilting complexes appeared first in the form of tilting modules, as part of Brenner and But-
ler’s [BB80] study of the reflection functors of Bernšteı̆n, Gel′fand, and Ponomarev [BGP73].
(The word was chosen to illustrate their effect on the vectors in a root system, namely a
change of basis that tilts the axes relative to the positive roots.) Their properties were
generalized, formalized, and investigated subsequently by Happel and Ringel [HR82], Bon-
gartz [Bon81], Cline–Parshall–Scott [CPS86], Miyashita [Miy86], and others. Happel seems
to have been the first to realize [Hap88] that if T is a Λ-module of finite projective dimension,
having no higher self-extensions Ext>0

Λ
(T,T)= 0, and Λ has a finite co-resolution 0−→Λ−→

T1 −→ ··· −→ Tr −→ 0 with each Ti ∈ addT, then the functor HomΛ(T,−) : Db(Λ-Mod) −→
Db(EndΛ(T)-Mod) is an equivalence. In their earliest incarnation, tilting modules were de-
fined to have projective dimension one, but this more general version has become standard.

Morita equivalence is a special case of tilting. Indeed, any progenerator is a tilting mod-
ule. However, see §E below for a pair of derived-equivalent algebras which are not Morita
equivalent.

D. DERIVED CATEGORIES OF SHEAVES

The first real triumphs of the derived category came in the geometric arena: Grothendieck
and coauthors’ construction of a global intersection theory and the theorem of Riemann–
Roch [BGI71] are the standard examples [Căl05]. The idea of the (bounded) derived category
of a scheme as a geometric invariant first emerged around 1980 in the work of Beı̆linson,
Mukai, and others. I will describe some of Beı̆linson’s observations in the next §. Mukai
found the first example of non-isomorphic varieties which are derived equivalent [Muk81];
he showed that an abelian variety X and its dual X∨ always have equivalent derived cat-
egories of quasicoherent sheaves. His construction is modeled on a Fourier transform and
is now called a Fourier-Mukai transform [Huy06, HVdB07]. It would draw us too far afield
from our subject to discuss Fourier-Mukai transforms in any depth here. Several examples
will appear later in the text: see the end of §E and Theorems H.4, J.7, and J.8. It is an
important result of Orlov [Orl97] that any equivalence Db(cohX ) −→Db(cohY ), for X and Y
connected smooth projective varieties, is given by a Fourier-Mukai transform.
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The existence of non-trivial derived equivalences for categories of sheaves means that
one cannot hope for a general reconstruction theorem, even for smooth varieties. However,
under an assumption on the canonical sheaf ωX , the variety X can be reconstructed from its
derived category. Recall that for X a smooth complex variety over C, ωX =

∧dim X
ΩX /C is the

sheaf of top differential forms on X where ΩX /C is the cotangent bundle, a.k.a. the sheaf of
1-forms on X . It is an invertible sheaf. Recall further [Har77, II.7] that an invertible sheaf
L is ample if for every coherent sheaf F , F ⊗L

n is generated by global sections for n ≫ 0.

Theorem D.1 (Bondal–Orlov [BO01]). Let X and Y be smooth connected projective varieties
over C. Assume that either the canonical sheaf ωX or the anticanonical sheaf ω−1

X is ample.

If Db(cohX )≃Db(cohY ), then X is isomorphic to Y . �

Note that the result is definitely false for abelian varieties by the result of Mukai men-
tioned above; in this case ωX

∼=OX is trivial, so not ample. Calabi-Yau varieties are another
example where ωX

∼=OX is not ample, and the conclusion does not hold.
One consequence of this theorem is that, under the same hypotheses, the group of auto-

equivalences Db(cohX )
≃
−−→Db(cohX ) of X is generated by the obvious suspects: Aut(X ), the

shift (−)[1], and the tensor products −⊗OX L with fixed line bundles L .
Triangulated categories arising in nature like Db(cohX ) generally have a lot of additional

structure: there is a tensor (symmetric monoidal) structure induced from the derived ten-
sor product, among other things. Taking this into account gives stronger results. To give
an example, recall that a perfect complex on a scheme X is one which locally is isomorphic
in the derived category to a bounded complex of locally free sheaves of finite rank. Perfect
complexes form a subcategory Dperf (QchX ). As long as X is quasi-compact and separated
(noetherian is enough), Dperf (QchX ) contains precisely the compact objects of D(QchX ),
that is, the complexes C such that HomOX (C,−) commutes with set-indexed direct sums.
See [BVdB03, 3.11]. Balmer [Bal02, Bal05] shows that a noetherian scheme X can be re-
constructed up to isomorphism from Dperf (QchX ), as long as the natural tensor structure is
taken into account, and that two reduced noetherian schemes X and X ′ are isomorphic if
and only if Dperf (QchX ) and Dperf (QchX ′) are equivalent as tensor triangulated categories.

The theory of tilting sketched in the previous § has a geometric incarnation as well, which
signals the first appearance of non-commutative rings on the geometric side of our story.

Definition D.2. Let X be a noetherian scheme and T an object of D(QchX ). Say that T is a
tilting object if it is compact, is a classical generator for Dperf (QchX ), and has no non-trivial
self-extensions. Explicitly, this is to say:

(i) T is a perfect complex;
(ii) The smallest triangulated subcategory of D(QchX ) containing T and closed under

direct summands is Dperf (QchX ); and
(iii) Exti

OX
(T,T)= 0 for i > 0.

If T is quasi-isomorphic to a complex consisting of a locally free sheaf in a single degree, it
is sometimes called a tilting bundle.

The generating condition (ii) is sometimes replaced by the requirement that T generates
D(QchX ), i.e. that if an object N in D(QchX ) satisfies Exti

OX
(T, N) = 0 for all i ∈ Z, then

N = 0. If an object T classically generates Dperf (QchX ) as in the definition, then it generates
9



D(QchX ); the converse holds in the presence of the assumption (i) that T is compact. This
is a theorem due to Ravenel and Neeman [BVdB03, Theorem 2.1.2].

A class of schemes particularly well-suited for geometric tilting theory consists of those
which are projective over a scheme Z, which in turn is affine of finite type over an alge-
braically closed field k. This generality allows a wide range of interesting examples, but
also ensures, by [Gro61, Théorème 2.4.1(i)], that if T is a tilting object on X then the endo-
morphism ring Λ=EndOX (T) is a finitely generated algebra over the field k. In particular, Λ
is finitely generated as a module over its center.

The next result is fundamental for everything that follows. It has origins in the work of
Beı̆linson presented in the next §, with further refinements in [Bon89, Bae88, BVdB03].

Theorem D.3 (Geometric Tilting Theory [HVdB07, 7.6]). Let X be a scheme, projective over
a finite-type affine scheme over an algebraically closed field k. Let T be a tilting object in
D(QchX ), and set Λ=EndOX (T). Then

(i) RHomOX (T,−) induces an equivalence of triangulated categories between D(QchX )

and D(Λ-Mod), with inverse −
L
⊗Λ T.

(ii) If T is in Db(cohX ), then this equivalence restricts to give an equivalence between
Db(cohX ) and Db(Λ-mod).

(iii) If X is smooth, then Λ has finite global dimension. �

It is not at all clear from this result when tilting objects exist, though it does impose some
necessary conditions on X . For example, assume that in addition X is projective over k and
T is a tilting object in D(QchX ). Then Λ = EndOX (T) is a finite-dimensional algebra over
k. The Grothendieck group K0(Λ) is thus a free abelian group of finite rank, equal to the
number of simple Λ-modules. This implies that K0(X ) is free abelian as well. Thus any
torsion in K0 rules out the existence of a tilting object.

E. EXAMPLE: TILTING ON PROJECTIVE SPACE

In this § I illustrate Theorem D.3 via Beı̆linson’s tilting description of the derived category
of projective space. The techniques have been refined and are now standard; they have been
used, most notably by Kapranov, to construct explicit descriptions of the derived category
of coherent sheaves on several classes of varieties. For example, there are tilting bundles
on smooth projective quadrics [Kap86], on Grassmannians [Kap84, BLV10a], on flag man-
ifolds [Kap88], on various toric varieties [Kin97, HP06, HP], and on weighted projective
spaces [GL87, Bae88]. Here we stick to projective space.

Let k be a field, V a k-vector space of dimension n Ê 2, and P=Pn−1 =P(V ) the projective
space on V . We consider two families of n locally free sheaves on P. First let

E1 = {O ,O (−1), . . .,O (−n+1)}

where O =OP is the structure sheaf. Also let Ω=ΩP be the cotangent sheaf, so that Ωi =
∧i

Ω

is the O -module of differential i-forms on P, and set

E2 =
{
Ω

0(1)=O (1),Ω1(2), . . . ,Ωn−1(n)
}

.

Let T1 and T2 be the corresponding direct sums,

T1 =

n−1⊕

a=0
O (−a) and T2 =

n⊕

a=1
Ω

a−1(a) .

10



The constituent sheaves of E1 and E2 are related by the tautological Koszul complex on P.
Indeed, the Euler derivation e : V ⊗k O (−1) −→ O , which corresponds to the identity on V
under HomO (V ⊗k O (−1),O )∼=HomO (V ⊗k O ,O (1))∼=Homk(V ,V ), gives rise to a complex

(E.1) 0−→
∧nV ⊗k O (−n)−→ ··· −→

∧1V ⊗k O (−1)−→O −→ 0

on P. In fact it is acyclic [Eis95, Ex. 17.20], and the cokernels are exactly the sheaves Ω
i,

which decompose the Koszul complex into short exact sequences

0−→Ω
a
−→

∧aV ⊗k O (−a)−→Ω
a−1

−→ 0 .

Together with the well-known calculation of the cohomologies of the sheaves O (−a) [Har77,
III.5.1], the identification HomO (O (−a),O (−b)) = O (a− b), and the fact that Exti

O
(−,−) =

H i(HomO (−,−)) on vector bundles, this produces the following data. (See [BLV10b] for a
jazzed-up version which holds over any base ring k.)

Lemma E.1. Keep the notation established so far in this section.

(i) We have Exti
O

(O (−a),O (−b))= 0 for all i > 0, and

HomO (O (−a),O (−b))∼=Syma−b(V )

for 0É a, b É n−1.
(ii) We have Exti

O
(Ωa−1(a),Ωb−1(b))= 0 for all i > 0, and

HomO (Ωa−1(a),Ωb−1(b))∼=
∧a−b(V∗)

for 1É a, b É n, where V∗ is the dual of V . �

The lemma in particular implies that the endomorphism rings of T1 and T2,

Λ1 =EndO (
n−1⊕

a=0
O (−a))∼=

n−1⊕

a,b=0
Syma−b(V )

and

Λ2 =EndO (
n⊕

a=1
Ω

a−1(a))∼=
n−1⊕

a,b=0

∧a−b(V∗)

are “spread out” versions of the truncated symmetric and exterior algebras, respectively.
This can be made more precise by viewing Λ1 and Λ2 as quiver algebras. Consider a quiver
on n vertices labeled, say, 0,1, . . ., n−1, and having n arrows from each vertex to its suc-
cessor, corresponding to a basis of V , resp. of V∗. Introduce quadratic relations viv j = v jvi

corresponding to the kernel of the natural map V⊗kV −→Sym2(V ), respectively viv j =−v jvi

corresponding to the kernel of V∗⊗k V∗ −→
∧2(V∗). The resulting path algebras with re-

lations are isomorphic to Λ1 and Λ2, respectively. In [BLV10b] we call these “quiverized”
symmetric and exterior algebras.

I have not yet proven that Λ1 and Λ2 are derived equivalent to P. For this, it remains
to show that the collections E1 and E2 generate the derived category Db(cohP). This is
accomplished via Beı̆linson’s “resolution of the diagonal” argument. Let ∆⊂P×P denote the
diagonal, and p1, p2 : P×P−→P the projections onto the factors. For sheaves F and G on P,
set

F ⊠G = p∗
1F ⊗P×P p∗

2G ,
11



a sheaf on P×P. One can show that the structure sheaf of the diagonal O∆ is resolved over
OP×P by a Koszul-type resolution

0−→O (−n)⊠Ω
n(n)−→ ··· −→O (−1)⊠Ω

1(1)−→OP×P −→O∆ −→ 0 .

In particular, O∆ is in the triangulated subcategory of Db(coh(P×P)) generated by sheaves
of the form O (−i)⊠Y for Y in Db(cohP). The same goes for any object of the form O∆⊠Lp∗

1 X
with X in Db(cohP) as well. Push down now by p2 and use the projection formula to

see that X = Rp2∗(O∆

L
⊗Lp∗

1 X ) belongs to the triangulated subcategory of Db(cohP) gen-
erated by O (−i) ⊗Rp2∗p∗

1Y . The factor Rp2∗p∗
1Y is represented by the complex of k-

vector spaces with zero differential RΓ(Y ), and hence E1 = {O ,O (−1), . . .,O (−n+1)} gener-
ates Db(cohP). On the other hand, reversing the roles of p1 and p2 gives the result for
E2 =

{
O (1),Ω1(2), . . .,Ωn−1(n)

}
as well.

This discussion proves the following theorem.

Theorem E.2 (Beı̆linson). Let k be a field, V a vector space of dimension n Ê 2 over k, and
P=P(V ). The vector bundles

T1 =

n−1⊕

a=0
OP(−a) and T2 =

n⊕

a=1
Ω

a−1
P (a)

are tilting bundles on P. In particular, there are equivalences of triangulated categories

Db(Λ1-mod)≃Db(cohP)≃Db(Λ2-mod)

defined by RHomOP
(Ti,−) for i = 1,2, where Λi =EndOP

(Ti). �

By the way, the construction Rp2∗(O∆

L
⊗OP

Lp∗
1(−)), which accepts sheaves on P and returns

sheaves on P, is an example of a Fourier–Mukai transform, the definition of which was
gracefully avoided in §D. Replacing O∆ by any other fixed complex in Db(coh(P×P)) would
give another.

F. THE NON-EXISTENCE OF NON-COMMUTATIVE SPACES

As mentioned in the Introduction, I personally am reluctant to use the phrase “non-
commutative algebraic geometry” to describe results like Beı̆linson’s in §E. While the phrase
is certainly apposite on a word-by-word basis, given that the ideas are a natural blend of
algebraic geometry and non-commutative algebra, I find that using it in public leads im-
mediately to being asked awkward questions like, “What on earth is non-commutative ge-
ometry?” While many people have offered thoughtful, informed answers to this question—
[Smi, Kee03, Kal09, Kal08, Mor08, VW97, Lau03, Jør, SVdB01, Gin05] are some of my per-
sonal favorites—I find the whole conversation distracting from the more concrete problems
at hand. I propose instead that results like Beı̆linson’s and those to follow in later sections
should be considered as part of “categorical geometry”. The name seems unclaimed, apart
from an online book from 1998.

In this § I say a few words about a couple of approaches to building a field called non-
commutative algebraic geometry. I have chosen a deliberately provocative title for the sec-
tion, so that there can be no question that these are opinionated comments. The reader who
is intrigued by the ideas mentioned here would do well to seek out a less idiosyncratic, more
comprehensive introduction such as those cited in the previous paragraph.

12



One potential pitfall for the prospective student of non-commutative geometry is that
there are several disparate approaches. For one thing, the approach of Connes and his
collaborators [JM97], which some hope will explain aspects of the Standard Model of particle
physics or even prove the Riemann Hypothesis, is based on differential geometry and C∗-
algebras, and is, as far as I can tell, completely separate from most of the considerations in
this article. More subtly, even within non-commutative algebraic geometry, there are a few
different points of view. I do not consider myself competent even to give references, for fear
of giving offense by omission.

So what is the problem here? Why can’t one simply do algebraic geometry, say at the
level of [Har77], over non-commutative rings [MOc]? There have been several sustained
attempts to do exactly this, starting in the 1970s. There are a couple of immediate obstacles
to a naïve approach.

The first problem is to mimic the fact that a ring R can be recovered from the Zariski
topology on the prime spectrum SpecR and the structure sheaf OSpecR . (One finds, of course,
H0(SpecR,OSpecR)= R.) Both of these sets of information depend essentially on localization.
For non-commutative rings, the prime spectrum is rather impoverished; for example, the
Weyl algebra C〈x, y〉/(yx− xy−1) has trivial two-sided prime spectrum. Even ignoring this
difficulty, localization for non-commutative rings [Ran06, Jat86] only functions well for Øre
sets, and the complement of a prime ideal need not be an Øre set.

One possible resolution of the problem would be to focus on the quotient modules Λ/p in-
stead of the prime ideals p. The points of a commutative affine variety X (over C, say) are
in one-one correspondence with the simple modules over the coordinate ring C[X ]. Further-
more, a point x ∈ X is a non-singular point if and only if the corresponding simple module
C[X ]/mx has finite projective dimension.

Unfortunately, here there is a second problem: finite projective dimension, even finite
global dimension, is a very weak property for non-commutative rings. For example, there
is no Auslander–Buchsbaum Theorem giving a uniform upper bound on finite projective di-
mensions over a given ring; the existence of such a bound over an Artin algebra is called
the finitistic dimension conjecture, and has been open since at least 1960 [Bas60, HZ95].
There are a host of additional technical problems to be overcome. It’s unknown, for in-
stance, whether finite global dimension implies primeness (as regularity implies domain for
a commutative local ring); the Jacobson radical might fail to satisfy the Artin–Rees prop-
erty [BHM82], derailing the standard proof. Pathologies abound: for example, there is a
local noetherian domain Λ of global dimension 3 such that every quotient ring other than Λ

itself, 0, and Λ/ rad(Λ) has infinite global dimension [BHM82, Example 7.3].
Restricting to a smaller class of rings solves some of these problems. For example, the

class of rings Λ which are finitely generated modules over their center Z(Λ) are much better-
behaved than the norm. For example, Λ is left and right noetherian if Z(Λ) is, so that
gldimΛ = gldimΛ

op. The “lying over”, “incomparability”, and “going up” properties hold
for prime ideals along the extension Z(Λ),→Λ [Pas89, Theorem 16.9]. Furthermore, the
following reassuring results hold [IR08, Section 2].

Proposition F.1. Let (R,m) be a local ring and Λ a module-finite R-algebra. Let M be a
finitely generated Λ-module.

(i) The dimension of M, defined by dim M = dim(R/AnnR(M)), is independent of the
choice of central subring R over which Λ is a finitely generated module.
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(ii) The depth of M, defined by depth M = inf
{

i
∣∣ Exti

R(R/m, M) 6= 0
}
, is also independent

of the choice of R.
(iii) (Ramras [Ram69]) We have

depth M É dim M É injdimΛ M .

In particular, if Λ is a torsion-free R-module and gldimΛ < ∞, then injdimΛΛ =

gldimΛ [Aus86a, Lemma 1.3], so that

depthR ΛÉ dimR É gldimΛ .

(iv) ([Rai87] or [Goo89]) The global dimension of Λ is the supremum of pdΛ L over all
Λ-modules L of finite length. �

Restricting still further, one arrives at a very satisfactory class of rings. Recall that for
(R,m) a local ring, a finitely generated R-module M is maximal Cohen-Macaulay (MCM) if
depth M = dimR. Equivalently, there is a system of parameters x1, . . . , xd, with d = dimR,
which is an M-regular sequence. In the special case where R is Gorenstein, this condition
is equivalent to Exti

R(M,R)= 0 for all i > 0.

Definition F.2. Let (R,m) be a local ring and Λ a module-finite R-algebra. Say that Λ is an
R-order if Λ is maximal Cohen–Macaulay as an R-module.

The terminology is imperfect: there are several other definitions of the word “order” in
the literature, going back decades. Here we follow [Aus78]. See §K for a connection to the
classical theory of hereditary and classical orders over Dedekind domains.

Localization is still problematic, even for orders. In order to get a workable theory, a
condition stronger than finite global dimension is sometimes needed.

Definition F.3. Let R be a commutative ring and let Λ be a module-finite R-algebra. Say
that Λ is non-singular if gldimΛp = dimRp for every prime ideal p of R.

Non-singular orders have a very satisfactory homological theory, especially over Goren-
stein local rings. A non-singular order over a local ring satisfies a version of the Auslander–
Buchsbaum Theorem [IR08, Proposition 2.3]: If Λ is an R-order with gldimΛ= d <∞, then
for any Λ-module M the equality pdΛ M +depth M = d holds. Furthermore, the following
characterization of non-singularity holds for orders [IW10, Proposition 2.13].

Proposition F.4. Let R be a CM ring with a canonical module ω, and let Λ be an R-order.
Then the following are equivalent.

(i) Λ is non-singular.
(ii) gldimΛm = dimRm for all maximal ideals m of R.

(iii) The finitely generated Λ-modules which are MCM as R-modules are precisely the
finitely generated projective Λ-modules.

(iv) HomR(Λ,ω) is a projective Λ-module and gldimΛ<∞. �

The definitions above represent an attempt to force classical algebraic geometry, or equiv-
alently commutative algebra, to work over a class of non-commutative rings. Here is a
different approach, more consonant with the idea of “categorical geometry.” Rather than
focusing attention on the rings, concentrate on an abelian or triangulated category C, which
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we choose to think of as QchX or Db(QchX ) for some space X about which we say noth-
ing further. In this approach, the space X is nothing but a notational placeholder, and the
geometric object is the category C.

This idea has had particular success in taking Serre’s Theorem B.2 as a template and writ-
ing Db(QchX ) for a quotient category of the form tailsΛ= grmodΛ/torsΛ. One thus obtains
what is called non-commutative projective geometry. To describe these successes, let us make
the following definition, based on the work of Geigle–Lenzing [GL87], Verëvkin [Ver92b,
Ver92a], Artin–Zhang [AZ94] and Van den Bergh [VdB01].

Definition F.5. A quasi-scheme (over a field k) is a pair X = (X -mod,OX ) where X -mod is a
(k-linear) abelian category and OX ∈ X -mod is an object. Two quasi-schemes X and Y are
isomorphic (over k) if there exists a (k-linear) equivalence F : X -mod −→ Y -mod such that
F(OX )∼=OY .

The obvious first example is that a (usual, commutative) scheme X is a quasi-scheme
(cohX ,OX ). For any ring Λ, commutative or not, one can define the affine quasi-scheme as-
sociated to Λ to be SpecΛ := (Λ-mod,Λ). One checks that if R is commutative and X =SpecR
is the usual prime spectrum, then the global section functor Γ(X ,−) : cohX −→ R-mod in-
duces an isomorphism of quasi-schemes (cohX ,OX )−→ (R-mod,R).

The basic example of a quasi-scheme in non-commutative projective geometry is the fol-
lowing, which mimics the definition of tails from §B precisely. Let Λ be a noetherian graded
algebra over a field k. For simplicity, assume that A0 = k. Let GrModΛ and grmodΛ be the
categories of graded Λ-modules, resp. finitely generated graded Λ-modules. Let TorsΛ, resp.
torsΛ, be the subcategory of graded modules annihilated by ΛÊn for n ≫ 0. Then define the
quotient categories

TailsΛ=GrModΛ/TorsΛ and tailsΛ= grmodΛ/torsΛ ,

and set
ProjΛ= (TailsΛ,O ) and projΛ= (tailsΛ,O )

where O is the image of Λ in tailsΛ. Call ProjΛ and projΛ the (noetherian) projective quasi-
scheme determined by Λ. The dimension of the projective quasi-scheme is GKdimΛ− 1,
where GKdimΛ is the Gelfand-Kirillov dimension; this means dimprojΛ is the polynomial
rate of growth of {dimkΛn}nÊ0.

One can define sheaf cohomology H j(TailsΛ,−) in TailsΛ to directly generalize the comm-
utative definition. In particular the global sections functor is Γ(−)=HomTailsΛ(O ,−). For M
in TailsΛ, then, one would like versions of two basic results in algebraic geometry: Serre-
finiteness (H j(TailsΛ, M) = 0 for j ≫ 0) and Serre-vanishing (H j(TailsΛ, M(i)) = 0 for all
j Ê 1 and i ≫ 0). These results turn out only to be true under a technical condition called
χ (see [AZ94]), which is automatic in the commutative case. There is also an analogue of
Serre’s Theorem B.2 due to Artin and Van den Bergh [AVdB90], which gives the same sort
of purely algebraic description of QchX as TailsΛ, where Λ is defined to be a twisted homo-
geneous coordinate ring. For details, see [SVdB01].

The classification of projective quasi-schemes of small dimension, i.e. categories of the
form tailsΛ where Λ is a graded algebra with small rate of growth, is an ongoing program.
The case of non-commutative curves (where dimk An grows linearly) was completed by Artin
and Stafford [AS95]. There is a conjectural classification of non-commutative surfaces due to
Artin, but it is still open. The important special case of non-commutative projective planes,
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that is, tailsΛ where Λ is a so-called Artin-Schelter regular algebra of Gelfand-Kirillov di-
mension 3 with Hilbert series (1− t)−3, has been completely understood [AS87, ATVdB90,
ATVdB91, VdB87, BP93].

G. RESOLUTIONS OF SINGULARITIES

So far I have considered only “absolute” situations, that is, constructions applied to indi-
vidual rings or categories in isolation. In the sections to come, I will want to understand
certain relative situations, particularly analogues of resolutions of singularities. In this § I
collect a few definitions and facts about resolutions of singularities, for easy reference later.
Begin with the definition.

Definition G.1. Let X be an algebraic variety over a field k. A resolution of singularities of
X is a proper, birational morphism π : X̃ −→ X with X̃ a non-singular algebraic variety.

Resolutions of singularities are also sometimes called “smooth models,” indicating that
the non-singular variety X̃ is not too different from X : the map is an isomorphism on a
dense open set and is proper, hence surjective. For curves, construction of resolution of
singularities is easy, as every irreducible curve is birational to a unique smooth projective
curve, namely the normalization (see §L). For surfaces, resolutions of singularities still exist
in any characteristic, but now an irreducible surface is birational to infinitely many smooth
surfaces. This observation is the beginning of the minimal model program, cf. §H.

Of course existence of resolutions of singularities in any dimension is a theorem due to
Hironaka for k an algebraically closed field of characteristic zero; in this case the morphism
π : X̃ −→ X can be taken to be an isomorphism over the smooth locus of X , and even to be
obtained as a sequence of blowups of non-singular subvarieties of the singular locus followed
by normalizations. We will not need this.

As an aside, I mention here that a proper map between affine schemes is necessarily
finite [Har77, Ex. II.4.6]. It follows immediately that a resolution of singularities of a
singular normal affine scheme is never an affine scheme.

Our other definitions require the canonical sheaf of a singular variety. The canonical
sheaf ωY of a smooth variety Y has already appeared, as the sheaf of top differential forms∧dimY

ΩY (see the discussion before Theorem D.1). If Y is merely normal, then define ωY to
be j∗ωYreg, where j is the open immersion Yreg,→Y of the smooth locus. When Y is Cohen-
Macaulay, ωY is also a dualizing sheaf [Har77, III.7]; in other words, if the local rings of Y
are CM, then the stalks of ωY are canonical modules in the sense of [HK71]. Similarly, ωY

is an invertible sheaf (line bundle) if and only if Y is Gorenstein. The Weil divisor KY such
that ωY =OY (KY ) is called the canonical divisor.

The behavior of the canonical sheaf/divisor under certain morphisms is of central interest.
For example, the Grauert–Riemenschneider Vanishing theorem describes the higher direct
images of ω.

Theorem G.2 (GR Vanishing [GR70]). Let π : X̃ −→ X be a resolution of singularities of a
variety X over C. Then Riπ∗ωX̃ = 0 for all i > 0. �

Now I come to a pair of words which will be central for the rest of the article.

Definition G.3. Let π : X̃ −→ X be a resolution of singularities of a normal variety X .
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(i) Say that π is a rational resolution if Riπ∗OX̃ = 0 for i > 0. Equivalently, since X is
normal, Rπ∗OX̃ =OX . In this case X is said to have rational singularities.

(ii) Say that π is a crepant1 resolution if π∗ωX =ωX̃ .

Crepancy is a condition relating the two ways of getting a sheaf on X̃ from one on X ,
namely via Hom and via ⊗. To get an idea what this condition is, consider a homomorphism
of CM local rings R −→ S such that S is a finitely generated R-module. Let ωR be a canonical
module for R. Then one knows that the “co-induced” module Extt

R(S,ωR), where t = dimR−

dimS, is a canonical module for S [BH93, 3.3.7]. The “induced” module S ⊗R ωR is not
necessarily a canonical module. Back in the geometric world, π∗ωSpecR corresponds to S⊗R

ωR , so the assumption that this is equal to ωS is locally a condition of the form Extt
R(S,ωR)∼=

S⊗R ωR . When X is Gorenstein, i.e. ωX
∼=OX , a crepant resolution X̃ is also Gorenstein.

One of the main motivations for considering crepant resolutions of singularities comes
from the study of Calabi-Yau varieties, which in particular have trivial canonical sheaves.
In this case, if one wants a resolution π : X̃ −→ X in which X̃ is also Calabi-Yau, then π

needs to be crepant.
A small resolution, that is, one for which the exceptional locus has codimension at least

two, is automatically crepant. This is a very useful sufficient condition.
The next proposition follows from GR vanishing [KKMSD73, p. 50].

Proposition G.4. Let X be a complex algebraic variety and let π : X̃ −→ X be a resolution of
singularities.

(i) X has rational singularities if and only if X is CM and π∗ωX̃ =ωX .
(ii) If X is Gorenstein and has a crepant resolution of singularities, then X has rational

singularities. �

Not every rational singularity has a crepant resolution. Here are two examples.

Example G.5. Let R be the diagonal hypersurface ring C[x, y, z, t]/(x3+ y3+ z3+ t2). Then R
is quasi-homogeneous with the variables given weights 2, 2, 2, and 3. The a-invariant of R is
thus 6−(2+2+2+3)=−3< 0, and R has rational singularities by Fedder’s criterion [Hun96,
Example 3.9]. However, Lin [Lin02] shows that a diagonal hypersurface defined by xr

0+xd
1 +

·· ·+ xd
d has a crepant resolution of singularities if and only if r is congruent to 0 or 1 mod d.

Example G.6. Quotient singularities X =Y /G, where Y is smooth and G is a finite group of
automorphisms, have rational singularities [Vie77]. Consider quotient singularities Cn/G,
where G ⊂SL(n,C) is finite. These are by [Wat74] the Gorenstein quotient singularities.

If n = 2, the results are the rational double points, also known as Kleinian singulari-
ties or Du Val singularities, which are the quotient singularities X = C2/G = Spec(C[u,v]G),
where G ⊂SL(2,C) is a finite subgroup. These are also described as ADE hypersurface rings

1Obligatory comment on the terminology: the word “crepant” is due to Miles Reid. He describes it [Rei00,
p. 330] as a pun meaning “non-discrepant”, in that the discrepancy divisor K X̃ −π∗KX vanishes.
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C[x, y, z]/( f (x, y, z)) with explicit equations as follows.

(An) : x2
+ yn+1

+ z2 , n Ê 1

(Dn) : x2 y+ yn−1
+ z2 , n Ê 4

(E6) : x3
+ y4

+ z2

(E7) : x3
+ xy3

+ z2

(E8) : x3
+ y5

+ z2

(G.1)

For these singularities, a crepant resolution always exists and is unique. In fact, a normal
affine surface singularity R over C admits a crepant resolution if and only if every local ring
of R is (at worst) a rational double point. I will return to the rational double points in §J
below.

If n = 3, C3/G always has a crepant resolution as well, though they are no longer unique,
thanks to the existence of flops (see the next §). There is a classification of the finite sub-
groups of SL(3,C) up to conjugacy, and existence of crepant resolutions was verified on a
case-by-case basis by Markushevich [Mar97], Roan [Roa94, Roa96], Ito [Ito95b, Ito95a], and
Ito–Reid [IR96]. See Theorem J.8 below for a unified statement.

For n Ê 4, quotient singularities need not have crepant resolutions of singularities. For
example, the quotient of C4 by the involution (x, y, z,w) 7→ (−x,−y,−z,−w) admits no crepant
resolution [Rei02, Example 5.4].

H. THE MINIMAL MODEL PROGRAM

A key motivation for categorical desingularizations in general, and non-commutative
crepant resolutions in particular, is the minimal model program of Mori and Reid. This
is an attempt to find a unique “best” representative for the birational equivalence class of
any algebraic variety. For curves, this is obvious, since there is in each equivalence class a
unique smooth projective representative.

It is also the case that every surface is birationally equivalent to a smooth projective
surface, but now matters are complicated by the fact that the blowup of a smooth surface
at a point is again smooth. However, every birational morphism of surfaces factors as a
sequence of blowups, so must have a (−1)-curve, that is, a rational curve C ∼= P1 with self-
intersection −1, lying over a smooth point. One can compute that if C is a (−1)-curve on a
surface X , then KX ·C =−1, where KX is the canonical divisor.

By Castelnuovo’s criterion, a (−1)-curve can always be blown down, essentially undoing
the blowup. The algorithm for obtaining a minimal model is thus to contract all the (−1)-
curves, and one obtains the classification of minimal models for surfaces [Har77, V.5]: the
result of the algorithm is a smooth projective surface S which is either P2, a ruled surface
over a curve (the “Fano” case), or such that KS ·C Ê 0 for every curve C in S. In this last
case say that KS is nef.

The minimal model program is a framework for extending this simple-minded algorithm
to one that will work for threefolds and higher-dimensional varieties. The theory turns out
to be much richer, in part because it turns out that one must allow minimal models to be
a little bit singular. Here “a little bit” means in codimension Ê 2. Precisely, a projective
variety X is a minimal model if every birational map Y 99K X is either a contraction of a
divisor to a set of codimension at least two, or is an isomorphism outside sets of codimension
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at least two [Kol07]. There are compelling reasons to allow singular minimal models; for
example, there exists a three-dimensional smooth variety which is not birational to any
smooth variety with nef canonical divisor [MOb]. Mori and Reid realized that this meant
minimal models need not be smooth; they can be taken to be terminal instead.

I won’t worry about the technical definitions of terminal and canonical singularities here,
but only illustrate with a class of examples. A diagonal hypersurface singularity defined by
xa0

0 + xa1
1 +·· ·+ xad

d is

(i) canonical if and only if a1 +·· ·+ad > 1, and
(ii) terminal if and only if a1 +·· ·+ad > 1+ 1

lcm(ai)
.

For Gorenstein singularities, canonical singularities are the same as rational singularities,
so Proposition G.4(ii) says that the existence of a crepant resolution implies canonical sin-
gularities.

In this language, a projective variety X is a minimal model if and only if it is Q-factorial
(i.e. the divisor class group of every local ring is torsion), has nef canonical divisor, and has
terminal singularities.

In dimension two, minimal models are unique up to isomorphism by definition. Terminal
surface singularities are smooth, and the canonical surface singularities are the rational
double points of Example G.6 [Kol89b, (2.6.2)].

In dimension three, terminal singularities are well-understood, cf. [Rei83] or [Kol89b,
2.7]. The Gorenstein ones are precisely the isolated compound Du Val (cDV) singularities.
(Recall that a cDV singularity is a hypersurface defined by f (x, y, z)+ tg(x, y, z, t), where f is
a simple singularity as in (G.1) and g is arbitrary.) However, minimal models of threefolds
are no longer unique [Cor04]. Here is the simplest example.

Example H.1 (The “classic flop”). Let X be the three-dimensional (A1) singularity over C,
so X = SpecC[u,v, x, y]/(uv− xy). Consider the blowup f : Y −→ X of the plane u = x = 0. It’s
easy to check that Y is smooth, and that f : Y −→ X is a birational map which contracts a
line L ∼=P1 to the origin. Thus f is a small resolution, whence crepant. Furthermore Y is a
minimal model.

One could also have considered the plane u = y = 0 and its blowup f ′ : Y ′ −→ X . Sym-
metrically, Y ′ is smooth, f ′ contracts a line L′ ∼= P1 and is crepant, and Y ′ is a minimal
model.

The resolutions Y and Y ′ are almost indistinguishable, but they are not isomorphic over
X . One can check that the birational transforms of the plane u = x = 0 to Y and Y ′ have
intersection number +1 with L and −1 with L′.

On the other hand, the induced birational map ϕ : Y 99K Y ′ is an isomorphism once one
removes L from Y and L′ from Y ". This ϕ is called a (or “the classic”) flop. It is also
sometimes called the “Atiyah flop” after [Ati58], though Reid traces it back through work of
Zariski in the 1930s, and assigns it a birthdate of around 1870.
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Let Z be the blowup of the origin of X . Then Z is in fact the closed graph of ϕ and there
is a diagram

Z

��~~
~~

~~
~~

  A
AA

AA
AA

A

Y

f ��@
@@

@@
@@

@

ϕ
//_______ Y ′

f ′~~}}
}}

}}
}}

X

The exceptional surface of Z −→ X is the quadric Q =P1×P1, which is cut out by two families
of lines. The lines L and L′ are the contractions of Q along these two rulings, and conversely
Q is the blowup of L ⊂Y , resp. L′ ⊂Y ′.

The next definition is a special case of the usual definition of a flop [KM98, 6.10] (in
general, one need not assume Y and Y ′ are smooth, nor that X is Gorenstein).

Definition H.2. Let Y and Y ′ be smooth projective varieties. A birational map ϕ : Y 99KY ′

is a flop if there is a diagram

Y
ϕ

//_______

f ��@
@@

@@
@@

@ Y ′

f ′~~}}
}}

}}
}}

X

where X is a normal projective Gorenstein variety, f and f ′ are small resolutions of singu-
larities, and there is a divisor D on Y such that, if D′ is the strict transform of D on Y ′, then
−D′ is ample.

Say ϕ : Y 99KY ′ is a generalized flop if for some (equivalently, for every) diagram

Z
π

����
��

��
�� π′

  @
@@

@@
@@

@

Y
ϕ

//_______ Y ′

with Z smooth, there is an equality π∗KY =π′∗KY ′.

It is known that the existence of a crepant resolution forces canonical singularities, so
that in particular if X participates in a flop as above, it has canonical singularities. On the
other hand, if X is Q-factorial and has terminal singularities, then it can have no crepant
resolution of singularities [Kol89a, Corollary 4.11] (this is one explanation of the name “ter-
minal”).

Bondal and Orlov [BO02] observed that one ingredient of the minimal model program,
namely the blowup X̃ of a smooth variety X at a smooth center, induces a fully faithful
functor on derived categories Db(cohX ) −→Db(coh X̃ ). They propose that each of the opera-
tions of the program should induce such fully faithful embeddings. In particular, they make
the following conjecture.

Conjecture H.3 (Bondal–Orlov). For any generalized flop ϕ : Y 99K Y ′ between smooth va-
rieties, there is an equivalence of triangulated categories F : Db(cohY ′)−→Db(cohY ).
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Notice that even though there always exists the natural Fourier-Mukai type functor
Rπ∗Lπ′∗(−) : Db(cohY ′) −→ Db(cohY ), this is known not to be fully faithful in general, so
some new idea is needed.

Bondal and Orlov proved Conjecture H.3 in some special cases in dimension three, and
Bridgeland [Bri02] gave a complete proof for threefolds. Here is Bridgeland’s result.

Theorem H.4 (Bridgeland). Let X be a projective complex threefold with terminal singu-
larities. Let f : Y −→ X and f ′ : Y ′ −→ X be crepant resolutions of X . Then Db(cohY ) ≃
Db(cohY ′). �

The equivalence in this theorem is a Fourier-Mukai type functor of the form R f∗(P
L
⊗

f ′∗(−)), where P is a well-chosen object of Db(coh(Y ×X Y ′)). In fact the construction of P is
very difficult and is the heart of the proof.

I. CATEGORICAL DESINGULARIZATIONS

Now let us combine the philosophical ramblings of §F with the concrete problems of §§G
and H. Treating commutative and non-commutative varieties—in the form of their derived
categories—on equal footing, one can entertain the notion of a resolution of a commutative
algebraic variety by a non-commutative one. Bondal and Orlov [BO02] seem to have been
the first to articulate such a possibility in pure mathematics. Other authors have considered
modified or specialized versions, e.g. [Bez06, Kuz08, Lun10].

To begin, let us consider resolutions of singularities from a categorical point of view.
Let X be a normal algebraic variety, and let π : X̃ −→ X be a resolution of singularities.
There are two natural functors between derived categories, namely the derived pushfor-
ward Rπ∗ : Db(coh X̃ ) −→ Db(cohX ) and the derived pullback Lπ∗ : D(cohX ) −→ D(coh X̃ ).
The derived pullback may not take bounded complexes to right-bounded ones, so does not
generally give a functor on Db. One could restrict Lπ∗ to the perfect complexes over X and
write instead Lπ∗ : Dperf (cohX )−→Dperf (coh X̃ )=Db(cohX ).

The pullback and pushforward form an adjoint pair. If X is assumed to have rational
singularities, much more can be said. For an object E in Db(coh X̃ ) and a perfect complex P

over X , the derived projection formula gives

Rπ∗(E
L
⊗OX̃

Lπ∗
P ) =Rπ∗E

L
⊗OX P .

In particular, setting E =OX̃ and taking into account Rπ∗OX̃ =OX , this yields

Rπ∗Lπ∗
P =P

for every perfect complex P in Db(cohX ). Otherwise said, Rπ∗ : Db(coh X̃ ) −→ Db(cohX )
identifies the target with the quotient of the source by the kernel of Rπ∗. Bondal and Orlov
propose to take this as a template:

Definition I.1 (Bondal–Orlov). A categorical desingularization of a triangulated category
D is an abelian category C of finite homological dimension and a triangulated subcategory
K of Db(C), closed under direct summands, such that Db(C)/K≃D.

One problem with this definition is the assumption that C have finite homological dimen-
sion. As observed in §F, this is a very weak condition when C is the category of modules
over a non-commutative ring. There are a number of proposals for a better—that is, more

21



restrictive—notion of smoothness for a (triangulated) category, but as far as I can tell, no
consensus on a best candidate [KS09, TV08, Kuz08, Lun10].

As an aside, I note here that the condition for π : X̃ −→ X to be crepant can be translated
into categorical language as “the right adjoint functor π!, which is locally represented by
HomOX (OX̃ ,−), is isomorphic to π∗.” We won’t need this.

Let us reconsider Example H.1 from the point of view of categorical geometry. This can
be thought of as a warmup for §Q.

Example I.2. Set R = C[u,v, x, y]/(uv− xy), so that X = SpecR is the three-dimensional
ordinary double point as in Example H.1. Let I = (u, x) and I ′ = (u, y). Then in fact I ′= I−1 =

I∗ = HomR(I,R) is the dual of I. Notice too that EndR(I) = R, either by direct computation
or by Theorem L.1 below.

Let f : Y −→ X and f ′ : Y ′ −→ X be the blowups of I and I ′ as before. On Y , consider the
locally free sheaf E =OY ⊕OY (1), which is the pullback of OX ⊕I , where I is the ideal sheaf
of I. Straightforward calculations (or see §Q) show that E is a tilting bundle on Y (Def-
inition D.2), and hence RHomOY (E ,−) : Db(cohY ) −→ Db(Λ-mod) is an equivalence, where
Λ=EndOY (E ). Furthermore, we have

Λ∼= f∗E nd OY (E )=EndR(R⊕ I) ,

which can also be written as a block-matrix ring

Λ=

(
R I

I−1 EndR(I)= R

)
.

The induced functor Db(Λ-mod)−→Db(cohX ) is then obviously a categorical desingulariza-
tion.

Repeating the construction above with E
′ =OY ′ ⊕OY ′(1) on Y ′, one obtains Λ

′ =EndR(R⊕

I ′). But since I ′ = I−1, Λ′ is isomorphic to Λ. This implies equivalences

Db(cohY )≃Db(Λ-mod)≃Db(cohY ′) .

Inspired by the example above and others from the minimal model program, Bondal and
Orlov expect that for a singular variety X , the category Db(cohX ) should have a minimal
categorical desingularization, i.e. one embedding in any other. Such a category would be
unique up to derived equivalence. They propose in particular the following conjecture.

Conjecture I.3 (Bondal–Orlov [BO02]). Let X be a complex algebraic variety with canon-
ical singularities and let f : Y −→ X be a finite morphism with Y smooth. Then A =

E nd OX ( f∗OY ) gives a minimal categorical desingularization, in the sense that A -mod has
finite global dimension and if X̃ −→ X is any other resolution of singularities of X , then
there exists a fully faithful embedding Db(A -mod) −→ Db(coh X̃ ). Moreover, if X̃ −→ X is
crepant, then the embedding is an equivalence.

In the next § I will consider another family of examples providing strong evidence for this
conjecture.

J. EXAMPLE: THE MCKAY CORRESPONDENCE

In this § I sketch a main motivating example, already foreshadowed in Example G.6. The
finite subgroups of SL(2,C) were carefully studied by Klein in the 1880s, and the resolutions
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of the corresponding singularities C2/G = SpecC[u,v]G were understood by Du Val in the
1930s. The structure of the resolution faithfully reflects the representation theory of the
group G, as observed by McKay [McK80], and the correspondence naturally extends to the
reflexive modules over the (completed) coordinate ring C[[u,v]]G. Even more, there is a
natural resolution of singularities of the quotient singularity, built from the group G, which
is derived equivalent to a certain non-commutative ring built from these reflexive modules.
Thus the group G already knows the geometry of C2/G and its resolution of singularities.

This § is about this circle of ideas, which together go by the name “McKay correspon-
dence.” I consider first, more generally, finite subgroups G ⊂ GL(n, k) with n Ê 2 and k a
field of characteristic relatively prime to |G|. Then I specialize to n = 2 and subgroups of SL,
where the strongest results hold. See [LW] or [Yos90] for proofs.

Let S = k[[x1, . . . , xn]] be a power series ring over an algebraically closed field k with n Ê 2.
Let G ⊂ GL(n, k) be a finite subgroup with order invertible in k. Make G act on S by linear
changes of variables, and set R = SG , the ring of invariants. The ring R is noetherian,
local, and complete, of dimension n. It is even CM by the Hochster–Eagon theorem [HE71].
Furthermore, S is a module-finite R-algebra, and is a maximal Cohen–Macaulay R-module.

The central character in the story is the skew, or twisted, group algebra S#G. As an S-
module, S#G is free on the elements of G, and the product of two elements s ·σ and t ·τ, with
s, t ∈ S and σ,τ ∈ G, is defined by (s ·σ)(t ·τ) = sσ(t) ·στ . Thus moving σ past t “twists” the
ring element.

Left modules over S#G are precisely S-modules with a compatible action of G, and one
computes HomS#G(M, N) = HomS(M, N)G for S#G-modules M and N. Since the order of G
is invertible, taking invariants is an exact functor, whence Exti

S#G(M, N) =Exti
S(M, N)G for

all i > 0 as well. It follows that an S#G-module P is projective if and only if it is free over S.
This, together with a moment’s contemplation of the (G-equivariant) Koszul complex over S
on x1, . . . , xn, gives the following observation.

Proposition J.1. The twisted group ring S#G, where S = k[[x1, . . . , xn]] and G is a finite
group of linear automorphisms of S with order invertible in k, has finite global dimension
equal to n. �

The “skew” multiplication rule in S#G is cooked up precisely so that the homomorphism
γ : S#G −→ EndR(S), defined by γ(s ·σ)(t) = sσ(t), is a ring homomorphism extending the
group homomorphism G −→ EndR(S) defining the action of G on S. In general, γ is neither
injective nor surjective, but under an additional assumption on G, it is both. Recall that a
pseudo-reflection is an element σ ∈GL(n, k) of finite order which fixes a hyperplane.

Theorem J.2 (Auslander [Aus62, Aus86b]). Let S = k[[x1, . . . , xn]], n Ê 2, let G ⊂GL(n, k) be a
finite group acting on S, and assume |G| is invertible in S. Set R = SG . If G contains no non-
trivial pseudo-reflections then the homomorphism γ : S#G −→EndR(S) is an isomorphism.

Consequently, in this case EndR(S) has finite global dimension and as an R-module is
isomorphic to a direct sum of copies of S, so in particular is a MCM R-module. �

The condition that G contain no non-trivial pseudo-reflections is equivalent to the exten-
sion R,→S being unramified in codimension one [Yos90, Lemma 10.7].

Let ̺ : G −→ GL(W) be a representation of G on the finite-dimensional k-vector space W .
Then S ⊗k W , with the diagonal action of G, is a finitely generated S#G-module. It is free
over S, whence projective over S#G. The submodule of fixed points, M̺ = (S ⊗k W)G , is
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naturally an R-module. If ̺ is irreducible, then one can show that M̺ is a direct summand
of S as an R-module. Conversely, given any R-direct summand of S, the corresponding
idempotent in EndR(S) defines an S#G-direct summand P of S#G, whence a representation
P/(x1, . . . , xn)P of G.

Corollary J.3. These operations induce equivalences between the categories addR(S) of R-
direct summands of S, addEndR(S) of finitely generated projective EndR(S)-modules, addS#G
of finitely generated projective S#G-modules, and repk G of finite-dimensional representations
of G. �

As a final ingredient, define a quiver from the data of the representation theory of G, or
equivalently—given the correspondences above—of the R-module structure of S.

Definition J.4 (McKay [McK80]). The McKay quiver of G ⊂GL(n, k) has vertices ̺0, . . . ,̺d,
a complete set of the non-isomorphic irreducible k-representations of G, with ̺0 the trivial
irrep. Denote by ̟ the given n-dimensional representation of G as a subgroup of GL(n, k).
Then draw mi j arrows ̺i −→ ̺ j if the multiplicity of ̺i in ̟⊗k ̺ j is equal to mi j.

Now let us specialize to the case n = 2. Here the MCM R-modules are precisely the
reflexive ones. This case is unique thanks to the following result, which fails badly for n Ê 3.

Lemma J.5 (Herzog [Her78]). Let S = k[[u,v]], let G ⊂ GL(2, k) be a finite group of order
invertible in k, and let R = SG . Then every finitely generated reflexive R-module is a direct
summand of a direct sum of copies of S as an R-module. In particular, the MCM R-modules
coincide with addR(S), and there are only finitely many indecomposable ones. �

The one-one correspondences that hold for arbitrary n can thus be augmented in dimen-
sion two, giving a correspondence between the irreducible representations of G and the
indecomposable MCM R-modules.

Specialize one last time, to assume now that G ⊂SL(2, k). Note that then G automatically
contains no non-trivial pseudo-reflections. Furthermore, R = SG is Gorenstein by a result of
Watanabe [Wat74]; in fact, it is classical [Kle93] that SpecR embeds as a hypersurface in k3,
so R ∼= k[[x, y, z]]/ f (x, y, z) for some polynomial f . As long as k has characteristic not equal
to 2, 3, or 5, the polynomials arising are precisely the ADE polynomials of (G.1) defining the
rational double points.

The rational double points are distinguished among normal surface singularities by the
fact that their local rings have unique crepant resolutions of singularities, which are the
minimal resolutions of singularities. They are particularly easy to compute, being achieved
by a sequence of blowups of points (no normalization required). The preimage of the singular
point is a bunch of rational curves E1, . . . ,En on the resolution. These curves define the dual
graph of the desingularization: it has for vertices the irreducible components E1, . . . ,En,
with an edge joining E i to E j if E i ∩ E j 6= 0. This graph is related to the other data as
follows.

Theorem J.6 (Classical McKay Correspondence). Let k be an algebraically closed field of
characteristic not 2, 3, or 5, and let G ⊂ SL(2, k) be a finite subgroup of order invertible in k.
Set S = k[[u,v]], with a natural linear action of G, set R = SG , and let π : X̃ −→SpecR be the
minimal resolution of singularities with exceptional curves E1, . . . ,En. Then

(i) There is a one-one correspondence between
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(a) the exceptional curves E i;
(b) the irreducible representations of G; and
(c) the indecomposable MCM R-modules.

(ii) (McKay) The dual graph of the desingularization is isomorphic to the McKay quiver
after deleting the trivial vertex and replacing pairs of opposed arrows by edges. It is
an ADE Coxeter-Dynkin diagram.

An : ◦ ◦ · · · ◦ ◦

Dn :

◦

◦ ◦ · · · ◦ ◦

{{{

CC
C

◦

E6 : ◦ ◦ ◦ ◦ ◦

◦

E7 : ◦ ◦ ◦ ◦ ◦ ◦

◦

E8 : ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

�

Shortly after McKay’s original observation [McK80] of the isomorphism of graphs above,
Gonzalez-Sprinberg and Verdier [GSV81] gave, in characteristic zero, a geometric construc-
tion linking the representation theory of G and the resolution of singularities X̃ . Later
constructions by Artin–Verdier [AV85], Esnault [Esn85], and Knörrer [Knö85] made ex-
plicit the correspondences between the exceptional curves E i, the indecomposable reflexive
R-modules, and the irreducible representations of G.

The first intimation of a “higher geometric McKay correspondence” appeared in string
theory in the mid-1980s. Dixon, Harvey, Vafa, and Witten [DHVW85] observed that for cer-
tain G ⊆ SL(3,C), and a certain crepant resolution X̃ −→C3/G, there is an equality between
the Euler characteristic χ(X̃ ) and the number of conjugacy classes (= number of irreducible
representations) of G. There followed a great deal of work on the existence of crepant res-
olutions of singularities for quotient singularities of the form Y /G, where Y is an arbitrary
smooth variety of dimension two or more. Specifically, one can ask for the existence of a
crepant resolution X̃ −→ Y /G and a derived equivalence between X̃ and the G-equivariant
coherent sheaves on Y . Let Db

G(Y ) denote the bounded derived category of the latter.
Such an equivalence was first constructed by Kapranov and Vasserot in the setting of

Theorem J.6. In this case, the minimal resolution of singularities X̃ has an alternative con-
struction, as Nakamura’s G-Hilbert scheme HilbG(C2) [Nak01, IN99]. This is an irreducible
component of the subspace of the Hilbert scheme of points in C2 given by the ideal sheaves
I ⊆OC2 such that the OC2/I ∼=C[G] as G-modules.
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Theorem J.7 (Kapranov–Vasserot [KV00]). Let G ⊂ SL(2,C) be a finite group, S = C[u,v],
R = SG , and X =SpecR. Set H =HilbG(C2). Then there is a commutative triangle

Db(S#G-mod)=Db
G(cohC2)

Φ //

))SSSSSSSSSSSSSSSSSSS Db(cohH)

xxqqqqqqqqqqq

Db(cohX )

in which Φ is an equivalence of triangulated categories. �

The equivalence Φ is given by an explicit “equivariant” Fourier-Mukai type functor, Φ(−)=
(Rp∗Lq∗(−))G , where Z ⊆ X ×C2 is the incidence variety and p, q are the projections onto
the factors.

In dimension greater than two, there is no minimal resolution of singularities. However,
Nakamura’s G-Hilbert scheme is still a candidate for a crepant resolution of singularities in
dimension three. Bridgeland, King, and Reid proved the following general result about the
G-Hilbert scheme.

Theorem J.8 (Bridgeland–King–Reid [BKR01]). Suppose that Y is a smooth and quasi-
projective complex variety, and that G ⊆ AutY is a finite group of automorphisms such that
the quotient Y /G has Gorenstein singularities. Let H =HilbG(Y ). If

dim(H×Y /G H)É dim H+1 ,

then H is a crepant resolution of singularities of Y /G and there is an equivalence (explic-
itly given by a Fourier-Mukai functor) of derived categories Db(HilbG(Y )) −→ Db

G(Y ), where
Db

G(Y ) is the bounded derived category of G-equivariant coherent sheaves on Y . �

The assumption on the fiber product H ×Y /G H is automatic if dimY É 3, so this result
implies a derived McKay correspondence for three-dimensional quotient singularities C3/G
with G ⊂ SL(3,C). In particular, such singularities have a crepant resolution, which had
been verified on a case-by-case basis using the classification of finite subgroups of SL(3,C).
The full details of the correspondences in dimension three are still being worked out [CL09].

In dimension four, the hypothesis on H ×Y /G H need not hold if H −→ Y /G contracts a
divisor to a point. Indeed, we have seen in Example G.6 that some quotients C4/G have no
crepant resolutions of singularities. Furthermore, even when a crepant resolution exists,
the G-Hilbert scheme may be singular, or non-crepant, or both [Rei02, Example 5.4]. In
general, the following conjecture is due to Reid.

Conjecture J.9 (Derived McKay Correspondence Conjecture). For a crepant resolution of
singularities X̃ −→ Cn/G, should one exist, there is an equivalence between Db(coh X̃ ) and
Db

G(Cn).

Compare with Conjecture H.3 above. The derived McKay correspondence conjecture is
known when G preserves a complex symplectic form on Cn [BK04], and when G is abelian
[Kaw06].

Notice, for a last comment, that the “resolution” S#G ∼= EndR(S) of Theorem J.2 exists
in any dimension for G ⊂ GL(n, k) having no non-trivial pseudo-reflections, and delivers a
derived equivalence Db(S#G) ≃ Db

G(Cn) by definition. In dimension two, it is even derived
equivalent to the “preferred” desingularization HilbG(C2). As we shall see in the next §, it is
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even in a certain sense “crepant,” so represents a potential improvement on the geometric
situation.

K. NON-COMMUTATIVE CREPANT RESOLUTIONS

Now I come to the title character of this article. It is an attempt, due to Van den Bergh, to
define a concrete algebraic object whose derived category will realize a categorical desingu-
larization in the sense of Definition I.1, and which will also verify Conjecture I.3. The main
motivations are Examples H.1 and I.2, and §J.

Let R be a commutative ring. Recall from Definitions F.2 and F.3 that a ring Λ is an R-
order if it is finitely generated and MCM as an R-module, and is non-singular if gldimΛp =

dimRp for all p ∈ SpecR. Let us also agree that a module-finite algebra Λ over a domain R
is birational to R if Λ⊗R K ∼= Mn(K ) for some n, where K is the quotient field. If Λ is torsion-
free as an R-module, this is equivalent to asking that Λ ⊆ Mn(K ) and that Λ spans Mn(K )
when scalars are extended to K . The terminology is consistent with our determination to
identify objects that are Morita equivalent; the birationality of Λ should mean that Λ⊗R K
is Morita equivalent to K , and the only candidates are the matrix rings Mn(K ).

Here is a provisional definition, to be improved shortly.

Provisional Definition K.1. Let R be a CM normal domain with quotient field K . A non-
commutative desingularization of R is a non-singular birational R-order Λ.

There is also a natural candidate for a “crepancy” condition.

Definition K.2. Let R be a local ring, and let Λ be a module-finite R-algebra. Let us say
that Λ is a symmetric R-algebra if HomR(Λ,R)∼=Λ as a (Λ-Λ)-bimodule.

Notice immediately that if Λ is a symmetric R-algebra, then for any left Λ-module M,
there are natural isomorphisms

HomΛ(M,Λ)∼=HomΛ(M,HomR(Λ,R))∼=HomR(Λ⊗Λ M,R)∼=HomR(M,R) .

We also have the following direct consequence of Proposition F.4:

Corollary K.3. Let R be a Gorenstein local ring. If Λ is a symmetric R-order of finite global
dimension, then gldimΛ= dimR. In particular, Λ is non-singular.

Notice that this Corollary fails badly for non-Gorenstein R; a counterexample is Exam-
ple P.3 below.

Here finally is the definition [VdB04b].

Definition K.4. Let (R,m) be a CM local normal domain with quotient field K . A non-
commutative crepant resolution of R (or of SpecR) is a symmetric, birational, R-order Λ

having finite global dimension.

I first observe that the definition is Morita-invariant, i.e. if Λ and Γ are Morita-equivalent
R-algebras and Λ is a symmetric birational R-order of finite global dimension, then so is Γ.
Indeed, global dimension is known to pass across Morita equivalence. Suppose Λ is MCM
over R and Γ=EndΛ(P) for some Λ-progenerator P. Since P is a progenerator, P is a direct
summand of Λn for some n, and it follows that Γ is a direct summand of EndΛ(Λn)∼= Mn(Λ)
as an R-module. Thus Γ is a MCM R-module as well. Symmetry is similarly easy to verify.
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Before considering other possible definitions and addressing the examples from previous
sections, I point out a connection with the classical theory of orders [AG60, Rei03], follow-
ing [IR08]. Let R be a domain with quotient field K . Recall that a module-finite R-algebra
Λ, contained in a finite-dimensional division algebra D over K , is called a classical order
in D if Λ spans D over K , and is called maximal in D if it is maximal among classical or-
ders in D with respect to containment. Maximal orders over Dedekind domains have been
completely understood for many years; the following facts are well-known.

• Every finite-dimensional division K -algebra D contains a unique maximal order ∆D .
• A classical order is maximal if and only if it is Morita equivalent to ∆D1 ×·· · ×∆Dk

for finite-dimensional division algebras D1, . . . ,Dk over K .
• A classical order is hereditary, that is, has global dimension at most one, if and only

if it is Morita equivalent to a ring of the form Tn1 (∆D1)×·· ·×Tnk (∆Dk ), where Tn(∆)
denotes the subring of Mn(∆) containing matrices (ai j) with ai j ∈ rad(∆) for i > j.

With these facts in mind, let R be a complete discrete valuation ring and Λ a module-finite
R-algebra. If Λ is a symmetric R-algebra of global dimension 1, then it follows that Λ is a
maximal order. Indeed, Λ is hereditary, so Morita equivalent to Tn1 (∆D1)×·· ·×Tnk (∆Dk ) as
above. One can check, however, that Tn(∆) is symmetric only for n = 1. Thus Λ is maximal.

Now, a classical order Λ over a normal domain R is maximal if and only if Λ is reflexive
as an R-module and Λp is a maximal order for all primes p of height one in R [AG60, 1.5],
[Rei03, 11.5]. Combining this with the discussion above gives the following result.

Proposition K.5. Let R be a normal domain with quotient field K , and Λ a symmetric
birational R-order of finite global dimension. Then Λ is a maximal order. �

The connection with the classical theory of (classical) orders gives a structure theorem
for symmetric non-singular orders, via the following results of Auslander–Goldman [AG60,
Lemma 4.2] and Auslander [Aus86b, Lemma 5.4].

Theorem K.6. Let R be a normal domain with quotient field K .

(i) Let Λ be a classical order over R in Mn(K ). Then Λ is a maximal order if and only if
there exists a finitely generated reflexive R-module M such that Λ∼=EndR(M).

(ii) Let M be a reflexive R-module, and set Λ = EndR(M). Then Λ is reflexive as an
R-module and the map α : Λ −→ HomR(Λ,R) defined by α( f )(g) = tr( f g), where
tr : EndK (K ⊗R M) −→EndR(M) is the usual trace map, is an isomorphism of (Λ-Λ)-
bimodules. Hence Λ is a symmetric R-algebra. �

Here are a few definitions which, at least under certain hypotheses, are equivalent to Def-
inition K.4. Part (ii) of the next Proposition is the original definition of a non-commutative
crepant resolution [VdB04b, VdB04a]. For that definition, say that Λ is homologically ho-
mogeneous over the central subring R if it is finitely generated as an R-module and every
simple Λ-module has the same projective dimension, equal to dimR [BH84, BHM82]. This
condition seems first to have been introduced by Vasconcelos [Vas73] under the name “mod-
erated algebras.” If R is equidimensional, it is equivalent to asking that for every p ∈ SpecR
the localization Λp is MCM as an Rp-module and gldimΛp = dimRp [BHM83].

Proposition K.7. Let R be a Gorenstein local normal domain and let Λ be a module-finite
R-algebra. Then the following sets of conditions on Λ are equivalent.

(i) Λ is a symmetric birational R-order and has finite global dimension.
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(ii) Λ∼=EndR(M) for some reflexive R-module M, and Λ is homologically homogeneous.
(iii) Λ ∼= EndR(M) for some reflexive R-module M, Λ is MCM as an R-module, and

gldimΛ<∞. �

Proof. Assume first that Λ satisfies (i). Then Λ is MCM over R by definition, and this
localizes well. By Theorem K.6(i), Λ is an endomorphism ring of a reflexive module M,
and by Corollary K.3 Λ is non-singular, giving (ii). Clearly (ii) implies (iii). Finally, if
Λ ∼= EndR(M) for a reflexive R-module M, then Λ is birational to R, and is symmetric by
Theorem K.6(ii). �

The implication (iii) =⇒ (ii) fails if R is not Gorenstein. Again see Example P.3 below.
Now it is clear that Auslander’s Theorem J.2 proves that, for any n Ê 2 and any finite

group G ⊂ SL(n, k) with order invertible in k, the ring of invariants R = k[[x1, . . . , xn]]G has
a non-commutative crepant resolution. Namely, with S denoting the power series ring, the
endomorphism ring EndR(S) has finite global dimension and, since S is a MCM R-module,
is an R-order. Thus EndR(S) ∼= S#G is a non-commutative crepant resolution. One can also
prove directly that the twisted group ring S#G is symmetric over R.

Similarly, the three-dimensional ordinary double point in Example I.2 admits the non-
commutative crepant resolution Λ=EndR(R⊕ I), which is derived equivalent to the resolu-
tions of singularities Y and Y ′.

For the next equivalent definition we need the notion of a d-Calabi-Yau algebra. There are
a few approaches to topics with this name. I follow [IR08, Bra07]; see also [Gin06, Boc09]. I
will always assume that the base ring is local, which eases the exposition considerably.

Definition K.8. Let R be a local ring and let Λ be a module-finite R-algebra. Write D(−)=
HomR(−,E) for Matlis duality over R, where E is the injective hull of the residue field. Say
that Λ is d-Calabi-Yau (d-CY) if there is a functorial isomorphism

HomD(Λ-Mod)(X ,Y [d])∼= D HomD(Λ-Mod)(Y , X )

for all X and Y in Db(Λ-fl), the bounded derived category of finite-length Λ-modules. Simi-
larly, Λ is d-CY− if an isomorphism as above holds for all X in Db(Λ-fl) and all Y in Kb(addΛ).

These definitions are perhaps a bit much to swallow all at once. Here are some basic facts
about the Calabi-Yau conditions. Let R be a local ring and Λ a module-finite R-algebra.
Then Λ is n-CY for some integer n if and only if Λ is n-CY− and has finite global dimension.
Indeed, if gldimΛ <∞ then Db(Λ-fl) ⊂Db(Λ-mod) = Kb(addΛ). The “only if” part is proved
by completing and considering the finite-length Λ-module Y / rad(Λ)nY for Y in Kb(addΛ).

Calabi-Yau algebras are best-behaved when R is Gorenstein. In that case [IR08, Theorem
3.2], if Λ is n-CY or n-CY− for some n, then n = dimR. Furthermore, Λ is d-CY− if and only
if Λ is a symmetric R-order. (This is one point where life is easier because R is local. Iyama
and Reiten give an example, which they credit to J. Miyachi, of a d-CY− algebra over a non-
local Gorenstein ring which is not symmetric, even though R −→Λ is injective. It is locally
symmetric.) More precisely, the following equivalent conditions hold.

Proposition K.9 ( [IR08]). Let (R,m, k) be a Gorenstein local ring with dimR = d, and let Λ
be a module-finite R-algebra. The following are equivalent for any integer n.

(i) Λ is n-CY−.
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(ii) As functors on Λ-fl, Extn
Λ

(−,Λ) is isomorphic to the Matlis duality functor D(−) =
HomR(−,E), and Exti

Λ
(−,Λ)= 0 for i 6= n.

(iii) RHomR(Λ,R)∼=Λ[n−d] in the bounded derived category of (Λ-Λ)-bimodules.
(iv) Λ is a CM R-module of dimension n and Extd−n

R (Λ,R)∼=Λ as (Λ-Λ)-bimodules.

In particular, a birational module-finite algebra Λ is d-CY if and only if it is symmetric and
has finite global dimension. �

Of course the value of a definition, even one as motivated as this one has been, is in the
theorems. Here is the main result of [VdB04b].

Theorem K.10. Let R be a Gorenstein normal C-algebra, X = SpecR, and π : X̃ −→ X a
crepant resolution of singularities. Assume that the fibers of π have dimension at most one.
Then there exists a MCM R-module M such that the endomorphism ring Λ = EndR(M) is
homologically homogeneous. In particular, Λ is a non-commutative crepant resolution of R.
Furthermore, X̃ and Λ are derived equivalent: Db(coh X̃ )≃Db(Λ-mod). �

Here is a sketch of the proof of Theorem K.10. We know that existence of a crepant
resolution implies that X has rational singularities. Let L be an ample line bundle on
the smooth variety X̃ generated by global sections. Then by the hypothesis on the fibers
of π ([BVdB03, 4.2.4]), OX̃ ⊕L generates D(Qch X̃ ), that is, if N in D(Qch X̃ ) satisfies
HomD(Qch X̃ )(OX̃ ⊕L ,N [i])= 0 for i 6= 0, then N = 0 (see the discussion after Definition D.2).
Take an extension 0 −→ O

r
X̃
−→ M

′ −→ L −→ 0 corresponding to a set of r generators for

Ext1
OX̃

(L ,OX̃ ) as an R-module. Set M = M
′⊕OX̃ . Then M also generates D(Qch X̃ ). One

can show that Exti
OX̃

(M ,M ) = 0 for i > 0 (this takes a good bit of work). Thus M is a

tilting bundle on X̃ . Set Λ = EndOX̃
(M ); then the vanishing of the derived pushforwards

Riπ∗E nd OX̃
(M )=Exti

OX̃
(M ,M ) implies that Λ∼=EndR(M), where M =Γ(X̃ ,M ). The proofs

that Λ and M are both MCM are more involved.
Van den Bergh also proves a result converse to Theorem K.10, constructing a geomet-

ric crepant resolution π : X̃ −→ SpecR from a non-commutative one under certain assump-
tions [VdB04a, §6]. The method is roughly as follows: let Λ be a non-commutative crepant
resolution of R, and take for X̃ a moduli space of certain stable representations of Λ. Then
he proves that if dim(X̃ ×SpecR X̃ ) É dimR + 1, then X̃ −→ SpecR is a crepant resolution
and there is an equivalence of derived categories Db(coh X̃ ) ≃Db(Λ-mod). Observe that the
hypothesis is exactly similar to that of Theorem J.8. In particular, the hypothesis holds if
dimR É 3, giving the following theorem.

Theorem K.11. Let R be a three-dimensional Gorenstein normal C-algebra with terminal
singularities.

(i) There is a non-commutative crepant resolution of R if and only if X = SpecR has a
crepant resolution of singularities.

(ii) All crepant resolutions of R—geometric as well as non-commutative—are derived
equivalent. �

The second statement verifies Conjecture H.3 of Bondal and Orlov in this case. Iyama and
Reiten [IR08] have recently shown that, even without the assumption on the singularities
of R being terminal, all non-commutative crepant resolutions of R are derived equivalent.
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Even more recently, Iyama and Wemyss [IW11] have announced a sufficient criterion for
the existence of a derived equivalence between the noncommutative crepant resolutions of
R. When d É 3 this criterion is always satisfied, recovering the Iyama–Reiten result.

Van den Bergh suggests the following extension of Theorem K.11(ii).

Conjecture K.12 (Van den Bergh). Let R be a Gorenstein normal C-algebra and X =SpecR.
Then all crepant resolutions of R—geometric as well as non-commutative—are derived equiv-
alent.

L. EXAMPLE: NORMALIZATION

The appearance of endomorphism rings as ersatz resolutions of singularities may initially
be unsettling. It does, however, have a precedent. One can think of the normalization R of
an integral domain R, i.e. the integral closure in its quotient field, as a partial resolution of
singularities, one that is especially tractable since it does not leave the category of noether-
ian rings. This result of Grauert and Remmert [GR71, GR84] interprets the normalization
as an endomorphism ring.

Theorem L.1 (Grauert–Remmert). Let R be an integral domain and I a non-zero integrally
closed ideal of R such that Rp is normal for every p 6⊃ I. Then the following are equivalent.

(i) R is normal;
(ii) For all non-zero fractional ideals J of R, HomR(J, J)= R;

(iii) For all non-zero ideals J of R, HomR(J, J)= R;
(iv) HomR(I, I)= R. �

For any fractional ideal J, the containments R ⊆HomR(J, J)⊆ R always hold. The latter
inclusion sends ϕ : J −→ J to the fraction ϕ(r)/r for any fixed non-zerodivisor r ∈ J; this is
well-defined. In particular, HomR(J, J) is a commutative (!) ring.

Theorem L.1 was used by de Jong [dJ98] to give an algorithm for computing the normal-
ization R of an affine domain over a perfect field, or slightly more generally. Let R be a local
domain such that its normalization R is a finitely generated R-module; equivalently, the
completion R̂ is reduced. One needs to determine a non-zero integrally closed ideal I such
that V (I) contains the non-normal locus of R. If R is affine over a perfect field, then the Jaco-
bian criterion implies that the radical of the Jacobian ideal will work; there are other choices
in other cases. Set R′ = HomR(I, I). If R′ = R, then R is normal, so stop. Otherwise, replace
R by R′ and repeat. The algorithm has been refined and extended since [DdJGP99, GLS10].

It follows from Serre’s criterion for normality that if R is the coordinate ring of an irre-
ducible curve singularity, then the normalization R is regular, whence is the coordinate ring
of a resolution of singularities of SpecR. Thus in this situation, desingularization can be
achieved as an iterated endomorphism ring. In fact, as long as R is affine over a perfect
field, one actually has R = HomR(R,R), a single endomorphism ring of a finitely generated
module giving resolution of singularities.

M. MCM ENDOMORPHISM RINGS

The requirement that a non-commutative crepant resolution of singularities should be an
order, i.e. a MCM module, raises a basic question: Does the depth of HomR(M, M) depend in
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any predictable way on the depth of M? The short answer is No. In this § we look at some
examples.

First, observe that there is at least a lower bound on the depth of a Hom module: If R is
any local ring and M, N are finitely generated modules with depth N Ê 2, then HomR(M, N)
has depth Ê 2 as well. Indeed, applying HomR(−, N) to a free presentation of M displays
HomR(M, N) as the kernel of a map between direct sums of copies of N, so the Depth Lemma
gives the conclusion. That’s about the end of the good news.

Next notice that the depth of HomR(M, M) can be strictly greater than that of M. Indeed,
let R be a CM normal domain and let J be any non-zero ideal of R. Then HomR(J, J)= R by
Theorem L.1, even though depthR J can take any value between 1 (if, say, J is a maximal
ideal) and d (if for example J is principal). Furthermore, R can be taken to be Gorenstein, or
even a hypersurface ring, so finding a class of rings that avoids this problem seems hopeless.

One might hope at least that if M is MCM then HomR(M, M) is MCM as well. This
question was raised by Vasconcelos [Vas68] for R a Gorenstein local ring. It also has a
negative answer, though it is at least harder. A counterexample is given by Jinnah [Jin75],
based on [Hoc73, Example 5.9].

Example M.1. Let k be a field and set A = k[x, y, z]/(x3 + y3 + z3), B = k[u,v]. Let R be the
Segre product of A and B, the graded ring defined by Rn = An ⊗k Bn. Then R is the subring
of A[u,v] generated by xu, xv, yu, yv, zu, zv, a three-dimensional normal domain of depth 2.
The ideal I = vA[u,v]∩R has depth 3 over R.

Write R as a quotient of a graded complete intersection ring S of dimension 3. Then I
has depth 3 over S as well, but HomS(I, I)= HomR(I, I)= R has depth two as an S-module.
Localizing S at its irrelevant ideal gives a local example.

Here is a useful characterization of the depth of HomR(M, N).

Lemma M.2 ([Iya07b, Dao10]). Let R be a CM local ring and let M and N be finitely gener-
ated R-modules. Fix n Ê 2 and consider the following properties.

(i) HomR(M, N) satisfies (Sn+1); and
(ii) Exti

R(M, N)= 0 for i = 1, . . . , n−1.

If M is locally free in codimension n and N satisfies (Sn), then (i) =⇒ (ii). If N satisfies
(Sn+1) then (ii) =⇒ (i).

Since this result is used in some later sections, I’ll sketch the proof. First assume that M
is locally free in codimension n and that N satisfies (Sn). If n Ê dimR then M is free and
there is nothing to prove, so one may localize at a prime ideal of height n+1 to assume by
induction that M is locally free on the punctured spectrum, and so Exti

R(M, N) has finite
length for i Ê 1. Take a free resolution P• of M and consider the first n terms of the complex
HomR(P•, N). Since the cohomologies of this complex, namely Exti

R(M, N) for i = 1, . . ., n−1,
all have finite length, HomR(P•, N) is exact by the Acyclicity Lemma [BH93, Ex. 1.4.23]. For
the second statement, take once again the free resolution P• of M and consider the first n
terms of HomR(P•, N), which form an exact sequence by the assumption. The Depth Lemma
then implies depthHomR(M, N)p Êmin{n+1,depthNp} for every p ∈ SpecR, which gives the
conclusion.

The homological consequences of Lemma M.2 are even stronger than is immediately ap-
parent. To describe these, recall that module N over a commutative ring R is called Tor-rigid
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if whenever TorR
i (M, N) = 0 for some i Ê 0 and some finitely generated R-module M, neces-

sarily TorR
j (M, N)= 0 for all j Ê i. Deciding whether a given module is Tor-rigid is generally

a delicate problem, as Dao observes [Dao10]. The following result of Jothilingam [Jot75]
(see also [Jor08]) gives a very useful necessary condition.

Proposition M.3 (Jothilingam). Let R be a local ring and let M, N be finitely generated R-
modules. Assume that N is Tor-rigid. If Ext1

R(M, N)= 0, then the natural map ΦM,N : M∗⊗R

N −→HomR(M, N) is an isomorphism. In particular, if Ext1
R(N, N)= 0 then N is free. �

It follows immediately that if R is a local ring satisfying (R2) and (S3), and M is a reflex-
ive R-module with a non-free direct summand which is Tor-rigid, then Λ = EndR(M) is not
MCM, whence is not a non-commutative crepant resolution. Indeed, let N be a Tor-rigid
summand of M which is not free. Then N is reflexive, so satisfies (S2), and is free in codi-
mension two as R is regular on that locus. Moreover, HomR(N, N) is a direct summand of
HomR(M, M). If HomR(M, M) were MCM, then HomR(N, N) would also be, so would satisfy
(S3). But then Ext1

R(N, N)= 0 by Lemma M.2, contradicting Proposition M.3.
It is now easy to bolster Example M.1 by constructing, over any CM local ring (R,m, k) of

dimension 3 or more, a MCM module M such that HomR(M, M) is not MCM2. Indeed, take
M to be a high enough syzygy of the residue field k; since k is Tor-rigid, the same is true of
M, and it is locally free on the punctured spectrum. By Lemma M.2 and Proposition M.3,
then, HomR(M, M) has depth at most 2.

From Proposition M.3 and progress on understanding Tor-rigid modules over hypersur-
face rings, Dao derives the next theorem, which identifies obstructions to the existence of
non-commutative crepant resolutions.

Theorem M.4 ([Dao08, Dao10, Dao11]). Let R = S/( f ) be a local hypersurface ring with S an
equicharacteristic or unramified regular local ring and f ∈ S a non-zero non-unit. Assume
that R is regular in codimension two.

(i) If dimR = 3 and R is Q-factorial, then every finitely generated R-module is Tor-rigid,
so R admits no non-commutative crepant resolution.

(ii) If R has an isolated singularity and dimR is an even number greater than 3, then
HomR(M, M) satisfies (S3) only if M is free, so R admits no non-commutative crepant
resolution. �

Recall from Example G.5 that the isolated hypersurface singularity defined by xr
0 + xd

1 +

·· · + xd
d = 0 has a crepant resolution of singularities only if r ≡ 0 or 1 modulo d. Part (ii) of

Dao’s theorem thus implies that the extension of Van den Bergh’s Theorem K.11(i) to higher
dimensions has a negative answer, at least without some further assumptions.

Example M.5 ([Dao10, Example 3.6], [BIKR08, §2]). Theorem M.4 allows some progress
toward deciding which of the three-dimensional ADE singularities (see (G.1)) have non-
commutative crepant resolutions. Let k be an algebraically closed field of characteristic
zero. The 3-dimensional versions of (A2ℓ), (E6), and (E8) are factorial, so do not admit a
non-commutative crepant resolution at all.

Let R = k[[x, y, z,w]]/(xy+ z2 −w2ℓ+2), an (A2ℓ+1) singularity, with ℓ Ê 1. (Observe that
the case ℓ = 0 is the ordinary double point of Example H.1.) Then I claim that R has a

2I’m grateful to Hailong Dao for pointing this out to me.
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non-commutative crepant resolution Λ = EndR(M) in which M is MCM. Indeed, the inde-
composable MCM R-modules are completely known [Yos90, Example 5.12]; they are the free
module R, the ideal I = (x, z+wℓ+1), the dual ideal I∗ = (y, z−wℓ+1), and ℓ indecomposables
M1, . . . , Mℓ of rank two.

Each Mi is its own Auslander-Reiten translate, τMi
∼= Mi, so in particular Ext1

R(Mi, Mi) 6=
0 for i = 1, . . . ,ℓ. By Lemma M.2, no Mi can be a constituent in a non-commutative crepant
resolution. On the other hand, I and I∗ satisfy HomR(I, I) ∼= HomR(I∗, I∗) ∼= R by The-
orem L.1. Thus at least EndR(R ⊕ I) and EndR(R ⊕ I∗) are symmetric R-orders; it will
follow from the results in the next § that since R ⊕ I and R ⊕ I∗ are cluster tilting mod-
ules (Theorem N.5), the endomorphism rings have global dimension equal to 3, so are non-
commutative crepant resolutions.

N. GLOBAL DIMENSION OF ENDOMORPHISM RINGS

The tendency for endomorphism rings to have finite global dimension was first observed
by Auslander [Aus71, §III.3]. Recall that Λ is an artin algebra if the center of Λ is a comm-
utative artin ring and Λ is a finitely generated module over its center.

Theorem N.1 (Auslander). Let Λ be an artin algebra with radical r and assume that rn =

0, rn−1 6= 0. Set M =
⊕n

i=0Λ/ri. Then Γ = EndΛ(M) is a coherent artin algebra of global
dimension at most n+1. �

Based on this result Auslander was led to define the representation dimension of an artin
algebra Λ as the least value of gldimEndΛ(M) as M runs through all finitely generated Λ-
modules which are generators-cogenerators for Λ, that is, M contains as direct summands
all indecomposable projective and injective Λ-modules. Observe that Theorem N.1 does
not prove finiteness of the representation dimension; while M has a non-zero free direct
summand, it need not be a cogenerator unless Λ is self-injective.

Auslander proved in [Aus71] that repdimΛ É 2 if and only if Λ has finite representation
type (see §P), but it was not until 2003 that Rouquier constructed the first examples with
representation dimension greater than 3 [Rou06b]. Incidentally, Rouquier’s proof uses the
notion of the dimension [BVdB03, Rou08] of the derived category Db(Λ-mod). The dimension
of a triangulated category is a measure of how many steps are required to obtain it start-
ing from a single object and inductively taking the closure under shifts, direct sums and
summands, and distinguished triangles. Rouquier proved that if Λ is a finite-dimensional
algebra over a perfect field k, then dimDb(Λ-mod)É repdimΛ.

Iyama showed in 2003 [Iya03] that the representation dimension of a finite-dimensional
algebra is always finite. He also extended the definition of representation dimension to CM
local rings of positive Krull dimension.

Definition N.2. Let R be a complete CM local ring with canonical module ω. Set

repdimR = inf
M

{gldimEndR(R⊕ω⊕M)} ,

where the infimum is taken over all MCM R-modules M.

Iyama’s techniques involved maximal n-orthogonal modules, now called cluster tilting
modules [Iya07b]. Here I will not say anything about cluster algebras or cluster categories;
see [BM06] for an exposition. Here is a direct definition of cluster tilting modules [BIKR08].
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Definition N.3. Let R be a CM local ring and M a MCM R-module. Fix n Ê 1.

(i) Set

M⊥n =

{
X

∣∣∣ X is MCM and Exti
R(M, X )= 0 for 1É i É n

}

and symmetrically

⊥n M =

{
X

∣∣∣ X is MCM and Exti
R(X , M)= 0 for 1É i É n

}
.

(ii) Say that M is cluster tilting if

M⊥1 = addM =
⊥1 M .

There are some isolated results about cluster tilting in small dimension. For one exam-
ple, [BIKR08] constructs and classifies cluster tilting modules for the one-dimensional ADE
hypersurface singularities. When R is two-dimensional and Gorenstein, the Auslander–
Reiten translate τ is the identity, so Ext1

R(M, M) is never zero for MCM M; this rules out
cluster tilting in this case.

To describe the connection between cluster tilting modules and non-commutative crepant
resolutions, let’s consider the following theorem of Dao-Huneke [DH10, Theorem 3.2].

Theorem N.4. Let R be a CM local ring of dimension d Ê 3. Let M be a MCM R-module
with a non-zero free direct summand, and set Λ = EndR(M). Assume that Λ is MCM as an
R-module. Consider the following conditions.

(i) M⊥d−2 = addM.
(ii) There exists an integer n with 1É n É d−2 such that M⊥n = addM.

(iii) gldimΛÉ d.
(iv) gldimΛ= d.

Then (i) =⇒ (ii) =⇒ (iii) ⇐⇒ (iv). If R has an isolated singularity, then all four are
equivalent. �

The main assertion here is (ii) =⇒ (iii). Everything else is relatively straightforward or
follows from Lemma M.2. To prove (ii) =⇒ (iii), Dao and Huneke use Proposition A.4 to get,
for any R-module N satisfying (S2), a long exact sequence

σ : · · · −→ Mn j+1 −→ Mn j −→ ··· −→ Mn0 −→ N −→ 0

such that HomR(M,σ) is exact. Let N j be the kernel at the jth spot; then one shows by
induction on j that Ext1

R(M, N j) ⊆ Ext1
R(M, M)n j+1 , so that Nd−2 ∈ M⊥d−2 = addM. It follows

that HomR(M, Nd−2) is Λ-projective. Thus every Λ-module of the form HomR(M, N) has
projective dimension at most d−2, so that gldimΛÉ d.

As a corollary of Theorem N.4, Dao and Huneke obtained another proof of the following
result of Iyama, which nicely encapsulates the significance of cluster tilting modules to non-
commutative crepant resolutions.

Theorem N.5 (Iyama [Iya07a, Theorem 5.2.1]). Let R be a CM local ring of dimension d Ê 3
and with canonical module ω. Assume that R has an isolated singularity. Let M be a MCM
R-module and set Λ=EndR(M). The following conditions are equivalent.

(i) M contains R and ω as direct summands, Λ is MCM, and gldimΛ= d.
(ii) M⊥d−2 = addM = ⊥d−2 M.
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In particular, if d = 3 and R is a Gorenstein isolated singularity, then a MCM R-module M
gives a non-commutative crepant resolution if and only if it is a cluster tilting module. �

For dimension 3, this result gives a very clear picture of the landscape of non-commutative
crepant resolutions. In higher dimension, however, the assumption of isolated singularity
becomes more restrictive. Moreover, as Dao and Huneke observe, for d Ê 4 the condition
addM = M⊥d−2 rules out a large class of examples. Specifically, if Ext2

R(M, M)= 0 for a MCM
module M over a complete intersection ring R, then M is necessarily free, since one can
complete and lift M to a regular local ring [ADS93].

Back in dimension 3, one can obtain even stronger results, and address possible ex-
tensions of Theorem K.11(i), by imposing geometric hypotheses. Recall that a cDV sin-
gularity (see §H) is a three-dimensional hypersurface singularity defined by a polynomial
f (x, y, z)+ tg(x, y, z, t), where f is ADE and g is arbitrary. A cDV singularity is called cAn if
the generic hyperplane section is a surface singularity of type (An).

Theorem N.6 ([BIKR08, Theorem 5.5]). Let (R,m) be a local isolated cDV singularity. Then
SpecR has a crepant resolution of singularities if and only if R has a non-commutative
crepant resolution, and these both occur if and only if there is a cluster tilting module in
the stable category CM(R). If R is a cAn singularity defined by g(x, y)+ zt, then these are
equivalent to the number of irreducible power series in a prime decomposition of g(x, y) being
n+1. �

O. RATIONAL SINGULARITIES

As we saw in Proposition G.4, GR Vanishing implies that any complex algebraic variety
with a crepant resolution of singularities has rational singularities. Furthermore, the idea
of a categorical, or non-commutative, desingularization is really only well-behaved for ratio-
nal singularities. It would therefore be most satisfactory if existence of a non-commutative
crepant resolution—a symmetric birational order of finite global dimension—implied ratio-
nal singularities. This is true by work of Stafford and Van den Bergh [SVdB08]. Their result
is somewhat more general. Recall from the discussion preceding Proposition K.7 that Λ is
homologically homogeneous if every simple Λ-module has the same projective dimension.

Theorem O.1 (Stafford-Van den Bergh). Let k be an algebraically closed field of character-
istic zero, and let Λ be a prime affine k-algebra which is finitely generated as a module over
its center R. If Λ is homologically homogeneous then the center R has rational singularities.
In particular, if R is a Gorenstein normal affine domain and has a non-commutative crepant
resolution of singularities, then it has rational singularities. �

Van den Bergh gave a proof of the final sentence in case R is graded in [VdB04a, Proposi-
tion 3.3]. (This argument in the published version of [VdB04a] is not quite correct; see the
updated version online for a corrected proof.)

Here are a few comments on the proof, only in the case where Λ is a non-commutative
crepant resolution of its Gorenstein center R, so is symmetric, birational and of finite global
dimension. The first step is a criterion for rational singularities, which is an algebraicization
of the criterion π∗ωX̃ =ωX of Proposition G.4.

Lemma O.2. Let R be a CM normal affine k-algebra, where k is an algebraically closed field
of characteristic zero. Let K be the quotient field of R and let ωR be the canonical module for
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R. Then R has rational singularities if and only if for every regular affine S with R ⊆ S ⊆ K ,
one has ωR ⊆HomR(S,ωR) inside HomR(K ,ωR).

Given the lemma, the derivation of the theorem is somewhat technical. Here I simply note
that one key idea is to show ([SVdB08, Proposition 2.6]) that if Λ is homologically homoge-
neous of dimension d then ωΛ =HomR(Λ,R) is an invertible Λ-module, and furthermore the
shift ωΛ[d] is a dualizing complex for Λ in the sense of Yekutieli [Yek92]. This result has
been extended [Mac10, Theorem 5.1.12] to remove the hypothesis of finite global dimension
(so Λ is assumed to be “injectively homogeneous”) and the hypotheses on the field k.

The theorem of Stafford and Van den Bergh does require an assumption on the character-
istic of k, as they observe [SVdB08, page 671]: there is a homologically homogeneous ring
in characteristic 2 with CM center R for which R fails to have rational singularities (in any
reasonable sense). The root cause of this bad behavior seems to be the failure of a fixed
ring SG to be a direct summand of S in bad characteristic. It is reasonable to ask, then,
as Stafford and Van den Bergh do: Suppose Λ is a homologically homogeneous ring whose
center R is an affine k-algebra for a field k of characteristic p > 0, and assume that R is an
R-module direct summand of Λ. Must R have rational singularities?

One application of Theorem O.1 is to rule out overly optimistic thoughts on the existence of
“generalized” non-commutative desingularizations. For example, one might remove the as-
sumption that Λ be an R-order and simply say that a weak non-commutative desingulariza-
tion is an R-algebra Λ=EndR(M), where M is a reflexive R-module, such that gldimΛ<∞.
One might then hope that such things exist quite generally, for, say, every Gorenstein nor-
mal domain [MOa]. However, in dimension two this definition would coincide with that of a
non-commutative crepant resolution since endomorphism rings of reflexive R-modules have
depth at least two, so would only exist for rational singularities by Theorem O.1. Therefore
a counterexample to the hope would be something like C[x, y, z]/(x3 + y3 + z3), which is a
Gorenstein normal domain but does not have rational singularities.

P. EXAMPLES: FINITE REPRESENTATION TYPE

Let Λ be an artin algebra of finite representation type, i.e. there are only a finite number
of non-isomorphic indecomposable finitely generated Λ-modules. Auslander defined what
is now called the Auslander algebra of Λ to be Γ= EndΛ(M1 ⊕·· ·⊕Mt), where M1, . . . , Mt is
a complete set of non-isomorphic indecomposable finitely generated Λ-modules. By Corol-
lary A.3, Γ is Morita equivalent to any other algebra of the form EndΛ(N), where N is a
representation generator for Λ, that is, contains every indecomposable finitely generated
Λ-module as a direct summand. These algebras are distinguished by the following result.

Theorem P.1 (Auslander [Aus71]). Let Λ be an artin algebra of finite representation type
with representation generator M. Assume that Λ is not semisimple. Set Γ= EndΛ(M). Then
gldimΓ= 2. �

The proof of this theorem is quite direct from Proposition A.4 and the left-exactness of
HomΛ(M,−). Indeed, assume that Λ is not semisimple and let X be a finitely generated
Γ-module, with projective presentation P1

ϕ
−−→ P0 −→ X −→ 0. The projective modules Pi

are each of the form HomΛ(M, Mi) for Λ-modules M1 and M0, both in addM. Similarly,
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ϕ=HomΛ(M, f ) for some f : M1 −→ M0. Put M2 = ker f . Then

0−→HomΛ(M, M2)−→HomΛ(M, M1)
HomΛ(M,f )
−−−−−−−−→HomΛ(M, M0)−→ X −→ 0

is a projective resolution of X of length two.
Auslander and Roggenkamp [AR72] proved a version of this theorem in Krull dimension

one, specifically for (classical) orders over complete discrete valuation rings. For their result,
define an order Λ over a complete DVR T to have finite representation type if there are only
a finite number of non-isomorphic indecomposable finitely generated Λ-modules which are
free over T; these are called Λ-lattices. If M contains all indecomposable Λ-lattices as direct
summands, then Γ= EndΛ(M) is proven to have global dimension at most two; the proof is
nearly identical to the one sketched above. One need only observe that the kernel M2 of a
homomorphism between Λ-lattices f : M1 −→ M0 is again a Λ-lattice.

In general, say that a (commutative) local ring R has finite representation type, or finite
Cohen-Macaulay type, if there are only a finite number of non-isomorphic indecomposable
maximal Cohen-Macaulay (MCM) R-modules. Recall that when R is complete, a finitely
generated R-module M is MCM if and only if it is free over a Noether normalization of R.

We have already met, in §J, the two-dimensional complete local rings of finite represen-
tation type, at least over C. By results of Auslander and Esnault [Aus86b, Esn85], they
are precisely the quotient singularities R = C[[u,v]]G , where G ⊂ GL(2,C) is a finite group.
Moreover, Herzog’s Lemma J.5 implies that in that case the power series ring S = C[[u,v]]
is a representation generator for (the MCM modules over) R. Once again the proof above
applies nearly verbatim to show (redundantly, cf. Proposition J.1) that EndR(S) has global
dimension two.

In dimension three or greater, the kernel M2 = ker(M1 −→ M0) is no longer a MCM mod-
ule. When the ring R is CM, however, one can replace it by a high syzygy to obtain the
following result.

Theorem P.2 (Iyama [Iya07a], Leuschke [Leu07], Quarles [Qua05]). Let R be a CM local
ring of finite representation type and let M be a representation generator for R. Set Λ =

EndR(M). Then Λ has global dimension at most max {2,dimR}, and equality holds if dimR Ê

2. More precisely, pdΛS = 2 for every simple Λ-module S except the one corresponding to R,
which has projective dimension equal to dimR. �

Recall that the projective module corresponding to an indecomposable direct summand N
of M is PN =HomR(M, N), and the corresponding simple module is SN = PN / radPN .

The proof of the assertion gldimΛ É max {2,dimR} is exactly similar to the argument
sketched above.3 For the more precise statement about the projective dimensions of the
simple modules, recall that over a CM local ring of finite representation type, every non-
free indecomposable MCM module X has an AR (or almost split) sequence. This is a non-
split short exact sequence of MCM modules, 0 −→ Y −→ E −→ X −→ 0, such that every
homomorphism Z −→ X from a MCM module Z to X , which is not a split surjection, factors
through E. In particular, one can show that if M is a representation generator, then applying

3In the published version of [Leu07], I gave an incorrect argument for the equality gldimΛ = dimR if
dimR Ê 2, pointed out to me by C. Quarles and I. Burban. I claimed that if S is a simple Λ-module, then a
Λ-projective resolution of S consists of MCM R-modules, so has length at least dim R by the depth lemma.
That’s not true, since Λ isn’t MCM. The equality can be rescued by appealing to Proposition F.1(iii).
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HomR(M,−) to the AR sequence ending in X yields the exact sequence

0−→HomR(M,Y )−→HomR(M,E)−→HomR(M, X )−→ SX −→ 0 ,

where SX is the simple EndR(M)-module corresponding to X . In particular, this displays a
projective resolution of SX for every non-free indecomposable MCM module X . The simple
SR corresponding to R is thus very special, and has projective dimension equal to dimR
by Proposition F.1(iii). Observe that this argument relies essentially on the fact that R has
a representation generator; below is an example where pdΛ S > dimR for a simple S even
though Λ has finite global dimension.

Among other things, the statement about simple modules implies that when dimR Ê 3,
the endomorphism ring of a representation generator is never homologically homogeneous,
so is never a non-commutative crepant resolution. A concrete example of this failure has
already appeared in Example M.5. Here is another example in the non-Gorenstein case.

Example P.3 ([Leu07, Example 12], [SQ05]). Let k be an infinite field and let R be the
complete scroll of type (2,1), that is, R = k[[x, y, z, u,v]]/I, where I is generated by the 2×2
minors of the matrix

( x y u
y z v

)
. Then R is a three-dimensional CM normal domain which is not

Gorenstein, and has finite representation type [AR89]. The only non-free indecomposable
MCM modules are, up to isomorphism,

• the canonical module ω∼= (u,v)R;
• the first syzygy of ω, isomorphic to ω∗ =HomR(ω,R) and to (x, y, u)R;
• the second syzygy N of ω, rank two and 6-generated; and
• the dual L =HomR(ω∗,ω) of ω∗, isomorphic to (x, y, z)R.

By Theorem P.2, Λ = EndR(R ⊕ω⊕ω∗⊕ N ⊕L) has global dimension 3. However, Λ is not
MCM as an R-module, since none of L∗, N∗, and HomR(ω,ω∗) is MCM. One can check with,
say, Macaulay2 [GS] that EndR(R ⊕ω) and EndR(R ⊕ω∗) are up to Morita equivalence the
only endomorphism rings of the form EndR(D), with D non-free MCM, that are themselves
MCM. In fact EndR(R⊕ω)∼=EndR(R⊕ω∗) as rings.

Set Γ = EndR(R ⊕ω). Then Γ has two simple modules Sω and SR . Using Lemma M.2
and the known structure of the AR sequences over R, Smith and Quarles [SQ05] show that
pdΓ Sω = 4 and pdΓ SR = 3. Thus Γ has global dimension equal to 4 by Proposition F.1(iii),
but is not a non-commutative crepant resolution of R.

Example P.4. There is only one other known example of a non-Gorenstein CM complete
local ring of finite representation type in dimension three or more. It is the (completion of
the) homogeneous coordinate ring of the cone over the Veronese embedding P2

,→P5. Ex-
plicitly, set R = C[[x2, xy, xz, y2, yz, z2]] ⊂ C[[x, y, z]] = S. Then the indecomposable non-free
MCM R-modules are the canonical module ω= (x2, xy, xz)R and its first syzygy N. Observe
that S ∼= R ⊕ω as R-modules, so by Theorem J.2, EndR(R ⊕ω) ∼= S#(Z2) has finite global di-
mension. Since EndR(S) ∼= S⊕S, Λ= EndR(S) is a non-commutative crepant resolution for
R.

By Theorem P.2, Γ = EndR(R ⊕ω⊕ N) has global dimension 3. But HomR(N,R) and
HomR(N, N) have depth 2, so Γ is not a non-commutative crepant resolution.

Q. EXAMPLE: THE GENERIC DETERMINANT

The most common technique thus far for constructing non-commutative crepant resolu-
tions has been to exploit a known (generally crepant) resolution of singularities and a tilting
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object on it. In fact, the basic technique is already present in Van den Bergh’s proof of The-
orem K.11. This has been used in several other families of examples. This § is devoted to
describing a particular example of this technique in action, namely the generic determinan-
tal hypersurface ring.

Let k be a field and X = (xi j) the generic square matrix of size n Ê 2, whose entries xi j

are thus a family of n2 indeterminates over k. Set S = k[X ] = k[{xi j}] and let R be the
hypersurface ring S/(det X ) defined by the determinant of X . Then R is a normal Gorenstein
domain of dimension n2 −1.

Fix a free S-module F of rank n. Left-multiplication with the matrix X naturally defines
the generic S-linear map F −→F . The exterior powers

∧aX :
∧a

F −→
∧a

F define natural
S-modules

Ma = cok
∧aX

for a = 1, . . . , n. In fact each Ma is annihilated by det X , so is naturally an R-module. The
pair (

∧a X ,
∧n−a X T ) forming a matrix factorization of det X , the Ma are even MCM modules

over R [Eis80]. They are in particular reflexive, of rank
(n−1
a−1

)
.

Set M =
⊕n

a=1 Ma and Λ=EndR(M). The crucial result of [BLV10b], in this case, is then

Theorem Q.1. The R-algebra Λ provides a non-commutative crepant resolution of R. �

The proof in [BLV10b] proceeds by identifying the Ma as geometric objects with tilt-
ing in their ancestries, as follows. Let F be a k-vector space of dimension n, and set
P = P(F∨) ∼= Pn−1

k be the projective space over R, viewed as equivalence classes [λ] of lin-
ear forms λ : F −→ k. Put

Y =P×SpecS ,

with canonical projections p̃ : Y −→P and q̃ : Y −→SpecS. Identify SpecS with the space of
(n× n) matrices A over the field k, with coordinate functions given by the indeterminates
xi j. Then the incidence variety

Z = {([λ], A) | image A ⊆ kerλ}

is a resolution of singularities of SpecR. (Compare with Example H.1, which is the case
n = 2.) Indeed, the image of Z under q̃ : Y −→ SpecS is precisely the locus of matrices A
with rank A < n, that is, SpecR. Furthermore, the singular locus of SpecR consists of the
matrices of rank < n− 1, and q := q̃|Z : Z −→ SpecR is an isomorphism away from these
points. One can explicitly write down the equations cutting Z out of Y , and verify that Z
is smooth, and is a complete intersection in Y ; if in particular j : Z −→ Y is the inclusion,
then this implies that j∗OZ is resolved over OY by a Koszul complex on the Euler form
F ⊗k OY (−1)−→OY .

Here is a pictorial description of the situation.

(Q.1)

Z

j %%LLLLLLLLLLLL p

$$
q

��

Y
p̃ //

q̃
��

P

SpecR �

� // SpecS
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Recall from §E that T =
⊕n

a=1Ω
a−1(a), where Ω =ΩP/k is the sheaf of differential forms on

P and Ω
j =

∧ j
Ω, is a tilting bundle on P. Set Ma = p∗

Ω
a−1(a) for a = 1, . . . , n, a locally free

sheaf on the resolution Z. As the typography hints, Ma is a geometric version of Ma, in the
following sense.

Proposition Q.2. As R-modules, Rq∗Ma = Ma . More precisely, R jq∗Ma = 0 for j > 0 and
q∗Ma = Ma for all a. �

The proof of the Proposition involves juggling two Koszul complexes. Tensoring (E.1) with
OP(a) and truncating gives an exact sequence

0−→Ω
a−1(a)−→

∧a−1F ⊗k OP(1)−→ ··· −→ F ⊗k OP(a−1)−→OP(a)−→ 0 .

The projection p being flat, the pullback p∗ is exact, yielding

0−→Ma −→
∧a−1F ⊗OZ (1)−→ ··· −→ F ⊗k OZ(a−1)−→OZ(a)−→ 0 .

Compute Rq∗ as Rq̃∗ j∗. As j∗OZ is resolved over OY by a Koszul complex, we may re-
place the former with the latter and obtain a double complex in the fourth quadrant, with∧a−1F ⊗k OY (1) at the origin and

∧a−i+1F ⊗k
∧− jF ⊗k OY (i+ j+1) in the (i, j) position. Now

apply Rq∗. By [Har77, Ex. III.8.4], the higher direct images of the projective bundle
q : Y −→SpecS are completely known,

R j q̃∗OY (t)=





0 if t < 0 or 1< j < n−1;

Symt(F)⊗k S =Symt(F ) for j = 0; and

0 for j = n−1 if t Ê−n.

This already proves R jq∗Ma = 0 for j > 0, and allows one to represent q∗Ma by the homo-
logy of the total complex of the following double complex of free S-modules. (For notational
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simplicity write
∧i and Sym j instead of

∧i
F and Sym j F .)

0 0 0

0 // ∧a−1⊗Sym1
//

OO

· · · // ∧1 ⊗Syma−1
//

OO

Syma
//

OO

0

0 // ∧a−1⊗
∧1 //

OO

· · · // ∧1 ⊗
∧1 ⊗Syma−2

//

OO

∧1 ⊗Syma−1
//

OO

0

0 //

OO

· · · // ∧1 ⊗
∧2 ⊗Syma−3

//

OO

∧2 ⊗Syma−2
//

OO

0

...

OO

...

OO

0 // ∧1 ⊗
∧a−1 //

OO

∧a−1⊗Sym1
//

OO

0

0

OO

∧a

OO

0

OO

Here the jth column is obtained by tensoring the strand of degree j in the Koszul complex
with

∧a− j−1
F , so is acyclic [Eis95, A2.10]. Similarly, the (−i)th row is the degree a strand

in a Koszul complex tensored with
∧i

F , and so is exact with the exceptions of the top and
bottom rows. The top row has homology equal to

∧a
F at the leftmost end, while the bottom

row has homology
∧a

F on the right. One checks from the explicit nature of the maps that
the total complex is thus reducible to

∧aX :
∧a

F −→
∧a

F , whence q∗Ma = Ma, as claimed.
Now it is relatively easy to prove that

R jq∗HomOZ (Mb,Ma)=

{
HomR(Mb, Ma) if j = 0, and

0 otherwise,

and to establish the rest of the assertions in the next theorem.

Theorem Q.3. The object Rq∗HomOZ (Mb,Ma) is isomorphic in the bounded derived cat-
egory Db(S-mod) to a single morphism between free S-modules situated in (cohomological)
degrees −1 and 0. Therefore the R-module q∗HomOZ (Mb,Ma) = HomR(Mb, Ma) is a MCM
R-module and the higher direct images vanish, so that in particular

R1q∗HomOZ (Mb,Ma)=Ext1
R(Mb, Ma)= 0 . �

It remains to see that
⊕n

a=1 Ma is a tilting object on Z, so that Λ = EndR(
⊕

a Ma) =
q∗E nd OZ (

⊕
a Ma) has finite global dimension, whence is a non-commutative crepant re-

solution of R. It suffices for this to compute the cohomology

H i(P,HomOP
(Ωb−1(b),Ωa−1(a))(c)) ;
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since p is flat, this will compute Exti
OZ

(Mb,Ma) as well. In [BLV10b] we gave a characteristic-
free proof of this vanishing, and another appears in the appendix by Weyman to [ESW03].
In characteristic 0, one can compute the cohomology with Bott vanishing [Wey03, Chapter
4]. This allows the following proposition and theorem.

Proposition Q.4. The OZ-module M =
⊕

a Ma =
⊕n

a=1 p∗
Ω

a−1(a) is a tilting bundle in
Db(cohZ). In detail, with A =End

Db(cohZ)(M ),

(i) Exti
OZ

(M ,M ) :=Hom
Db(cohZ)(M ,M [i])= 0 for i > 0;

(ii) RHomOZ (M ,−) : Db(cohZ) −→ Db(A -mod) is an equivalence of triangulated cate-

gories, with −
L
⊗A M as inverse;

(iii) A has finite global dimension.
(iv) A ∼=Λ=EndR(M). �

Theorem Q.5. Let k be a field, X an (n × n) matrix of indeterminates, n Ê 2, and R =

k[X ]/(det X ) the generic determinantal hypersurface ring. Let Ma = cok
∧aX for a = 1, . . . , n,

and put M =
⊕

a Ma. Then the R-algebra Λ = EndR(M) has finite global dimension and is
MCM as an R-module. It is in particular a non-commutative crepant resolution of R. �

In [BLV10b] we replace the square matrix X by an (m×n) matrix with n Ê m and R with
the quotient by the maximal minors k[X ]/Im(X ), which defines the locus in Spec k[X ] of
matrices with non-maximal rank. The same construction Ma = cok

∧aX yields an algebra
Λ = EndR(

⊕m
a=1 Ma) which is still MCM as an R-module and still has finite global dimen-

sion. In this case, however, Λ is not a non-singular R-algebra, so not a non-commutative
crepant resolution according to our definition. This is directly attributable to the fact that
quotients by minors are Gorenstein if and only if n = m, so that Corollary K.3 fails for
non-square matrices. In a forthcoming paper [BLV11], we establish the same result for the
quotient by arbitrary minors k[X ]/I t(X ), with 1É t É m, using a tilting bundle on the Grass-
mannian [BLV10a]. In particular we obtain non-commutative crepant resolutions when the
matrix is square.

Similar techniques, i.e. constructions using tilting objects on known resolutions of singu-
larities, are used by Kuznetsov [Kuz08] to give non-commutative desingularizations for sev-
eral more classes of examples, including cones over Veronese/Segre embeddings and Grass-
mannians, as well as Pfaffian varieties.

R. NON-COMMUTATIVE BLOWUPS

It was clear from early on in the development of non-commutative (projective) geome-
try that it would be most desirable to have a non-commutative analogue of the most basic
birational transformation, the blowup. This § sketches a few approaches to the problem.

First recall that if R is a commutative ring and I is an ideal of R, the blowup B I(X )
of X = SpecR at (the closed subscheme defined by) I is ProjR[I t], where R[I t] is the Rees
algebra R⊕I⊕I2⊕·· · . The exceptional locus of the blowup is the fiber cone ProjR[I t]/IR[I t]=
R/I ⊕ I/I2⊕·· · .

One might hope to mimic this definition for sufficiently nice non-commutative rings. This
turns out to give unsatisfactory results. For example ([Art97], [VdB01, page 2]) set Λ =

k〈x, y〉/(yx− xy− y), and consider the ideal m = (x, y) “corresponding” to the origin of this
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non-commutative surface. Then mn = (xn, y) for all y, so the fiber cone R[mt]/mR[mt] is one-
dimensional in each degree, and is isomorphic to k[z]. This means that the exceptional locus
is in some sense zero-dimensional, whereas one should expect the exceptional divisor of a
blowup of a point in a surface to have dimension 1.

Van den Bergh [VdB01] constructs an analogue of the Rees algebra directly over projec-
tive quasi-schemes ProjΛ (see §F). Specifically, if X = ProjΛ is a quasi-scheme, he gives
a construction of the blowup of a smooth point p in a commutative curve Y contained in
X . (This means that QchY ≃ Proj(Λ/xΛ) for some x ∈Λ.) Using this construction, Van den
Bergh considers blowups of quantum projective planes at small numbers of points, in par-
ticular non-commutative deformations of the del Pezzo surfaces obtained by blowing up in
É 8 points. I won’t go into the details of the construction or the applications here.

There is a more recent proposal for a definition of the phrase “non-commutative blowup,”
which is inspired by the classic flop of Example I.2 and by Theorem L.1. In general, the idea
is that for an ideal I of a ring Λ, the non-commutative blowup of Λ in I is the ring

B
nc
I (Λ)=EndΛ(Λ⊕ I) .

In the situation of Example I.2, we saw that B
nc
I (R) was derived equivalent to the usual

blowup B I (SpecR). Thus suggests the following question, a version of which I first heard
from R.-O. Buchweitz.

Question R.1. Can one generalize or imitate the normalization algorithm of §L to show that
there is a sequence of non-commutative blowups starting with Λ = Λ0 and continuing with
Λi+1 = B

nc
I i

(Λi) = EndΛi (Λi ⊕ I i) for some ideals I i ⊂ Λi, such that Λi eventually has finite
global dimension?

One might try to follow Hironaka and blow up only in “smooth centers,” i.e. assume that
Λi/I i is non-singular, as is the case in Example I.2.

Very recent work of Burban–Drozd [BD11] confirms that the non-commutative blowup
as above is a sort of categorical desingularization whenever X is a reduced algebraic curve
singularity having only nodes and cusps for singular points, and I is the conductor ideal.
They observe that A = E nd OX (OX ⊕ I) has global dimension equal to 2, that (OX ⊕ I)⊗OX

− : cohX −→A -mod is fully faithful, and that HomA (OX ⊕ I,−) : A -mod−→ cohX is exact.
In his Master’s thesis, Quarles constructs a direct connection between blowups and non-

commutative blowups, the only one I know of. Let (R,m, k) be a Henselian local k-algebra,
with k an algebraically closed field. Let I be an ideal of R which is MCM and reflexive as an
R-module, and set Λ = B

nc
I∗(R) = EndR(R ⊕ I∗). Then Quarles defines [Qua05, Section 7] a

bijection between the closed points of B I(SpecR)=ProjR[I t] and the set of indecomposable
Λ-modules X arising as extensions 0 −→ SR −→ X −→ SI∗ −→ 0 of the two simple modules
SR and SI . The bijection is just as sets, and carries no known algebraic information; in
particular, it is not known to be a moduli space.

There are some immediate problems. For example, in Example P.3 we have EndR(R⊕ω)∼=
EndR(R ⊕ω∗), but R[ωt] 6∼= R[ω∗t], since one is regular and the other is not. The associated
projective schemes are isomorphic, of course. It is not clear how to reconcile this.

A similar approach has been suggested in prime characteristic [Tod09, Tod08b, Tod08a,
TY09, Yas09]. For the rest of this § let k be an algebraically closed field of characteristic p >

0. Let X and Y be normal algebraic schemes over k, and let f : Y −→ X be a finite dominant
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morphism. Then Yasuda [Yas09] proposes to call the endomorphism ring E nd OX ( f∗OY ) the
non-commutative blowup attached to f .

In particular, consider the non-commutative blowup of the Frobenius. For every e Ê 1, set
X e = X and let F e

X : X e −→ X be the eth iterate of the Frobenius morphism. Assume that FX

is finite. Then the non-commutative blowup of the eth Frobenius, E nd OX (F e
X∗

OXe ) is locally

given by EndR(R1/pe
), where R1/pe

is the ring of (pe)th roots of elements of R. It is isomorphic
to EndRpe (R), where now R pe

is the subring of (pe)th powers. The ring EndRpe (R) consists
of differential operators on R [SVdB97] and is sometimes a non-commutative crepant reso-
lution of R.

Theorem R.2 (Toda–Yasuda [TY09]). Let R be a complete local ring of characteristic p
which is one of the following.

(i) a one-dimensional domain;
(ii) the ADE hypersurface singularity of type (A1) (and p 6= 2); or

(iii) a ring of invariants k[[x1, . . . , xn]]G , where G ⊂GL(n, k) is a finite subgroup with order
invertible in k.

Then for e ≫ 0, EndR(R1/pe
) has finite global dimension. However it is not generally MCM

as an R-module, so is not a non-commutative crepant resolution. �

Let me make a few comments on the proofs. For (i), consider the integral closure S ∼= k[[x]]
of R. Then for any e Ê 1, one checks that EndRpe (Spe

) = EndSpe (Spe
) = Spe

. Take e large
enough that Spe

⊆ R. Then R is free over Spe
of rank pe, so EndRpe (R)∼= Mpe (EndRpe (Spe

))=
Mpe (Spe

). This is Morita equivalent to Spe ∼= S, so has global dimension equal to 1. It is also
clearly MCM.

For (ii), assume p 6= 2 and set R = k[[x1, . . . , xd]]/(x2
1 + ·· · + x2

d). Then one can show that
for all e Ê 1, R is a representation generator for R pe

. (This requires separate arguments
for d odd/even.) By Theorem P.2, EndRpe (R) has finite global dimension. It is not a non-
commutative crepant resolution by Theorem M.4.

Finally, for (iii), Toda and Yasuda use results of Smith and Van den Bergh to show
that if S = k[[x1, . . . , xd]] and R = SG as in the statement, then for e ≫ 0 every module of
covariants (S ⊗k W)G appears as an R pe

-direct summand in R, in S, and in Spe
. Thus

EndRpe (Spe
)∼= Spe

#G (Theorem J.2) is Morita equivalent to EndRpe (R) by Corollary A.3, and
they simultaneously have finite global dimension.

In general, there are non-trivial obstructions to EndR(R1/pe
) being a non-commutative

crepant resolution. For example, Dao points out [Dao10] that when R is a complete inter-
section ring, R1/pe

is known to be Tor-rigid [AM01], so if R satisfies (R2) then EndR(R1/pe
) is

not MCM for any e Ê 1 by the discussion following Proposition M.3.

S. OMISSIONS AND OPEN QUESTIONS

In addition to the examples already mentioned in previous §§, there is a large and growing
array of examples of non-commutative crepant resolutions and related constructions. Lack
of space and expertise prevent me from describing them in full, but here are a few references
and comments.

Deformations of the Kleinian singularities C2/G, with G ⊂SL(2,C), have non-commutative
crepant resolutions [GS04], which are identified as deformed preprojective algebras in the
sense of [CBH98].
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In a different direction, Wemyss has considered the non-Gorenstein case of the classical
McKay correspondence, where G 6⊂ SL(2,C) [Wem07, Wem09a, Wem09b]; much of Theo-
rem J.6 breaks down, but much can be recovered by restricting to the so-called “special”
representations. This leads to the reconstruction algebra, which is the endomorphism ring
of the special MCM modules.

Beil [Bei08] shows that square superpotential algebras, which are certain quiver alge-
bras with relations coming from cyclic derivatives of a superpotential, are non-commutative
crepant resolutions of their centers (which are three-dimensional toric Gorenstein normal
domains). In fact, Broomhead [Bro09] constructs a non-commutative crepant resolution for
every Gorenstein affine toric threefold, from superpotential algebras called dimer models.
Similar algebras associated to brane tilings have non-commutative crepant resolutions as
well [Moz09, BM09].

Finally, Bezrukavnikov [Bez06] constructs a non-commutative version of the Springer
resolution Z from (Q.1), which is different from that in [BLV10b].

Many other topics have been omitted that could have played a role. For example, I
have said nothing about (semi-)orthogonal decompositions of triangulated categories and
exceptional sequences. These grew out of Beı̆linson’s result in §E, via the Rudakov semi-
nar [Rud90]. See [Huy06, Chapter 1] or [BO95].

Connections of this material with string theory appear at every turn [SW99]. For exam-
ple, the derived category D(X ) appears in string theory as the category of branes propa-
gating on the space X . Non-commutativity arises naturally in this context from the fact
that open strings can be glued together in two different ways, unlike closed strings [BL01].
Furthermore, the Calabi-Yau condition of §K is essential to the string-theoretic description
of spacetime [Bro09, OY09]. Most obviously, high energy physics has been a driving force
in non-commutative desingularizations and the higher geometric McKay correspondence. I
am not competent to do more than gesture at these connections.

I end the article with a partial list of open problems. Some of these are mentioned in the
text, while others are implicit.

(1) Conjecture H.3 of Bondal and Orlov, that a generalized flop between smooth varieties in-
duces a derived equivalence, is still largely open outside of dimension three. The related
Conjecture K.12 of Van den Bergh, which asks for derived equivalence of both geometric
and non-commutative crepant resolutions, is similarly open. See [IW11] for some very
recent progress on the non-commutative side.

(2) Existence of a non-commutative crepant resolution is not equivalent to existence of a
crepant resolution of singularities in dimension four or higher. See the end of Exam-
ple G.6 for examples with non-commutative resolutions but no geometric ones, and Ex-
ample M.5 for failure of the other direction. However, it still may hold in general in
dimension three. One might also be optimistic and ask for additional hypotheses to
rescue the case of dimension four.

(3) Various results in the text fail for rings that are not Gorenstein, notably Corollary K.3
and Proposition K.7. Is there a better definition of non-commutative crepant resolutions
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which would satisfy these statements over non-Gorenstein Cohen-Macaulay rings? Per-
haps we should not expect one, since crepant resolutions of singularities exist only in
the Gorenstein case.

On a related note, is symmetry (Definition K.2) too strong a condition? The relevant
property in [SVdB08] is that HomR(Λ,R) is an invertible (Λ-Λ)-bimodule, rather than
insisting that HomR(Λ,R)∼=Λ. This would, unfortunately, rule out endomorphism rings
EndR(M), since they are automatically symmetric by Theorem K.6(ii). Or perhaps the
appropriate generalization to non-Gorenstein rings is that HomR(Λ,ωR)=Λ.

(4) Crepant resolutions of singularities are very special: they exist only for canonical sin-
gularities, not in general for terminal singularities. The non-commutative version is
more general. One might therefore hope that Theorem K.11 is true for canonical three-
folds as well. Van den Bergh’s proof of Theorem K.11 applies verbatim for any canonical
threefold admitting a crepant resolution of singularities with one-dimensional fibers.

(5) In nearly all of the examples of non-commutative crepant resolutions, the module M
such that Λ = EndR(M) can be taken maximal Cohen-Macaulay. Lemma M.2 indicates
one obstruction to M having high depth. Are there general situations where a non-
commutative crepant resolution exists, but no MCM module will suffice? Or situations
(other than surfaces) where every non-commutative crepant resolution is given by a
MCM module? See [IW10, 5.12] for one result in this direction.

(6) Van den Bergh points out in [VdB04a] that one might try to build a theory of rational sin-
gularities for non-commutative rings, extending the results of §O. It would be essential
to have a non-commutative analogue of the Grauert–Riemenschneider Vanishing theo-
rem (G.2), but none seems to be known. There is an algebraic reformulation of GR Van-
ishing due to Sancho de Salas [SdS87], cf. [Hun96, Chapter 5]: Let R be a reduced CM
local ring essentially of finite type over an algebraically closed field of characteristic zero,
and let I be an ideal of R such that ProjR[I t] is smooth; then the associated graded ring
grIn(R) is Cohen–Macaulay for n ≫ 0. It would be very interesting to have a purely al-
gebraic proof of this result, particularly if it encompassed some non-commutative rings.
The proof of Sancho de Salas uses results from [GR70], so relies on complex analysis;
see [HM99] for some progress toward an algebraic proof in dimension two.

(7) In a similar direction, Question R.1 asks for an algorithm to resolve singularities via a
sequence of “non-commutative blowups.” For a start, one needs any non-trivial connec-
tion between Db(cohProjR[I t]) and Db(EndR(R ⊕ I)-mod); other than Quarles’ bijection,
none seems to be known.

(8) Even given a very strong result along the lines of (7), an enormous amount of work would
still be needed to obtain applications of non-commutative desingularizations analogous
to those of resolutions of singularities. For example, can one define an “arithmetic genus”
in a non-commutative context, and show, as Hironaka does, that it is a “birational” in-
variant?
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