Syracuse University
SURFACE

3-8-2011

Wild Hypersurfaces

Andrew Crabbe

Syracuse University
Graham J. Leuschke
Syracuse University

Follow this and additional works at: https://surface.syr.edu/mat
Part of the Mathematics Commons

Recommended Citation

Crabbe, Andrew and Leuschke, Graham J., "Wild Hypersurfaces" (2011). Mathematics - Faculty Scholarship. 39.
https://surface.syr.edu/mat/39

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

Wild hypersurfaces

Andrew Crabbe ${ }^{\text {a }}$, Graham J. Leuschke ${ }^{\text {a,1,* }}$
${ }^{a}$ Department of Mathematics, Syracuse University, Syracuse NY 13244, USA

Abstract

Complete hypersurfaces of dimension at least 2 and multiplicity at least 4 have wild Cohen-Macaulay type.

Keywords: maximal Cohen-Macaulay module, wild representation type, hypersurface ring 2010 MSC: 16G50, 16G60, 13C14, 13H10, 16G10

Introduction

Let R be a (commutative, Noetherian) local ring. A finitely generated R module M is called maximal Cohen-Macaulay (MCM) provided depth $M=$ $\operatorname{dim} R$. In particular, R is a Cohen-Macaulay (CM) ring if it is MCM as a module over itself.

This paper is about CM representation types, specifically tame and wild CM types. See $\$ 1$ for the definitions of these properties. In this Introduction, we motivate our main result by recalling the classification of complete equicharacteristic hypersurface rings of finite CM type.

Theorem ([2, 13]). Let k be an algebraically closed field of characteristic not equal to 2 , 3 , or 5 . Let $d \geqslant 1$, let $f \in k \llbracket x_{0}, \ldots, x_{d} \rrbracket$ be a non-zero nonunit power series, and let $R=k \llbracket x_{0}, \ldots, x_{d} \rrbracket /(f)$ be the corresponding hypersurface ring. Then there are only finitely many isomorphism classes of indecomposable MCM R-modules if, and only if, we have an isomorphism $R \cong$

[^0]$k \llbracket x_{0}, \ldots, x_{d} \rrbracket /\left(g\left(x_{0}, x_{1}\right)+x_{2}^{2}+\cdots+x_{d}^{2}\right)$, where $g\left(x_{0}, x_{1}\right)$ is one of the following polynomials, indexed by the $A D E$ Coxeter-Dynkin diagrams:
\[

$$
\begin{array}{ll}
\left(A_{n}\right): & x_{0}^{2}+x_{1}^{n+1}, \quad \text { some } n \geqslant 1 ; \\
\left(D_{n}\right): & x_{0}^{2} x_{1}+x_{1}^{n-1}, \quad \text { some } n \geqslant 4 ; \\
\left(E_{6}\right): & x_{0}^{3}+x_{1}^{4} ; \\
\left(E_{7}\right): & x_{0}^{3}+x_{0} x_{1}^{3} ; \\
\left(E_{8}\right): & x_{0}^{3}+x_{1}^{5} .
\end{array}
$$
\]

A key step in the proof of this theorem is [2, Prop. 3.1], which says that if $d \geqslant 2$ and the multiplicity $\mathrm{e}(R)$ is at least 3 (equivalently $\left.f \in\left(x_{0}, \ldots, x_{d}\right)^{3}\right)$ then R has a family of indecomposable MCM modules parametrized by the points of a cubic hypersurface in \mathbb{P}_{k}^{d}.

One would like a classification theorem like the one above for, say, hypersurfaces of tame CM type. (Again, see $\$ 1$ for definitions.) Drozd and Greuel have shown [8] that the one-dimensional hypersurfaces defined in $k \llbracket x_{0}, x_{1} \rrbracket$ by

$$
\left(T_{p q}\right) \quad x_{0}^{p}+x_{1}^{q}+\lambda x_{0}^{2} x_{1}^{2},
$$

with $p, q \geqslant 2, \lambda \in k \backslash\{0,1\}$, and k an algebraically closed field of characteristic not equal to 2 , have tame CM type. (With the exception of the cases $(p, q)=$ $(4,4)$ and $(3,6)$, one may assume $\lambda=1$.) In fact, they show that a curve singularity of infinite CM type has tame CM type if and only if it birationally dominates one of these hypersurfaces. More recently, Drozd, Greuel, and Kashuba [9] have shown that the two-dimensional analogues

$$
\left(T_{p q r}\right) \quad x_{0}^{p}+x_{1}^{q}+x_{2}^{r}+x_{0} x_{1} x_{2}
$$

with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leqslant 1$ have tame CM type. Since these hypersurface rings have multiplicity 3 in general, the desired key step in a classification of hypersurface rings of tame CM type would have to be of the form "If $d \geqslant 2$ and $\mathrm{e}(R) \geqslant 4$, then R has wild CM type." This result is indeed true for $d=2$, as proved by Bondarenko [1].

In working through Bondarenko's proof, we found a way to simplify the argument somewhat; this simplification allows us to prove the desired key step for all $d \geqslant 2$. Thus we prove (Theorem 13)

Main Theorem. Let $S=k \llbracket x_{0}, \ldots, x_{d} \rrbracket$ with $d \geqslant 2$ and f a non-zero power series of order at least 4 . Then $R=S /(f)$ has wild Cohen-Macaulay type.

By the original key step of [2], the case $d \geqslant 3$ is already known to admit at least a \mathbb{P}^{2} of indecomposable MCM modules, so is already perhaps known by experts to have wild type. Not being aware of an explicit statement to that effect, we think that a unified statement is desirable.

In §11we give a brief survey of tame and wild representation types for the commutative-algebraist reader, including Drozd's proof of the essential fact that $k\left[a_{1}, \ldots, a_{n}\right]$ is finite-length wild for $n \geqslant 2$, and in $\S 2$ we prove the Main Theorem.

We are grateful to the anonymous referee, whose careful reading improved the paper.

1. Tameness and Wildness

There are several minor variations on the notions of tame and wild representation type, but the intent is always the same: tame representation type allows the possibility of a classification theorem in the style of Jordan canonical form, while for wild type any classification theorem at all is utterly out of reach. The definitions we will use are essentially those of Drozd [6]; they seem to have appeared implicitly first in [4]. They make precise the intent mentioned above by invoking the classical unsolved problem of canonical forms for n-tuples of matrices up to simultaneous similarity [11] (see Example 3 below).

Definition 1. Let k be an infinite field, R a local k-algebra, and let \mathscr{C} be a full subcategory of the finitely generated R-modules.
(i) We say that \mathscr{C} is tame, or of tame representation type, if there is one discrete parameter r (such as k-dimension or R-rank) parametrizing the modules in \mathscr{C}, such that, for each r, the indecomposables in \mathscr{C} form finitely many one-parameter families and finitely many exceptions. Here a one-parameter family is a set of R-modules $\{E /(t-$ $\lambda) E\}_{\lambda \in k}$, where E is a fixed $k[t]$ - R-bimodule which is finitely generated and free over $k[t]$.
(ii) We say that \mathscr{C} is wild, or of wild representation type, if for every finite-dimensional k-algebra Λ (not necessarily commutative!), there exists a representation embedding $\mathscr{E}: \bmod \Lambda \longrightarrow \mathscr{C}$, that is, \mathscr{E} is an exact functor preserving non-isomorphism and indecomposability.

We are mostly interested in two particular candidates for \mathscr{C}. When \mathscr{C} consists of the full subcategory of R-modules of finite length, then we say R is finite-length tame or finite-length wild. At the other extreme, when \mathscr{C} is the full subcategory $\operatorname{MCM}(R)$ of maximal Cohen-Macaulay R-modules, we say R has tame or wild CM type.

The following Dichotomy Theorem justifies the slight unwieldiness of the definitions. (See also [12] for a more general statement.)

Theorem 2 (Drozd [6, 7], Crawley-Boevey [3]). A finite-dimensional algebra over an algebraically closed field is either finite-length tame or finite-length wild, and not both.

In this paper we will be most concerned with wildness. It follows immediately from the definition that, to establish that a given module category \mathscr{C} is wild, it suffices to find a single particular example of a wild \mathscr{C}_{0} and a representation embedding $\mathscr{C}_{0} \longrightarrow \mathscr{C}$. To illustrate this idea, as well as for our own use in the proof of the Main Theorem, we give here a couple of examples.

Example 3 ([11]). The non-commutative polynomial ring $k\langle a, b\rangle$ over an infinite field k is finite-length wild. To see this, let $\Lambda=k\left\langle x_{1}, \ldots, x_{m}\right\rangle / I$ be an arbitrary finite-dimensional k-algebra and let V be a Λ-module of finite k dimension n. Represent the actions of the variables x_{1}, \ldots, x_{m} on V by linear operators $X_{1}, \ldots, X_{m} \in \operatorname{End}_{k}(V)$. For m distinct scalars $c_{1}, \ldots, c_{m} \in k$, define a $k\langle a, b\rangle$-module $M=M_{V}$ as follows: the underlying vector space of M is $V^{(m)}$, and we let a and b act on M via the linear operators

$$
A=\left[\begin{array}{cccc}
c_{1} \mathrm{id}_{V} & & & \\
& c_{2} \mathrm{id}_{V} & & \\
& & \ddots & \\
& & & c_{m} \mathrm{id}_{V}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
X_{1} & & & \\
\mathrm{id}_{V} & X_{2} & & \\
& \ddots & \ddots & \\
& & \mathrm{id}_{V} & X_{m}
\end{array}\right]
$$

respectively.
A homomorphism of $k\langle a, b\rangle$-modules from M_{V} to $M_{V^{\prime}}$ is defined by a vector space homomorphism $S: V^{(m)} \longrightarrow V^{\prime(m)}$ satisfying $S A=A^{\prime} S$ and $S B=$ $B^{\prime} S$, where A and B, resp. A^{\prime} and B^{\prime}, are the matrices defining the $k\langle a, b\rangle$ structures on M_{V}, resp. $M_{V^{\prime}}$. Two modules M_{V} and $M_{V^{\prime}}$ are isomorphic via S if and only if S is invertible over k. Similarly, a module M_{V} is decomposable if and only if there is a non-trivial idempotent endomorphism $S: M_{V} \longrightarrow M_{V}$.

Assume that $\operatorname{dim}_{k} V=\operatorname{dim}_{k} V^{\prime}$ and let $S: V^{(m)} \longrightarrow V^{\prime(m)}$ be a vector space homomorphism such that $S A=A^{\prime} S$ and $S B=B^{\prime} S$. Then we can write $S=$ $\left(\sigma_{i j}\right)_{1 \leqslant i, j \leqslant m}$, with each $\sigma_{i j}: V \longrightarrow V^{\prime}$; we will show that $S=\operatorname{diag}\left(\sigma_{11}, \ldots, \sigma_{11}\right)$ and that $\sigma_{11} X_{i}=X_{i}^{\prime} \sigma_{11}$ for each $i=1, \ldots, m$. Thus S is an isomorphism if and only if $\sigma_{11}: V \longrightarrow V^{\prime}$ is an isomorphism of Λ-modules, and S is idempotent if and only if σ_{11} is.

The equation $S A=A^{\prime} S$ implies $\sigma_{i j} c_{j}=c_{i} \sigma_{i j}$ for every i, j. Since the scalars c_{i} are pairwise distinct, this implies that $\sigma_{i j}=0$ for all $i \neq j$, so that S is a block-diagonal matrix. Now the equation $S B=B^{\prime} S$ becomes

$$
\left[\begin{array}{cccc}
\sigma_{11} X_{1} & & & \\
\sigma_{22} & \ddots & & \\
& \ddots & \sigma_{m-1, m-1} X_{m-1} & \\
& & \sigma_{m m} & \sigma_{m m} X_{m}
\end{array}\right]=\left[\begin{array}{cccc}
X_{1}^{\prime} \sigma_{11} & & & \\
\sigma_{11} & \ddots & & \\
& \ddots & X_{m-1}^{\prime} \sigma_{m-1, m-1} & \\
& & \sigma_{m-1, m-1} & X_{m}^{\prime} \sigma_{m m}
\end{array}\right],
$$

which implies that $\sigma_{i i}=\sigma_{11}$ for each $i=1, \ldots, m$. Denote the common value by σ; then the diagonal entries show that $\sigma X_{i}=X_{i}^{\prime} \sigma$ for each $i=1, \ldots, m$.
Example 4 ([5]). Let k be an infinite field, and set $R=k[a, b] /\left(a^{2}, a b^{2}, b^{3}\right)$. Then R is finite-length wild. Consequently, the commutative polynomial ring $k\left[a_{1}, \ldots, a_{n}\right]$ and the commutative power series ring $k \llbracket a_{1}, \ldots, a_{n} \rrbracket$ are both finite-length wild as soon as $n \geqslant 2$.

The last sentence follows from the one before, since any R-module of finite length is also a module of finite length over $k[a, b]$ and $k \llbracket a, b \rrbracket$, whence also over $k\left[a_{1}, \ldots, a_{n}\right]$ and $k \llbracket a_{1}, \ldots, a_{n} \rrbracket$. Thus by Example 3 above, it suffices to construct a representation embedding of the finite-length modules over $k\langle x, y\rangle$ into $\bmod R$.

Let V be a $k\langle x, y\rangle$-module of k-dimension n, with linear operators X and Y representing the $k\langle x, y\rangle$-module structure. We define ($32 n \times 32 n$) matrices A and B yielding an R-module structure on $M=M_{V}=V^{(32)}$. To wit, let $c_{1}, \ldots, c_{5} \in k$ be distinct scalars and

$$
A=\left[\begin{array}{ccc}
0 & 0 & \operatorname{id}_{V^{(15)}} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
B_{1} & 0 & B_{2} \\
0 & 0 & B_{3} \\
0 & 0 & B_{1}
\end{array}\right]
$$

where

$$
B_{1}=\left[\begin{array}{ccc}
0 & 0 & \mathrm{id}_{V^{(5)}} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathrm{id}_{V^{(5)}} & 0 & 0 \\
0 & C & 0
\end{array}\right], \quad \text { and } \quad B_{3}=\left[\begin{array}{lll}
0 & D & 0
\end{array}\right],
$$

and finally

$$
C=\left[\begin{array}{cccc}
c_{1} \mathrm{id}_{V} & & & \\
& c_{2} \mathrm{id}_{V} & & \\
& & \ddots & \\
& & & c_{5} \mathrm{id}_{V}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccccc}
\mathrm{id}_{V} & 0 & \operatorname{id}_{V} & \mathrm{id}_{V} & \mathrm{id} \\
0 & \operatorname{id}_{V} & \operatorname{id}_{V} & X & Y
\end{array}\right]
$$

Observe that, while all the blocks in B_{1}, B_{2}, and B_{3} are ($5 n \times 5 n$), the blocks in A and B are not of uniform size; their four corner blocks are ($15 n \times 15 n$), while the center block is $(2 n \times 2 n)$.

One verifies easily that $A B=B A$ and $A^{2}=A B^{2}=B^{3}=0$, so A and B do indeed define an R-module structure on M_{V}.

Let V^{\prime} be a second n-dimensional $k\langle x, y\rangle$-module, with linear operators X^{\prime} and Y^{\prime} defining the $k\langle x, y\rangle$-module structure, and define $M^{\prime}=M_{V^{\prime}}$ as above, with linear operators A^{\prime} and B^{\prime} giving M^{\prime} the structure of an R module. Let $S: V^{(32 n)} \longrightarrow V^{\prime(32 n)}$ be a vector space homomorphism such that $S A=A^{\prime} S$ and $S B=B^{\prime} S$. We will show that in this case S is a block-uppertriangular matrix (with blocks of size n) having constant diagonal block $\sigma: V \longrightarrow V^{\prime}$ which satisfies $\sigma X=X^{\prime} \sigma$ and $\sigma Y=Y^{\prime} \sigma^{\prime}$. Thus S is an isomorphism of R-modules if and only if σ is an isomorphism of $k\langle x, y\rangle$-modules, and S is a split surjection if and only if σ is so. It follows that the functor $V \rightsquigarrow M_{V}$ is a representation embedding, and R is finite-length wild.

Note that A is independent of the module V, so $A=A^{\prime}$ and $S A=A S$. Write S in block format, with blocks of the same sizes as A,

$$
S=\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]
$$

this means

$$
\left[\begin{array}{ccc}
0 & 0 & S_{11} \\
0 & 0 & S_{21} \\
0 & 0 & S_{31}
\end{array}\right]=\left[\begin{array}{ccc}
S_{31} & S_{32} & S_{33} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so that

$$
S=\left[\begin{array}{ccc}
S_{11} & S_{12} & S_{13} \\
0 & S_{22} & S_{23} \\
0 & 0 & S_{11}
\end{array}\right]
$$

Using now the equation $S B=B^{\prime} S$, we get

$$
\left[\begin{array}{ccc}
S_{11} B_{1} & 0 & S_{11} B_{2}+S_{12} B_{3}+S_{13} B_{1} \\
0 & 0 & S_{22} B_{3}+S_{23} B_{1} \\
0 & 0 & S_{11} B_{1}
\end{array}\right]=\left[\begin{array}{ccc}
B_{1}^{\prime} S_{11} & B_{1}^{\prime} S_{12} & B_{1}^{\prime} S_{13}+B_{2}^{\prime} S_{11} \\
0 & 0 & B_{3}^{\prime} S_{11} \\
0 & 0 & B_{1}^{\prime} S_{11}
\end{array}\right] .
$$

In particular, $S_{11} B_{1}=B_{1}^{\prime} S_{11}$. Write the $(15 n \times 15 n)$ matrix S_{11} in $(5 n \times 5 n)$ block format as

$$
S_{11}=\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

Then the definition of B_{1} and B_{1}^{\prime} gives

$$
S_{11}=\left[\begin{array}{ccc}
T_{11} & T_{12} & T_{13} \\
0 & T_{22} & T_{23} \\
0 & 0 & T_{11}
\end{array}\right]
$$

as above. Now S_{12} is $(15 n \times 2 n)$, so we write it in $(5 n \times 2 n)$ blocks as $S_{12}=$ $\left[\begin{array}{lll}U_{1} & U_{2} & U_{3}\end{array}\right]^{\text {tr }}$ and use $B_{1}^{\prime} S_{12}=0$ to get $S_{12}=\left[\begin{array}{lll}U_{1} & U_{2} & 0\end{array}\right]^{\mathrm{tr}}$. We also have $S_{22} B_{3}+S_{23} B_{1}=B_{3}^{\prime} S_{11}$; if we write $S_{23}=\left[\begin{array}{lll}V_{1} & V_{2} & V_{3}\end{array}\right]$, then this equation reads

$$
\left[\begin{array}{lll}
0 & S_{22} D & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & V_{1}
\end{array}\right]=\left[\begin{array}{lll}
0 & D^{\prime} T_{22} & D^{\prime} T_{23}
\end{array}\right]
$$

It follows that $S_{22} D=D^{\prime} T_{22}$ and $S_{23}=\left[\begin{array}{lll}D^{\prime} T_{23} & V_{2} & V_{3}\end{array}\right]$.
Finally write

$$
S_{13}=\left[\begin{array}{lll}
W_{11} & W_{12} & W_{13} \\
W_{21} & W_{22} & W_{23} \\
W_{31} & W_{32} & W_{33}
\end{array}\right]
$$

and consider the equation

$$
S_{11} B_{2}+S_{12} B_{3}+S_{13} B_{1}=B_{1}^{\prime} S_{13}+B_{2}^{\prime} S_{11}
$$

It becomes

$$
\left[\begin{array}{ccc}
T_{12} & T_{13} C+U_{1} D & W_{11} \\
T_{22} & T_{23} C+U_{2} D & W_{21} \\
0 & T_{11} C & W_{31}
\end{array}\right]=\left[\begin{array}{ccc}
W_{31} & W_{32} & W_{33} \\
T_{11} & T_{12} & T_{13} \\
0 & C^{\prime} T_{22} & C^{\prime} T_{23}
\end{array}\right] .
$$

We read off $T_{22}=T_{11}$ and $T_{11} C=C^{\prime} T_{11}$. Since $C=C^{\prime}$ is a diagonal matrix with distinct blocks $c_{1} \mathrm{id}_{V}, \ldots, c_{5} \mathrm{id}_{V}$, this forces T_{11} to be block-diagonal,

$$
T_{11}=\left[\begin{array}{lll}
Z_{1} & & \\
& \ddots & \\
& & Z_{5}
\end{array}\right]
$$

with each Z_{i} an $(n \times n)$ matrix.
We also have $S_{22} D=D^{\prime} T_{11}$. Write $S_{22}=\left[\begin{array}{cc}E & F \\ H\end{array}\right]$ so that this reads

$$
\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]\left[\begin{array}{ccccc}
\mathrm{id}_{V} & 0 & \mathrm{id}_{V} & \mathrm{id}_{V} & \mathrm{id}_{V} \\
0 & \mathrm{id}_{V} & \operatorname{id}_{V} & X & Y
\end{array}\right]=\left[\begin{array}{ccccc}
\mathrm{id}_{V} & 0 & \mathrm{id}_{V} & \operatorname{id}_{V} & \mathrm{id}_{V} \\
0 & \mathrm{id}_{V} & \mathrm{id}_{V} & X^{\prime} & Y^{\prime}
\end{array}\right]\left[\begin{array}{llll}
Z_{1} & & \\
& \ddots & \\
& & Z_{5}
\end{array}\right]
$$

Carrying out the multiplication, we conclude that $F=G=0$, so that $E=$ $Z_{1}=Z_{3}=Z_{4}=Z_{5}$ and $H=Z_{2}=Z_{3}$. Set $\sigma=E=H$. Then $H X=X^{\prime} Z_{4}$ and $H Y=Y^{\prime} Z_{5}$ imply $\sigma X=X^{\prime} \sigma$ and $\sigma Y=Y^{\prime} \sigma$, so that σ is a homomorphism of $k\langle x, y\rangle$-modules $V \longrightarrow V^{\prime}$. Since T_{11} and S_{22} are both block-diagonal with diagonal block σ, we conclude that S is block-upper-triangular with constant diagonal block σ, as claimed.

We restate one part of this example separately for later use.
Proposition 5. Let $Q=k\left[a_{1}, \ldots, a_{n}\right]$ or $k \llbracket a_{1}, \ldots, a_{n} \rrbracket$, with $n \geqslant 2$. If there is a representation embedding of the finite-length Q-modules into a module category \mathscr{C}, then \mathscr{C} is wild.

2. Proof of the Main Theorem

We use without fanfare the theory of matrix factorizations, namely the equivalence between matrix factorizations of a power series f and MCM modules over the hypersurface ring defined by f ([10], see [14] for a complete discussion). The two facts we will use explicitly are contained in the following Remark and Example.

Remark 6. Let S be a regular local ring and $f \in S$ a non-zero non-unit. Set $T=S \llbracket u, v \rrbracket$. Then the functor from matrix factorizations of f over S to matrix factorizations of $f+u v$ over T, defined by

$$
(\varphi, \psi) \mapsto\left(\left[\begin{array}{cc}
\varphi & -v I \\
u I & \psi
\end{array}\right],\left[\begin{array}{cc}
\psi & v I \\
-u I & \varphi
\end{array}\right]\right)
$$

induces an equivalence of stable categories [14, Theorem 12.10]. In particular it gives a bijection on isomorphism classes of MCM modules over $S /(f)$ and $T /(f+u v)$.

Example 7. Let k be a field and set $S_{n}=k \llbracket x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \rrbracket$ and $f_{n}=$ $x_{1} y_{1}+\cdots+x_{n} y_{n}$ for $n \geqslant 1$. The ring $R_{n}=S_{n} /\left(f_{n}\right)$ is an $\left(A_{1}\right)$ hypersurface singularity, so has finite Cohen-Macaulay type; in fact, there is only one non-free indecomposable MCM R_{n}-module, or equivalently, one nontrivial indecomposable matrix factorization of f_{n}. By the remark above, the nontrivial indecomposable matrix factorizations of f_{n} are in bijection with those of f_{n+1}. For $n=1$, the element $f_{1}=x_{1} y_{1}$ has only one nontrivial indecomposable matrix factorization up to equivalence, namely that represented by $\left(\varphi_{1}, \psi_{1}\right)=\left(x_{1}, y_{1}\right)$. Defining

$$
\left(\varphi_{i}, \psi_{i}\right)=\left(\left[\begin{array}{cc}
\varphi_{i-1} & -y_{i} I \\
x_{i} I & \psi_{i-1}
\end{array}\right],\left[\begin{array}{cc}
\psi_{i-1} & y_{i} I \\
-x_{i} I & \varphi_{i-1}
\end{array}\right]\right),
$$

we have that $\left(\varphi_{n}, \psi_{n}\right)$ represents the sole nontrivial indecomposable matrix factorization of f_{n} over S_{n}.

Next we see that, at the cost of introducing some parameters, every power series of sufficiently high order can be written in the form of an (A_{1}) singularity, with some control over the coefficients.

Lemma 8. Let $f \in k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$ be a power series of order at least 4, and let a_{1}, \ldots, a_{n} be parameters. Then f can be written in the form

$$
\begin{equation*}
f=z^{2} h+\left(x_{1}-a_{1} z\right) g_{1}+\cdots+\left(x_{n}-a_{n} z\right) g_{n} \tag{8.1}
\end{equation*}
$$

where g_{1}, \ldots, g_{n}, h are power series in x_{1}, \ldots, x_{n}, z with coefficients involving the parameters a_{1}, \ldots, a_{n}, each g_{i} has order at least 3 in x_{1}, \ldots, x_{n}, z, and h has order at least 2 in x_{1}, \ldots, x_{n}, z.

Proof. Work over $k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$, with the parameters a_{1}, \ldots, a_{n} considered as variable elements of k, and consider the ideals $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}, z\right)$ and $I=$ $\left(x_{1}-a_{1} z, \ldots, x_{n}-a_{n} z\right)$. We claim that $\left(z^{2}\right)+I \mathfrak{m}=\mathfrak{m}^{2}$. The left-hand side is clearly contained in the right. For the other inclusion, simply check each monomial of degree $2: z^{2} \in\left(z^{2}\right)+I \mathfrak{m}$ by definition, whence

$$
x_{i} z=\left(x_{i}-a_{i} z\right) z+a_{i} z^{2} \quad \in\left(z^{2}\right)+I \mathfrak{m}
$$

for each i, and

$$
x_{i} x_{j}=\left(x_{i}-a_{i} z\right) x_{j}+a_{i} x_{j} z \quad \in\left(z^{2}\right)+I \mathfrak{m}
$$

for each i, j. Writing $\mathfrak{m}^{4}=\mathfrak{m}^{2} \mathfrak{m}^{2}=\left(\left(z^{2}\right)+I \mathfrak{m}\right) \mathfrak{m}^{2}=z^{2} \mathfrak{m}^{2}+I \mathfrak{m}^{3}$ completes the proof.

Given an expression for $f \in k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$ as in Lemma 8, we obtain from Remark 6] matrix factorization (φ_{n}, ψ_{n}) of f, with

$$
\left(\varphi_{0}, \psi_{0}\right)=\left(\left[z^{2}\right],[h]\right), \quad\left(\varphi_{1}, \psi_{1}\right)=\left(\left[\begin{array}{cc}
z^{2} & -g_{1} \\
x_{1}-a_{1} z & h
\end{array}\right],\left[\begin{array}{cc}
h & g_{1} \\
-x_{1}+a_{1} z & z^{2}
\end{array}\right]\right)
$$

and, in general,

$$
\left(\varphi_{n}, \psi_{n}\right)=\left(\left[\begin{array}{cc}
\varphi_{n-1} & -g_{n} \mathrm{id}_{2^{n-1}} \\
\left(x_{n}-a_{n} z\right) \mathrm{id}_{2^{n-1}} & \psi_{n-1}
\end{array}\right],\left[\begin{array}{cc}
\psi_{n-1} & g_{n} \mathrm{id}_{2^{n-1}} \\
\left(-x_{n}+a_{n} z\right) \mathrm{id}_{2^{n-1}} & \varphi_{n-1}
\end{array}\right]\right)
$$

We now describe how to "inflate" these matrix factorizations given a $k\left[a_{1}, \ldots, a_{n}\right]$-module of finite length.

Definition 9. Let A_{1}, \ldots, A_{r} be pairwise commuting $m \times m$ matrices over the field k. Let $f=f\left(a_{1}, \ldots, a_{r}\right)$ be a power series in variables x_{1}, \ldots, x_{n}, z involving the parameters a_{1}, \ldots, a_{r}, which we think of as variable elements of k. Let $F=F\left(A_{1}, \ldots, A_{r}\right)$ be the $m \times m$ matrix obtained by replacing in f each scalar $\alpha \in k$ by $\alpha \operatorname{id}_{m}$, each x_{i} by $x_{i} \mathrm{id}_{m}, z$ by $z \mathrm{id}_{m}$, and each parameter a_{i} by the corresponding matrix A_{i}. We call this process inflating f.

If $(\varphi, \psi)=\left(\varphi\left(a_{1}, \ldots, a_{r}\right), \psi\left(a_{1}, \ldots, a_{r}\right)\right)$ is a matrix factorization, again involving parameters a_{1}, \ldots, a_{r}, of an element $f \in k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$, let $(\Phi, \Psi)=$ $\left(\Phi\left(A_{1}, \ldots, A_{r}\right), \Psi\left(A_{1}, \ldots, A_{r}\right)\right)$ be the result of inflating each entry of φ and ψ.

Note that in the second half of the definition, f does not involve the parameters. It's easy to check that, since the A_{i} commute, (Φ, Ψ) is again a matrix factorization of f.

It follows from Lemma 8 that a power series $f \in k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$ of order at least 4 has, for every n-tuple of commuting $m \times m$ matrices $\left(A_{1}, \ldots, A_{n}\right)$ over k, a matrix factorization

$$
\begin{equation*}
\left(\Phi_{n}, \Psi_{n}\right)=\left(\Phi\left(A_{1}, \ldots, A_{n}\right), \Psi\left(A_{1}, \ldots, A_{n}\right)\right) \tag{9.1}
\end{equation*}
$$

of size $m 2^{n}$.
Notation 10. Let $E=\left[e_{i j}\right]$ be a matrix with entries in $k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$. We set $\bar{E}=\left[\overline{e_{i j}}\right]$, where $\overline{e_{i j}}$ denotes the image of $e_{i j}$ modulo the square of the maximal ideal (x_{1}, \ldots, x_{n}, z).

Also, given a monomial $w \in k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$, let $E\{w\}$ denote the matrix [$e_{i j}\{w\}$], where $e_{i j}\{w\}$ denotes the coefficient of w in the power series expansion of $e_{i j}$. We call this the " w-strand" of the matrix E.

For the rest of the paper, we let f be a power series of order at least 4 as in Lemma 8, let A_{1}, \ldots, A_{n} and $A_{1}^{\prime}, \ldots, A_{n}^{\prime}$ be n-tuples of commuting $m \times m$ matrices over k, and let $\left(\Phi_{n}, \Psi_{n}\right)=\left(\Phi\left(A_{1}, \ldots, A_{n}\right), \Psi\left(A_{1}, \ldots, A_{n}\right)\right)$ and $\left(\Phi_{n}^{\prime}, \Psi_{n}^{\prime}\right)=\left(\Phi\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right), \Psi\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)\right)$ be inflated matrix factorizations of f as in (9.1).

Lemma 11. Let $i \in\{0, \ldots, n\}$ and let C, D be two $\left(m 2^{i} \times m 2^{i}\right)$ matrices with entries in k. If C and D satisfy

$$
C \overline{\Phi_{i}}=\overline{\Phi_{i}^{\prime}} D \quad \text { and } \quad D \overline{\Psi_{i}}=\overline{\Psi_{i}^{\prime}} C
$$

then
(i) C and D are $(m \times m)$-block lower triangular, i.e. of the form

$$
C=\left[\begin{array}{llll}
C_{11} & & & \\
& C_{22} & 0 & \\
& & \ddots & \\
& * & & C_{2^{i}, 2^{i}}
\end{array}\right], \quad D=\left[\begin{array}{llll}
D_{11} & & & \\
& D_{22} & 0 & \\
& & \ddots & \\
& * & & D_{2^{i}, 2^{i}}
\end{array}\right]
$$

(ii) For each $j=1, \ldots, 2^{i}, C_{j j}$ and $D_{j j}$ are in the set $\left\{C_{11}, D_{11}\right\}$.
(iii) For each $j=1, \ldots, i, C_{2^{i}, 2^{i}} A_{j}=A_{j}^{\prime} D_{2^{i}-2^{j-1}, 2^{i}-2^{j-1}}$.

Proof. For parts (ii) and (iii), we proceed by induction on i. The base case $i=0$ is vacuous. For the inductive step, since in (8.1) $g_{i} \in\left(x_{1}, \ldots, x_{n}, z\right)^{3}$, we can express $\overline{\Phi_{i}}, \overline{\Psi_{i}}$ as

$$
\overline{\Phi_{i}}=\left[\begin{array}{cc}
\overline{\Phi_{i-1}} & 0 \\
\left(\overline{x_{i}} \mathrm{id}_{m}-A_{n} \bar{z}\right) \mathrm{id}_{2^{i-1}} & \overline{\Psi_{i-1}}
\end{array}\right], \quad \overline{\Psi_{i}}=\left[\begin{array}{cc}
\overline{\Psi_{i-1}} & 0 \\
\left(-\overline{x_{i}} \mathrm{id}_{m}+A_{n} \bar{z}\right) \mathrm{id}_{2^{i-1}} & \overline{\Phi_{i-1}}
\end{array}\right]
$$

and $\overline{\Phi_{i}^{\prime}}, \overline{\Psi_{i}^{\prime}}$ similarly, matrices over $k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket /\left(x_{1}, \ldots, x_{n}, z\right)^{2}$. (We write $\left(\overline{x_{i}} \mathrm{id}_{m}-A_{n} \bar{z}\right) \mathrm{id}_{2^{i-1}}$ to represent a ($m 2^{i-1} \times m 2^{i-1}$)-block matrix with diagonal blocks $\overline{x_{i}} \operatorname{id}_{m}-A_{n} \bar{z}$.) Also express C and D in terms of their ($m 2^{i-1} \times m 2^{i-1}$)blocks

$$
C=\left[\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}\right], \quad D=\left[\begin{array}{ll}
\delta_{11} & \delta_{12} \\
\delta_{21} & \delta_{22}
\end{array}\right] .
$$

From $C \overline{\Phi_{i}}=\overline{\Phi_{i}^{\prime}} D$, we get the equations

$$
\begin{align*}
& \gamma_{11} \overline{\Phi_{i-1}}+\gamma_{12}\left(\overline{x_{i}} \mathrm{id}_{m}-A_{i} \bar{z}\right) \mathrm{id}_{2^{i-1}}=\overline{\Phi_{i-1}^{\prime}} \delta_{11} \tag{11.1}\\
& \gamma_{22} \overline{\Psi_{i-1}}=\left(\overline{x_{i}} \mathrm{id}_{m}-A_{i}^{\prime} \bar{z}\right) \mathrm{id}_{2^{i-1}} \delta_{12}+\overline{\Psi_{i-1}^{\prime}} \delta_{22} \tag{11.2}\\
& \gamma_{21} \overline{\Phi_{i-1}}+\gamma_{22}\left(\overline{x_{i}} \mathrm{id}_{m}-A_{i} \bar{z}\right) \mathrm{id}_{2^{i-1}}=\left(\overline{x_{i}} \mathrm{id}_{m}-A_{i}^{\prime} \bar{z}\right) \mathrm{id}_{2^{i-1}} \delta_{11}+\overline{\Psi_{i-1}^{\prime}} \delta_{21} \tag{11.3}
\end{align*}
$$

and from $D \overline{\Psi_{i}}=\overline{\Psi_{i}^{\prime}} C$:

$$
\begin{equation*}
\delta_{21} \overline{\Psi_{i-1}}+\delta_{22}\left(-\overline{x_{i}} \mathrm{id}_{m}+A_{i} \bar{z}\right) \mathrm{id}_{2^{i-1}}=\left(-\overline{x_{i}} \mathrm{id}_{m}+A_{i}^{\prime} \bar{z}\right) \mathrm{id}_{2^{i-1}} \gamma_{11}+\overline{\Phi_{i-1}^{\prime}} \gamma_{21} \tag{11.4}
\end{equation*}
$$

Since $\overline{\Phi_{i-1}}, \overline{\Psi_{i-1}}, \overline{\Phi_{i-1}^{\prime}}, \overline{\Psi_{i-1}^{\prime}}$ do not contain instances of $\overline{x_{i}}$, we conclude

$$
\begin{array}{lll}
\text { from (11.1): } & \gamma_{12}=0 \quad \text { and } & \gamma_{11} \overline{\Phi_{i-1}}=\overline{\Phi_{i-1}^{\prime}} \delta_{11} \\
\text { from (11.2): } & \delta_{12}=0 \quad \text { and } \quad \gamma_{22} \overline{\Psi_{i-1}}=\overline{\Psi_{i-1}^{\prime}} \delta_{22} ; \\
\text { from (11.3): } & \gamma_{22}=\delta_{11} ; \text { and } \\
\text { from (11.4): } & \delta_{22}=\gamma_{11} .
\end{array}
$$

Thus the pair γ_{11}, δ_{11} satisfy \dagger), so by the induction hypothesis, they satisfy (ii) and (iii). Since C and γ_{11} share the same $(1,1) m \times m$-block (and ditto for D and δ_{11}), the inductive proof is complete.

For part (iiii), we consider the ($m \times m$) block in position $\left(2^{i}, 2^{i}-2^{j-1}\right)$ on either side of the equation $C \overline{\Phi_{i}}=\overline{\Phi_{i}^{\prime}} D$. We get that

$$
C_{2^{i}, 2^{i}}\left(\overline{x_{j}} \mathrm{id}_{m}-A_{j} \bar{z}\right)=\left(\overline{x_{j}} \mathrm{id}_{m}-A{ }_{j} \bar{z}\right) D_{2^{i}-2^{j-1}, 2^{i}-2^{j-1}} .
$$

Examining the \bar{z}-strand yields the desired equality.
Proposition 12. Let $(S, T):\left(\Phi_{n}, \Psi_{n}\right) \longrightarrow\left(\Phi_{n}^{\prime}, \Psi_{n}^{\prime}\right)$ be a homomorphism of matrix factorizations. Then $S\{1\}$ and $T\{1\}$ are $(m \times m$)-block lower triangular of the form

$$
S\{1\}=\left[\begin{array}{ccccc}
U & & & & \tag{*}\\
& U & & 0 & \\
& & U & & \\
& & & \ddots & \\
& * & & & U
\end{array}\right], \quad T\{1\}=\left[\begin{array}{ccccc}
U & & & & \\
& U & & 0 & \\
& & U & & \\
& & & \ddots & \\
& * & & & U
\end{array}\right]
$$

where $U A_{i}=A_{i}^{\prime} U$ for $i=1, \ldots, n$.

Proof. We first show that $S_{11}\{1\}=T_{11}\{1\}$, where $S_{i j}$ and $T_{i j}$ denote the ($m \times m$) blocks of S and T, respectively, in the $(i, j)^{\text {th }}$ position. For this, we consider the $(m \times m)$ block in position $(1,1)$ on either side of the equation $S \Phi_{n}=\Phi_{n}^{\prime} T$. We get that

$$
S_{11} z^{2}+\sum_{i=1}^{n} S_{1,2^{i-1}+1}\left(x_{i} \mathrm{id}_{m}-A_{i} z\right)=z^{2} T_{11}+\sum_{i=1}^{n} T_{2^{i-1}+1,1} G_{i}^{\prime}
$$

where G_{i}^{\prime} are the matrices resulting from "inflating" the power series g_{i}^{\prime}. Since the g_{i}^{\prime} have order at least 3 , each entry of G_{i}^{\prime} also has order at least 3, and so the quadratic strands give the following equations:

$$
\begin{align*}
\left\{z^{2}\right\}: & S_{11}\{1\}-\sum_{i=1}^{n} S_{1,2^{i-1}+1}\{z\} A_{i}=T_{11}\{1\} \tag{12.1}\\
\left\{x_{i}^{2}\right\}: & S_{1,2^{i-1}+1}\left\{x_{i}\right\}=0 \tag{12.2}\\
\left\{x_{i} z\right\}: & S_{1,2^{i-1}+1}\{z\}-\sum_{j=1}^{n} S_{1,2^{j-1}+1}\left\{x_{i}\right\} A_{j}=0 \tag{12.3}\\
\left\{x_{i} x_{j}\right\}: & S_{1,2^{j-1}+1}\left\{x_{i}\right\}+S_{1,2^{i-1}+1}\left\{x_{j}\right\}=0 \tag{12.4}
\end{align*}
$$

Starting from equation (12.1), we have

$$
\begin{aligned}
S_{11}\{1\} & =T_{11}\{1\}+\sum_{i=1}^{n} S_{1,2^{i-1}+1}\{z\} A_{i} \\
& =T_{11}\{1\}+\sum_{i=1}^{n}\left(\sum_{j=1}^{n} S_{1,2^{j-1}+1}\left\{x_{i}\right\} A_{j} A_{i}\right) \\
& =T_{11}\{1\}
\end{aligned}
$$

the last equality following from equations (12.2), (12.4), and the commutativity of the A_{i}.

The proof is completed by Lemma 11 above.
Let M be a $k\left[a_{1}, \ldots, a_{n}\right]$-module of dimension m over k. After choosing a k-basis for M, the action of each a_{i} on M can be expressed as multiplication by an $(m \times m)$ matrix A_{i} over k. (Note that the A_{i} 's must be pairwise commutative.) We may thus identify M with the linear representation $L: k\left[a_{1}, \ldots, a_{n}\right] \longrightarrow \operatorname{Mat}_{m}(k)$, where $a_{i} \mapsto A_{i}$ for $i=1, \ldots, n$.

A homomorphism from a linear representation $L\left(A_{1}, \ldots, A_{n}\right)$ to another $L\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)$ is defined by a matrix U such that $U A_{i}=A_{i}^{\prime} U$ for $i=1, \ldots, n$.

Representations are thus isomorphic if this matrix U is invertible. A representation $L\left(A_{1}, \ldots, A_{n}\right)$ is decomposable if it has a non-trivial idempotent endomorphism, that is, there exists a matrix U such that $U A_{i}=A_{i} U$ for $i=1, \ldots, n, U^{2}=U$ and $U \neq 0$, id.

Theorem 13. Let k be an infinite field, let $S=k \llbracket x_{1}, \ldots, x_{n}, z \rrbracket$, and let $f \in S$ be a non-zero element of order at least 4. Set $R=S /(f)$. Then the functor F from finite-length $k\left[a_{1}, \ldots, a_{n}\right]$-modules to MCM R-modules, sending a given linear representation $L\left(A_{1}, \ldots, A_{n}\right)$ to the inflated matrix factorization $\left(\Phi\left(A_{1}, \ldots, A_{n}\right), \Psi\left(A_{1}, \ldots, A_{n}\right)\right)$, is a representation embedding.

In particular, if $n \geqslant 2$ then R has wild Cohen-Macaulay type.
Proof. The functor F is defined as follows on homomorphisms of linear representations $U: L\left(A_{1}, \ldots, A_{n}\right) \longrightarrow L\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)$. If the A_{i} are $\ell \times \ell$ matrices and the A_{i}^{\prime} are $m \times m$, then U is an $m \times \ell$ matrix over k, and is sent to the block-diagonal ($m 2^{n} \times \ell 2^{n}$) matrix \widetilde{U} with U down the diagonal. Since U satisfies the relations $U A_{i}=A_{i}^{\prime} U$, and the blocks of $\Phi\left(A_{1}, \ldots, A_{n}\right)$ and $\Psi\left(A_{1}, \ldots, A_{n}\right)$ are power series in the matrices A_{i} with coefficients in S, we get $\widetilde{U} \Phi=\Phi^{\prime} \widetilde{U}$ and $\widetilde{U} \Psi=\Psi^{\prime} \widetilde{U}$. Now it is clear that F is an exact functor.

Suppose there is an isomorphism between matrix factorizations

$$
(S, T):\left(\Phi\left(A_{1}, \ldots, A_{n}\right), \Psi\left(A_{1}, \ldots, A_{n}\right)\right) \rightarrow\left(\Phi\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right), \Psi\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)\right)
$$

By Proposition 12, $S\{1\}$ and $T\{1\}$ are of the form in (*), in which U defines a homomorphism from $L\left(A_{1}, \ldots, A_{n}\right)$ to $L\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)$. Since S is invertible, so is U. Thus the representations are isomorphic.

Suppose the matrix factorization $\left(\Phi\left(A_{1}, \ldots, A_{n}\right), \Psi\left(A_{1}, \ldots, A_{n}\right)\right)$ is decomposable, that is, it has an endomorphism (S, T) such that $S^{2}=S, T^{2}=T$ and $(S, T) \neq(0,0)$, (id, id). Again, by Proposition [12, $S\{1\}$ and $T\{1\}$ are of the form in (*), in which the matrix U now defines an idempotent endomorphism of the representation $L\left(A_{1}, \ldots, A_{n}\right)$. Since S and T are idempotent matrices, if $U=0$, then $S=T=0$. Similarly, if $U=$ id, then $S=T=\mathrm{id}$. Thus the representation $L\left(A_{1}, \ldots, A_{n}\right)$ must be decomposable.

The final sentence follows from Proposition 5.

References

[1] Vitaliy V. Bondarenko, On classification of CM modules over hypersurface singularities, Algebra Discrete Math. (2007), no. 1, 1-12. MR2367510
[2] Ragnar-Olaf Buchweitz, Gert-Martin Greuel, and Frank-Olaf Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182.MR877011
[3] William W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. (3) 56 (1988), no. 3, 451-483. MR931510
[4] Peter Donovan and Mary Ruth Freislich, The representation theory of finite graphs and associated algebras, Carleton University, Ottawa, Ont., 1973, Carleton Mathematical Lecture Notes, No. 5. MR0357233
[5] Yuriy A. Drozd, Representations of commutative algebras, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 41-43. MR0311718
[6] __, Tame and wild matrix problems, Matrix problems (Russian), Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1977, pp. 104-114. MR0498704
[7] \qquad , Tame and wild matrix problems, Representations and quadratic forms (Russian), Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1979, pp. 39-74, 154. MR600111
[8] Yuriy A. Drozd and Gert-Martin Greuel, Cohen-Macaulay module type, Compositio Math. 89 (1993), no. 3, 315-338. MR1255700
[9] Yuriy A. Drozd, Gert-Martin Greuel, and Irina Kashuba, On CohenMacaulay modules on surface singularities, Mosc. Math. J. 3 (2003), no. 2, 397-418, 742, Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. MR2025266
[10] David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35-64. MR570778
[11] Izrail' M. Gel'fand and V. A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite-dimensional space, Funkcional. Anal. i Priložen. 3 (1969), no. 4, 81-82. MR0254068
[12] Lee Klingler and Lawrence S. Levy, Representation type of commutative Noetherian rings (introduction), Algebras, rings and their representations, World Sci. Publ., Hackensack, NJ, 2006, pp. 113-151. MR2234304
[13] Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153-164. MR877010
[14] Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR1079937

[^0]: *Corresponding Author
 Email addresses: andrew.m.crabbe@gmail.com (Andrew Crabbe), gjleusch@math.syr.edu (Graham J. Leuschke)

 URL: http://www.leuschke.org/(Graham J. Leuschke)
 ${ }^{1}$ GJL was partly supported by NSF grant DMS-0902119.
 To Roger Wiegand, our advisor, on the occasion of his $N^{\text {th }}$ ascent of the Diamond.

