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Abstract 

A new coarse grain parallel genetic algorithm 
(PGA) and a new implementation of a data-parallel 
GA are presented in this paper. They are based on 
models of natural evolution in which the popula­
tion is formed of discontinuous or continuous sub­
populations. In addition to simulating natural 
evolution, the intrinsic parallelism in the two 
PGA's minimizes the possibility of premature con­
vergence that the implementation of classic GA's 
often encounters. Intrinsic parallelism also allows 
the evolution of fit genotypes in a smaller number 
of generations in the PGA's than in sequential 
GA's, leading to superlinear speed-ups. The PGA's 
have been implemented on a hypen:ube and a Con­
nection Machine, and their operation is demon­
strated by applying them to the load balancing 
problem in parallel computing. The PGA's have 
found near-optimal solutions which are compara­
ble to the solutions of a simulated annealing algo­
rithm and are better than those produced by a 
sequential GA and by other load balancing meth­
ods. On one hand, The PGA's accentuate the ad­
vantage of parallel computers for simulating 
natural evolution. On the other hand, they repre­
sent new techniques for load balancing parallel 
computations. 

Key words: Data allocation, data partitioning, 
load balancing, loosely-synchronous algorithms, 
natural evolution simulation, parallel genetic algo­
rithms, physical optimization methods, task 
allocation. 
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1. INTRODUCTION 

Genetic algorithms (GA's) are search techniques 
based on the mechanics of natural evolution, 
where species search for beneficial adaptations to 
a changing environment [12, 14]. In GA's, artificial 
evolution takes place over successive, usually dis­
continuous, generations for solving a problem. 
Each generation consists of a population of chro­
mosomes, also called individuals, which represent 
possible solutions. The initial generation is created 
at random. Each consecutive generation is created 
by the individuals concurrently searching the 
adaptive topography. FJrStly, individuals repro­
duce according to their fitness. Then, mates are se­
lected and genetic operators are applied to create 
offsprings, which replace the parents. In this pro­
cess, high-performance building blocks are propa­
gated and combined to find fitter structures leading 
to optimal or near-optimal solutions. The parame­
ters of this search strategy would be designed so 
that a balance between the exploitation of fitter 
structures and the exploration of the search space 
is secured for a sufficient number of generations. 

Most of the GA work has considered the total pop­
ulation a single random mating unit from which 
parents can be selected. This model has two short­
comings. Firstly, the model is not quite relevant for 
species in nature. Natural populations are normally 
distributed in various ways that confine reproduc­
tion to subpopulations, with interaction among 
subpopulations. Secondly, the single mating unit 
population structure is one of the reasons for the 
premature convergence problem often encoun­
tered in the implementation of GA's [2] because it 
can allow the exploitation aspect of the genetic 
search to dominate. Therefore, the use of distribut­
ed population structures provides better models of 
natural evolution and helps in overcoming the 
problem of the convergence of the search into local 
optima. 

Parallel GA's (PGA's) are suitable for simulating 
distributed population structures. Subpopulations 



computer, and interactions among subpopulations 
can occur via the interconnection network. Differ­
ent population structures can be modeled by differ­
ent PGA's for suitable parallel computers. Because 
of this close association between distributed popu­
lation GA's and their parallel implementation, we 
will henceforth not distinguish between them and 
will refer to both as parallel GA's. In addition to a 
more realistic mimic of natural evolution, PGA's 
obviously provide faster execution than sequential 
GA's. The use of the model of distributed popula­
tion offers better speed-ups than straight parallel­
ization of sequential GA's, because the latter 
requires global selection in the reproduction step 
and, thus, incurs the penalty of global interproces­
sor communication. In addition, straight parallel­
iza.tion does not contribute to the alleviation of 
premature convergence. Further, distributed popu­
lation models enjoy intrinsic parallelism which 
leads to superlinear speed-ups. Intrinsic parallel­
ism refers to the concurrent and independent ex­
ploration by the subpopulations of many different 
regions in the adaptive topography. A number of 
models for distributed natural population struc­
tures have been proposed in the population genet­
ics literature [5, 13, 29, 30]; important models are 
summarized in section 4. Previous PGA's [3, 16, 
20, 22, 23] share features with some of these mod­
els. Their operation have been demonstrated by 
solving problems such as the optimization of 
Walsh functions, the traveling salesperson prob­
lem ... etc. These PGA's differ in the models they 
adopt for the population structure, in the mecha­
nisms used for implementing some features of the 
models, and in the applications they deal with. 

In this paper, new coarse-grain and fine-grain 
PGA's are presented. The coarse-grain PGA is 
based upon a model of discontinuous population 
structure and the theory of shifting balance of evo­
lution [30]; it has been implemented on a hyper­
cube. The fine-grain PGA is a data-parallel 
algorithm based on the isolation by distance model 
of populations with continuous distribution [29]; it 
has been implemented on the Connection Ma­
chine. The coarse-grain PGA offers faster conver-
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gence than do other coarse-grain PGA's, which is 
advantageous for many applications. The fine­
grain PGA provides a model that exploits massive 
parallelism. 

The operation of the PGA's is demonstrated in this 
work by applying them to an NP-complete optimi­
zation problem, namely the load balancing prob­
lem in parallel computing. However, it should be 
emphasized that the two PGA's represent general 
models which fit in the framework of physical 
computation [11]. The PGA's have general appli­
cability, especially to time-demanding optimiza­
tion problems. For example, genetic algorithms 
used in designing neural networks can take months 
on sequential computers and, thus, speed is of ut­
most importance for such an application [27]. 
Load balancing is concerned with equal distribu­
tion of the workload among the processors of a 
multicomputer. For loosely-synchronous algo­
rithms, it is based on partitioning the underlying 
data set constituting the problem domain. This 
problem has been chosen as an application for the 
PGA's because it is an important problem in paral­
lel computing and is a new application for GA's. 
Moreover, the results of a sequential GA [18] are 
available for comparison. Previous approaches to 
load balancing are based on techniques such as 
mincut-based heuristics, recursive bisection, simu­
lated annealing, scattered decomposition and neu­
ral networks [1, 6, 7, 8, 9, 10, 19, 24, 28]. The 
performance of these techniques vary in terms of 
the quality of the solution produced and the execu­
tion time required. The experimental results re­
ported below show that the proposed PGA's evolve 
near-optimal solutions which are superior to those 
produced by several previous methods. 

This paper is organized as follows. Section 2 de­
fines the load balancing problem. Section 3 pre­
sents a sequential GA, some of whose constituents 
are employed by the PGA's. Section 4 includes a 
brief summary of models of natural populations 
and a presentation of the PGA's based on two of 
these models. The experimental results are given 
and discussed in Sections 5 and 6. Conclusions are 



given in Section 7. 

2. LOAD BALANCING PROBLEM 

Load balancing refers to the partitioning of a prob­
lem domain into disjoint subdomains and the as­
signment of the subdomains to the processors of a 
multicomputer such that an objective function, 
namely the total execution time, is minimized. 
Both the problem domain and the multicomputer 
are considered as graphs. The minimization of the 
objective function corresponds to balancing the 
calculations among the processors and minimiz­
ing/balancing the interprocessor communication. 
The objective function depends on the computa­
tion model. The model considered here is that of 
loose synchronicity [10], with all processors run­
ning the same code for the problem subdomains as­
signed to them. Loosely synchronous algorithms 
repeat a calculate-communicate cycle, where a 
processor carries out the calculations for its subdo­
main and then communicates with other proces­
sors to exchange necessary boundary information. 
In this computation model, the total execution time 
is determined by the slowest processor and, thus, 
the objective function is represented by the largest 
combined calculation-communication load. How­
ever, this exact objective function is too computa­
tionally expensive to use in genetic algorithms and 
is replaced by an approximate objective function 
given by 

r2'LN2 (p) +vRLLC(p,q) .... (l) 
p p q 

where r is the ratio of the amount of calculation to 
the amount of communication per data element (a 
characteristic of the algorithm), N(p) is the number 
of elements allocated to processor p, R is the ratio 
of the time needed to communicate a unit of infor­
mation one unit distance to the time required for 
one calculation operation (a characteristic of the 
multicomputer), v is a constant scaling factor ex­
pressing the relative importance of communication 
with respect to calculation, and C(p,q) is the com­
munication cost between processors p and q. This 
objective function enjoys a locality property that 
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greatly reduces the computational cost [18]. 

3. SEQUENTIAL GENETIC ALGORITHM 

Read (problem graph mel multicomputer graph); 
RIIRCiom Genention of initial population P(O) of size POP; 
Evaluate fitness of individuals in P(O); 
For (gen = 1 to maxgen) OR until convergence do 

Set (v, operator rates, freq-hillclimbing); 
Rank individuals in ~en-1). and 

allocate reproducbon trials stored in MATESQ; 
,. produce new generation P(gen) */ 
For (i = 1 to POP step 2) do 

Randomly select 2 parents from MATES 0; 
Apply genetic opezatOis (2-pt crossovec, mutation, invecsion); 
Hill-climbing by offsprings; 

endfor 
Evaluate fitness of individuals in P(gen); 
Retain the better of {fittest(gen), fittest(gen-1)}; 

endfor 
Solution= fittest individual 

Fig. 1 An Outline of SGA. 

A sequential hybrid genetic algorithm (SGA) has 
been proposed for load balancing [18], and is out­
lined in Figure 1. It combines a number of design 
choices and includes a hill climbing procedure for 
reducing the possibility of premature convergence 
and for significantly improving the efficiency of 
the genetic seaiCh. SGA is briefly presented here, 
concentrating on the constituents that are relevant 
to the PGA's. 

The chromosomal encoding of an assignment of 
data to processors is given by a string of integers 
(allele values); an integer refers to a processor and 
its position in the string represents the assigned da­
tum. The fitness of an individual in any generation 
is the reciprocal of the objective function defined 
in expression (1). The reproduction scheme is 
based on elitist ranking followed by random selec­
tion of parents from the list of reproduction trials 
allocated to the ranked individuals. In ranking, fit­
nesses are sorted first and reproduction trials areal­
located to the individuals according to a 
predetermined scale of equidistant values. Elitism 
refers to the preservation of the fittest-so-far indi­
vidual. In each generation, the fittest individual is 
considered a candidate solution. The genetic oper­
ators used are 2-point ring-like crossover, muta­
tion, and inversion. The rates of these operators are 



made variable in order to maintain diversity in the 
population. A heuristic procedure tailored to the 
load balancing problem is incorporated for hill 
climbing by individuals. In this procedure, the 
boundary elements of the subdomains assigned to 
the processors can transfer between processors. 
The transfer takes place only if it does not cause 
the fitness of the total structure to decrease. It has 
been found that the evolution associated with SGA 
goes through three stages. In the tuning stage, 
which is the last stage, the value of v in expression 
( 1) is decreased in order to improve the results. 
Other features are also included in SGA for evad­
ing some computational costs and for reinforcing 
favorable aspects of the genetic search. The details 
and the advantages of these features are explained 
in [18]. 

4. POPULATION GENETICS AND PARAL­
LEL GENETIC ALGORITHMS 

In this section, PGA's based on models of natural 
evolution are presented. Important models in pop­
ulation genetics are briefly summarized in Subsec­
tion 4.1 as a prelude to the descriptions in 
Subsections 4.2 and 4.3. 

4.1 Models of Population Structure 

A natural population fonning a species is usually 
spread over a large area. Hence, it does not consti­
tute a single random mating unit, as viewed by the 
classic GA [12, 14], because the distance of indi­
vidual movement would be much smaller than the 
entire distribution area of the population. The mat­
ing pool for selection is restricted to a certain range 
of distances and distant individuals would lie in 
different pools giving rise to some form of subpop­
ulations. Associated with genetic drift, such popu­
lation distribution leads to local differentiation in 
allele frequencies and to genetic divergence among 
subpopulations. Such geographic population struc­
tures can have profound effects on the evolution of 
species. In contrast with the case where the popu­
lation is a single mating unit, variability across the 
populations persists and the problem of premature 
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convergence is not encountered. Several models 
for population structures have been devised in pop­
ulation genetics. They involve various views for 
the subdivision of population and various schemes 
for intergroup selection and for genetic exchange 
or migration among the groups (subpopulations). 
Important and relevant models are summarized 
here. These models can be broadly divided into 
two categories according to whether the distribu­
tion of population is continuous or discontinuous. 

Wright's island model of population structure [5] 
assumes that the population is large and is split into 
semi-isolated subpopulations or demes dispersed 
geographically like islands, each breeding at ran­
dom within itself. Each generation, a deme ex­
changes a fraction of its members for migrants 
drawn at random from the rest of the population. If 
their number is not too small, the migrants can be 
considered representative of the subpopulations in 
terms of allele frequency, and incoming alleles can 
be assumed to be independent. The mathematical 
analysis for this model has shown that the coeffi­
cient of genetic differentiation is predominantly 
determined by the amount of migration and is in­
dependent of the mutation rate and the total num­
ber of alleles [5, 13]. The island model is not likely 
to be realized in nature since the immigrants usual­
ly come from adjacent demes and, thus, are not a 
random sample of the species. Kimura's stepping­
stone models are based on the adjacency observa­
tion. These models assume certain geometrical 
patterns for the deme locations, such as linear ar­
rays and rectangular grids [13]. Migration is al­
lowed only between immediate neighbors. 

The shifting balance theory of evolution [30] pre­
sents another model of discontinuous population 
structure. In Wright's view, this model offers a 
good chance for the population to avoid being 
hung up on a low adaptive peak and to evolve nov­
el types of gene interactions. The shifting balance 
process iterates through three phases. The first 
phase is the random genetic drift phase, in which 
the allele frequencies drift to some extent and, 
thus, the demes explore their adaptive topography. 



The second phase is for mass selection which per­
mits the favorable gene combinations created in 
the first phase to rapidly become incorporated into 
the genome of the subpopulation by means of nat­
ural selection. Different demes now contain sets of 
allele frequencies that are likely to correspond, by 
chance, to various adaptive peaks with different 
heights. The third phase is for interdeme selection, 
where demes with higher fitness increase in size 
and shift the allele frequencies of adjacent demes 
by one-way migration until they come under the 
control of the higher fitness peak. The favorable 
genotypes become spread throughout the popula­
tion in ever-widening concentric circles. In this 
fashion, larger parts of the adaptive topography 
can be explored, and a continual shifting of control 
from one adaptive peak to a higher one takes place. 
In contrast, Fisher argued against the shifting bal­
ance theory by suggesting that the adaptive peaks 
in multidimensional fitness landscapes are not very 
high and that they are connected by fairly high 
ridges, always shifting because of environmental 
changes [5]. Thus, the landscape is more analo­
gous to waves and troughs in an ocean than to a 
static one. 

In contrast with the above-mentioned models, 
Wright considered a model where the population is 
distributed uniformly over a large area, but inter­
breeding is restricted to small distances [29]. Ge­
netic divergence within the population takes place 
merely due to isolation by distance. Each individ­
ual has its origin at a particular place and its par­
ents are drawn at random from a small 
neighborhood. Fitter genotypes are spread 
throughout the population by diffusion rather than 
migration. The size of the neighborhood and the 
shape of the habitat play an important role in the 
analysis of the model. 

4.2 Coarse-Grain PGA 

The coarse-grain parallel genetic algorithm pre­
sented here is based on the shifting balance theory 
of evolution and is henceforth referred to as SBP­
GA. Previous Coarse-grain PGA's are based on 
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other models of population structure. In [22], a 
PGA is presented for optimizing DeJong's func­
tions. In this PGA, the population is split into sub­
populations, and neighboring subpopulations 
exchange and insert into their local population the 
fittest individual in every generation. The distribut­
ed GA's in [26] and [3] share significant aspects 
with the stepping stone models. In these algo­
rithms, subpopulations are assigned to the nodes of 
a hypercube, and migration occurs periodically ev­
ery epoch of generations. Migrants are exchanged 
among all neighboring nodes. During a migration 
generation, subpopulations grow in size, and mi­
grants are selected randomly in the originating 
subpopulations. After receiving the incoming indi­
viduals, the local population is reduced back to its 
original size. In [26], the PGA is used for optimiz­
ing Walsh functions, whereas in [3] it is applied to 
a VLSI problem. 

SBPGA inherits the favorable aspects of the shift­
ing balance model of evolution. The central aspect 
is the intrinsic parallelism which refers to the con­
current and independent exploration by the sub­
populations, called demes, of different regions in 
the adaptive topography. The shifting balance 
model lends itself to an embarrassingly parallel de­
composition, which makes it attractive for multi­
computer (e.g. hypercube) implementation, 
because demes can be allocated to the nodes of the 
multicomputer and the interdeme selection is 
based on migration between immediate neighbors. 
Equally important is that the time required for the 
drift and mass selection phases associated with lo­
cal calculations is much greater than that for the in­
terdeme selection phase associated with 
interprocessor communication. The shifting bal­
ance model is more suitable for multicomputer im­
plementation than, for example, Fisher's model 
since a multicomputer does represent a static envi­
ronment with discontinuous locations, i.e. nodes. 
Furthermore, the shifting balance model has been 
adopted in this work because it supports a constant 
drive towards higher fitness peaks. Since a rapid 
evolution of the solution of the load balancing 
problem is sought, the bias towards better candi-



date solutions in the adaptive topography is conve­
nient. It is our conjecture that although the shifting 
balance model may not be the most general model 
for natural evolution, it has advantages for artifi­
cial evolution and that it is faster than PGA's based 
on other models of population structure. However, 
the implementation of SBPGA described below 
deviates from the theory of shifting balance be­
cause natural evolution is slow and aims at contin­
uously producing fitter individuals. In artificial 
evolution, the objective is convergence to as good 
a solution as possible in a reasonable time. Hence 
in our application, we do not want a long drift 
phase followed by a long interdeme selection 
phase in each shifting balance iteration in order to 
allow the fitter genotypes to spread throughout the 
population. Instead, the coverage of the whole 
population is accomplished over a number of 
shorter iterations. 

An outline of SBPGA is presented in Figure 2 as a 
hypercube node algorithm. It assumes that the total 
population is evenly distributed as demes allocated 
to the nodes of a hypercube. Hence, demes and 
nodes become associated with each other. For ex­
ample, the neighborhood of a deme is defined as 
the demes allocated to neighboring nodes, with 
physical connection one hop away. A sequential 
GA, such as SGA, is performed in each node forD 
generations as a simulation of the drift and mass 
selection phases of the deme's evolution for solv­
ing the load balancing problem. For this purpose, 
SGA can be simplified by removing features which 
are no longer necessary for maintaining diversity. 
These features include inversion and variable op­
erator rates. Also, 1-point crossover and any ac­
ceptable selection scheme can be used instead of 2-
point ring-like crossover and ranking. Mter a drift 
phase of D generations, one-way migration is car­
ried out by allowing the demes with the higher 
adaptive peaks within their neighborhood to ex­
pand. Expansion is accomplished by sending cop­
ies of the M best individuals to the neighboring 
demes with lower peaks. It is assumed that limited 
resources are available for each deme and, thus, the 
M least fit individuals in the receiving deme are re-
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Read (problem graph and multicomputer graph) 
Random generation of initial deme. 
Evaluate fitness of this deme. 

For (DM drift-migrate cycles OR until convergence) do 
I* Drift and mass selection phases *I 
For (D drift generations) do 

Perform Sequential GA 
lfTuning Stage, set D = D _tuning 

endfor 
I* 1-way migration phase (interdeme selection) *I 
Find the highest fitness peak in the imlnediate 

neighborhood (including this deme) 
Exchonge with neighbors the pair: 

(mynode, highest peak in my neighborhood) 
Save received pairs in nodelist[] , requestedlist{] 
If (mynode is in requestedlist[/) tht!n 

Nonblocking send of copies of M migrants to 
corresponding demes in nodelist[] 

endif 
If (my node not contain highest peak inn' hood) then 

Blocking receive M migrants from the fittest 
(requested) neighbor 

Replace M weakest individuals with immigrants 
endif 

endfor/*drift-migrate*l 
Solution = Fittest individual 

Fig. 2 Outline of SBPGA (hypercube node algo). 

placed by the immigrants. Then, the drift-migrate 
cycle is repeated. 

The assumption of limited resources prevents any 
growth in the deme size and, thus, averts an in­
crease in the implementation complexity. The 
length of the genetic drift phase, D, is dependent 
upon the deme size and the parameters of the se­
quential GA that affect the allele frequencies, such 
as the rates of the genetic operators. A good choice 
for D has been empirically estimated to be 0.1 to 
0.2 of the maximum number of generations. The 
number of migrants should be big enough to force 
the shifting of control to higher adaptive peaks; but 
not too big that it swamps fit genotypes in the re­
ceiving deme. Further, it should increase for longer 
drift phases. An empirical estimate of 20 to 40 per 
cent of the deme size seems to be adequate. 



4.3 Fine-Grain PGA 

The fine-grain PGA described here is based upon 
the isolation by distance model, where the popula­
tion has a continuous and unifonn distribution over 
a large area. This model lends itself to data paral­
lelism, which makes the Connection Machine 
(CM) an attractive choice for its simulation. A CM 
implementation of a PGA has appeared in [23] for 
a classifier system. However, Robertson's work is 
based on global selection and makes heavy use of 
the communication mechanisms of the CM. An­
other CM implementation has been independently 
developed for a graphics problem [15]. Its selec­
tion scheme is similar to ours; but, it does not fully 
exploit the massive parallelism of the CM. The 
CM has also been used to verify the superiority of 
local selection to panmictic selection [4]. The iso­
lation by distance model has been employed in 
[20], [16] and [25] for solving quadratic assign­
ment and traveling salesperson, graph partitioning, 
and GA-deceptive problems, respectively. These 
PGA's have been implemented on Transputer 
based systems and on a mesh-connected DAP. In 
[16] and [20], the global fittest individual is includ­
ed in all local subpopulations during selection in 
order to increase the convergence speed. In this 
subsection, we describe an algorithm based on the 
isolation by distance model which exploits the 
massive parallelism of the Connection Machine 
and employs the load balancing problem as an ap­
plication. The algorithm is henceforth referred to 
asiDPGA. 

An outline of IDPGA is shown in Figure 3. The 
CM is configured as a 3-dimensional shape, as 
shown in Figure 4, where the population is distrib­
uted as follows. The number of virtual processors 
in the X-Y plane equals the population size. Each 
chromosome (individual) is distributed over a col­
umn of processors in the Z-direction, one gene per 
virtual processor. Each new generation is created 
in a distributed fashion by having each column of 
processors replace a parent by its offspring. In the 
reproduction step, the mating pool of each individ­
ual is restricted to a small local subpopulation, re-
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Configure CM as a 3-dimensioNJl shape 
Random generation of initial population; 

one gene per processor 
Read (problem graph, multicomputer graph) 
Evaluate fitness 

For (gen=l to nuugen) OR until convergence do 
Setv 
Selectfrom neighborhood {fittest OR random} inX-Y 
SPREAD in Z-direction the location of the mate 
Crossover (with mutation) the local individl.uJI 

with the selected mate 
Hill-climbing by the resultant offspring 

(involves REDUCE comm.) 
Evaluate fitness (involves REDUCE comm.) 

endfor 
Solution = Fittest 

Fig 3 Outline of IDPGA (CM implementation). 

t z 
Fig. 4 CM configuration for IDPGA. 

(Individual =dark column) 

ferred to as neighborhood. Each individual selects 
a mate from its neighborhood that is either a ran­
dom member or the fittest with equal probability. 
The local individual undergoes crossover with the 
selected mate and only the offspring is retained. 
0.5-unifonn crossover is used. It is particularly 
simple to implement with the allocation of genes to 
CM processors in IDPGA and carries no commu­
nication overhead. The second genetic operator, 
mutation, is a completely local operation for every 
gene. Then, hill-climbing and fitness evaluation 
are carried out for the new individuals. With the 
genes allocation described above, hill-climbing 
can no longer be performed sequentially as in 
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Fig. 5(a) 301-element GRIDl. 

SGA. In IDPGA, the boundary data elements con­
currently attempt to transfer between neighboring 
multicomputer processors. Since the decision 
about a single transfer involves global terms, de­
termined by the assignment of other data [18], con­
current hill-climbing involves errors. However, 
these erroneous decisions have been found not to 
affect the final solution, although they might have 
somewhat delayed the progress towards it. Inter­
estingly, this problem, associated with concurrent 
hill-climbing, is identical to the problem of con­
current perturbations in parallel simulated anneal­
ing. Another important feature of IDPGA, 
indicated in Figure 3, is that most steps involve 
general CM communication operations. This is the 
price paid for exploiting the massive parallelism of 
theCM. 

Oearly, subpopulations overlap in IDPGA and, 
thus, the fitter genotypes spread throughout the 
population by diffusion. The neighborhood of an 
individual is formed of the individuals within a 
certain distance in the X-Y plane. Obviously, this 
PGA also enjoys intrinsic parallelism. A small 
neighborhood size enhances the intrinsic parallel­
ism and local differentiation and, thus, minimizes 
the possibility of premature convergence. Howev­
er, it should not be too small otherwise it might 
take a long time for the search to find an acceptable 
solution. Another advantage of small neighbor­
hoods is a smaller communication cost. In search­
ing for the fittest in their neighborhoods, 
processors communicate along the same dimen-
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Fig. 5(b) 551-element GRID2. 
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Fig. 6 Best assignment of GRID1 by 
SBPGA, and processor loads. 

sion at the same time, which reduces link conten­
tion. The choice of the fittest in the neighborhood 
as the second parent half the time in the reproduc­
tion step is a modification to the original isolation 
by distance model. Since the diffusion process is 
slow, this modification is justified for increasing 
the selection pressure and, hence, for speeding up 
the evolution of a solution. The better convergence 
caused by this modification is not expected to sac­
rifice the quality of the solution because of the 
small size of the neighborhoods, within which the 
fittest is sought, relative to the population size. 

5. SIMULATION RESULTS 

The results given below illustrate solutions for the 
load balancing problem and demonstrate the appli­
cability and operation of the underlying evolution­
ary models. The test cases used are two irregular 
domains shown in Figure 5; GRID 1 has irregular 
geometry and GRID2 is nonuniform. GRIDI and 
GRID2 are to be assigned to 8-node and 16-node 
hypercube multicomputers, respectively. These 
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Fig. 7 Evolution of the efficiency of the 
assignment of GRID1 in 1 deme. 

test cases have been chosen because of their irreg­
ularities and reasonable sizes, and because previ­
ous results for other algorithms, including SGA, 
are available for comparison. The performance 
measures for SBPGA and IDPGA applied to the 
load balancing problem are the quality of the solu­
tion and the number of evolving generations (exe­
cution time). The quality of the solution is given by 
the hypeiCube 's efficiency, defined as the ratio of 
the sequential execution time to the product of the 
parallel time and the number of nodes. The evolu­
tion time is recorded in generations, in addition to 
seconds, so that it becomes possible to compare the 
evolution speed on different machines. Efficiency 
values are normalized with respect to a geometri­
cally derived optimal value. The latter serves as a 
reference and to indicate how good the results are, 
since the optima are not known. The results pre­
sented here are based on 10 runs for each case, un­
less stated otherwise. 

5.1 SBPGA Results 

SBPGA has been implemented on a 16-node iPSC/ 
2 hypercube. The required parameters are as fol­
lows. The total population size used is 320 for 
GRID1 and 512 for GRID2. The crossover rate is 
0.7 and the mutation rate is 0.003. The number of 
drift generations, D, and the fraction of migrants, 
M, will be given below for each case. However, in 
the tuning stage of the search, D is halved to allow 
faster spreading of the genotypes produced by de­
creasing v in the objective function. 

(a) The best assignment ofGRID1 found by SBP-
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Fig. 10 Assignment of GRID2 by SBPGA. 

GA is shown in Figure 6 for D=lO and M=30%. 
The evolution of the candidate solution in one 
deme is depicted in Figure 7. SBPGA finds a solu­
tion 97.7% of the geometric optimum in 66 gener­
ations, which takes about 2 minutes. The averages 
of 10 runs is 96% efficiency and 65 generations. 
The time taken by the interdeme selection phase 



has been found to be 1.3% of that for the drift-mass 
selection phase. This makes the interprocessor 
communication time in the implementation of SB­
PGA negligible. The step improvement in the effi­
ciency value of the candidate solution in a deme 
after the arrival of immigrants from the fittest 
neighbor is clearly manifested in Figure 7 at some 
points, such as generations 11 and 21. It can be 
seen from Figure 6 that SBPGA does not strictly 
insist on assigning equal number of elements to 

processors. Instead, it emphasizes the (approxi­
mate) balancing of the combined calculation and 
communication load, as required by the assumed 
computational model. Another feature of the solu­
tion in Figure 6 is that processors 3 and 4 are allo­
cated discontiguous subdomains. This is not 
necessarily bad in our model of computation. In 
fact, for some problems, an optimal assignment 
can not be contiguous. This remark also applies to 
the other results below. The best solution found by 
SGA [18] is also shown in Figure 7 for comparison 
purposes; it is 97% of the optimum found in 118 
generations. 

(b) The efficiency of the assignment of GRID 1, the 
number of generations required for evolving the 
assignment, and the time taken are illustrated in 
Figures 8 and 9 for different lengths of the drift 
phase and migration percentages, respectively. The 
values shown are the best of 5 runs. From Figure 8, 
it can be seen that if D is less than 5, the evolution 
model approaches that of a single mating unit and 
migrants increase the selection pressure, possibly 
leading to premature convergence. If D is greater 
than or equal to 15, the search becomes slow and 
inefficient. Therefore, D should be in the range 5 to 
15 or, equivalently, 10 to 20 per cent of the maxi­
mum number of generations. In Figure 9, the re­
sults of M=5 are surprisingly good but are 
generally unsafe. It can be seen that ifM is greater 
than 40% the selection pressure becomes too high, 
whereas a value less than 15% might not provide a 
sufficient shifting of control. It is concluded that 20 
to 40 per cent of the deme size is a suitable range 
of values for M. Moreover, it is intuitive that as D 
decreases M should also drop to balance out the in-
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crease in the selection pressure. 

(c) The best of 10 assignmentsofGRID2is shown 
in Figure 10 for 0=20 and M=30%. It corresponds 
to an efficiency ratio of 96% and is reached after 
135 generations in about 11 minutes. The evolu­
tion of this solution is similar to that for GRID 1. 
The time taken by migration and, thus, interproces­
sor communication is also negligible. In compari­
son, SGA has found a solution which is 93% of the 
optimum in 280 generations. 

5.2 IDPGA Results 

IDPGA has been implemented on an 8K-processor 
CM-2. The population sizes are the same as for 
SBPGA. The crossover and mutation rates are 1.0 
and 0.004, respectively. The neighborhood size is 
chosen to be 24 unless stated otherwise. It is 
formed of the individuals that are within a distance 
of three units in the X-Y plane. The diagrams for 
the assignments are not included here due to limit­
ed space 

(a) The best assignment found for GRID1 corre­
sponds to an efficiency of 97.7% of the optimum 
and has been found in 46 generations. Each gener­
ation takes 14 seconds. The averages of 10 runs are 
95.2% efficiency and 45 generations. 

(b) Neighborhoods of sizes different than 24 have 
been experimented with. For a neighborhood size 
of 12 the best efficiency ratio is 96% found in 49 
generations. For a larger size of 48, the best effi­
ciency drops to 94.8% found in 42 generations. 
These results show that a range of sizes are suitable 
for the current implementation of IDPGA. Howev­
er, it is intuitive that a very small neighborhood 
leads to longer search time, and that a very large 
one becomes closer to the single mating unit model 
and increases the communication time. Therefore, 
an appropriate neighborhood size is in the range of 
5 to 10 percent of the population size. 

(c) The best assignment of GRID2 by IDPGA cor­
responds to an efficiency ratio of 94.3% found in 



62 generations. Each generation takes 58 seconds. 
The averages are 92.8% efficiency and 60 genera­
tions. 

6. DISCUSSION 

For the test cases considered, SBPGA and IDPGA 
have found better solutions than those produced by 
the sequential genetic algorithm [18], SGA, with 
identical parameter values. The results of SBPGA 
and IDPGA also compare favorably with those ob­
tained by other techniques. For example, simulated 
annealing yields a comparable solution of 95% ef­
ficiency ratio for GRID1 [17]. Other faster meth­
ods produce lower quality solutions. In particular, 
a neural network [9], recursive bisection [8], scat­
tered decomposition with patch size of 4 [19], and 
rectangular decomposition give 91%, 87%, 61%, 
and 74% efficiency for GRID1, respectively. Fur­
ther, the two PGA's share the property of genetic 
algorithms that they do not show a bias towards 
particular problem configurations [17]. Hence, the 
favorable results for GRID1 and GRID2 are ex­
pected to extend to general configurations. 

SBPGA and IDPGA exhibit superlinear speed-ups 
since they take a lesser number of generations than 
the sequential counterpart for evolving good sub­
optimal solutions. Thus, the PGA's are faster not 
only due to the parallel implementation but also 
due to the intrinsic parallelism of the underlying 
evolution models which has the potential to evolve 
fit genotypes faster than the single mating unit 
case. In comparison with other methods, the exe­
cution time of the sequential GA is comparable to 
that for a simulated annealing algorithm that pro­
duces comparable solutions [17]; other methods, 
such as those listed above, are faster at the expense 
of solution quality. Extrapolating this comparison 
of execution time to the parallel versions of these 
methods for hypercubes and the CM, a similar as­
sessment might be made. 

The results indicate that SBPGA and IDPGA are 
fairly robust. The intrinsic parallelism in the un­
derlying evolution models provides a natural way 

11 

for controlling the convergence of the evolving 
structures. Thus, the probability that the genetic 
search gets trapped in bad local optima is mini­
mized, and the need for additional measures and 
parameters such as those used in SGA is obviated. 
The sensitivity of both PGA's to the parameter that 
determines the start of the tuning stage of the 
search is less than that of SGA, also due to the in­
trinsic parallelism. This insensitivity can be en­
hanced by using different parameter values in 
different subpopulations. Moreover, the results of 
SBPGA for different values of D and M indicate 
that a range of values are acceptable and an exact 
design value is not necessary. A similar comment 
applies to the neighborhood size in IDPGA. 

Further work can be done to improve SBPGA and 
IDPGA. This would include the exploration of oth­
er CM configurations for IDPGA, corresponding 
to different geographic population distributions. 
Also, the chromosomes can be allocated to the CM 
columns of processors in a way that exploits the 
physical hardware for reducing communication 
cost. For example, chromosomes can be allocated 
to the 16-processor chips that form the nodes of the 
CM's cube, or contiguous segments of the chromo­
some can be allocated to the same physical proces­
sor. For SBPGA, asynchronous operation seems 
appealing. It would involve variable values for M 
and the use of different values for D in different 
demes accounted for by polling in every genera­
tion. These improvements are the subject of further 
research. 

7. CONCLUSIONS 

We have presented two PGA's, SBPGA and IDP­
GA, which are based on the shifting balance theory 
and the isolation by distance model for natural ev­
olution, respectively. Their operation has been ver­
ified for the load balancing problem. The results of 
the artificial evolution demonstrate the applicabili­
ty of the underlying natural evolution models. Fur­
ther, the near-optimal solutions found and the 
speed-up obtained show the suitability of SBPGA 
and IDPGA as new load balancing techniques that 



are faster and more robust than sequential GA's 
and that compare favorably to other load balancing 
methods. 

As in evolutionary biology where different cases 
are simulated and explained by different models, 
we conjecture that the different characteristics of 
SBPGA and IDPGA makes the choice between 
them problem-dependent for general application. 
For example, IDPGA would be more suitable for 
problems that require large population sizes with 
simple and localized operations for the genes. 

Although more applications are needed for a firm 
evaluation of the PGA's presented here and in other 
works, a preliminary assessment would support the 
view that "parallel computers are complex. The 
most complex systems have evolved in nature .... 
parallel computers can be better understood by 
models derived from natural sciences and these 
models can be simulated better by parallel comput­
ers." [21]. 
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