
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

9-1991

Parallel Genetic Algorithms with Application to Load Balancing for Parallel Genetic Algorithms with Application to Load Balancing for

Parallel Computing Parallel Computing

N. Mansouri
Syracuse University, Department of Engineering and Computer Science, namansou@ecs.syr.edu

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mansouri, N. and Fox, Geoffrey C., "Parallel Genetic Algorithms with Application to Load Balancing for
Parallel Computing" (1991). Electrical Engineering and Computer Science - Technical Reports. 128.
https://surface.syr.edu/eecs_techreports/128

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/128?utm_source=surface.syr.edu%2Feecs_techreports%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-48

Parallel Genetic Algorithms
with Application to

Load Balancing for Parallel Computing

N. Mansour and G.C. Fox

September, 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

PARALLEL GENETIC ALGORTIHMS
WITI:I APPLICATION TO

WAD BALANCING FOR PARALLEL COMPUTING

N. Mansour
School of Computer and Information Science
Syracuse Center for Computational Science

G. C. Fox
Northeast Parallel Architectures Center
Syracuse Center for Computational Science
Department of Physics
School of Computer and Information Science

SYRACUSE UNIVERSITY

ADDRESS FOR CORRESPONDENCE

N as hat Mansour

NPAC
111 College Place
Syracuse University
Syracuse NY 13244-4100

e-mail: nmansow@top.cis.syr.edu

Tel: (315) 443-4883

Abstract

A new coarse grain parallel genetic algorithm
(PGA) and a new implementation of a data-parallel
GA are presented in this paper. They are based on
models of natural evolution in which the popula­
tion is formed of discontinuous or continuous sub­
populations. In addition to simulating natural
evolution, the intrinsic parallelism in the two
PGA's minimizes the possibility of premature con­
vergence that the implementation of classic GA's
often encounters. Intrinsic parallelism also allows
the evolution of fit genotypes in a smaller number
of generations in the PGA's than in sequential
GA's, leading to superlinear speed-ups. The PGA's
have been implemented on a hypen:ube and a Con­
nection Machine, and their operation is demon­
strated by applying them to the load balancing
problem in parallel computing. The PGA's have
found near-optimal solutions which are compara­
ble to the solutions of a simulated annealing algo­
rithm and are better than those produced by a
sequential GA and by other load balancing meth­
ods. On one hand, The PGA's accentuate the ad­
vantage of parallel computers for simulating
natural evolution. On the other hand, they repre­
sent new techniques for load balancing parallel
computations.

Key words: Data allocation, data partitioning,
load balancing, loosely-synchronous algorithms,
natural evolution simulation, parallel genetic algo­
rithms, physical optimization methods, task
allocation.

1

1. INTRODUCTION

Genetic algorithms (GA's) are search techniques
based on the mechanics of natural evolution,
where species search for beneficial adaptations to
a changing environment [12, 14]. In GA's, artificial
evolution takes place over successive, usually dis­
continuous, generations for solving a problem.
Each generation consists of a population of chro­
mosomes, also called individuals, which represent
possible solutions. The initial generation is created
at random. Each consecutive generation is created
by the individuals concurrently searching the
adaptive topography. FJrStly, individuals repro­
duce according to their fitness. Then, mates are se­
lected and genetic operators are applied to create
offsprings, which replace the parents. In this pro­
cess, high-performance building blocks are propa­
gated and combined to find fitter structures leading
to optimal or near-optimal solutions. The parame­
ters of this search strategy would be designed so
that a balance between the exploitation of fitter
structures and the exploration of the search space
is secured for a sufficient number of generations.

Most of the GA work has considered the total pop­
ulation a single random mating unit from which
parents can be selected. This model has two short­
comings. Firstly, the model is not quite relevant for
species in nature. Natural populations are normally
distributed in various ways that confine reproduc­
tion to subpopulations, with interaction among
subpopulations. Secondly, the single mating unit
population structure is one of the reasons for the
premature convergence problem often encoun­
tered in the implementation of GA's [2] because it
can allow the exploitation aspect of the genetic
search to dominate. Therefore, the use of distribut­
ed population structures provides better models of
natural evolution and helps in overcoming the
problem of the convergence of the search into local
optima.

Parallel GA's (PGA's) are suitable for simulating
distributed population structures. Subpopulations

computer, and interactions among subpopulations
can occur via the interconnection network. Differ­
ent population structures can be modeled by differ­
ent PGA's for suitable parallel computers. Because
of this close association between distributed popu­
lation GA's and their parallel implementation, we
will henceforth not distinguish between them and
will refer to both as parallel GA's. In addition to a
more realistic mimic of natural evolution, PGA's
obviously provide faster execution than sequential
GA's. The use of the model of distributed popula­
tion offers better speed-ups than straight parallel­
ization of sequential GA's, because the latter
requires global selection in the reproduction step
and, thus, incurs the penalty of global interproces­
sor communication. In addition, straight parallel­
iza.tion does not contribute to the alleviation of
premature convergence. Further, distributed popu­
lation models enjoy intrinsic parallelism which
leads to superlinear speed-ups. Intrinsic parallel­
ism refers to the concurrent and independent ex­
ploration by the subpopulations of many different
regions in the adaptive topography. A number of
models for distributed natural population struc­
tures have been proposed in the population genet­
ics literature [5, 13, 29, 30]; important models are
summarized in section 4. Previous PGA's [3, 16,
20, 22, 23] share features with some of these mod­
els. Their operation have been demonstrated by
solving problems such as the optimization of
Walsh functions, the traveling salesperson prob­
lem ... etc. These PGA's differ in the models they
adopt for the population structure, in the mecha­
nisms used for implementing some features of the
models, and in the applications they deal with.

In this paper, new coarse-grain and fine-grain
PGA's are presented. The coarse-grain PGA is
based upon a model of discontinuous population
structure and the theory of shifting balance of evo­
lution [30]; it has been implemented on a hyper­
cube. The fine-grain PGA is a data-parallel
algorithm based on the isolation by distance model
of populations with continuous distribution [29]; it
has been implemented on the Connection Ma­
chine. The coarse-grain PGA offers faster conver-

2

gence than do other coarse-grain PGA's, which is
advantageous for many applications. The fine­
grain PGA provides a model that exploits massive
parallelism.

The operation of the PGA's is demonstrated in this
work by applying them to an NP-complete optimi­
zation problem, namely the load balancing prob­
lem in parallel computing. However, it should be
emphasized that the two PGA's represent general
models which fit in the framework of physical
computation [11]. The PGA's have general appli­
cability, especially to time-demanding optimiza­
tion problems. For example, genetic algorithms
used in designing neural networks can take months
on sequential computers and, thus, speed is of ut­
most importance for such an application [27].
Load balancing is concerned with equal distribu­
tion of the workload among the processors of a
multicomputer. For loosely-synchronous algo­
rithms, it is based on partitioning the underlying
data set constituting the problem domain. This
problem has been chosen as an application for the
PGA's because it is an important problem in paral­
lel computing and is a new application for GA's.
Moreover, the results of a sequential GA [18] are
available for comparison. Previous approaches to
load balancing are based on techniques such as
mincut-based heuristics, recursive bisection, simu­
lated annealing, scattered decomposition and neu­
ral networks [1, 6, 7, 8, 9, 10, 19, 24, 28]. The
performance of these techniques vary in terms of
the quality of the solution produced and the execu­
tion time required. The experimental results re­
ported below show that the proposed PGA's evolve
near-optimal solutions which are superior to those
produced by several previous methods.

This paper is organized as follows. Section 2 de­
fines the load balancing problem. Section 3 pre­
sents a sequential GA, some of whose constituents
are employed by the PGA's. Section 4 includes a
brief summary of models of natural populations
and a presentation of the PGA's based on two of
these models. The experimental results are given
and discussed in Sections 5 and 6. Conclusions are

given in Section 7.

2. LOAD BALANCING PROBLEM

Load balancing refers to the partitioning of a prob­
lem domain into disjoint subdomains and the as­
signment of the subdomains to the processors of a
multicomputer such that an objective function,
namely the total execution time, is minimized.
Both the problem domain and the multicomputer
are considered as graphs. The minimization of the
objective function corresponds to balancing the
calculations among the processors and minimiz­
ing/balancing the interprocessor communication.
The objective function depends on the computa­
tion model. The model considered here is that of
loose synchronicity [10], with all processors run­
ning the same code for the problem subdomains as­
signed to them. Loosely synchronous algorithms
repeat a calculate-communicate cycle, where a
processor carries out the calculations for its subdo­
main and then communicates with other proces­
sors to exchange necessary boundary information.
In this computation model, the total execution time
is determined by the slowest processor and, thus,
the objective function is represented by the largest
combined calculation-communication load. How­
ever, this exact objective function is too computa­
tionally expensive to use in genetic algorithms and
is replaced by an approximate objective function
given by

r2'LN2 (p) +vRLLC(p,q) (l)
p p q

where r is the ratio of the amount of calculation to
the amount of communication per data element (a
characteristic of the algorithm), N(p) is the number
of elements allocated to processor p, R is the ratio
of the time needed to communicate a unit of infor­
mation one unit distance to the time required for
one calculation operation (a characteristic of the
multicomputer), v is a constant scaling factor ex­
pressing the relative importance of communication
with respect to calculation, and C(p,q) is the com­
munication cost between processors p and q. This
objective function enjoys a locality property that

3

greatly reduces the computational cost [18].

3. SEQUENTIAL GENETIC ALGORITHM

Read (problem graph mel multicomputer graph);
RIIRCiom Genention of initial population P(O) of size POP;
Evaluate fitness of individuals in P(O);
For (gen = 1 to maxgen) OR until convergence do

Set (v, operator rates, freq-hillclimbing);
Rank individuals in ~en-1). and

allocate reproducbon trials stored in MATESQ;
,. produce new generation P(gen) */
For (i = 1 to POP step 2) do

Randomly select 2 parents from MATES 0;
Apply genetic opezatOis (2-pt crossovec, mutation, invecsion);
Hill-climbing by offsprings;

endfor
Evaluate fitness of individuals in P(gen);
Retain the better of {fittest(gen), fittest(gen-1)};

endfor
Solution= fittest individual

Fig. 1 An Outline of SGA.

A sequential hybrid genetic algorithm (SGA) has
been proposed for load balancing [18], and is out­
lined in Figure 1. It combines a number of design
choices and includes a hill climbing procedure for
reducing the possibility of premature convergence
and for significantly improving the efficiency of
the genetic seaiCh. SGA is briefly presented here,
concentrating on the constituents that are relevant
to the PGA's.

The chromosomal encoding of an assignment of
data to processors is given by a string of integers
(allele values); an integer refers to a processor and
its position in the string represents the assigned da­
tum. The fitness of an individual in any generation
is the reciprocal of the objective function defined
in expression (1). The reproduction scheme is
based on elitist ranking followed by random selec­
tion of parents from the list of reproduction trials
allocated to the ranked individuals. In ranking, fit­
nesses are sorted first and reproduction trials areal­
located to the individuals according to a
predetermined scale of equidistant values. Elitism
refers to the preservation of the fittest-so-far indi­
vidual. In each generation, the fittest individual is
considered a candidate solution. The genetic oper­
ators used are 2-point ring-like crossover, muta­
tion, and inversion. The rates of these operators are

made variable in order to maintain diversity in the
population. A heuristic procedure tailored to the
load balancing problem is incorporated for hill
climbing by individuals. In this procedure, the
boundary elements of the subdomains assigned to
the processors can transfer between processors.
The transfer takes place only if it does not cause
the fitness of the total structure to decrease. It has
been found that the evolution associated with SGA
goes through three stages. In the tuning stage,
which is the last stage, the value of v in expression
(1) is decreased in order to improve the results.
Other features are also included in SGA for evad­
ing some computational costs and for reinforcing
favorable aspects of the genetic search. The details
and the advantages of these features are explained
in [18].

4. POPULATION GENETICS AND PARAL­
LEL GENETIC ALGORITHMS

In this section, PGA's based on models of natural
evolution are presented. Important models in pop­
ulation genetics are briefly summarized in Subsec­
tion 4.1 as a prelude to the descriptions in
Subsections 4.2 and 4.3.

4.1 Models of Population Structure

A natural population fonning a species is usually
spread over a large area. Hence, it does not consti­
tute a single random mating unit, as viewed by the
classic GA [12, 14], because the distance of indi­
vidual movement would be much smaller than the
entire distribution area of the population. The mat­
ing pool for selection is restricted to a certain range
of distances and distant individuals would lie in
different pools giving rise to some form of subpop­
ulations. Associated with genetic drift, such popu­
lation distribution leads to local differentiation in
allele frequencies and to genetic divergence among
subpopulations. Such geographic population struc­
tures can have profound effects on the evolution of
species. In contrast with the case where the popu­
lation is a single mating unit, variability across the
populations persists and the problem of premature

4

convergence is not encountered. Several models
for population structures have been devised in pop­
ulation genetics. They involve various views for
the subdivision of population and various schemes
for intergroup selection and for genetic exchange
or migration among the groups (subpopulations).
Important and relevant models are summarized
here. These models can be broadly divided into
two categories according to whether the distribu­
tion of population is continuous or discontinuous.

Wright's island model of population structure [5]
assumes that the population is large and is split into
semi-isolated subpopulations or demes dispersed
geographically like islands, each breeding at ran­
dom within itself. Each generation, a deme ex­
changes a fraction of its members for migrants
drawn at random from the rest of the population. If
their number is not too small, the migrants can be
considered representative of the subpopulations in
terms of allele frequency, and incoming alleles can
be assumed to be independent. The mathematical
analysis for this model has shown that the coeffi­
cient of genetic differentiation is predominantly
determined by the amount of migration and is in­
dependent of the mutation rate and the total num­
ber of alleles [5, 13]. The island model is not likely
to be realized in nature since the immigrants usual­
ly come from adjacent demes and, thus, are not a
random sample of the species. Kimura's stepping­
stone models are based on the adjacency observa­
tion. These models assume certain geometrical
patterns for the deme locations, such as linear ar­
rays and rectangular grids [13]. Migration is al­
lowed only between immediate neighbors.

The shifting balance theory of evolution [30] pre­
sents another model of discontinuous population
structure. In Wright's view, this model offers a
good chance for the population to avoid being
hung up on a low adaptive peak and to evolve nov­
el types of gene interactions. The shifting balance
process iterates through three phases. The first
phase is the random genetic drift phase, in which
the allele frequencies drift to some extent and,
thus, the demes explore their adaptive topography.

The second phase is for mass selection which per­
mits the favorable gene combinations created in
the first phase to rapidly become incorporated into
the genome of the subpopulation by means of nat­
ural selection. Different demes now contain sets of
allele frequencies that are likely to correspond, by
chance, to various adaptive peaks with different
heights. The third phase is for interdeme selection,
where demes with higher fitness increase in size
and shift the allele frequencies of adjacent demes
by one-way migration until they come under the
control of the higher fitness peak. The favorable
genotypes become spread throughout the popula­
tion in ever-widening concentric circles. In this
fashion, larger parts of the adaptive topography
can be explored, and a continual shifting of control
from one adaptive peak to a higher one takes place.
In contrast, Fisher argued against the shifting bal­
ance theory by suggesting that the adaptive peaks
in multidimensional fitness landscapes are not very
high and that they are connected by fairly high
ridges, always shifting because of environmental
changes [5]. Thus, the landscape is more analo­
gous to waves and troughs in an ocean than to a
static one.

In contrast with the above-mentioned models,
Wright considered a model where the population is
distributed uniformly over a large area, but inter­
breeding is restricted to small distances [29]. Ge­
netic divergence within the population takes place
merely due to isolation by distance. Each individ­
ual has its origin at a particular place and its par­
ents are drawn at random from a small
neighborhood. Fitter genotypes are spread
throughout the population by diffusion rather than
migration. The size of the neighborhood and the
shape of the habitat play an important role in the
analysis of the model.

4.2 Coarse-Grain PGA

The coarse-grain parallel genetic algorithm pre­
sented here is based on the shifting balance theory
of evolution and is henceforth referred to as SBP­
GA. Previous Coarse-grain PGA's are based on

5

other models of population structure. In [22], a
PGA is presented for optimizing DeJong's func­
tions. In this PGA, the population is split into sub­
populations, and neighboring subpopulations
exchange and insert into their local population the
fittest individual in every generation. The distribut­
ed GA's in [26] and [3] share significant aspects
with the stepping stone models. In these algo­
rithms, subpopulations are assigned to the nodes of
a hypercube, and migration occurs periodically ev­
ery epoch of generations. Migrants are exchanged
among all neighboring nodes. During a migration
generation, subpopulations grow in size, and mi­
grants are selected randomly in the originating
subpopulations. After receiving the incoming indi­
viduals, the local population is reduced back to its
original size. In [26], the PGA is used for optimiz­
ing Walsh functions, whereas in [3] it is applied to
a VLSI problem.

SBPGA inherits the favorable aspects of the shift­
ing balance model of evolution. The central aspect
is the intrinsic parallelism which refers to the con­
current and independent exploration by the sub­
populations, called demes, of different regions in
the adaptive topography. The shifting balance
model lends itself to an embarrassingly parallel de­
composition, which makes it attractive for multi­
computer (e.g. hypercube) implementation,
because demes can be allocated to the nodes of the
multicomputer and the interdeme selection is
based on migration between immediate neighbors.
Equally important is that the time required for the
drift and mass selection phases associated with lo­
cal calculations is much greater than that for the in­
terdeme selection phase associated with
interprocessor communication. The shifting bal­
ance model is more suitable for multicomputer im­
plementation than, for example, Fisher's model
since a multicomputer does represent a static envi­
ronment with discontinuous locations, i.e. nodes.
Furthermore, the shifting balance model has been
adopted in this work because it supports a constant
drive towards higher fitness peaks. Since a rapid
evolution of the solution of the load balancing
problem is sought, the bias towards better candi-

date solutions in the adaptive topography is conve­
nient. It is our conjecture that although the shifting
balance model may not be the most general model
for natural evolution, it has advantages for artifi­
cial evolution and that it is faster than PGA's based
on other models of population structure. However,
the implementation of SBPGA described below
deviates from the theory of shifting balance be­
cause natural evolution is slow and aims at contin­
uously producing fitter individuals. In artificial
evolution, the objective is convergence to as good
a solution as possible in a reasonable time. Hence
in our application, we do not want a long drift
phase followed by a long interdeme selection
phase in each shifting balance iteration in order to
allow the fitter genotypes to spread throughout the
population. Instead, the coverage of the whole
population is accomplished over a number of
shorter iterations.

An outline of SBPGA is presented in Figure 2 as a
hypercube node algorithm. It assumes that the total
population is evenly distributed as demes allocated
to the nodes of a hypercube. Hence, demes and
nodes become associated with each other. For ex­
ample, the neighborhood of a deme is defined as
the demes allocated to neighboring nodes, with
physical connection one hop away. A sequential
GA, such as SGA, is performed in each node forD
generations as a simulation of the drift and mass
selection phases of the deme's evolution for solv­
ing the load balancing problem. For this purpose,
SGA can be simplified by removing features which
are no longer necessary for maintaining diversity.
These features include inversion and variable op­
erator rates. Also, 1-point crossover and any ac­
ceptable selection scheme can be used instead of 2-
point ring-like crossover and ranking. Mter a drift
phase of D generations, one-way migration is car­
ried out by allowing the demes with the higher
adaptive peaks within their neighborhood to ex­
pand. Expansion is accomplished by sending cop­
ies of the M best individuals to the neighboring
demes with lower peaks. It is assumed that limited
resources are available for each deme and, thus, the
M least fit individuals in the receiving deme are re-

6

Read (problem graph and multicomputer graph)
Random generation of initial deme.
Evaluate fitness of this deme.

For (DM drift-migrate cycles OR until convergence) do
I* Drift and mass selection phases *I
For (D drift generations) do

Perform Sequential GA
lfTuning Stage, set D = D _tuning

endfor
I* 1-way migration phase (interdeme selection) *I
Find the highest fitness peak in the imlnediate

neighborhood (including this deme)
Exchonge with neighbors the pair:

(mynode, highest peak in my neighborhood)
Save received pairs in nodelist[] , requestedlist{]
If (mynode is in requestedlist[/) tht!n

Nonblocking send of copies of M migrants to
corresponding demes in nodelist[]

endif
If (my node not contain highest peak inn' hood) then

Blocking receive M migrants from the fittest
(requested) neighbor

Replace M weakest individuals with immigrants
endif

endfor/*drift-migrate*l
Solution = Fittest individual

Fig. 2 Outline of SBPGA (hypercube node algo).

placed by the immigrants. Then, the drift-migrate
cycle is repeated.

The assumption of limited resources prevents any
growth in the deme size and, thus, averts an in­
crease in the implementation complexity. The
length of the genetic drift phase, D, is dependent
upon the deme size and the parameters of the se­
quential GA that affect the allele frequencies, such
as the rates of the genetic operators. A good choice
for D has been empirically estimated to be 0.1 to
0.2 of the maximum number of generations. The
number of migrants should be big enough to force
the shifting of control to higher adaptive peaks; but
not too big that it swamps fit genotypes in the re­
ceiving deme. Further, it should increase for longer
drift phases. An empirical estimate of 20 to 40 per
cent of the deme size seems to be adequate.

4.3 Fine-Grain PGA

The fine-grain PGA described here is based upon
the isolation by distance model, where the popula­
tion has a continuous and unifonn distribution over
a large area. This model lends itself to data paral­
lelism, which makes the Connection Machine
(CM) an attractive choice for its simulation. A CM
implementation of a PGA has appeared in [23] for
a classifier system. However, Robertson's work is
based on global selection and makes heavy use of
the communication mechanisms of the CM. An­
other CM implementation has been independently
developed for a graphics problem [15]. Its selec­
tion scheme is similar to ours; but, it does not fully
exploit the massive parallelism of the CM. The
CM has also been used to verify the superiority of
local selection to panmictic selection [4]. The iso­
lation by distance model has been employed in
[20], [16] and [25] for solving quadratic assign­
ment and traveling salesperson, graph partitioning,
and GA-deceptive problems, respectively. These
PGA's have been implemented on Transputer
based systems and on a mesh-connected DAP. In
[16] and [20], the global fittest individual is includ­
ed in all local subpopulations during selection in
order to increase the convergence speed. In this
subsection, we describe an algorithm based on the
isolation by distance model which exploits the
massive parallelism of the Connection Machine
and employs the load balancing problem as an ap­
plication. The algorithm is henceforth referred to
asiDPGA.

An outline of IDPGA is shown in Figure 3. The
CM is configured as a 3-dimensional shape, as
shown in Figure 4, where the population is distrib­
uted as follows. The number of virtual processors
in the X-Y plane equals the population size. Each
chromosome (individual) is distributed over a col­
umn of processors in the Z-direction, one gene per
virtual processor. Each new generation is created
in a distributed fashion by having each column of
processors replace a parent by its offspring. In the
reproduction step, the mating pool of each individ­
ual is restricted to a small local subpopulation, re-

7

Configure CM as a 3-dimensioNJl shape
Random generation of initial population;

one gene per processor
Read (problem graph, multicomputer graph)
Evaluate fitness

For (gen=l to nuugen) OR until convergence do
Setv
Selectfrom neighborhood {fittest OR random} inX-Y
SPREAD in Z-direction the location of the mate
Crossover (with mutation) the local individl.uJI

with the selected mate
Hill-climbing by the resultant offspring

(involves REDUCE comm.)
Evaluate fitness (involves REDUCE comm.)

endfor
Solution = Fittest

Fig 3 Outline of IDPGA (CM implementation).

t z
Fig. 4 CM configuration for IDPGA.

(Individual =dark column)

ferred to as neighborhood. Each individual selects
a mate from its neighborhood that is either a ran­
dom member or the fittest with equal probability.
The local individual undergoes crossover with the
selected mate and only the offspring is retained.
0.5-unifonn crossover is used. It is particularly
simple to implement with the allocation of genes to
CM processors in IDPGA and carries no commu­
nication overhead. The second genetic operator,
mutation, is a completely local operation for every
gene. Then, hill-climbing and fitness evaluation
are carried out for the new individuals. With the
genes allocation described above, hill-climbing
can no longer be performed sequentially as in

.................... ::::::::::::
Fig. 5(a) 301-element GRIDl.

SGA. In IDPGA, the boundary data elements con­
currently attempt to transfer between neighboring
multicomputer processors. Since the decision
about a single transfer involves global terms, de­
termined by the assignment of other data [18], con­
current hill-climbing involves errors. However,
these erroneous decisions have been found not to
affect the final solution, although they might have
somewhat delayed the progress towards it. Inter­
estingly, this problem, associated with concurrent
hill-climbing, is identical to the problem of con­
current perturbations in parallel simulated anneal­
ing. Another important feature of IDPGA,
indicated in Figure 3, is that most steps involve
general CM communication operations. This is the
price paid for exploiting the massive parallelism of
theCM.

Oearly, subpopulations overlap in IDPGA and,
thus, the fitter genotypes spread throughout the
population by diffusion. The neighborhood of an
individual is formed of the individuals within a
certain distance in the X-Y plane. Obviously, this
PGA also enjoys intrinsic parallelism. A small
neighborhood size enhances the intrinsic parallel­
ism and local differentiation and, thus, minimizes
the possibility of premature convergence. Howev­
er, it should not be too small otherwise it might
take a long time for the search to find an acceptable
solution. Another advantage of small neighbor­
hoods is a smaller communication cost. In search­
ing for the fittest in their neighborhoods,
processors communicate along the same dimen-

8

!'-. ~-""' r-
-H
-
f-

f- f'r-(r--..
Ill II Ill Ill ID

I I ..~

Fig. 5(b) 551-element GRID2.

Proc Calc Comm
0 37 15
1 36 16
2 39 10
3 39 11
4 36 19
5 38 15
6 38 15
7 38 15

Fig. 6 Best assignment of GRID1 by
SBPGA, and processor loads.

sion at the same time, which reduces link conten­
tion. The choice of the fittest in the neighborhood
as the second parent half the time in the reproduc­
tion step is a modification to the original isolation
by distance model. Since the diffusion process is
slow, this modification is justified for increasing
the selection pressure and, hence, for speeding up
the evolution of a solution. The better convergence
caused by this modification is not expected to sac­
rifice the quality of the solution because of the
small size of the neighborhoods, within which the
fittest is sought, relative to the population size.

5. SIMULATION RESULTS

The results given below illustrate solutions for the
load balancing problem and demonstrate the appli­
cability and operation of the underlying evolution­
ary models. The test cases used are two irregular
domains shown in Figure 5; GRID 1 has irregular
geometry and GRID2 is nonuniform. GRIDI and
GRID2 are to be assigned to 8-node and 16-node
hypercube multicomputers, respectively. These

100
eff
ratio

generation

Fig. 7 Evolution of the efficiency of the
assignment of GRID1 in 1 deme.

test cases have been chosen because of their irreg­
ularities and reasonable sizes, and because previ­
ous results for other algorithms, including SGA,
are available for comparison. The performance
measures for SBPGA and IDPGA applied to the
load balancing problem are the quality of the solu­
tion and the number of evolving generations (exe­
cution time). The quality of the solution is given by
the hypeiCube 's efficiency, defined as the ratio of
the sequential execution time to the product of the
parallel time and the number of nodes. The evolu­
tion time is recorded in generations, in addition to
seconds, so that it becomes possible to compare the
evolution speed on different machines. Efficiency
values are normalized with respect to a geometri­
cally derived optimal value. The latter serves as a
reference and to indicate how good the results are,
since the optima are not known. The results pre­
sented here are based on 10 runs for each case, un­
less stated otherwise.

5.1 SBPGA Results

SBPGA has been implemented on a 16-node iPSC/
2 hypercube. The required parameters are as fol­
lows. The total population size used is 320 for
GRID1 and 512 for GRID2. The crossover rate is
0.7 and the mutation rate is 0.003. The number of
drift generations, D, and the fraction of migrants,
M, will be given below for each case. However, in
the tuning stage of the search, D is halved to allow
faster spreading of the genotypes produced by de­
creasing v in the objective function.

(a) The best assignment ofGRID1 found by SBP-

9

II Efficiency
II ##Generations
EJ Tune (min.) 64

.961

#Drift Genecations (D)

Fig. 8 Results for different lengths of
drift phase (30% migration).

II Efficiency
II #Generations
B Tune (min.)

.95 .94

% Migrants (M)

Fig. 9 Results for different peiCentages of
migration (#drift gen=lO). All time=2.0.

11 9 I

13 5

10 13

Fig. 10 Assignment of GRID2 by SBPGA.

GA is shown in Figure 6 for D=lO and M=30%.
The evolution of the candidate solution in one
deme is depicted in Figure 7. SBPGA finds a solu­
tion 97.7% of the geometric optimum in 66 gener­
ations, which takes about 2 minutes. The averages
of 10 runs is 96% efficiency and 65 generations.
The time taken by the interdeme selection phase

has been found to be 1.3% of that for the drift-mass
selection phase. This makes the interprocessor
communication time in the implementation of SB­
PGA negligible. The step improvement in the effi­
ciency value of the candidate solution in a deme
after the arrival of immigrants from the fittest
neighbor is clearly manifested in Figure 7 at some
points, such as generations 11 and 21. It can be
seen from Figure 6 that SBPGA does not strictly
insist on assigning equal number of elements to

processors. Instead, it emphasizes the (approxi­
mate) balancing of the combined calculation and
communication load, as required by the assumed
computational model. Another feature of the solu­
tion in Figure 6 is that processors 3 and 4 are allo­
cated discontiguous subdomains. This is not
necessarily bad in our model of computation. In
fact, for some problems, an optimal assignment
can not be contiguous. This remark also applies to
the other results below. The best solution found by
SGA [18] is also shown in Figure 7 for comparison
purposes; it is 97% of the optimum found in 118
generations.

(b) The efficiency of the assignment of GRID 1, the
number of generations required for evolving the
assignment, and the time taken are illustrated in
Figures 8 and 9 for different lengths of the drift
phase and migration percentages, respectively. The
values shown are the best of 5 runs. From Figure 8,
it can be seen that if D is less than 5, the evolution
model approaches that of a single mating unit and
migrants increase the selection pressure, possibly
leading to premature convergence. If D is greater
than or equal to 15, the search becomes slow and
inefficient. Therefore, D should be in the range 5 to
15 or, equivalently, 10 to 20 per cent of the maxi­
mum number of generations. In Figure 9, the re­
sults of M=5 are surprisingly good but are
generally unsafe. It can be seen that ifM is greater
than 40% the selection pressure becomes too high,
whereas a value less than 15% might not provide a
sufficient shifting of control. It is concluded that 20
to 40 per cent of the deme size is a suitable range
of values for M. Moreover, it is intuitive that as D
decreases M should also drop to balance out the in-

10

crease in the selection pressure.

(c) The best of 10 assignmentsofGRID2is shown
in Figure 10 for 0=20 and M=30%. It corresponds
to an efficiency ratio of 96% and is reached after
135 generations in about 11 minutes. The evolu­
tion of this solution is similar to that for GRID 1.
The time taken by migration and, thus, interproces­
sor communication is also negligible. In compari­
son, SGA has found a solution which is 93% of the
optimum in 280 generations.

5.2 IDPGA Results

IDPGA has been implemented on an 8K-processor
CM-2. The population sizes are the same as for
SBPGA. The crossover and mutation rates are 1.0
and 0.004, respectively. The neighborhood size is
chosen to be 24 unless stated otherwise. It is
formed of the individuals that are within a distance
of three units in the X-Y plane. The diagrams for
the assignments are not included here due to limit­
ed space

(a) The best assignment found for GRID1 corre­
sponds to an efficiency of 97.7% of the optimum
and has been found in 46 generations. Each gener­
ation takes 14 seconds. The averages of 10 runs are
95.2% efficiency and 45 generations.

(b) Neighborhoods of sizes different than 24 have
been experimented with. For a neighborhood size
of 12 the best efficiency ratio is 96% found in 49
generations. For a larger size of 48, the best effi­
ciency drops to 94.8% found in 42 generations.
These results show that a range of sizes are suitable
for the current implementation of IDPGA. Howev­
er, it is intuitive that a very small neighborhood
leads to longer search time, and that a very large
one becomes closer to the single mating unit model
and increases the communication time. Therefore,
an appropriate neighborhood size is in the range of
5 to 10 percent of the population size.

(c) The best assignment of GRID2 by IDPGA cor­
responds to an efficiency ratio of 94.3% found in

62 generations. Each generation takes 58 seconds.
The averages are 92.8% efficiency and 60 genera­
tions.

6. DISCUSSION

For the test cases considered, SBPGA and IDPGA
have found better solutions than those produced by
the sequential genetic algorithm [18], SGA, with
identical parameter values. The results of SBPGA
and IDPGA also compare favorably with those ob­
tained by other techniques. For example, simulated
annealing yields a comparable solution of 95% ef­
ficiency ratio for GRID1 [17]. Other faster meth­
ods produce lower quality solutions. In particular,
a neural network [9], recursive bisection [8], scat­
tered decomposition with patch size of 4 [19], and
rectangular decomposition give 91%, 87%, 61%,
and 74% efficiency for GRID1, respectively. Fur­
ther, the two PGA's share the property of genetic
algorithms that they do not show a bias towards
particular problem configurations [17]. Hence, the
favorable results for GRID1 and GRID2 are ex­
pected to extend to general configurations.

SBPGA and IDPGA exhibit superlinear speed-ups
since they take a lesser number of generations than
the sequential counterpart for evolving good sub­
optimal solutions. Thus, the PGA's are faster not
only due to the parallel implementation but also
due to the intrinsic parallelism of the underlying
evolution models which has the potential to evolve
fit genotypes faster than the single mating unit
case. In comparison with other methods, the exe­
cution time of the sequential GA is comparable to
that for a simulated annealing algorithm that pro­
duces comparable solutions [17]; other methods,
such as those listed above, are faster at the expense
of solution quality. Extrapolating this comparison
of execution time to the parallel versions of these
methods for hypercubes and the CM, a similar as­
sessment might be made.

The results indicate that SBPGA and IDPGA are
fairly robust. The intrinsic parallelism in the un­
derlying evolution models provides a natural way

11

for controlling the convergence of the evolving
structures. Thus, the probability that the genetic
search gets trapped in bad local optima is mini­
mized, and the need for additional measures and
parameters such as those used in SGA is obviated.
The sensitivity of both PGA's to the parameter that
determines the start of the tuning stage of the
search is less than that of SGA, also due to the in­
trinsic parallelism. This insensitivity can be en­
hanced by using different parameter values in
different subpopulations. Moreover, the results of
SBPGA for different values of D and M indicate
that a range of values are acceptable and an exact
design value is not necessary. A similar comment
applies to the neighborhood size in IDPGA.

Further work can be done to improve SBPGA and
IDPGA. This would include the exploration of oth­
er CM configurations for IDPGA, corresponding
to different geographic population distributions.
Also, the chromosomes can be allocated to the CM
columns of processors in a way that exploits the
physical hardware for reducing communication
cost. For example, chromosomes can be allocated
to the 16-processor chips that form the nodes of the
CM's cube, or contiguous segments of the chromo­
some can be allocated to the same physical proces­
sor. For SBPGA, asynchronous operation seems
appealing. It would involve variable values for M
and the use of different values for D in different
demes accounted for by polling in every genera­
tion. These improvements are the subject of further
research.

7. CONCLUSIONS

We have presented two PGA's, SBPGA and IDP­
GA, which are based on the shifting balance theory
and the isolation by distance model for natural ev­
olution, respectively. Their operation has been ver­
ified for the load balancing problem. The results of
the artificial evolution demonstrate the applicabili­
ty of the underlying natural evolution models. Fur­
ther, the near-optimal solutions found and the
speed-up obtained show the suitability of SBPGA
and IDPGA as new load balancing techniques that

are faster and more robust than sequential GA's
and that compare favorably to other load balancing
methods.

As in evolutionary biology where different cases
are simulated and explained by different models,
we conjecture that the different characteristics of
SBPGA and IDPGA makes the choice between
them problem-dependent for general application.
For example, IDPGA would be more suitable for
problems that require large population sizes with
simple and localized operations for the genes.

Although more applications are needed for a firm
evaluation of the PGA's presented here and in other
works, a preliminary assessment would support the
view that "parallel computers are complex. The
most complex systems have evolved in nature
parallel computers can be better understood by
models derived from natural sciences and these
models can be simulated better by parallel comput­
ers." [21].

Acknowledgement

This work was supported by the Joint Tactical Fusion
Program Office. The implementations were carried out
using the iPSC/2 of the Theory Center at Cornell Uni­
versity and the CM-2 of the Northeast Parallel Archi­
tectures Center at Syracuse University. We would like
to thank Tom Starmer for his comments on an earlier
draft and Ernest Sibert for helpful CM implementation
hints. The first author is thankful to Tom Stanner for re­
kindling his interest in Population Genetics.

References

1. M. Berger, and S. Bokhari, A Partitioning Strategy
for Nonunifonn Problems on Multiprocessors, IEEE
Trans. Comp., Vol C-36,No. 5, May 1987,570-580.

2. L. Booker, Improving Search in Genetic Algorithms,
in Genetic Algorithms and Simulated Annealing, editor
L. Davis, Morgan Kaufmann Publishers, 1987, 61-73.

3. J.P. Cohoon, S. U. Hedge, and W. N. Martin, Distrib­
uted Genetic Algorithms for the Floorplan Problem,
IEEE Trans. CAD, April, 1991.

12

4. R. J. Collins and D. R Jefferson, Selection in Mas­
sively Parallel Genetic Algorithms, ICGA'91, 249-256.

5. J. F. Crow, Basic Concepts in Population, Quantita­
tive, and Evolutionary Genetics, Freeman, 1986.

6. F. Ercal, Heuristic Approaches to Task Allocation
For Parallel Computing, Doctoral Dissertation, Ohio
State University, 1988.

7. J. Flower, S. Otto, and M. Salama, A Preprocessor
for Finite Element Problems, Proc. Symp Parallel Com­
putations and Their Impact on Mechanics, ASME Win­
ter Meeting, Dec. 1987.

8. G. C. Fox, A Graphical Approach to Load Balancing
and Sparse Matrix Vector Multiplication on the Hyper­
cube, Caltech C3P #327b, 1986.

9. G. C. Fox and W. Funnanski, Load Balancing Loose­
ly Synchronous Problems with a Neural Network, Proc
3rd Conf. Hypercube Concurrent Computers, and Ap­
plications, 1988,241-278.

10. G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J.
Salmon, and D. Walker, Solving Problems on Concur­
rent Processors, Prentice Hall, 1988.

11. G. C. Fox, Physical Computation, Int. Conf. Paral­
lel Computing: Achievements, Problems and Pros­
pects, Italy, June 1990.

12. D. E. Goldberg, Genetic Algorithms in Search, Op­
timization and Machine Learning, Addison-Wesley,
1989.

13. D. L. Hartl, and A. Oark, Principles of Population
Genetics, Sinauer Associates, 1989.

14. J. H. Holland, Adaptation in Natural and Artificial
Systems, Univ. of Michigan Press, 1975.

15. C. Kosak, J. Marks, and S. Shieber, A Parallel Ge­
netic Algorithm for Network-Diagram Layout,
ICGA'91, 458-465.

16. G. Laszewski, Intelligent Structural Operators for
the k-way Graph Partitioning Problem, ICGA'91, 45-
52.

17. N. Mansour and G.C. Fox, Physical Optimization
Methods for Allocating Data to Multicomputer Nodes,

Syracuse Center for Computational Science, SCCS-
122, 1991.

18. N. Mansour and G.C. Fox, A Hybrid Genetic Algo­
rithm for Task Allocation in Multicomputers, ICGA'91,
466-473.

19. R. Morison and S. Otto, The Scattered Decomposi­
tion for Finite Elements, J. Scientific Computing, vol2,
no. 1, Mar. 1987,59-76.

20. H. Muhlenbein, Parallel Genetic Algorithms, Popu­
lation Genetics, and Combinatorial Optimization,
ICGA'89, 416-421.

21. H. Muhlenbein, M. Gorges-Schleuter, and 0.
Kramer, New Solutions to the Mapping Problem of Par­
allel Systems: The Evolution Approach, Parallel Com­
puting 4, 1987, 269-279.

22. C. Pettey, M. Leuze, and J. Grefenstette, A Parallel
Genetic Algorithm, ICGA'87, 155-161.

23. G. Robertson, Parallel Implementation of Genetic
Algorithms in a Classifier System, in Genetic Algo­
rithms and Simulated Annealing, editor L. Davis, Mor­
gan Kaufmann Publishers, 1987, 129-140.

24. H. Simon, Partitioning of Unstructured Mesh Prob­
lems for Parallel Processing, Proc. Conf. Parallel Meth­
ods on Lalge Scale Structural Analysis and Physics
Applications, Pennagon Press, 1991.

25. P. Spiessens and B. Manderick, A Massively Paral­
lel Genetic Algorithm, ICGA'91, 279-287.

26. R. Tanese, Distributed Genetic Algorithms,
ICGA'89, 434-440.

27. D. Whitley, Workshop on Genetic Algorithms and
Neural Networks, ICGA'91.

28. R. D. Williams. Performance of Dynamic Load Bal­
ancing Algorithms for Unstructured Mesh
Calculations. Submitted to Concurrency Practice and
Experience, 1990.

29. S. Wright, Isolation by Distance, Genetics 28: 114,
March 1943, 114-137.

30. S. Wright, Evolution and the Genetics of Popula­
tions, Vol. 3, Univ. of Chicago Press, 1977.

13

	Parallel Genetic Algorithms with Application to Load Balancing for Parallel Computing
	Recommended Citation

	SU-CIS-91-48_001c
	SU-CIS-91-48_002c
	SU-CIS-91-48_003c
	SU-CIS-91-48_004c
	SU-CIS-91-48_005c
	SU-CIS-91-48_006c
	SU-CIS-91-48_007c
	SU-CIS-91-48_008c
	SU-CIS-91-48_009c
	SU-CIS-91-48_010c
	SU-CIS-91-48_011c
	SU-CIS-91-48_012c
	SU-CIS-91-48_013c
	SU-CIS-91-48_014c
	SU-CIS-91-48_015c

